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Abstract

Data-to-text generation aims to generate text
description based on input data. Modern ap-
proaches are largely based on neural networks,
which often require massive parallel data for
training. Recently, researchers address few-
shot data-to-text generation by fine-tuning pre-
trained language models. In our work, we ob-
serve that such few-shot models suffer from
the problem of low semantic coverage, i.e.,
important input slots are missing in the gen-
erated text. We therefore propose a search-
and-learning approach that inserts the miss-
ing slots in a greedy manner and learns from
the search results. Results show that our
model achieves high performance on E2E and
WikiBio datasets. Especially, we cover 98.5%
of input slots on the E2E dataset, largely alle-
viating the low coverage problem.

1 Introduction

Data-to-text generation is a task converting struc-
tured information into human-readable text descrip-
tions, illustrated in Figure 1. Data-to-text gen-
eration has gained much attention in the field of
natural language processing, with applications to
restaurant descriptions (Novikova et al., 2017), bi-
ographies (Lebret et al., 2016), and weather fore-
casts (Liang et al., 2009).

Traditional approaches to natural language gen-
eration (NLG) use handcrafted rules with statistics
(Langkilde and Knight, 1998; Stent et al., 2004;
Rieser and Lemon, 2009), usually lacking flexibil-
ity and diversity of the outputs.

Recently, data-to-text generation is generally
accomplished by modern neural networks, such
as sequence-to-sequence recurrent neural net-
works (Lebret et al., 2016; Liu et al., 2018). These
models use massive parallel training datasets, for
example, 42K table–text training pairs in the E2E
dataset (Novikova et al., 2017). This data-hungry
nature of neural models makes data-to-text gener-

ation an expensive and time-consuming affair and
restricts its real-world applications.

Chen et al. (2020b) present a few-shot learning
approach for data-to-text generation by fine-tuning
pre-trained language models (LMs) with a copy
mechanism. We observe that, in the few-shot set-
ting, the fine-tuned LMs fail to fully learn the cor-
respondence between input and output. They suffer
from the problem of low semantic coverage, that
is, important information slots are often missing in
the generated text.

In our work, we propose a search-and-learning
(S&L) approach to address the low coverage prob-
lem for few-shot data-to-text generation. We first
fine-tune the pretrained T5 language model (Raffel
et al., 2020), similar to previous work (Chen et al.,
2020b). To address the low coverage problem, we
iteratively insert a missing slot into the generated
sentence at all possible positions, and pick the most
appropriate candidate sentence based on T5 prob-
ability. This can be thought of as greedy search
that finds a sentence containing all slots. Inspired
by Li et al. (2020), we then treat the search results
as pseudo-groundtruth and further fine-tune our T5
language model. In this way, our model achieves
high performance, especially with a high coverage
of the input slots. Also, our model is efficient for
generating sentences and does not increase the in-
ference complexity, compared with search-based
inference (Liu et al., 2020).

In summary, our main contributions include:
• We address the low semantic coverage prob-

lem in few-shot data-to-text generation.
• We propose a search-and-learning approach

by inserting missing slots and learning from
the search results.

• We conduct extensive experiments on E2E
and WikiBio datasets. Our model outperforms
previous few-shot models in various metrics,
largely closing the gap between few-shot and
fully supervised learning.



Slot Value

Name The golden 
curry

Food Indian

Rating 1 out of 5

Area Riverside

Near Café rouge

Family 
Friendly

Yes

the golden curry serves indian food with a customer 

rating of 1 out of 5 . it is located near café rouge 

(c) Output of first-stage fine-funed T5: the gold curry serves indian food with a 
customer rating of 1 out of 5. it is located near café rouge.

(Missing slots: riverside, family friendly)

(a) Input data (b) Reference: The golden curry is a chinese restaurant. it has a customer rating of 
1 out of 5. it is family friendly. it is located near café rouge.

(d) Search to improve semantic coverage

Select the best
position

in riverside area, the golden curry serves indian food with a 
customer rating of 1 out of 5. it is located near café rouge. 

Iteratively insert all missing slots       

(e) Second-stage fine-tuning T5 to learn from search results

. . .

Insert “in 
riverside area”

Figure 1: An example for data-to-text generation and our proposed approach.

2 Related Work

2.1 Data-to-Text Generation

Generating human-understandable sentences from
tabular data, commonly known as data-to-text gen-
eration, is a persistent problem from early NLP
research. Traditional work typically follows a
pipeline approach of sentence/content planning and
surface realization (Dale and Reiter, 1997), using
hand-engineered rules (Kukich, 1983; McKeown,
1992) and statistical induction (Liang et al., 2009;
Koncel-Kedziorski et al., 2014). However, the gen-
erated text by such systems usually lacks flexibility
and diversity.

With the rise of deep learning, neural models
have become a prevailing approach to data-to-text
generation (Lebret et al., 2016; Liu et al., 2018;
Wiseman et al., 2018; Liu et al., 2019). Typi-
cally, these systems require massive parallel data
for training the text generator.

Very recently, Chen et al. (2020b) addressed few-
shot learning for data-to-text generation, where
they assume a very small parallel corpus is avail-
able. They propose to fine-tune pre-trained lan-
guage models (LMs) with a copy mechanism. We
observe that, even such fine-tuned LMs generate
fluent sentences, they suffer from the problem of
low semantic coverage.

In fact, Dhingra et al. (2019) have pointed out the
low semantic coverage problem of human-written
references. They propose a new metric for better
evaluating data-to-text models. In this paper, we
emphasize the low coverage problem of text gener-
ators, and propose a search-and-learning approach
to overcome it.

Gong et al. (2020) improve the fidelity of data-to-

text generators by table reconstruction and content
matching along with fine-tuning GPT-2. Our pre-
liminary analysis during development suggests that
fine-tuned T5 does not generate wrong information,
but may miss important input slots.

2.2 Search-Based Text Generation

Previous work has addressed unsupervised text
generation by various search approaches, such as
simulated annealing (Liu et al., 2020) and hill-
climbing (Schumann et al., 2020). The basic idea
is to define a heuristic objective function (typically
involving language fluency, semantic coherence,
and other task-specific scores) and generate text
by word-level editing towards the objective. Li
et al. (2020) further propose a search-and-learning
approach to improve performance and inference
efficiency.

Our paper adopts the framework of Li et al.
(2020), but differs from previous search-based ap-
proaches in several significant ways: 1) We address
the few-shot setting. Instead of a heuristically de-
fined objective, we use a fine-tuned language model
to evaluate candidate sentences. 2) The goal of our
search is for a higher semantic coverage, rather than
a generic fluent sentence. Our search space is rela-
tively simpler than the entire sentence space, and
thus, the main focus of our work is not the search
algorithm. We adopt greedy search over multiple
missing slots, which turns out to work well empir-
ically. To the best of our knowledge, we are the
first to address few-shot data-to-text generation by
search and learning.

Other work learns to perform word editing in a
supervised way (Dong et al., 2019), or treat rule-
based editing as input (Li et al., 2018). We instead



perform editing to search for high semantic cover-
age and further learn from the edit results.

3 Problem Formulation

Data-to-text generation aims to generate a natural
language description for some structured input data;
we consider a common setting, where the input
is tabular data. For one data sample, the input
table is a set of slot name–value pairs, denoted by
T = {(si, vi)}Si=1, where si is the name of the ith
slot, vi is the value, and S is the number of slots.
The output is a sentence y = (y1, y2, · · · , ym) that
describes the given input T. Notice that the table
T is different for every data sample, but we omit
the sample index for simplicity.

In this work, we consider the few-shot setting,
where we have a small parallel corpus Dp =
{(T(m),y(m))}Mm=1 and another small unlabeled
corpusDu = {T(n)

u }Nn=1, where T(n)
u is a different

table than T(m). Here, both M and N are small
numbers in our few-shot setting.

Few-shot learning is important to NLG, as it
saves human annotation labors and also helps to
alleviate the cold-start problem of an NLG task. In
our work, we assume a small unlabeled corpus Du

is available in addition to Dp. This is a realistic
setting for few-shot learning, because unlabeled
data are easier to obtain than labeled pairs with
human-written sentences, and sometimes Du may
be synthesized by recombining the slots of Dp for
data-to-text generation.

4 Proposed Model

In our approach, we first fine-tune a pre-trained lan-
guage model (LM) for conditional text generation
based on an input table (Section 4.1). This allows
us to generate fluent sentences in the few-shot set-
ting, due to the large model capacity and extensive
pre-training of the LM.

However, fine-tuned LMs may not fully learn
the correspondence between input slots and output
text, and have the problem of low semantic cov-
erage. Thus, we iteratively insert a missing slot
into the generated sentence in a greedy manner,
so as to improve the semantic coverage (Section
4.2). Finally, these search results are treated as
pseudo-groundtruth for further fine-tuning our LM,
which not only improves inference efficiency, but
also yields better sentences (Section 4.3).

4.1 First-Stage Fine-Tuning T5

We use the T5 model (Raffel et al., 2020) for data-
to-text conditional generation. T5 is a text-to-text
Transformer model (Vaswani et al., 2017), which
is pre-trained on multiple NLP tasks and achieves
state-of-the-art performance on question answering,
document summarization, sentiment classification,
etc. In fact, T5 can be thought of as an alternative
for BERT (Devlin et al., 2019) and GPT-2 (Radford
et al., 2019).

It is worth noting that T5 is never pre-trained on
any tasks related to data-to-text generation. There-
fore, our experiments are indeed in the few-shot
setting even if we use pre-trained T5.

We linearized the input table by concatenating
all slots in the format of “name[value]”. In
other words, a special token “[” separates the name
and value of a slot, and another special token “]”
separates different slots.

In our few-shot setting, we fine-tune T5 using
several hundred data–text pairs, which is consid-
erably smaller than a usual NLG training set. The
model learns to estimate the conditional probability
P (y|T) in an auto-regressive way:

P (y|T;θ) =

n∏
i=1

P (yi|y<i,T;θ), (1)

where y is the output with length n, T is the input
table, and θ represents model parameters.

We fine-tune T5 with the cross-entropy loss

J(θ) = − logP (y|T;θ) (2)

4.2 Search to Improve Semantic Coverage

We observe that T5 indeed generates fluent sen-
tences, but it has a low coverage of the input slots.
In Figure 1c, for example, the slots “riverside” and
“family friendly” are not mentioned in the generated
text, although they are present in the groundtruth.

The low semantic coverage is because the few-
shot parallel corpus cannot fully support T5 learn-
ing the correspondence between input and output.
This is evidenced by analyzing the coverage per-
centage and the training size: T5 fine-tuned on 1%
of E2E data has a coverage of 84.46% input slots,
whereas it has a coverage of 97.74% if fine-tuned
on the whole dataset.

To this end, we propose a simple yet effective
search approach that explicitly inserts the missing
slots into the generated text.



We start by checking the occurrence of each slot
value vi in T5’s output. If a slot value vi does
not appear in the output, we insert a phrase ṽi
based on manually designed templates. For ex-
ample, if the slot “area[riverside]” is miss-
ing, we insert the phrase ṽi = “in riverside
area”. The E2E dataset has a boolean slot
“familyFriendly[yes/no]”, and we de-
sign the phrase template as either “family
friendly” or “not family friendly”.
The complete list of our templates is shown in Ap-
pendix A.

For every missing slot, we determine the most
appropriate position for inserting the slot template.
This is given by an enumeration of all possible
positions within a sentence, and we select the can-
didate that has the highest T5 probability p(y|T)
as fine-tuned by Eqn (1), shown in Figure 1.

This process is repeated for all missing slots, and
every missing slot is inserted greedily according to
the above criterion. Our approach can be thought
of as an optimization towards

ŷsearch = argmax p(y|T) (3)

subject to vi ∈ y,∀i

Specifically, we optimize the T5 conditional proba-
bility for data-to-text generation by starting from
an infeasible solution (i.e., an output that violates
the constraint). We then project the solution into
the feasible set by satisfying each constraint in a
greedy fashion.

Our search method is inspired by recent devel-
opment of search-based unsupervised text gener-
ation, such us simulated annealing for paraphras-
ing (Liu et al., 2020) and hill-climbing for sum-
marization (Schumann et al., 2020). However, our
search effort is mainly devoted to projecting an
infeasible solution to the feasible set, instead of
searching for a generic sentence that maximizes
the objective.

Our approach also resembles rule-based text gen-
eration systems in the early age (Langkilde and
Knight, 1998; Stent et al., 2004), as we also design
rules and templates. However, our work differs
from them significantly, as we use rules only for
revision not for generation. Further, we will have
a learning component that learns from the search
results, introduced in the next subsection.

4.3 Second-Stage Fine-Tuning T5 with
Search Results

The search approach in Section 4.2 ensures a high
semantic coverage in the output sentence, but it has
two major drawbacks: 1) the edited sentence may
not be fluent due to the fixed template, and 2) it has
a low inference efficiency as we have to evaluate
multiple candidate outputs given a data sample.
To address the above drawbacks, we further fine-
tune T5 that learns from the search results, inspired
by Li et al. (2020).

In our few-shot setting, we assume there is small
unlabeled corpus Du containing input tables only.
In practice, Du can either be obtained inexpen-
sively or can be synthesized by recombining the
table slots and values in Dp.

For a given input table T
(i)
u ∈ Du, we use

T5 to generate a candidate output (Section 4.1)
and perform search for higher semantic coverage
(Section 4.2). The search result is treated as a
pseudo-groundtruth, denoted by ŷ

(i)
search. It is mixed

with the original parallel corpus for further fine-
tuning T5. In other words, our dataset becomes
Dp

⋃
{(T(i)

u , ŷ
(i)
search) : T

(i)
u ∈ Du}. T5 is fine-

tuned by the same cross-entropy loss as Equa-
tion (2). Details are not repeated.

4.4 Inference

For inference on the test set, we only use the two-
stage fine-tuned T5 (i.e., fine-tuned on search re-
sults in Section 4.3) to predict the output. We do
not have the search procedure during inference.

In this way, our inference efficiency is improved
than the search approach, because we do not have
to evaluate multiple candidate sentences during pre-
diction. More importantly, we leverage the power
of pre-trained language models, and are able to gen-
erate more fluent sentences than the search itself.

Compared with one-stage fine-tuning (Sec-
tion 4.1), T5 this time is explicitly trained with
pseudo-groundtruth that has high semantic cover-
age. We will show in Section 5.1 that, after search
and learning, T5 achieves near-perfect semantic
coverage on the E2E dataset.



# Model #Train BLEU NIST METEOR RougeL CIDEr PARENT (P/R/F1) PPL AvgLen Coverage

1 TGEN p:42K 65.93 8.61 44.83 68.50 2.23 – – – –
2 SLUG p:42K 66.19 8.61 44.54 67.72 – – – – –
3 SR

1 p:42K 68.60 8.73 45.25 70.82 2.37 – – – –
4 T5 p:42K 67.59 8.81 45.17 70.44 2.33 67.40 / 61.75 / 63.43 154.49 23.58 97.74%

5 T5 p:2100 62.45 8.30 44.10 67.15 2.17 64.25 / 61.69 / 62.00 136.54 24.82 96.69%

6 T5 p:420 61.72 7.96 40.52 65.61 1.96 65.63 / 57.25 / 60.10 141.61 21.97 84.46%
7 T5 self-train p:420, u:1680 60.83 7.74 39.85 66.36 1.95 66.60 / 57.31 / 60.63 154.74 21.50 83.21%
8 T5 S&L p:420, u:1680 60.70 8.13 43.60 65.84 2.12 66.97 / 63.63 / 64.29 160.40 25.01 98.50%

Table 1: Test results on E2E. “p:” and “u:” denote the number of parallel and unlabeled training samples, respec-
tively. Baseline results are quoted from original papers (Novikova et al., 2017; Juraska et al., 2018; Shen et al.,
2019). All results of fine-tuning T5 are obtained by our experiments. Based on the evidence in Dhingra et al.
(2019), we consider PARENT as our main metrics.

5 Experiments

5.1 Experiment I: E2E Dataset

Dataset. In this experiment, we used the E2E
dataset1 (Novikova et al., 2017) to evaluate our ap-
proach. E2E is a crowdsourced dataset for data-to-
text generation and contains more than 50K table–
text pairs for the restaurant domain. For each data
sample, the input contains 3–8 slots, and the refer-
ence contains one or a few sentences as the output.
We followed the standard train/val/test split.

Implementation details. We used the T5-small
model (Raffel et al., 2020), which comprises 6
layers in the encoder and the decoder. We trained
models using the AdamW (Loshchilov and Hutter,
2018) optimizer, with an initial learning rate of
3e-4 and a batch size of 64.

Evaluation metrics. We used the standard
evaluation scripts accompanied with the E2E
dataset (Novikova et al., 2017), including BLEU
(Papineni et al., 2002), NIST (Doddington, 2002),
METEOR (Lavie and Agarwal, 2007), ROUGE-L
(Lin, 2004), and CIDEr (Vedantam et al., 2015).

Recently, Dhingra et al. (2019) observe that
BLEU correlates poorly to human satisfaction for
data-to-text generation, as we have diverse refer-
ences. They propose a set of PARENT metrics (in-
cluding precision, recall, and the F-score) against
both the references and the input data. They show
PARENT metrics have high correlation with hu-
man judgment. Based on such evidence, we do not
rely on BLEU for evaluating our approaches, and
we adopt PARENT as the main metric.

In addition, we use GPT-2 perplexity (without
fine-tuning) to estimate the fluency of generated
text, and present the average sentence length (Av-

1http://www.macs.hw.ac.uk/
InteractionLab/E2E/

gLen) for reference. We also computed semantic
coverage ratio, which is the fraction of input slots
that appear verbatim in the output. This require-
ment appears to be strict, but is actually a good ap-
proximation, because most slots contain only one
or a few words and some slots are proper nouns
that should not be changed. We also conducted
human evaluation on a randomly selected subset of
test samples, and the coverage percentage (Table 3)
is close to this automatic metric.

Results. Table 1 shows the results on the E2E
dataset. We consider a few-shot setting, where we
have 1% parallel samples as Dp, and another 4%
samples as Du with input tables only.

Before few-shot learning, we fine-tuned T5 with
100% samples (Line 4) and 5% samples (Line 5),
respectively, being an “upper bound” performance
of our few-shot learning. We see that, with the
entire dataset, fine-tuning T5 achieves similar
scores to previous state-of-the-art models, includ-
ing TGEN (Novikova et al., 2017), SLUG (Juraska
et al., 2018), and the SR

1 model (Shen et al., 2019).
This shows that the use of T5 sets up a solid foun-
dation for our study.

We started few-shot learning by directly fine-
tuning T5 on the small parallel training set. We
observe that the performance worsens in all metrics
(comparing Lines 4–6), especially the coverage
drops quickly from 97.74% to 84.46%.

We would like to see if a small unlabeled dataset
Du that contains tables only could help the perfor-
mance. We experimented self-training (Zhu and
Goldberg, 2009), which is a common strategy for
semi-supervised machine learning. In this com-
peting method, we first fine-tune T5 on the paral-
lel corpus Dp, and use it to predict the output on
Du. The predicted sentences are treated as pseudo-
groundtruth for further fine-tuning. Unfortunately,

http://www.macs.hw.ac.uk/InteractionLab/E2E/
http://www.macs.hw.ac.uk/InteractionLab/E2E/


we observe from Lines 6 and 7 that such strategy
does not help the performance much.

Finally, we applied our S&L approach, shown in
Line 8. Results show that our approach achieves
the highest performance in the few-shot setting
in terms of most metrics. Especially, we achieve
a 98.50% coverage of input slots, which mostly
solves the low coverage problem.

Based on the numerical results, it appears that
our model generate less fluent sentences, given
by high perplexity (PPL) scores.2 However, we
notice that our sentences are longer and contain
more input slots, which are oftentimes very specific
information such as the restaurant name (in the
E2E dataset) as a proper noun. Therefore, it is
understandable that our PPL is slightly higher, but
in general, all models are in the same ballpark in
terms of fluency. This will be further analyzed by
human evaluation (Table 3).

Generally, our S&L approach (Line 8) achieves
comparable results to T5 trained with 4 times more
parallel data (Line 5) in several metrics, such as
METEOR and CIDEr. In terms of PARENT metrics
that are specifically designed for data-to-text gener-
ation, we observe our S&L approach outperforms
Line 5 with a reasonable margin. It even achieves
close PARENT scores to the fully-supervised set-
ting (Line 4). Since we only used 1% parallel data
and 4% unlabeled input, this convincingly show
that our approach achieves high performance for
few-shot data-to-text generation.

5.2 Experiment II: WikiBio Dataset

Dataset. We further evaluate our approach on the
Humans domain of the WikiBio dataset3 (Lebret
et al., 2016). WikiBio contains 700K English bi-
ographies from Wikipedia, associated with a tabu-
lar infobox. For each biography, the first sentence
of the article is treated as the reference.

In our few-shot setting, we used 100 parallel
samples as the training setDp, following one of the

2It should be mentioned that PPL may refer to very differ-
ent evaluation protocols. In Chen et al. (2020a), for example,
they use their trained model to evaluate the human-written
references’ PPL. Such protocol, although giving small PPL
values, does not directly evaluate the generated text, and there-
fore, is not adopted in our study. By contrast, we used a
third-party pre-trained language model, namely, GPT-2, to
evaluate the PPL of our generated text. Different from Li et al.
(2020), we did not fine-tune GPT-2 on our corpus. Our PPL
approximately evaluates how fluent the generated text is as
general English.

3https://github.com/DavidGrangier/wikipedia-biography-
dataset

settings in Chen et al. (2020b). In accordance with
our assumption, we included another 400 samples
of unlabeled input tables as Du. When comparing
with Chen et al. (2020b), however, we did not use
Du, but synthesized 400 samples by recombining
the table slots inDp. This sets up a fair comparison,
as we did not include any new data. We validated
our approach on 1000 samples, and tested it on the
standard split.

Implementation details. We used the T5-base
model, which consists of a 12-layer Transformer
encoder and decoder. This sets up a fair comparison
with the prior work for few-shot data-to-text gen-
eration (Chen et al., 2020b), which uses a 12-layer
GPT-2 model. Due to GPU memory constraints,
we use a batch size of 20 during training and ac-
cumulate gradients for 3 steps, which results in
an actual batch size of 60. Other implementation
details are mostly adopted from Section 5.1.

In WikiBio, we followed a different strategy to
add missing slots. Unlike E2E, WikiBio contains
longer input tables and not all input information is
present in the references, i.e., the first sentence of
the Wiki article. Therefore, our search algorithm
inserts a subset of input slots, determined by co-
occurrence statistics on the validation dataset. As
a heuristic, we select slots which occur at least in
10% tables of the dataset and are present in at least
10% output references.

Evaluation metrics. We included BLEU for ref-
erence, as it is the metric in Chen et al. (2020b).
However, we still consider the PARENT scores
as our main metric in our study, due to the evi-
dence Dhingra et al. (2019).

We did not compute semantic coverage ratio for
WikiBio, since it is known that the reference (the
first sentence of a Wiki article) would not cover
all the slots in the infobox. However, PARENT
is able to measure the coverage of input slots as it
considers both input and reference when computing
precision, recall, and the F-score.

Results. Table 2 shows the result on WikiBio
dataset. Since Chen et al. (2020b) do not report
PARENT metrics for their fine-tuned GPT-2 model,
we replicated the model by using their released
code.4 As seen from Lines 1–2, we achieved a sim-

4We have not fully replicated Gong et al. (2020)
due to the lack of their code, but nevertheless include
BLEU for reference. This shows the superiority of our
approach. Detailed comparison was not required by
ACL guideline https://2021.aclweb.org/calls/
papers/#citation-and-comparison

https://2021.aclweb.org/calls/papers/#citation-and-comparison
https://2021.aclweb.org/calls/papers/#citation-and-comparison


# Model #Train BLEU PARENT (P/R/F1) PPL AvgLen

1 GPT2+copy (Chen et al., 2020b) p:100 29.5 – – –
2 GPT2+copy (our replication) p:100 29.05 59.03 / 26.63 / 33.59 314.03 20.01
3 TableGPT2 (Gong et al., 2020) p:100 34.5 – – –
4 T5 p:100 35.87 65.21 / 29.59 / 38.00 219.03 17.35
5 T5 w/ self-train (Recomb) p:100 36.00 64.74 / 29.58 / 37.91 219.40 17.27
6 T5 w/ S&L (Recomb) p:100 35.41 64.10 / 30.23 / 38.34 218.48 18.75

7 T5 w/ self-train p:100, u:400 35.62 64.68 / 29.92 / 38.19 216.19 18.17
8 T5 w/ S&L p:100, u:400 35.92 64.56 / 32.28 / 40.27 211.35 19.84

Table 2: Test results on WikiBio (in the Humans domain). “p:” and “u:” denote the number of parallel and unla-
beled training samples, respectively. “Recomb” means that we synthesize 400 samples by recombining table slots
in the parallel corpus. “p:” and “u:” denote the number of parallel and unlabeled training samples, respectively.

ilar BLEU score to Chen et al. (2020b), showing
that our replication is fair.

We apply our S&L to the WikiBio dataset. We
see that, with 400 unlabeled tables, we improve the
T5 model by 2–3 points in PARENT Recall and F1
(Lines 4, 7–8). This suggests that our model not
only generates high-quality sentences in general for
the data-to-text task, but also has a higher coverage
of input slots due to the nature of PARENT metrics.
We also obtain fluent sentences for this dataset,
shown by relatively low PPL.5 These results are
generally consistent with E2E experiments.

Compared with previous state-of-the-art few-
shot learning (Chen et al., 2020b), our setting uses
extra 400 tables. To make a fair comparison, we
synthesized 400 tables by recombining the slots
without using any additional data. Comparing Line
6 and Line 2 suggests that, even without an unla-
beled corpus, our approach still outperforms the
previous state-of-the-art model in all metrics.

We also admit that recombining table slot does
not give as good performance as using additional
unlabeled tables (Line 6 vs. Line 8). A plausible
reason is that new tables are able to train T5 with
more slot values, and this is especially useful for
few-shot data-to-text generation, where we only
have a few hundred parallel samples. Recombin-
ing table slots cannot serve for this goal. Future
research can be addressed here on effective data
augmentation for data-to-text generation.

5.3 Analysis

In this part, we provide detailed analysis of our ap-
proach. Due to the limitation of space and available
resources, we chose E2E as our testbed.

Human evaluation. We would like to conduct
5The PPL for WikiBio sentences is higher than E2E be-

cause the the WikiBio corpus is more complex. Especially,
WikiBio sentences contain quite a few proper nouns, such as
the name of a person.

human evaluation for our model, as automatic met-
rics may not fully reflect the performance of a text
generator. We selected a random subset of 50 sam-
ples and obtained the outputs from T5 self-train and
T5 S&L. While the subset appears to be small, we
will compute statistical significance to demonstrate
that it suffices to draw a conclusion.

We asked three annotators to evaluate each table–
text pair on three criteria: coverage, fluency, and
overall quality. Coverage measures the number
of input table slots present in the text divided by
total number of input slots. Fluency measures if the
sentence is clear, natural, and grammatically cor-
rect (3: Fluent, natural and grammatically correct;
2: Mostly fluent, with minor errors; 1: Not fluent,
multiple grammatical errors). The annotators were
also asked to assign an overall quality to each sen-
tence (3: good quality; 2: average quality; 1: poor
quality). Our human annotation was conducted in
a strict blind fashion, i.e., samples were randomly
shuffled and the annotator did not know the model
of a generated sentence.

Table 3 presents human evaluation results. We
see that the human-annotated coverage ratio is sim-
ilar to automatic counting in Table 1. Our S&L
achieves near-perfect semantic coverage, whereas
a fine-tuned T5 with self-training only achieves
81.66% coverage. In terms of fluency, S&L is
slightly worse than T5 self-training. However, the
difference is 1/3 standard deviation, which is rela-
tively small compared with our improvements in
other aspects. The overall quality of our approach
is considerably higher than the competing method
by more than two standard deviations, showing
the effectiveness of our approach. The human an-
noation results are generally consistent with our
automatic measures (except BLEU).

Search and learning vs. Search for inference.
An interesting analysis of our approach is to see



Slot Value

Name The
Phoenix

Eat type Restaurant

Food Indian

PriceRange £ 20-25

Customer
Rating High

Area Riverside

Near Crowne
plaza hotel

Family
Friendly No

Input table Reference 1: the phoenix is a restaurant that also serves indian food priced between £20-25,
located near crowne plaza hotel on the riverside. it’s customer rating is high, and the 
establishment is kids friendly. (All slots are present)

Reference 2: the phoenix, located near crowne plaza hotel on the riverside, is a restaurant that 
also serves indian food. it is kids friendly and food is priced between £20-25. (Missing slot: 
customer rating)

T5 few-shot fine-tuned: the phoenix is a restaurant that serves indian food in the price range 
of £20-25. it is near crowne plaza hotel. it has a high customer rating. (Missing slots: 
riverside, family friendly)

T5 self-train: the phoenix is a restaurant that serves indian food in the price range of £20-25. it 
is near crowne plaza hotel. (Missing slots: high, riverside, family friendly)

T5 search for inference: the phoenix is a restaurant that serves indian food in the price range 
of £20-25. it is near crowne plaza high customer rating in riverside area not family friendly
hotel.  (All slots are present, but the sentence is not fluent)

T5 S&L: in riverside area the phoenix is a restaurant that serves indian food in the price range 
of £20-25. it is near crowne plaza hotel. it has a high customer rating and is not family-
friendly. (All slots are present)

Figure 2: A case study of few-shot data-to-text generation on the E2E dataset.

Model Coverage Fluency Overall Quality

T5 w/ self-train 81.66% 2.88±0.32 2.1±0.34
T5 w/ S&L 99.58% 2.75±0.43 2.81±0.39

p-value 6.08e-24 0.00664 3.84e-22

Table 3: Human evaluation results on the E2E dataset.
The p-values are given by two-sided Wilcoxon paired
test. It only shows whether our annotated subset has
collected enough evidence for drawing a conclusion, in-
stead of how different two models are. We show the
standard deviation, which roughly estimates if the gap
is relatively large or not.

Model PARENT (P/R/F1) Inf. Time PPL

Search for inference 65.71 / 60.17/ 61.67 113.4 secs 234.19
S&L 66.97 / 63.63 / 64.29 78.05 secs 160.40

Table 4: Search and learning vs. search for inference.
Inference time was obtained by predicting the test set
on a single V100 GPU.

how search and learning (S&L) improves the search
itself. This can be seen by performing search for
inference on the test set. From Table 4, we observe
that S&L largely improves the search results in
terms of all metrics. Especially, the PPL of S&L
is considerably smaller than search for inference.
This shows that the second-stage fine-tuning (Sec-
tion 4.3) not only learns from the search results for
higher semantic coverage, but also smooths out the
search noise and yields better sentences in general.

In addition, S&L has a better inference efficiency.
Despite our batch implementation and the V100
GPU device, search for inference takes 45% more
time than S&L in inference. This shows that our
approach is efficient in practice.

Case Study. We conduct a case study in Fig-
ure 2. There are 7 references for this data sample,

and we present two references to illustrate that the
input slots may be missing even in references. We
see that T5 (fine-tuned with few-shot Dp or further
self-trained with Du) yields fluent sentences, and
does not generate wrong information as addressed
in (Gong et al., 2020). However, a few input slots
are missing in T5’s output. If we perform search for
inference, we are guaranteed to have perfect slot
coverage, but the sentence may not be fluent, such
as “it is near crowne plaza high customer rating
in riverside area not family friendly hotel”. Our
S&L approach yields a fluent sentence with a high
semantic coverage.

6 Conclusion and Future Work

In this work, we present a search-and-learning ap-
proach to address the low coverage problem for
few-shot data-to-text generation. We first fine-tune
the pre-trained T5 language model based on a small
parallel corpus. Then, we use the T5 to predict on
an unlabeled corpus, and search for higher semantic
coverage. The T5 is further fine-tuned with search
results. Experiments on E2E and WikiBio datasets
show that our model achieves high performance
than previous approaches to few-shot data-to-text
generation, largely closing the gap between few-
shot and fully supervised learning

In future work, we would apply our S&L frame-
work to fidelity-oriented text generation by revising
counterfactual text and further learning from the
edit results. This would benefit various NLG tasks,
such as paraphrasing and summarization.
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A Complete List of Rules

As explained in Section 4.2, we insert a template-based phrase if a slot value does not appear in the output
text. Below is the complete list of the rules we used in our experiments. SN refers to the slot name, and
SV refers to the slot value. Despite the simplicity of the rules, our search-and-learning (S&L) approach
improves the semantic coverage to a large extent for few-shot data-to-text generation.

If Then the phrase template is
SN = food SV food
SN = pricerange; SV is a number price range SV
SN = pricerange; SV is a string SV price range
SN = eattype SV
SN = name SV
SN = near near SV
SN = family friendly; SV is yes family friendly
SN = family friendly; SV is no/not not family friendly
SN = customer rating SV customer rating
SN = area in SV area

Table 5: Rules for the E2E dataset.

If Then the phrase template is
SN = fullname SV
SN = birth date born on SV
SN = currentclub plays for SV
SN = nationality SV
SN = position SV
SN = occupation is a SV
SN = death rate died on SV
SN = party serving in SV party
SN = birth place born in SV

Table 6: Rules for the WikiBio dataset.


