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ABSTRACT

Large language models (LLMs) are often deployed to perform constrained tasks,
with narrow domains. For example, customer support bots can be built on top
of LLMs, relying on their broad language understanding and capabilities to en-
hance performance. However, these LLMs are adversarially susceptible, poten-
tially generating outputs outside the intended domain. To formalize, assess and
mitigate this risk, we introduce domain certification; a guarantee that accurately
characterizes the out-of-domain behaviour of language models. We then propose
a simple yet effective approach which we call VALID that provides adversarial
bounds as a certificate. Finally, we evaluate our method across a diverse set of
datasets, demonstrating that it yields meaningful certificates.

1 INTRODUCTION

With recent advancements in the field of natural language processing, large language models (LLMs)
have become ubiquitous. In particular, the scaling of recent large generalist models dubbed founda-
tion models has shown to possess emergent abilities that benefit a wide range of downstream tasks
such as text generation, question answering and text comprehension (Kaplan et al., 2020; Alab-
dulmohsin et al., 2022; Xiong et al., 2024; Henighan et al., 2020; Brown et al., 2020). Adapting
these foundation models for downstream tasks often leads to the state-of-the-art performance and
has become the dominant paradigm (Gao et al., 2020). This is typically achieved via fine-tuning
on task-relevant data (e.g. via Low-Rank Adaptation (LoRA) Hu et al. (2021), in-context learn-
ing (Mosbach et al., 2023), prefix tuning (Li & Liang, 2021), or simply prompt engineering.

However, foundation models are typically trained on large amounts of unlabeled web data which
contains a wide range of information that is either irrelevant to a task or potentially harmful (Bom-
masani et al., 2022). Therefore, it is desirable to restrict the output of a generalist LLM to a specific
domain. For instance, consider the government of Atlantis providing a general purpose chatbot to
advise their citizens on tax laws and support them in doing their tax reports. It would be important,
for public reputation and cost reasons that such a system would remain on topic and could not be
misused, either intentionally or unintentionally.

While deployers commonly want LLMs to only give responses on a certain set of topics, an ad-
versary might try to elicit an arbitrary response. Thus, a successful attack is an input string that
creates a coherent response outside the target domain. There are various reasons why an adversary
might want to elicit such a response that is out-of-domain (OOD). The adversarial user might want
to misappropriate the system as a cost-effective tool for a purpose it wasn’t built for, resulting in
excess infrastructure costs for the deployer. There have been cases where, for instance, a shopping
chatbot has been misused to write code (Kishan, 2023). Conversely, the deployer might legally be
required to validate and verify their models, which is challenging, if not impossible, when the model
is not domain-restricted. Finally, the adversary might want to harm the company directly by eliciting
harmful OOD responses, which could damage the company’s reputation when publicised. Such ex-
amples have become more common recently (McClure, 2023; The Guardian, 2023). Deployers have
moral and legal obligations to prevent this (Bommasani et al., 2022). In all examples, restricting the
domain in which the model responds under adversarial prompts can help mitigate risks. Thus, in
the era of foundation models, “domain” specialization is critical.

Existing work has implemented guardrails that address these risks (Jain et al., 2023), most notably
via alignment, resulting in the models to reject user requests (Bai et al., 2022; Ouyang et al., 2022;
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Christiano et al., 2023). However, a wide body of research has shown that such guardrails have
“jailbreaks”, i.e., they can easily be circumvented by a motivated adversary (Wang et al., 2024;
Qi et al., 2024; Carlini et al., 2024b; Dong et al., 2024a). Common jailbreak methods are prompt
injection (Perez & Ribeiro, 2022; Jiang et al., 2023; Liu et al., 2024), numerical optimization (Jia
& Liang, 2017; Wallace et al., 2021a; Ebrahimi et al., 2018; Jones et al., 2023; Zou et al., 2023; Jia
et al., 2024), red teaming (Perez et al., 2022; Samvelyan et al., 2024), automated black-box attacks
(Chao et al., 2024; Mehrotra et al., 2024), or data poisoning attacks (Biggio et al., 2013; Wallace
et al., 2021b; Carlini et al., 2024a). Using these tools, it is possible for adversaries to retrieve
information from a fine-tuned model that was suppressed by the alignment and generate responses
that are outside the target domain. Adversarial prefixes or suffixes that augment any prompt are
especially powerful as they have been shown to universally attack models in combination with a
wide range of prompts and can thus be shared between adversarial users (Wallace et al., 2021a; Zou
et al., 2023). This presents a significant risk. Hence, researchers have proposed methods to defend
against these adversarial attacks, such as unlearning (Nguyen et al., 2022; Xu et al., 2023), robust
fine-tuning (O’Neill et al., 2023; Dong et al., 2021), or request and response filtering (Inan et al.,
2023a). We provide a more structured review of relevant literature in Appendix F.

Deployers would ideally want guardrails that come with a provable, mathematical guarantee against
the model responding off topic, or a guarantee that it does this with very low probability. The process
of constructing guarantees against certain model behaviours under adversarial attack is commonly
referred to as certification and has been successfully applied to vision applications in recent years
(Akhtar et al., 2021). However, no existing LLM guardrails provide guaranteed protection against
existing or future jailbreaking techniques, leaving deployed models at risk of being compromised
shortly after release. As a result, developing certifiable methods to guarantee that specialized LLMs
consistently produce on topic content is critical. To that end, our contributions are as follows:

• We introduce a novel framework, domain certification, to bound the probability of models pro-
ducing out-of-domain content under adversarial attack.

• We introduce an easy-to-use algorithm VALID that bounds the probability of an LLM based sys-
tem responding off topic under adversarial attack. We show the efficiency of VALID which we
test empirically on a number of representative data sets.

2 DOMAIN CERTIFICATION

We now introduce our domain-certification framework for offering mathematical guarantees that a
LLM system stays on topic. In Section 2.1, we formally introduce this framework. In Section 3, we
present Verified Adversarial LLM Output via Iterative Dismissal (VALID). VALID is an easy-to-
use method to create a system that adheres to these guarantees. In plain language, we are proposing
a certifiable guardrail for LLM-driven systems as follows:

A model is domain-certified, when an adversarial upper bound can be placed on the
probability that the model provides an output outside its designated target domain.

Before formalizing this statement, we introduce some mathematical notation. We represent tokens
(i.e. individual text units), as x and y, which belong to the token space x, y ∈ V where V =
{1, . . . , V } (a vocabulary of size V ). We define the space of sequences of arbitrary length as S ≜
V∗, where ∗ symbolizes the Kleene closure. Sequences of tokens are denoted by bold letters with
x,y ∈ S, with x and y representing the input and output sequences of a LLM respectively. We use
lowercase letters to denote models that predict the next token, such as l : S → V. Applying this
model repeatedly, until the end-of-sequence token creates a sequence-to-sequence model L : S→ S.
We denote the likelihood of sample y under L given x as L(y|x), which is obtained by L(y|x) =∏Ny

n=1 l(yn|y<n,x) for a sentence y of length Ny . We further denote the distribution from which
the model samples its output as y ∼ L(·|x).

2.1 DEFINING DOMAIN CERTIFICATION

We now formally introduce domain certification. We define the target domain (or set of desired top-
ics) as a subset of the sentence space S. We partition S into the target domain T and its compliment
T′. For instance, T might be all sentences in S meaningfully occurring for “question answering for
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tax reports”. In addition, we define the set of unwanted responses as F ⊂ T′ (F as “forbidden”).
In the following we will certify with respect to this set F rather than T. We choose F such that
sequences in F′ ∩ T′ do not pose a risk such as described in Section 1. For instance, they might be
unintelligible or meaningless sequences of tokens. Hence, we wish to establish a guarantee that L is
unlikely to produce an output in F. First, we define a bound for a given element y in S:

Definition 1 Atomic Certificate. We say a model L : S→ S is ϵy-atomic-certified (ϵy-AC) for some
sample y (i.e. an atom) in the output set S, iff

∀x ∈ S : L(y|x) ≤ ϵy. (1)

In words, a model that is ϵy-AC for a sample y, will generate sample y with probability smaller
than ϵy for any x ∈ S, and hence for adversarially chosen x. If this is the case, we say model L
is certifiable for sample y with ϵy , i.e. ϵy is the smallest value that probably bounds L. Ideally,
such an upper bound ϵy would be large for samples in the target domain T, meaning the certificate
is permissive, and small for sample drawn from F meaning the certificate is restrictive. Having
obtained the ACs for a set of undesirable responses, we can translate these ACs into one certificate
across the entire set F by studying the worst-case across F:

Definition 2 Domain Certificate. We say model L is ϵ-domain-certified (ϵ-DC) with respect to F,
when it is ϵy-AC for all y ∈ F with ϵy ≤ ϵ:

∀x ∈ S,y ∈ F : L(y|x) ≤ ϵ. (2)

This imposes a global bound on L across all undesired responses in F. In practice, we cannot
establish the ϵ-DC certificate w.r.t. F as we cannot enumerate F. Hence, following standard practice
in ML evaluation we propose to use DF, a finite dataset of responses in F to establish a ϵ-DC
certificate w.r.t. DF approximating the certificate for F.

Recent discussions have raised the need for bounds on undesirable behaviour. For instance, Yoshua
Bengio has advocated for upper bounds on harmful behaviour (Bengio et al., 2024) in a recent blog
post (Bengio, 2024a). In addition, an increasing body of legislation mandates thorough auditing of
ML systems EU (2024). The atomic and domain certificates can play a vital role in assessing the risk
of worst-case behaviour. For instance, consider the deployer of a LLM-based system that processes
10 requests per second. The deployer might perform an a priori risk assessment and determine that
they can tolerate the consequences of an out-of-domain response from DF per year. The deployer
should certify the LLM system as ϵ-DC with ϵ ≈ 10−8 in order to achieve this level of risk.

3 ACHIEVING DOMAIN CERTIFICATION

In this section, we introduce Verified Adversarial LLM Output via Iterative Dismissal (VALID) to
obtain certification as described in Definitions 1 and 2.

Algorithm 1 VALID

Require: LLM L, Guide model G, hy-
perparameters k and T , prompt x
for t ∈ {1, . . . , T} do

Sample y ∼ L(·|x)
Ny ← length(y)
if log L(y|x)

G(y) ≤ kNy then
Return: y

Return: “Abstained”.

In order to motivate VALID we first discuss how one
might generate certificates with the simplifying assump-
tion of having assess to a domain oracle Ω. Specifically,
we define Ω as a generator for domain T: Ω assigns high
likelihood to sentences in T and zero likelihood to ele-
ments in F. In this case one could simply bound the di-
vergence between L and Ω to restrict the model domain.
In particular, we might use the Renyi divergence of order
infinity, ∆∞(P ∥ Q) ≜ log supx

P (x)
Q(x) (Rényi, 1961).

∀x ∈ S : ∆∞(L(y|x) ∥ Ω(y)) ≤ k. (3)

Bounding this divergence is another way of framing what we are aiming to achieve: The divergence
is large when L assigns high likelihood to a sample while Ω doesn’t, which means L is likely to
have produced a output that is out-of-domain. When Ω assigns high likelihood to y, the sample is in
the target domain, and the divergence in (3) is not restrictive. In Lemma 1 in Appendix A we show
this divergence implies (1) and (2).

As the oracle is not available in practice we approximate it with a “guide” language model that is
exclusively trained on in-domain data dubbed G (i.e. the guide model). We utilise G(y) to replace
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Ω(y) to assess the marginal likelihood of y. While this means that G(y) loses some context con-
tained in x, this has a major advantage: G(y) does not depend on x, which is a potential adversary
and hence, by design is robust to adversarial prompts.

We utilise a general model L and a domain generator G as described above and obtain a meta-model
M for which the guarantee holds with respect to the domain generator G. In particular, we perform
rejection sampling as described in Algorithm 1 (inspired by Vyas et al. (2023)): The capable, general
model L proposes a sample y and we accept, if the length normalized log-ratio between L and G is
bounded by hyperparameter k. We repeat up to T times until a sample is accepted. If all samples
are rejected, the model dismisses the request. This defines a new model M , for which the following
theorem establishes the certificate:

Theorem 1 (VALID Certificate) Let M(y|x) be the likelihood of y given x under M . Let Ny be
the length of y. Rejection sampling as described in Algorithm 1 provides the following bound on M:

∀x ∈ S : ML,G,k,T (y|x) ≤ 2kNy · T ·G(y) (4)

This means that M is [2kNyTG(y)]-AC and, further, M is [maxy∈F 2
kNyTG(y)]-DC w.r.t. F.

When context allows, we may abbreviate ML,G,k,T to M , omitting subscripts for brevity. Such a
certificate with respect to G can be useful: As G is only trained on samples in DT ⊂ T, a dataset of
domain T, it assigns exponentially decreasing likelihood to samples that are in F 1. In particular, this
is useful iff the log upper bound kNy + log T + logG(y) (log RHS of (4)) is small in comparison
to maxx∈S logL(y|x): Our certificate can provide an upper bound to the adversarial behaviour of
M that is favourable over L.

In the Appendices, we provide further insights into VALID. In particular, in Appendix B.2 we mo-
tivate the length normalization as employed in Algorithm 1. In Appendix A, we provide Lemma 2
showing how to estimate the likelihood of M . In Lemma 3, we provide an analysis on the expected
number of iterations in VALID. Further, in Appendix B.1 we provide further intuition on how rejec-
tion sampling can achieve an adversarial bound. Finally, in Lemma 4 we derive an adversary for M
and discuss how rejection sampling encumbers adversarial attacks on M .

4 EXPERIMENTS

We aim to empirically test our method proposed in Section 3 across three examples: TinyShake-
speare, 20NG and MedicalQA. After describing the experimental setup in Section 4.1, we examine
the rejection behaviour of our method by examining the logL(y|x)/G(y) ratio an associated cer-
tificates under a finite set of ground-truth test samples from T and F in Section 4.2. Finally, we
explore the effects repeated sampling with VALID in Section 4.3.

4.1 EXPERIMENTAL SETUP

In this section, we provide a brief description of our experimental setup for three applications. Each
experimental setup consists of a target domain T a finite dataset DT of in-domain samples, models
L and G, and an out-of-domain dataset DF, against which we test our methods (see Appendix C for
more details on data and models).

TinyShakespeare. TinyShakespeare (TS) is an popular dataset containing dialogues from Shake-
speare’s plays (Karpathy). We fine-tune a Gemma-2-2b (Gemma Team et al., 2024) and train G
on this dataset using a GPT-2 architecture (33.7M parameters). At testing, we consider 256-token
long sentences and use the first 128 tokens as prompt. As commonly done (Zhang et al., 2024), we
consider IMDB (Maas et al., 2011), RTE (noa, 2023), SST2 (Minaee et al., 2024) as OOD datasets
and add an old Bible dataset (Reis, 2019) as it is linguistically close to TinyShakespeare.

20NG. The 20NG dataset contains text from 18,000 posts on newsgroup websites on 20 different
topics. We consider articles from the computer science category as target domain DT and remaining
categories as OOD. We use a fine-tuned Gemma-2-2b (Gemma Team et al., 2024) as L and train
G on DT using a GPT-2 architecture (109.3M parameters) with a context length of 256 tokens. At

1We give an empirical example of this behaviour in Figure 14 in Appendix D.8.
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Table 1: Atomic Certificates @ FRR =
0.1. Larger is better for DF, smaller is better
for DT.

ϵ
Proportion of ϵy ≤ ϵ (in %)

TinyShakespeare 20NG MedicalQA
DT DF DT DF DT DF

10−1 100.0 100.0 100.0 100.0 82.02 100.0
10−5 100.0 100.0 100.0 100.0 73.64 99.70
10−10 100.0 100.0 100.0 100.0 59.90 95.14
10−20 100.0 100.0 100.0 100.0 31.01 67.15
10−50 99.0 100.0 98.0 99.0 0.03 6.70
10−100 66.0 100.0 68.0 99.0 0.00 0.01
10−250 0.0 86.0 0.00 39.0 0.00 0.00
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Figure 1: The log likelihood
ratios are well disentangled in
the MedQA setup.

20 10 0
Log10 -DC

0.00

0.25

0.50

0.75

1.00

m
ax D
F

L(
y|x

)

FRR

Figure 2: The false rejection
rate (FRR) required to issue an
ϵ-DC for the MedQA setup.

testing, we consider 256-token long sentences and use the first 128 tokens as prompt. We use the
same OOD datasets as for TS and also include the non-computer science categories from 20NG.

Medical QA. We apply our method to medical question answering as target domain, T. This could,
for example, be extended to a chatbot for clinicians to look up patient symptoms. To model potential
questions and answers, we use the PubMedQA dataset (Jin et al., 2019) as DT, which contains
approximately 200K QA pairs for training and 1000 test pairs. We regard question answering on
other topics, such as geography or computer science, as F. To model this, we use the Stanford
Question and Answering Dataset (excluding medical categories) (Rajpurkar et al., 2016) as DF. As
a generalist LLM, L, we use a LLama-3-8B model (AI@Meta, 2024) and for G we train a GPT-
2 architecture model from scratch (184M parameters) (Radford et al., 2019). We pre-train G on
PubMedQA and fine-tune it on questions from PubMedQA paired with answers generated by L.

4.2 LIKELIHOOD RATIOS ON GROUND TRUTH SAMPLES

In this section, we evaluate the capability of our method to attribute samples to the target domain and
investigate whether it yields useful adversarial bounds. In particular, we study the length-normalized
likelihood ratio L(y|x)/G(y) on in- and out-of-domain samples. In Figure 1, we show that the log
likelihood ratios for MedicalQA are disentangled and hence a threshold k exists separating target
domain and out-of-domain samples well. However, such k — while yielding strong OOD detection
performance — might not be associated with tight certificates. Hence, we will first study the ϵy-AC
certificates under M for individual samples, y, before moving on to the domain certificate, ϵ-DC.

Atomic Certificates. For each y, we obtain the ϵy-AC using VALID (see Section 3). We compute
the proportion of certificates ϵy smaller than some ϵ separately for samples in the target domain
dataset, DT, and the out-of-domain datasets DF and present results in Table 1. Due to varying
sequence lengths between datasets, we see some variation in the results, but make similar core
observations for all three setups: First, the certificates on the out-of-domain datasets DF are mean-
ingfully tight. We observe that more than 95% of out-of-domain samples have a ϵy-AC of less than
1 × 10−10 across all datasets. Further, we notice for each dataset, that fewer certificates in DT are
tight relative to those inDF. For MedicalQA fewer than 60% of samples have a bound of ϵ = 10−10.
This distinction between certificates onDT andDF is important: The certificate should be restrictive
on samples in F, and permissive in T, i.e. the bound should not prevent in-domain responses to be
sampled. Both are satisfied in our experiments. To further our analysis of the atomic certificates, we
compare these with a baseline in Appendix D.1.

Domain Certificates. To study certification across a range of samples, we turn to the domain
certificate, ϵ-DC. Above, we studied the effect of various parameters (e.g. fixing FRR) on the certifi-
cates. However, it’s most likely practitioners work the other way around: They first set an acceptable
threshold according to a threat and safety model. Then, they examine model performance under con-
ditions satisfying such certificate. Hence, we study model performance at a given ϵ-DC. As proposed
in Section 2.1, we establish an ϵ-DC certificate w.r.t. DF approximating the certificate for F. To ob-
tain ϵy-ACs that adhere to the domain certificate ϵ, we need to choose rejection threshold, k, and
the number of iterations, T , accordingly. For simplicity, here we keep T = 1 and study model per-
formance on DT, our in-domain data, while maintaining an ϵ-DC over DF. In particular, we look at
the FRR of M : The performance of model M is determined by the performance of L (from which
we sample response candidates), and the false rejections leading to a degradation of M compared
to L. Hence, we study the FRR as a function of the certification threshold ϵ. The result is shown in
Figure 2 for MedicalQA: The FRR increases as the certificates get tighter (small ϵ). Remarkably,
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we achieve a domain certificate with ϵ = 10−5 at a FRR of only 15% at a single rejection step. We
replicate all figures for the other datasets in Appendix D.

4.3 REPEATED SAMPLING IN VALID

In Section 4.2 above, we study certificates on ground truth samples. In Appendix D.3, we replicate
this analysis in detail by applying our Algorithm 1, actually sampling from L with T = 1, drawing
conclusions inline with the above. Here, we go another step further as we provide an analysis
of VALID with T > 1. In particular, we study ϵ-DCs as a function of rejection threshold k and
sampling iterations T .

Setup. We adopt the MedicalQA setup as described in Section 4.1. Specifically, we consider
T, k ∈ {1, 2, 3, 4, 5}, and calculate the resulting ϵ − DC on DF and the false rejection rate (FRR)
on DT. For ease of presentation we use a fixed temperature of 1.0 for L.2

Results. We find that increasing T significantly reduces FRR while only marginally increasing the
ϵ-DC (domain certificate). We present findings for the FRR in Figure 3a and for ϵ-DC in Figure 3b.
The minor increase in ϵ due to increasing T should not come as a surprise as we recall the formula
for the upper bound: 2kNyTG(y) (see (4)). Even T = 10 increases the upper bound ϵy by only
one order of magnitude. On the other hand, the gains in in-domain performance are marked. In
Figure 3a we can observe that for T = 5, the FRR is roughly halved for (K > 2), greatly improving
the refusal behaviour of the model on in-domain samples.

We provide further insights in the Appendices. We demonstrate how to evaluate a certified model on
standardized benchmarks in Appendix D.4. In Appendix E, we study the performance gap between
G and M and find that M outperforms G. Together with the results above, this demonstrates that
our system, combining the performance of L and safety of G, cannot be matched by either L or G
by themselves. Further, the effectiveness of VALID utilising a G of such limited capacities demon-
strates that the burden on training G is relatively low: A model that performs poorly at the target
task, but distinguishes well between samples in T and F, can be sufficient to achieve meaningful
certificates for M .

5 CONCLUSION

In this work, we tackle the problem of generative language models producing outputs outside their
target domain in response to adversarial inputs. We describe the associated risks, introduce a first-
of-its-kind framework for domain certification of LLMs, and provide VALID, a simple algorithm
relying on well-established theories from statistics and information theory to provide such guaran-
tees. We demonstrate the effectiveness of VALID in multiple representative settings and show that
it is effective even when relying on a guide model G with limited language skills, making it easy to
deploy in limited data and resource environments.

2We note that temperature of L is a confounding factor here. For tL → 0, we will observe deterministic
sampling of y given x and hence, T > 1 will not have any benefit.
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A PROOFS

Theorem 1 (VALID Certificate) Let M(y|x) be the likelihood of y given x under M . Let Ny be
the length of y. Rejection sampling as described in Algorithm 1 provides the following bound on M:

∀x ∈ S : ML,G,k,T (y|x) ≤ 2kNy · T ·G(y) (4)

This means that M is [2kNyTG(y)]-AC and, further, M is [maxy∈F 2
kNyTG(y)]-DC w.r.t. F.

Proof: Let At and A′
t be the events of accepting and rejection on iteration t, respectively. Let St be

the event of sampling y ∼ L(·|x) on iteration t:

M(y|x) =
T∑

t=1

P (St ∩At) =

T∑
t=1

P (At|St)P (St)
∏
i<t

P (A′
i) (5)

We upper bound the probability of rejecting on any previous iteration by 1, P (A′
t) ≤ 1,∀t. P (A|St)

is non-stochastic and is equal to either 0 or 1. The only way to get a non-zero output is if P (A|St) =

1 which imply log L(y|x)
G(y) ≤ kNy or P (St) ≤ 2kNyG(y) and hence by substitution:

M(y|x) =
T∑

t=1

P (St ∩At) =

T∑
t=1

P (At|St)P (St)
∏
i<t

P (A′
i) ≤

T∑
t=1

2kNyG(y) (6)

Finally, we sum over all t we get:

M(y|x) ≤ 2kNy · T ·G(y). (7)

□

Lemma 1 (Equivalence of Divergence) Let ∆∞(P ∥ Q) be the Renyi divergence of order infinity
(Rényi, 1961), ∆∞(P ∥ Q) ≜ log supx

P (x)
Q(x) and let Ω be a distribution over T, i.e. generator for

T. Then,
∀x ∈ X : ∆∞(L(y|x) ∥ Ω(y)) ≤ k, (8)

implies Definition 1 with ϵy = 2kΩ(y) and Definition 2 with ϵ = 2k maxF Ω(y). If Ω is an oracle,
that assigns high likelihood to sentences in T and no likelihood to elements in F then, it implies
Definition 1 with ϵy = 0 and Definition 2 with ϵ = 0.

Proof: We start from the definition of the Renyi divergence and lower bound the left hand side by
any element in the supremum, giving:

∀x ∈ X : log
L(y|x)
Ω(y)

≤ log sup
y

L(y|x)
Ω(y)

= ∆∞(L(y|x) ∥ Ω(y)) ≤ k. (9)

Multiplying through by Ω(y) gives the following upper bound:

∀x ∈ X : L(y|x) ≤ Ω(y) · 2k. (10)

showing the ϵy-AC equivalence. Taking the max over F shows the ϵ-DC equivalence. Assuming Ω
to be a perfect oracle, we can conclude that ∀y ∈ F the upper bound on the right hand size is zero.
Thus we get the desired result:

∀x ∈ X,∀x ∈ F : L(y|x) = 0. (11)

□

Lemma 2 (Likelihood of M ) let M(y|x) be the likelihood of y given x under M . Rejection sam-
pling with as described in Algorithm 1 provides the following bound on M:

M(y|x) =
{
L(y|x) (1−ϕT )

1−ϕ if L(y|x) ≤ kG(y)

0 otherwise
(12)

where ϕ = Ey∼L(y|x)[1[L(y|x)≥2NkG(y)]] or in word the condition probability of rejection on a
given iteration, given and input x.

15



Socially Responsible Language Modelling Research (SoLaR) workshop at NeurIPS 2024

Proof: Let At and A′
t be the events of accepting or rejection on a proposed y iteration t, respectively.

1− ϕ = P (At|x) = Ey∼L(y|x)[1[L(y|x)≤2NkG(y)]],

ϕ = P (A′
t|x) = Ey∼L(y|x)[1[L(y|x)≥2NkG(y)]]

Let St be the event of sampling y ∼ L(·|x) on iteration t, C be the event that L(y|x) ≤ kG(y) and
let Y be the event of y ∼M(·|x)

P (Y |C) =

T∑
t=1

P (St ∩At|C) =

T∑
t=1

P (At|St, C)P (St|C)
∏
i<t

P (A′
i|C) (13)

P (A|St, C) = 1 and hence by substitution:

P (Y |C) =

T∑
t=1

P (St∩At|C) =

T∑
t=1

P (At|St, C)P (St|C)
∏
i<t

P (A′
i|C) = L(y|x)

T∑
t=1

ϕt−1 (14)

Notice how
∑T

t=1 ϕ
t−1 is the sum of the first T entries of a geometric series. Thus we get:

M(y|x) = L(y|x) (1− ϕT )

1− ϕ
, (15)

Conversely P (A|St, C
′) = 0 and hence:

P (Y |C ′) = 0 (16)

If the sample space S is large, we cannot compute M(y|x) as we cannot compute ϕ. We can estimate
M(y|x) by computing L(y|x) and performing Monte Carlo sampling from L to obtain an estimator
ϕ̂. We can then use the Binomial confidence interval for confidence level α:

ϕ̂± Zα/2 ×

√√√√ ϕ̂
(
1− ϕ̂

)
N

(17)

We then plug in the bounds on L to obtain the bound on M because of the monotonicity of M in ϕ̂.
□

Lemma 3 (Expected number of trails) Let t̂ be the number of iteration’s run by Algorithm 1, R
be the event that M rejects the abstains the from answering let ϕ = Ey∼L(y|x)[1[L(y|x)≥2NkG(y)]]
of the probability of rejecting a response on iteration t. Then the expected number of iteration of
Algorithm 1 is given by:

Ey∼M̂(·|x)[t̂] = Tϕ2T +
(1− ϕT )2

1− ϕ
, (18)

where M̂(·|x) is the distribution over outputs of a Algorithm 1, including R, the event of Abstaining,
given a input string x.

Proof: The expected number of trials over all outcomes is given by:

E[t̂] = E[t̂|R′]P (R′) + E[t̂|R]P (R). (19)

As R is the event that M abstains from answering the request or rejecting the proposed responses T
times we have:

P (R) = ϕT ,

P (R′) = 1− ϕT .

If the request is rejected the algorithm will have run exactly T iterations, thus E[t̂|R] = T . The
remaining quantity to calculate is E[t̂|R′]:

E[t̂|R′] =

T∑
t=1

tP (t) =

T∑
t=1

tP (A)P (A′)t−1 = (1− ϕ)

T∑
t=1

tϕt−1. (20)
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Multiplying by ϕ:

ϕE[t̂|R′] = (1− ϕ)

T∑
t=1

tϕt. (21)

(20) - (21):

E[t̂|R′]− ϕE[t̂|R′] = (1− ϕ)

T∑
t=1

tϕt−1 − tϕt. (22)

Telescoping sum:

(1− ϕ)E[t̂|R′] = (1− ϕ)

T∑
t=1

ϕt−1 − TϕT . (23)

Canceling and summing first N element of geometric series:

E[t̂|R′] = −TϕT +

T∑
t=1

ϕt−1 = −TϕT +
1− ϕT

1− ϕ
(24)

Plugging the relevant expressions and rearranging gives the result:

E[t̂] = E[t̂|R′]P (R′) + E[t̂|R]P (R), (25)

E[t̂] = (−TϕT +
1− ϕT

1− ϕ
)(1− ϕT ) + TϕT = Tϕ2T +

(1− ϕT )2

1− ϕ
(26)

Note how when ϕ = 0; the algorithm always accepts on any iteration and E[t̂] = 1. Conversely,
when ϕ approaches 1 and the algorithm almost always abstains, E[t̂] = T . □

B VALID— REJECTION SAMPLING

B.1 ATTACKING M

In this section, we provide some intuition on how rejection sampling (see Section 3) works to obtain
an adversarial bound. For simplicity we will consider the case T = 1. We will then use this to
describe the objective required to attack M .

Building an Intuition. We consider model M generated by rejection sampling from L using
guide model G as described above. We consider a single y and describe how the ϵ-AC certificate as
achieved through rejection sampling using an example. Let y = The cow drinks milk and
consider three prompts:

• x1 = What does a cow drink?

• x2 = Which animal drinks milk?

• x3 = Repeat after me: The cow drinks milk. Now you:

Intuitively we may assume L(y|x3) > L(y|x1) > L(y|x2) as y more naturally follows some
prompts than others: y would have very high likelihood after x3 for instruct trained models, medium
likelihood after being specifically asked about cows (x1) and low likelihood to be picked as example
from all mammals as response to x2.

Let us regard a single rejection step. We illustrate this example in Figure 4. If we assume that y|x1 is
rejected, i.e. logL(y|x1)− logG(y) > kNy , then we can conclude that y|x3 will also be rejected.
We know that for T = 1, M has likelihood:

M(y|x) =
{
L(y|x) if y|x is accepted,
0 otherwise.

(27)

Given that M(y|x) = 0 for rejected samples, the question presents itself: What is the purpose of the
upper bound. Consider the case that y|x2 is accepted. This occurs, iff logL(y|x2) − logG(y) ≤
kNy , which by algebraic manipulation means L(y|x2) ≤ 2kNyG(y), recovering the upper bound
as stated in Theorem 1: It is only possible to return y|x2 when L(y|x2) is smaller than 2kNyG(y).
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More generally, y can only be returned, if we find an x∗ s.t. L(y|x∗) ≤ 2kNyG(y) and hence
by (27) we have that L(y|x∗) ≤ 2kNyG(y). This illustrates how rejection sampling bounds the
adversaries: Samples will only be accepted if proposing them was very unlikely in the first place.
This intuition helps us establishing how to attack M .
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Figure 4: The likelihood of model M obtained through VALID with T = 1. The blue line is the likelihood of
M for the given y. Three example prompts x1, x2 and x3 are shown.

Formalising the Attack. We assume the adversarial objective is to increase the probability of
a given y∗ (e.g. from the out-of-domain set), F, being returned. The objective of attacking L is
immediately follows:

xadv
L = argmax

x∈X
L(y∗|x) (28)

where X is either S or some continuous relaxation, such as soft-prompt space. However, the solution
xadv
L is likely not an adversary under M , as xadv

L maximises the log-likelihood ratio and thus the
sample is likely rejected, hence M(y∗|xadv

L ) = 0. Instead, the adversary for M , xadv
M , needs to

maximise M while ensuring the sample is accepted, i.e. M(y∗|xadv
M ) > 0. Thus The following

objective emerges which we state in the following lemma.

Lemma 4 (Adversary under Rejection Sampling) Assume the adversarial objective is to in-
crease the likelihood of sample y being returned by the model M . Assume the model M is obtained
by rejection sampling as described in Algorithm 1 with T = 1. The adversary is given by:

xadv
M = argmax

x∈X
L(y|x) s.t. L(y|x) ≤ 2NykG(y). (29)

Proof: Note that M(y|xadv
M ) > 0 as the sample is accepted. Assume there exists x′, s.t.

L(y|x′) > L(y|xadv
M ) and hence maximises M further then xadv

M . Then, it must be true that
L(y|x′) > 2kG(y), which implies M(y|x′) = 0 yielding a contradiction. Hence, xadv

M is the
required solution. □

Implementing such Attack. Applying VALID to obtain M has implications on the suitable
procedures to attack M . In particular, it requires solving the constrained optimisation problem in
(29), which already adds a layer of complexity to the unconstrained problem for L. In general
constrained optimisation problems are more challenging, this is compounded by the upper bound
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on L(y|x) not decomposing across tokens. Further, while large models s.t. LLama-3-8B are often
publicly available, G will likely be a custom model for which the attacker does not have white box
access. For a successful attack, the adversarial user must estimate the likelihood ratio between L and
G, which might prove challenging. This indicates that attacking M defined through VALID might
be a harder problem than attacking L. To reiterate, while it is possible to attack M , our certificate
holds and it cannot be attacked past the upper bound provided in Theorem 1.

B.2 LENGTH NORMALIZATION
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Figure 5: Figure 5a shows the log likelihood ratios scale in the sequence length Ny . Six artificial examples
of sentences with length 1 to 10 are shown for the ID and OOD dataset. As log ratios scale, so should the
decision boundary. Figure 5b shows the log likelihood ratio depends on Ny for real data from the MedQA
setup. Performing length normalization makes the problem linearly separable.

Algorithm 1 performs length normalized rejection-sampling as unnormalized log likelihood ratios
scale unfavourably in Ny , the length of sequence y which we now demonstrate. Consider the next-
token models l and g underlying the sequence-to-sequence models L and G. As y is sampled from
L, we expect each token y1, . . . , yNy to have high likelihood under l. If we assume that l places c
times more probability mass per token than g, then we can show that the log likelihood ratio grows
linearly in Ny , the length of sequence y: logL(y|x)/G(y) = log

∏Ny

n=1 cg(yn|y<n)/g(yn|y<n) =
Ny log c. We illustrate an example in Figure 5a: Assume that an in-domain sample y for which
model and generator assign constant likelihood per token of 0.1 and 0.05, respectively, i.e. ∀n =
1, .., Ny : l(yn|y<n,x) = 0.1 and g(yn|y<n,x) = 0.05. Further assume out-of-domain y′ for
which l assigns a mass of 0.1 per token, and g assigns 0.01. The log likelihood ratio for y can be
expressed as Ny log 2 and for y′ as Ny′ log 10. As in- and out-of-domain ratios grow with length,
so does the optimal decision bound. We plot sequences of varying lengths with these parameters in
Figure 5a and replicate this on real data in Figure 5b. By arithmetic manipulation, rejection sampling
with threshold kNy is equivalent to bounding the ratio of geometrically normalized likelihoods
logL(y|x)1/Ny/G(y)1/Ny using a constant threshold k. Hence, we propose to use normalized log
ratios in Algorithm 1 over unnormalized likelihood ratios. Similar approaches have been discussed
in the NLP literature (Geng et al., 2023).

Despite the length normalization of the rejection threshold, notice that the VALID bound depends
on Ny , the length of sequence y (see (4)). In particular, let ḡ(y) be the geometric mean of per-token
probability for G(y). The log upper bound can be written as kNy +Ny log ḡ(y) + log T . The ratio
k/ log ḡ(y) determines the bound strictness across varying sequences length. If is close to 1, the
bound is balanced, and when k < − log ḡ(y), the bound decreases as Ny increases.

C EXPERIMENTAL SETUP

C.1 CHARTASK DATASET

Here we provide more information on the CharTask dataset. The goal of the CharTask dataset is it,
to have a well-controlled toy dataset with clear definitions of target domain T and other domains F.

As shown in Table 2, each sequence consists of three parts: A sequence of random characters, a
task definition in the middle and another sequence of characters in the end. We refer to the random
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Table 2: Examples of the CharTask dataset

Task Pool Sequence

Prompt Task Completed Combined

Sorting Int 5 3 6 S R A E 3 5 6 Q 5 3 6 S R A E 3 5 6
Adding Int 5 3 6 A E R S 6 4 7 Q 5 3 6 A E R S 6 4 7
Reverse Sorting Int 5 3 6 R E A S 6 5 3 Q 5 3 6 R E A S 6 5 3
Even-Odd Int 5 3 6 E R A S 6 3 5 Q 5 3 6 E R A S 6 3 5
Sorting Int + Char 13 5 c a S E R A 13 5 a c Q 13 5 c a S E R A
Adding Int + Char 13 5 c a A S R E 14 6 d b Q 13 5 c a A S R E
Reverse Sorting Int + Char 13 5 c a R E A S c a 5 13 Q 13 5 c a R E A S c a 5 13
Even-Odd Int + Char 13 5 c a E S A R a c 13 5 Q 13 5 c a E S A R 13 5 c a

sequence as Sin. In the middle there are four task tokens, the first of which defines the task T . “S”
sets the task to sorting, “R” to reverse sorting, “A“ to adding +1 and “E” to even-odd sorting. The
instructing token is followed by the remaining three task tokens in random order to ensure that all
are seen by a model trained on a subset of these. Finally, the completed sequence is the original
sequence of characters with the task performed on them, i.e. Sout = T (Sin). The pool of characters
for each sequence is either the integers or integers and strings of lower case letters. Importantly, all
tasks interpret characters and integers as characters alike. For instance, sorting integers “11”, “5”
results in “11”, “5”. To be precise, all tasks are based on the integer unicode representations of the
characters.

Each sequence has variable length of up to 49 elements in Sin (elements can be double digits).
For integers we use a pool of 49 unique distinct integers and for characters we use a pool of 249
elements (e.g. defining “at” as one element in the sequence). Under these conditions there exist a
combinatorially large set of unique sequences far exeeding our training dataset size.

Given the tasks and pools of characters, 8 possible domains, emerge as shown in Table 2, which
we denote as CharTask (Task, Pool). We define sorting integers as the target domain: DT =
CharTask (Sorting, Int) and all other combinations as out-of-domain. We create two distinct datasets
with non-overlapping splits for training, validation and testing. The in-domain dataset consists of
1M training samples. The “generalist” dataset DT+F = CharTask (All, Int + Char) contains of all
possible tasks with sequences consisting of integers and characters. We use 1M training sequences
per task, hence 4M sequences in total. Validation and test sets are 64 sequences and 4096 sequences,
respectively.

C.2 CHARTASK SETUP

Dataset and Domain. We use the CharTask dataset as described in Appendix C.1. We train a
custom BPE tokenizer of length 360 (Sennrich et al., 2016). In practice, the pretrained tokenizer of
any foundation model is trained on a general dataset. Hence, we train the tokenizer using DT and
DF, the target and out-of-domain datasets. While the dataset is inherently suitable for a sequence-
to-sequence task, we treat it as next-token prediction problem just as used in language modelling.

Training. We train our domain model G on a set of integer sorting examples, CharTask (Sorting,
Int). We train a GPT-2 (Radford et al., 2019) architecture with 3 layers, 3 heads and 48 embedding
dimension. We train the model on partial sequences, as we are embedding marginal sequences y.
Hence, we cut each sequence in two parts using a splitting point that is sampled under a uniform
distribution. Hence, the model learns the transition from “[BOS] ..” to any character that might be
the first response token.

For the generalist model L, we train using all available tasks on integers and characters, CharTask
(All,Int+Char). We train a GPT-2 architecture with 6 layers, 6 heads and 192 embedding dimensions.

We train L and G with AdamW (weight decay 0.1) for 2048 steps with a cosine learning rate sched-
ule with 500 steps warmup, a maximum learning rate of 0.005, scheduled for 40 epochs. We train
with 120 context window using next-token prediction.
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Inference. We use common parameters to tweak the predictive distribution of our models. For
G we use a temperature of 0.7 and for L of 0.2. We find this greatly helps the model performance
of both. We do not perform TopK selection of tokens. We prompt with a prompt length of 10. The
task-completed sequence is almost deterministic given the prompt and task for models that have very
high accuracy. Hence, we remove sequences where the prompt of 10 tokens is larger than 25% of
the entire sequence.

C.3 20NG SETUP

Dataset Cleaning. The 20NG dataset is very dirty, containing a wide array of random special
character sequences and formatting. We found these sequences to complicate model training and
large pre-trained models struggled with it. In addition, as formatting strongly varies between the
20NG dataset and others, this is a confounding factor for OOD detection. Classifying sentences
as ID or OOD should focus on semantics, but the formatting provides a spurious correlation that
is easily exploited by models. Hence, we decided to clean the dataset. To do so we utilise the
scikit-learn (v1.5.1) (Pedregosa et al., 2011) options to remove headers, footers and quotes.
Further, we cleaned it using Llama-3.1-8B-Instruct (Dubey et al., 2024) using the following query:

Your task is to clean and format a string.
Instructions:
- Do not change the order of the words.
- Remove cryptic character sequences, spacings out of order,
and line breaks within sentences.
- Remove out-of-order punctuation, but leave correct
punctuation in place.
- The result should be semantically and lexically the same as
the original but well formatted.
- Remove IP addresses and email addresses.
- Remove sequences of (special) characters, that are not
human language.
- Only return the cleaned string without messages or quotes
around it. Do not return any other information. Do not
repeat the instructions. Do not repeat the example.

Sentence:

We check the output for various keywords and phrases from prompt and find 0% violation rate.
While there still exist random sequences, the data quality is greatly improved. We notice that several
sequences exist in 20NG and OOD testing datasets that are seemingly random character sequences
and multiple trigram repetitions such as “Nanaimo British Columbia Nanaimo British Columbia
Nanaimo British Columbia ...”. These sequences have the highest likelihood under model G and
L while not having any semantic meaning nor constituting a valid sequence that could indicate
model misappropriation. Hence, when reporting max likelihoods for 20NG over a finite dataset
(e.g. maxx,y∈DF L(y|x)) we instead use the 99.99th quantile and report it as max.

Training. We use a pre-trained Gemma 2 tokenizer for both models which has a vocabulary size
of 256k tokens.

For the fine-tuned model L, we use a pre-trained decoder-only Gemma 2 2B (hosted on Hugging
Face) as the starting point then fine-tune it to our ID dataset using LoRA adaptors which involved
training an additional 10.4M parameters (0.4% of the total parameters).We train L with AdamW
(weight decay 0.01) for 1536 steps with a cosine learning rate schedule with 64 steps warmup, a
maximum learning rate of 5e-5, scheduled for 32 epochs. We train with 256 context window using
next-token prediction.
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For the model G, we use a decoder-only GPT-small model architecture, 6 layers, 6 heads and 384
embedding dimensions and a total of param- eters 109.3M, which we train from scratch using the ID
data exclusively. We train G with AdamW (weight decay 0.01) for 320 steps with a cosine learning
rate schedule with 100 steps warmup, a maximum learning rate of 3e-4, scheduled for 100 epochs.
We train with 256 context window using next-token prediction.

Inference. For both L and G we use a default temperature of 1. We do not perform TopK selection
of tokens. When evaluating performance, we use 128-token long prompt and a 128-token long
ground truth response.

C.4 TINYSHAKESPEARE SETUP

Dataset Cleaning. The formatting in TinyShakespeare dataset was distinctly different to other
texts with long sequences of line breaks and usage of all-caps for character names. We removed
these excessive line breaks and changed the character names from all caps to title case to make it
similar to other datasets and make OOD detection less trivial challenging.

Training. We use a pre-trained Gemma 2 tokenizer for both models which has a vocabulary size
of 256k tokens.

For the fine-tuned model L, we use a pre-trained decoder-only Gemma 2 2B (hosted on Hugging
Face) as the starting point then fine-tune it to our ID dataset using LoRA adaptors which involved
training an additional 10.4M parameters (0.4% of the total parameters). We train L with AdamW
(weight decay 0.01) for 128 steps with a cosine learning rate schedule with 64 steps warmup, a
maximum learning rate of 5e-5, scheduled for 32 epochs. We train with 256 context window using
next-token prediction.

For the model G, we use a decoder-only GPT-micro model architecture, 4 layers, 4 heads and 128
embedding dimensions and a total of param- eters 33.7M, which we train from scratch using the ID
data exclusively. We train G with AdamW (weight decay 0.01) for 2400 steps with a cosine learning
rate schedule with 300 steps warmup, a maximum learning rate of 3e-4, scheduled for 300 epochs.
We train with 256 context window using next-token prediction.

Inference. For both L and G we use a default temperature of 1. We do not perform TopK selection
of tokens. When evaluating performance, we use 128-token long prompt and a 128-token long
ground truth response.

C.5 MEDICALQA

We apply our method to medical question answering as target domain, T. This could for example
be extended to a chatbot for clinicians to research patient symptoms. To model potential questions
and answers, we use the PubMedQA dataset (Jin et al., 2019) as DT, which contains approximately
200K QA pairs for training and 1000 test pairs. We regard question answering on other topics, such
as geography or computer science as F. To model this, we use the Stanford Question and Answering
Dataset (excluding medical categories) (Rajpurkar et al., 2016) as DF.

Training. As a generalist LLM, L, we use a LLama-3-8B model (AI@Meta, 2024) and train
a custom GPT-2 model (184M parameters) for G (Radford et al., 2019). We pre-train G on Pub-
MedQA (Jin et al., 2019) with 200K sequences. We then use 100K prompts from PubMedQA to
generate sequences using L and then fine-tune on them using responses from L to half the prompts
in PubMedQA. As G is embeds the responses, G(y), we fine-tune using “BOS[Response]” rather
than entire sequences. We pretrain with learning rate of 0.0001 for 50 epochs and then fine-tune
with learning rate 0.00001 for another 50 epochs. On 8 × H100, the total training takes about 2
hours.

Inference. We perform inference without topk or topp parameters and with temperatures of 1.0 for
model L and G. We prompt using the natural questions as defined by the datasets. For the analysis,
we remove responses that are not clearly out of domain. For instance the response “10 million people
every year” is not only a valid response to a geographical question, but can also be an information
about the prevalence of the disease. When applying our method, we focus on responses with at least
10 tokens to further remove ambiguous questions. Modern LLMs tend to be very verbose in their
responses, so responses should naturally be longer than 10 tokens.
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C.6 DATASET CATEGORIES

We list here the categories excluded from SQuAD and included in MMLU for reproducibility.

Excluded From SQuAD Included in MMLU-Med
Antibiotics Anatomy
Symbiosis Clinical knowledge
Gene College medicine
Brain College biology
Immunology College chemistry
Biodiversity High school biology
Digestion High school chemistry
Pharmaceutical industry High school psychology
Mammal Human aging
Nutrition Human sexuality
Tuberculosis Medical genetics
On the Origin of Species Nutrition
Asthma Professional medicine
Pain Virology
Bacteria
Infection
Black Death
Pharmacy
Immune system
Chloroplast

Table 3: Categories of items in used Datasets.

D EXPERIMENTAL RESULTS

D.1 COMPARING ATOMIC CERTIFICATES

To further study the atomic certificates on M , we compare them to a certificate on L as a baseline.
To this end, we define the constriction ratio for each y, given by the ratio of the certifiable ϵy for L,
ϵy(L), over the certifiable ϵy for M , ϵy(M):

CRk =
ϵy(L)

ϵy(M)
(30)

To the best of our knowledge, only vacuous certificates for a general model L exist. Hence, we
approximate it from below using the likelihood L(y|x) under non-adversarial x from the out-of-
domain dataset DF. Concretely, we use L(y|x) as a crude approximation of maxx∈S L(y|x). This

0 10 20 30 40
Log10 Constriction Ratio (Median)

0.0

0.5

1.0

Youden's J
TRR
FRR

Figure 6: The trade-off between OOD and
certification: The best OOD detection per-
formance occurs with a constriction ratio of
20.

Table 4: The log constriction ratio for out-of-domain samples,
DF, shows that our atomic certificates obtained with VALID are
orders of magnitudes tighter than the standard model L. For each
false rejection rate (FRR) we present the 10% quantile, the me-
dian and the 90% quantile. (Larger is better).

FRR Log10 Constriction Ratio (10% / Median / 90%)
TinyShakespeare 20NG MedicalQA

0% 20 / 104 / 183 -119 / -32 / -64 -1 / 10 / 25
1% 30 / 114 / 194 -91 / -4 / 92 6 / 18 / 35
5% 55 / 140 / 219 -47 / 40 / 136 10 / 22 / 41

25% 94 / 179 / 258 -2 / 85 / 181 14 / 27 / 48
50% 115 / 199 / 278 22 / 109 / 205 16 / 30 / 52
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overestimates the robustness of L and underestimates the constriction ratio, i.e. the improvement of
VALID certificates over L in bounding the probability of OOD responses. In Figure 6, we plot the
median constriction ratio for out-of-domain samples for MedicalQA across a range of parameters k
together with false rejection rates (FRR) and false acceptance rates (FAR). This illustrates the trade-
off between certification and OOD detection: The optimal classification performance (as measured
by Youden’J (Youden, 1950)) is achieved at k = 5.31 with a strong true rejection rate (0.99)
and a low false rejection rate (0.01), while producing a median constriction ratio 18.8. Smaller k
values yield tighter certificates (see (4)) and larger constriction ratios at the expense of increasing
the FRR. We further illustrate this in Table 4, where we choose hyperparameter k to achieve a given
FRR and present log constriction ratios on out-of-domain samples. When holding FRR=1%, we
observe for MedicalQA that 90% of samples have a constriction of at least 1× 106 and the median
constriction ratio is 18 orders of magnitudes (≈ 1018). We observe similar ratios for 20NG and
stronger ratios for TinyShakespeare. Further, we observe the strongest constriction among samples
with high likelihood under L (see Appendix D.2). Tight bounds are the most relevant on these
samples as they are most likely to be sampled from L.

D.2 ATOMIC CERTIFICATE BY LIKELIHOOD

Obtaining a tight atomic certificate for sample y is most important when the sample is likely pro-
posed by L. Hence, in this section we study the log constriction ratio, the tightening of our adver-
sarial certificate over model L, as a function of the sample’s likelihood under L.

We bin out-of-domain samples into 10 bins based on their log likelihood under model L, i.e.
logL(y|x), and compute median, 25th and 75th percentile log constriction ratio, as well as the
median log likelihood. We present results in Figure 7 for both 20NG and TinyShakespeare. We
observe that the constriction strengthens when samples get more likely under L. That means, those
samples most likely to be sampled under L benefit most from our atomic certificate. We consider
this a favourable result.
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Figure 7: These figures show the constriction ratio as a function of log likelihood of samples under L. Figure
7a shows data for 20NG and Figure 7b for TinyShakespeare. On the x-axis is median log-likelihood under L,
logL(y|x) and on the y-axis is the log constriction ratio.

D.3 GENERATING RESPONSES

In the section above, we evaluate M obtained through VALID on prompts and responses, taken
from datasets DT and DF representing our target domain T and F. The experiments provide us with
a detailed analysis of ACs and DCs on a large variety of samples for which their membership to T or
F is given by high-quality labels. Nonetheless, in practice, the candidate responses that are judged
by VALID are generated by L. Hence, we extend our analysis and prompt M using x ∈ DT and
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Figure 8: Figure 8a shows that log likelihood ratios are well disentangled. Figure 8b shows the trade-off
between OOD and certification. Figure 8c shows the false rejection rate (FRR) required to certify at a given ϵ.
All results are for VALID with T = 1 for Medical QA.

x ∈ DF. We then study M using responses sampled from L. We focus on the MedicalQA setup as
described in Section 4.1 and test Algorithm 1 with T = 1.

Our findings are inline with Section 4.2 showing a strong ability to distinguish between in- and
out-of-domain samples while providing meaningful adversarial bounds. We present our results in
Figure 8. In particular, Figure 8b shows the constriction ratios on out-of-distribution samples gen-
erated by L. We see a clear indication that the constriction is strong out-of-domain with an optimal
classification performance at a ratio of 1040. To reiterate, median ratio between L(y|x) and the
ϵ-AC for M is 1040 showing just how strict VALID is on the out-of-domain dataset.

D.4 CERTIFIED BENCHMARKING
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Figure 10: The MMLU-Med@ϵ results of
our model M for MedQA.

We extend the analysis of false rejection rate (FRR)
by evaluating model M on a standardized benchmark.
The objective is to assess M ’s performance on MMLU
(Hendrycks et al., 2021), while ensuring it is certified at
ϵ. In particular, for our medical question answering setup,
we evaluate the model performance of M on the biology,
medicine, and clinical categories of MMLU, which we
refer to as MMLU-Med.

Setup. Evaluating the MMLU while certifying model
M requires careful consideration. MMLU’s standard for-
mat provides n-shot examples with four possible answers
(A through D) and prompts the model to select the correct
response. However, this setup does not reflect a realistic
user-system interaction. Thus, we introduce the MMLU-
Med@ϵ metric, which separates the evaluation into two streams: (1) standard assessment of model L
on MMLU-Med to determine correctness, and (2) testing whether the correct question-answer pair is
rejected by our algorithm. The process is summarized in Figure 9. We score an item as correct, if the

Which of the following is true of Graves Disease of the thyroid? 
A: It is a cause of ophthalmoplegia 
B: It causes a large multi-nodular goitre  
C: It is commoner in males than females 
D: In the past, Grave's disease sometimes caused 'Derbyshire Neck' 
Answer:  {A,B,C,D}

Question: Which of the following is 
true of Graves Disease of the thyroid? 
Answer: It is a cause of 
ophthalmoplegia

✅  

❌  

❌  

❌  
 

MMLU-Med @  : Set   s.t.   is   on  ϵ k M ϵ − DC 𝒟𝔽
Question Correctness Accepting Response

 log L(y |x)/G(y) ≤ k Ny ✅

Correct Answer & Answer Accepted. Question Score: ✅

Figure 9: The MMLU@ϵ benchmark assesses MMLU performance while satisfying ϵ-DC certificate. The
correctness is scored as commonly done for MMLU (left). The correct question answer pair is checked for
acceptance / rejection by M . Only if a sample is accepted and correct, the question is scored positively. For
questions not ending in “?”, the sentence is concatenated without keywords.
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model predicts the correct answer while maintaining its ϵ−DC on the realistic question-answering
pair.

Results. The MMLU score of our LLama-3-8B at ϵ = 1.0 (i.e. unconstrained) is 73%, which is
in line with Meta’s findings AI@Meta (2024). We present our results in Figure 10. Remarkably, we
are able to maintain this score even when certifying at ϵ = 10−17, after which the performance drops
and correct MMLU responses are rejected. In Section 2.1 we provide an example where certificates
in the region of ϵ = 10−9 might be useful. Here, we are able to exceed that by 8 orders of magnitude
without degrading performance.

D.5 CHARTASK RESULTS
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Figure 11: This Figure replicates results for the CharTask dataset.

D.6 TINYSHAKESPEARE RESULTS
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Figure 12: This Figure replicates results for the TinyShakespeare dataset.

D.7 20NG
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Figure 13: This Figure replicates results for the 20NG dataset.
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D.8 MEDICAL QA
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Figure 14: This figure demonstrates the gap in log likelihood between in-domain and out-of-domain samples
for the guide models G in Figure 14a and the LLM L in Figure 14b. As the length of the response, Ny ,
increases, the gap between ID (DT) and OOD data (DF) widens, with the log-likelihood decreasing roughly
linearly. Thus the guide model G on the left side assigns exponential decreasing probabilities to OOD samples.

E ABLATION

E.1 COMPARING M TO G

Our method provides a guarantee on a generalist model assuming that such a model outperforms
custom, small solutions that are inherently safer due to their domain specific training. We test
this empirically by examining the gap in performance between the generalist model L, a small in-
domain model. As G is trained marginally on y, it is not able to perform any task. Hence, we
exactly replicate the training procedure of G and train a model on the entire sequence, G′(x,y). We
utilize the CharTask dataset as described above and study the accuracy of each model in generating
valid sequences: A valid sequence is one that starts with Q, is followed by a random sequence of
characters (e.g. 5 3), followed by four unique task tokens (e.g. S A E R) defining a task, which
is then performed (e.g. 3 5). The sequence is expected to terminate there. If any of these are
violated, the generated sequence is scored as invalid. We perform inference on 1000 prompts from
the target domain test dataset prompting the model with various lengths of prompts. In Table 5, we
present the results: The accuracy of generating such sequences of L lies significantly above that
of G (difference of approx 30%). This shows that G is effective in restricting the domain while
performing considerably worse than L. Hence, our method combines the best of both models: The
safety of G with the performance of L.

Prompt Length G L
1 60.45 91.21
5 60.25 92.68
10 66.89 91.11

Table 5: Accuracy scores for CharTask generation dataset.

E.2 BENEFIT OF LARGER GUIDE MODELS

In this Appendix, we study the influence of the size of G on the VALID results. In particular, we
ask whether VALID benefits from smaller or larger models.

Setup. We turn to our MedicalQA setup as described in Section 4.1 and Appendix C.5. With
the same methodology, we fit two more models for G. GXS follows a GPT-2 architecture with 6
layers, 6 heads and 192 embedding dimension resulting in 27.49M parameters. GS follows a GPT-2
architecture with 6 layers, 6 heads and 384 embedding dimensions resulting in 60.29M parameters.
To recap, the G model as used above uses 12 layers, 12 heads and 768 embedding dimension result-
ing in 184M parameters. We then compare the three models on samples generated by L following
Appendix D.3.
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Results. We find that larger models tend to perform better, however evidence is not strong. First, we
study the rejection threshold k per model. As described in (4) in Theorem 1, VALIDs upper bounds
gets tighter with smaller k. Hence, in Figure 15a we plot k values achieving a given false rejection
rate (FRR) for each model. We observe that larger the model enable smaller k at the same FRR. This
indicates that the trade-off in k between certification and OOD detection is more favourable under
larger models. This should not come as a surprise, however, as larger models tend to achieve better
perplexity (i.e. lower loss) on in-domain data.

Next, we study the constriction ratios of the Atomic Certificates (AC) as done in Table 4 in Ap-
pendix D.1. Here, we replicate this table for different sizes of G as shown in Table 6 . For
each model, we provide the the 10th percentile, median and 90th percentile. You may observe
that GXS(y) consistently provides constriction ratios that are are often around 10 orders of magni-
tudes worse than GS(y) and G(y). Interestingly, GS(y) yields better ratios than G(y). However,
the difference is smaller. We speculate that the limited amount of ID training data means we do not
see benefits for increasing the size of G beyond a point, as it begins to over-fit without the addition
of extra regularization techniques.

Finally, we study the Domain Certificates (DC) for each model. For this we present Figure 15b
showing the false rejection rate (FRR) given an ϵ-DC for the three models. We may observe that
the lower bound to the FRR significantly increases as the models get smaller. The evidence here
suggests that larger guide models yield better domain certificates.

In conclusion, the evidence points to larger models working better for an application like MedQA.
The evidence uniformly shows that a model as small as GXS(y) does perform significantly worse
than larger models.

0.0 0.1 0.2 0.3 0.4 0.5
FRR

4

6

8

k

GXS(y)
GS(y)
G(y)

(a)

20 15 10 5 0
Log10 -DC

0.4

0.6

0.8

1.0
GXS(y)
GS(y)
G(y)

(b)

Figure 15: These Figures demonstrate differences in the behaviour of VALID for different sizes of guide models
G. Figure 15a shows that larger models allow for lower k and hence lower bounds at the same False Rejection
Rate (FRR). Figure 15b shows the FRR for a given ϵ-DC for guide models of different sizes.

FRR Log10 Constriction Ratio (10% / Median / 90%)
GXS(y) GS(y) G(y)

0% -427 / -45 / 12 -408 / -41 / 12 -449 / -54 / 6
1% -246 / -14 / 42 -176 / -3 / 79 -198 / -10 / 43
5% -74 / 12 / 141 -42 / 21 / 195 -42 / 18 / 162

10% -29 / 24 / 202 -11 / 35 / 257 -8 / 33 / 229
20% -3 / 43 / 281 1 / 57 / 337 3 / 50 / 302
25% 0 / 50 / 308 5 / 63 / 364 7 / 60 / 345
50% 11 / 81 / 430 13 / 96 / 497 15 / 89 / 477

Table 6: Constriction Ratios for MedQA for three models of different sizes. The smallest model is yields
significantly worse (lower) constriction ratios.

F RELATED WORK

LLM Guardrails. A large body of work has been published on establishing effective guardrails
for LLMs. These approaches are designed to restrict the model to responses that align with the de-
ployer’s values. One of the earliest approach was Reinforcement Learning with Human Feedback
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(RLHF) (Askell et al., 2021), which employs human preferences to guide LLM training. Extensions
such as Safe-RLHF add cost models to penalize harmful behaviour, ensuring a balance between
helpfulness and harmlessness during optimization (Dai et al., 2023). RLHF’s foundation in the-
ory from reinforcement learning has given rise to techniques such as Proximal Policy Optimization
(PPO) (Bai et al., 2022), the more recent Direct Preference Optimization (DPO) (Rafailov et al.,
2024), and Generalized Policy Optimization (GPO) (Tang et al., 2024), which extends to use incor-
porating diverse optimization objectives, useful for safety-critical scenarios. For an in-depth survey
of this area we direct the reader to Kaufmann et al. (2023). Unlike the preceding approaches that
fine-tune guardrails into the parameters of an LLM, a number of works have proposed to use LLMs
to classify content as either safe or unsafe. Llama Guard categorizes the inputs and outputs of an
LLM into different unsafe content categories (Inan et al., 2023b). Conversely, Chua et al. (2024)
classify if an output is safe with respect to a system prompt. Other works such as Safe LoRA (Low-
Rank Adaptation) aim to balance between task-specific performance and safety alignment during
model fine-tuning by projecting adaptation weights through alignment matrices (Hsu et al., 2024).
For a complete overview on LLM guardrails we direct the interested reader to a recent survey of this
area Dong et al. (2024b). Existing LLM guardrail techniques have been proven effective to different
levels. However, these guardrails only come with empirical evidence of their proficiency against
existing attacks, and hence, many have been circumvented shortly after deployment. Conversely,
VALID offers a provable high-probability guarantee against undesirable behaviour, reflecting recent
advocacy for such provable assurances (Bengio, 2024b).

Out-of-Distribution Detection. Out-of-distribution (OOD) detection has received a lot of at-
tention in recent years in NLP. Commonly, the problem is treated as text classification and softmax
probabilities of class predictions Hendrycks & Gimpel or energy scores Liu et al. are deployed as
discriminant scores. Another group of methods employs distance-based methods, relying on OOD
responses being distant from ID responses in latent space, often utilizing Mahalanobis distance and
sometimes incorporating contrastive learning techniques (Uppaal et al.; Podolskiy et al.; Zhou et al.;
Khosla et al.; Lin & Gu). Finally, rooting in classical statistics, a number of studies suggest using the
log-likelihood ratio (LLR) as a discriminate score, comparing likelihoods from ID and OOD proxy
models (Gangal et al.; Zhang et al., 2024). Recently, Xu & Ding (2024) offered a comprehensive
review of works using LLMs for OOD detection and proposed a different taxonomy of these works
conditioning on how the LLMs are used in the detection process. While many of these works have
strong empirical detection results, their focus is OOD detection rather than certification and hence
they do not provide theoretical guarantees or certificates on model behaviour.

Certifying LLMS. A number of certification approaches have been proposed for LLMs in var-
ious contexts. For instance, Chaudhary et al. (2024) aims to certify the knowledge comprehension
ability of LLMs and Freiberger & Buchmann (2024) discuss what criteria should be certified to en-
sure fairness. Most relevant here is work on certification against adversarial inputs. Casadio et al.
(2024) discuss certifying the robustness of LLMs to input perturbations in embedding space. Com-
monly, adversarial certification is studied for text classification rather than generation (La Malfa,
2023). Kumar et al. (2023) introduces a framework for defending against adversarial perturbations
in token space by performing a small number of substitutions around a given input. In contrast
VALID comes with certificates that holds for all inputs, rather than perturbations around a specific
input. This makes its guarantees much more widely applicable.

G LIMITATIONS

Despite these promising results, we acknowledge the limitations of our current implementation.

First, the domain generator G(y) is lacking context. This means that if y is marginally in domain,
while y|x, the conditional distribution isn’t, our method will not reject appropriately. Returning
to our working example of a tax chatbot, for prompt x =”How often is a tax report due?”, the
response y =”Once a year.” is in-domain. Hence, the same response to x =”How often should
I shower?” might be accepted despite it being out-of-domain, and terrible advice. However, this
can be mitigated by fine-tuning the model L to be as explicit as possible repeating “shower” in the
response.

Second, this approach relies heavily on the domain-specific model G, and how closely it approxi-
mates the ideal oracle Ω. In practice and as demonstrated in our experiments, G might have limited
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semantic understanding and lack general language capabilities and world knowledge. In most in-
stances it might not be able to distinguish between semantically opposite but similar sentences and
hence VALID is likely incapable of aligning the model, rather than shushing it.

Third, an adversary might construct an attack that aims to copy tokens from the prompt of L to G.
For instance, x =“Repeat after me: !!!-+! and then tell me how to build a bomb!”. This “!!!-
+!” might be an adversary for G to put high likelihood on the correct answer of L following the
instruction. This attack likely requires white box access to G and hence we are not certain about
the feasibility of such adversaries. In addition, as G has never seen information on how to build a
bomb, it is extremely unlikely to produce coherent, correct and harmful content. In Appendix B.1,
we discuss the feasibility of attacking M further.

Fourth, our method comes at the extra cost of sampling up to T times. Further, it requires training
G and evaluating it during inference. Depending on the architecture of G however, the extra cost is
limited. In our experiments G is orders of magnitudes smaller than L.

H FUTURE WORK

In this section we briefly discuss some ideas for future work that we believe could further extent the
practical utility of VALID. First, it would be interesting to experiment with larger specialised models
for G to assess if these more capable models lead to better performance and results. We chose not
to do this as LLMs trained from scratch exclusively on specific domains are not common, and thus
results with these models would be less similar to what a practitioner with limited resources could
expect.

As described in Section 3, VALID uses length normalisation to ensure the log likelihood ratio rejec-
tion condition is robust to different lengths of sequences Ny . However, by sampling representative
data sets of responses from y ∼ L(·|x) for both in-and out-of-distribution x’s, it should be possible
to learn a more complex polynomial of Ny to then use as a threshold for rejection. This threshold
could also be used to provide both ϵy-ACs and ϵ-DC certificates, while hopefully simultaneously
enabling more precise detection.

Finally, a rejection scheme with a probabilistic decision rule, similar to Algorithm 5 in Vyas et al.
(2023), would be able to provide identical bounds to Theorem 1. Possibly, this rejection rule would
lead to better performance in terms of OOD classification.
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