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Abstract

Experimental design is a fundamental problem in many science and engineering fields.
In this problem, sample efficiency is crucial due to the time, money, and safety costs of
real-world design evaluations. Existing approaches either rely on active data collection or
access to large, labeled datasets of past experiments, making them impractical in many
real-world scenarios. In this work, we address the more challenging yet realistic setting of
few-shot experimental design, where only a few labeled data points of input designs and their
corresponding values are available. We approach this problem as a conditional generation
task, where a model conditions on a few labeled examples and the desired output to generate
an optimal input design. To this end, we present Pretrained Transformers for Experimental
Design (ExPT), that uses a novel combination of synthetic pretraining with in-context
learning to enable few-shot generalization. In ExPT, we only assume knowledge of a finite
collection of unlabelled data points from the input domain and pretrain a transformer neural
network to optimize diverse synthetic functions defined over this domain. Unsupervised
pretraining allows ExPT to adapt to any design task at test time in an in-context fashion by
conditioning on a few labeled data points from the target task and generating the candidate
optima. We evaluate ExPT on few-shot experimental design in challenging domains and
demonstrate its superior generality and performance compared to existing methods.

1. Introduction

Experimental design (ED) is ubiquitous in many fields of science and engineering, in-
cluding material design (Hamidieh, 2018), protein (Brookes et al., 2019; Sarkisyan et al.,
2016; Angermueller et al., 2020) or molecular (Gaulton et al., 2012) design, mechanical de-
sign (Berkenkamp et al., 2016; Liao et al., 2019), and neural architecture optimization (Zoph
and Le, 2016). Sample efficiency is the most important criterion in these problems, as evalu-
ating a design often involves expensive real-world experiments. The most common approach
learns a surrogate to approximate the objective function and relies on active data collection
via conducting online experiments to improve its estimate (Snoek et al., 2012). However,
online data acquisition may be infeasible in the real world due to high costs, time constraints,
or safety concerns. As an alternate, recent works have proposed offline ED (Brookes et al.,
2019; Trabucco et al., 2022; Kumar and Levine, 2020; Trabucco et al., 2021; Chen et al.,
2022; Krishnamoorthy et al., 2022), wherein a model learns to perform optimization from
a fixed dataset of past experiments. While more practical than the online setting, current
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offline methods and benchmarks assume access to large datasets of thousands of data points,
which are hard or even impossible to obtain in high-stake and emerging science problems.

In this paper, we aim to overcome these limitations for hyper-efficient ED with only a
handful of labeled examples. We introduce few-shot experimental design, a more challenging
setting that better resembles real-world scenarios. In few-shot ED, we are not allowed to
conduct additional experiments, and only have access to a few hundred labeled data points,
as opposed to tens of thousands of data points in previous works. We approach few-shot ED
with a pretraining-adaptation pipeline. In the pretraining phase, we only assume access to
unlabeled data, i.e., input designs without associated function values. During adaptation,
we have access to a few labeled examples of past experiments to adapt the model to the
downstream task. This setup offers several advantages. First, it alleviates the requirement
for costly annotated data and relies mainly on unlabeled inputs that are easily accessible.
Second, unsupervised pretraining enables us to utilize the same pretrained backbone for
adapting to multiple downstream optimization tasks within the same domain. For example,
in molecule design, one may want to optimize for multiple properties, including drug-likeness,
synthesizability, or similarity to target molecules (Brown et al., 2019; Gao et al., 2022).

The key question is how to make use of the unlabeled data to facilitate efficient general-
ization to downstream tasks during optimization. Our intuition is that, while the objective
function is unknown, we can use the unlabeled inputs to generate pretraining data from
other functions. If a model can few-shot learn from a diverse and challenging set of functions,
it should be able to generalize quickly to any objective. This insight gives rise to our idea of
synthetic pretraining, wherein we pretrain the model on data generated from a rich family of
synthetic functions that operate on the same domain as the target task. Specifically, for each
function drawn from this family, we sample a set of points by using the unlabeled data as
inputs. We divide these points into a small context set and a target set, and train the model
to perform conditional generation of the target input x given the context points and the
target value y. A model that works well on this task should be able to efficiently capture the
structures of the underlying function, i.e., how different regions of the input space influence
the function value, from a small context set. By explicitly training the model to perform
this task on a diverse set of functions, the model can generalize efficiently to downstream
functions given limited supervision. After pretraining, we can perform optimization by simply
conditioning the model on a few labeled examples from the downstream task and asking the
model to generate an input that achieves the optimal score y⋆.

We instantiate our model with a transformer-based architecture (Vaswani et al., 2017),
which we call Pretrained Transformers for Experimental Design (ExPT). ExPT is an encoder-
decoder architecture, in which the encoder is a transformer (Vaswani et al., 2017) network
that encodes the context points and the target value, and the decoder is a VAE (Kingma
and Welling, 2013) model that predicts the high-dimensional target input. The transformer
encoder allows ExPT to perform few-shot generation and optimization purely through in-
context learning in a gradient-free fashion. We compare the performance of ExPT and
various baselines on 2 few-shot settings created from Design-Bench (Trabucco et al., 2022), a
standard database benchmark for ED. In both these settings, ExPT achieves the highest
average score and the highest average ranking with respect to median performance, mean
performance, and best-achieved performance. Especially in the more challenging setting,
ExPT outperforms the second-best method by 70% in terms of the mean performance.
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2. Synthetic Pretraining for Few-shot Experimental Design

2.1 Problem setup

Let f : X → R be a black-box function that operates on a d-dimensional domain X ⊆ Rd.
In experimental design (ED), the goal is to find the input x⋆ that maximizes f : x⋆ ∈
argmaxx∈X f(x). We propose few-shot ED, a more challenging yet realistic setting to
overcome these limitations. In few-shot ED, the goal is to optimize any objective function
in the domain X given only a handful of examples. We approach this problem with a
pretraining-adaptation pipeline. In the pretraining phase, we assume access to an unlabeled
dataset Dunlabeled = {xi}|Dunlabeled|

i=1 from the optimization domain X ⊆ Rd.
During the adaptation phase, one can use the pretrained model to optimize any objective

function f in the same domain X . We now have access to a few-shot labeled dataset
to adapt to the downstream function Dfew-shot = {(x1, y1), . . . , (x|Dfew-shot|, y|Dfew-shot|)}, in
which yi = f(xi) and |Dfew-shot| ≪ |Dunlabeled|. After adaptation, we evaluate a few-shot
optimization method by allowing it to propose Q input x′s and query their scores using
the black-box function f , where Q is often called the optimization budget (Trabucco et al.,
2022; Kumar and Levine, 2020; Trabucco et al., 2021; Chen et al., 2022; Krishnamoorthy
et al., 2022). The performance of a black-box optimizer is then measured by computing
the max, median, and mean of the Q evaluations, This setup provides 2 key benefits. First,
it resembles many real-world scenarios, where the potential design inputs are cheap and
easy to obtain while their target function values are expensive to evaluate. For example,
in molecular optimization, we have databases of millions of molecules (Kim et al., 2016;
Blum and Reymond, 2009; Ruddigkeit et al., 2012) but only the properties of a handful are
known (Irwin and Shoichet, 2005; Ramakrishnan et al., 2014; Gaulton et al., 2017). Second,
unsupervised pretraining allows us to train a general backbone that we can adapt to multiple
optimization tasks in the same domain.

2.2 Synthetic Pretraining for Few-shot ED

Intuitively, the adaptation phase in §2.1 resembles a few-shot learning problem, in which a
model is tasked to produce the optimal input x⋆ by conditioning on a few labeled examples
in Dfew-shot. To perform well in this task, a model has to efficiently capture the structure
of a high-dimension function f , i.e., what regions of the function lead to higher values and
vice versa, from very few examples in Dfew-shot. Given this perspective, the question now is
how to make use of the unlabeled dataset Dunlabeled to pretrain a model that achieves such
efficient generalization to the objective function f . Our key insight is, if a model learns to
perform few-shot learning on a diverse and challenging set of functions, it should be able to
adapt quickly to any objective function at test time. While the function values are unknown
during pretraining, we can use the unlabeled inputs x′s to generate pretraining data from
other functions. This gives rise to our idea of synthetic pretraining, wherein we pretrain the
model to perform few-shot learning on a family of synthetic functions F̃ that operate on the
same input domain X of the objective f . We discuss in detail our mechanism for synthetic
data generation in Section 3.1. For each function f̃ generated from F̃ , we sample a set of
function evaluations {(xi, yi)}Ni=1 divided into a small context set {(xi, yi)}mi=1 and a target
set {(xj , yj)}Nj=m+1. The model predicts the target points conditioning on the context set.
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Figure 1: The pretraining-adaptation approach and ExPT architecture. We sample synthetic
data from F̃ and pretrain the model to maximize log p(xm+1:N | x1:m, y1:m, ym+1:N ). At
adaptation, the model conditions on Dfew-shot and y⋆ to generate candidates.

There are two different approaches to pretraining a model on this synthetic data. The
first approach is forward modeling, where the model predicts the target outputs ym+1:N given
the context points and the target inputs xm+1:N . During adaptation, we can condition the
model on the labeled examples in Dfew-shot and perform gradient ascent updates to improve
an existing design input xt. However, as commonly observed in previous works (Trabucco
et al., 2022; Kumar and Levine, 2020; Trabucco et al., 2021), this approach is susceptible
to producing highly suboptimal inputs. This is because performing gradient ascent with
respect to an imperfect forward model may result in points that have high values under
the model but are poor when evaluated using the real function. Instead, we propose to
perform inverse modeling, where the model learns to predict the inputs xm+1:N given the
output values ym+1:N and the context points. As the model learns to directly generate input
x′s, it is less vulnerable to the aforementioned problem. Figure 1 illustrates the proposed
pretraining and adaptation pipeline.

After pretraining, ExPT can adapt to any objective f in the domain in a gradient-free
fashion. Samples in the few-shot dataset Dfew-shot become the context points and the model
conditions on only one target y⋆, which is the optimal value of f , to generate candidate
optima. Note that we only assume the knowledge of y⋆ and not x⋆. This assumption is
common in many prior works (Krishnamoorthy et al., 2022; Nguyen and Osborne, 2020;
Chen et al., 2021; Emmons et al., 2021). In practice, y⋆ might be known based on domain
knowledge. For example, in molecule design, there are physical limits on the value of certain
properties such as relaxed energy, in robot applications, the optimal performance can be
computed from the cost function, and in neural architecture search, we know the theoretical
limits on the highest possible accuracy for classifiers.

3. Pretrained Transformers for Experimental Design

Section 2 presents our general idea of synthetic pretraining for few-shot ED. In this section,
we present the details of synthetic data generation and our proposed model architecture, the
two components that constitute Pretrained Transformers for Experimental Design (ExPT).
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3.1 Data generation

We need a family of functions to generate synthetic data for pretraining ExPT. A good
family of functions should be easy to sample from and should be capable of producing diverse
functions. We choose to generate synthetic data from Gaussian Processes with an RBF kernel.
This is for several reasons. First, they are a natural choice as they represent distributions
over functions. Second, it is easy and cheap to sample data from prior GPs. And third, a
GP with an RBF kernel is a universal approximator to any function (Micchelli et al., 2006).
Specifically, f̃ ∼ GP(0,K), K(x, x′) = σ2 exp

(
− (x−x′)2

2ℓ2

)
, in which σ and ℓ are the two

hyperparameters of the RBF kernel. In practice, we randomize both σ and ℓ to increase the
diversity of the pretraining data. Appendix E.1 demonstrates the empirical importance of
these hyperparameters.

3.2 Model architecture

We need a model architecture that can condition on a few examples drawn from an underlying
function to make predictions for other points. This resembles the idea of in-context learning
that has proven very successful in language (Brown et al., 2020; Min et al., 2022) and other
domains (Müller et al., 2021; Nguyen and Grover, 2022; Garg et al., 2022; Laskin et al.). The
key to success in these works is a transformer architecture that performs in-context learning
efficiently via the attention mechanism (Vaswani et al., 2017). Inspired by this, we instantiate
ExPT with a transformer-based architecture. Figure 1 illustrates the ExPT overall archi-
tecture. Specifically, ExPT employs a transformer encoder that encodes the context points
{(xi, yi)}mi=1 and the target inputs ym+1:N , and outputs hidden vectors hm+1:N . To inform
the model that xi and yi are the input and the corresponding output from f̃ , we concatenate
them to form a token. This results in the sequence {(y1, x1), . . . , (ym, xm), ym+1, . . . , yN}.
We then embed these tokens using two 1-layer MLP networks, one for the pairs and one for
the target inputs, before feeding the sequence to the transformer layers. We implement a
masking mechanism that prevents the context points from attending the target points, as
they do not contain information about the underlying function f̃ .

Each hidden vector hi output by the transformer encoder encompasses the information of
the context points and the target input yi. Therefore, given hi, the conditional probability
pθ(xi | x1:m, y1:m, yi) reduces to pθ(xi | hi). As xi is high-dimensional, we can utilize existing
generative models to model the conditional distribution p(xi | hi). In this work, we train
a conditional VAE model (Kingma and Welling, 2013) alongside the transformer encoder
because of its training stability, light hyperparameter tuning, and good empirical performance.
For discrete tasks, we follow the same procedure as Trabucco et al. (2022) that emulates logit
values by interpolating between a uniform distribution and the one hot values. We train the
entire model by maximizing the lower bound of the conditional likelihood log p(xi | hi).

4. Experiments

4.1 Design-Bench experiments

Tasks We consider 4 tasks from Design-Bench (Trabucco et al., 2022). In D’kitty and Ant,
the goal is to optimize the morphological structure of two simulated robots, Ant (Brockman
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Table 1: Comparison of ExPT and the baselines on the few-shot random setting of 5 Design-
Bench tasks. We report median, max, and mean performance across 3 random seeds. Higher
scores and lower ranks are better. Blue denotes the best entry in the column, and Violet
denotes the second best.

Baseline D’Kitty Ant TF Bind 8 TF Bind 10 Mean score (↑) Mean rank (↓)

Dfew-shot(best) 0.883 0.563 0.439 0.466 — —

Median

MINs 0.859± 0.014 0.485± 0.152 0.416± 0.019 0.468± 0.014 0.557± 0.050 4.0
COMs 0.752± 0.007 0.411± 0.012 0.371± 0.001 0.468± 0.000 0.501± 0.005 4.0

BONET 0.852± 0.013 0.597± 0.119 0.441± 0.003 0.483± 0.009 0.593± 0.036 2.3
BDI 0.592± 0.020 0.396± 0.018 0.540± 0.032 0.438± 0.034 0.492± 0.026 4.8

GP-qEI 0.842± 0.058 0.550± 0.007 0.439± 0.000 0.467± 0.000 0.575± 0.016 4.0
ExPT 0.902± 0.006 0.705± 0.018 0.473± 0.014 0.477± 0.014 0.639± 0.013 1.5

Max

MINs 0.930± 0.010 0.890± 0.017 0.814± 0.030 0.639± 0.017 0.818± 0.019 3.3
COMs 0.920± 0.010 0.841± 0.044 0.686± 0.152 0.656± 0.020 0.776± 0.057 4.0

BONET 0.909± 0.012 0.888± 0.024 0.887± 0.053 0.702± 0.006 0.847± 0.024 3.0
BDI 0.918± 0.006 0.806± 0.094 0.906± 0.074 0.532± 0.023 0.791± 0.049 4.5

GP-qEI 0.896± 0.000 0.887± 0.000 0.513± 0.104 0.647± 0.011 0.736± 0.029 5.0
ExPT 0.973± 0.005 0.970± 0.004 0.933± 0.036 0.677± 0.048 0.888± 0.023 1.3

Mean

MINs 0.624± 0.025 0.009± 0.013 0.415± 0.030 0.465± 0.015 0.378± 0.021 4.8
COMs 0.515± 0.050 0.020± 0.006 0.369± 0.003 0.471± 0.004 0.344± 0.016 4.8

BONET 0.837± 0.023 0.579± 0.024 0.448± 0.011 0.484± 0.009 0.587± 0.017 2.0
BDI 0.570± 0.032 0.385± 0.012 0.536± 0.032 0.444± 0.027 0.484± 0.026 3.5

GP-qEI 0.505± 0.006 0.019± 0.001 0.439± 0.001 0.473± 0.002 0.359± 0.003 4.5
ExPT 0.865± 0.016 0.639± 0.026 0.476± 0.010 0.474± 0.015 0.614± 0.017 1.5

et al., 2016) to run as fast as possible, and D’kitty (Ahn et al., 2020) to reach a fixed target
location. TF Bind 8 and TF Bind 10 are two discrete tasks, where the goal is to find
the length-8 and length-10 DNA sequence that has a maximum binding affinity with the
SIX6_REF_R1 transcription factor. For each task, Design-Bench provides a public dataset,
a larger hidden dataset which is used to normalize the scores, and an oracle. We have an
exact oracle to evaluate the proposed designs in all 4 tasks we consider.

Few-shot settings We create 2 few-shot settings from the above tasks, which we call
random and poorest. In random, we randomly subsample 1% of data points in the public
set of each task as the few-shot dataset Dfew-shot. The poorest setting is more challenging,
where we use 1% of the data points that have the lowest scores. Because of the limited space,
we only present the random setting in the main paper.

Baselines We compare ExPT with BayesOpt (GP-qEI) (Snoek et al., 2012), a canonical
ED method, and MINs Kumar and Levine (2020), COMs Trabucco et al. (2021), BDIChen
et al. (2022), and BONET Krishnamoorthy et al. (2022), four recent deep learning models
that have achieved state-of-the-art performance in the offline setting.

Evaluation For each considered method, we allow an optimization budget Q = 256.
We report the median score, the max score, and the mean score among the 256 proposed
inputs. Following previous works, we normalize the score to [0, 1] by using the minimum
and maximum function values from a large hidden dataset ynorm = y−ymin

ymax−ymin
. We report the

mean and standard deviation of the score across 3 independent runs for each method.
Results Table 1 shows the performance of different methods in the random setting.

Most methods perform well in the random setting, where ExPT achieves the highest average
score and the best average rank across all 3 performance metrics. For each of the tasks and
metrics considered, ExPT is either the best or second-best performing method. Notably, in
Ant, ExPT significantly outperforms the best baseline by 18%, 9%, and 10% with respect to
the median, max, and mean performance, respectively. Only ExPT and BONET achieve a
meaningful performance in Ant when considering the mean score. BONET is also the overall
second-best method in this setting.
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Appendix A. Related work

Online ED The majority of existing approaches solve ED in an active setting, where the
model is allowed to query the black-box function to collect more data. Many of these works
are based on Bayesian Optimization Lizotte (2008); Nguyen and Osborne (2020); Shahriari
et al. (2015); Snoek et al. (2012); Swersky et al. (2013), which typically employs a surrogate
model to the black-box function and an acquisition function. The surrogate model is often a
predictive model that can quantify uncertainty, such as Gaussian Processes (Srinivas et al.,
2009), Neural Processes (Garnelo et al., 2018a,b; Gordon et al.; Kim et al.; Singh et al., 2019;
Nguyen and Grover, 2022), or Bayesian Neural Networks (Goan and Fookes, 2020). The
acquisition function uses the uncertainty output by the surrogate model to trade off between
exploration and exploitation for querying new points.

Offline ED Recent works have proposed to solve ED by learning from a fixed set of
(x, y) pairs to bypass active data collection (Trabucco et al., 2022; Kumar and Levine, 2020;
Trabucco et al., 2021; Chen et al., 2022; Krishnamoorthy et al., 2022; Fu and Levine, 2021;
Brookes et al., 2019; Fannjiang and Listgarten, 2020; Yu et al., 2021). The Design-Bench
benchmark Trabucco et al. (2022) consists of several such tasks in the physical sciences
and robotics and is used by many recent works in offline ED. MINs Kumar and Levine
(2020) and BONET Krishnamoorthy et al. (2022) perform optimization by generating designs
x via conditioning on a high score value y. MINs uses a GANs (Goodfellow et al., 2020)
model on (x, y) pairs and BONET casts offline ED as a sequence modeling problem. COMs
Trabucco et al. (2021) formulates a conservative objective function that penalizes high-scoring
poor designs and uses it to train a surrogate forward model which is then optimized using
gradient ascent. BDI Chen et al. (2022) uses a bidirectional model consisting of a forward
and backward models that learn mappings from the dataset to high-scoring designs and vice
versa. In contrast to these works, we propose ExPT in the few-shot ED setting, where the
model is given access to only the x′s during pretraining, and a handful of labeled examples
for adaptation.

Synthetic Pretraining In the absence of vast amounts of labeled data, pretraining on
synthetic data is an effective method for achieving significant gains in model performance.
Prior works in this direction construct synthetic tasks which improve performance on diverse
downstream tasks such as mathematical reasoning Wu et al. (2021), text summarization
Krishna et al. (2021), and perception tasks in vision Mishra et al. (2022). Each synthetic
task produces a dataset of labeled (x, y) values that can be used to train a model as usual for
various objectives. Often, pre-training in this manner produces better results than simply pre-
training on another real dataset. In this work, we demonstrate that pretraining on synthetic
data generated from GPs can achieve significant generalization to downstream functions,
leading to state-of-the-art performance on challenging few-shot optimization problems.

Few-shot learning Few-shot learning is a common paradigm in deep learning, where
the model is pretrained on large amounts of data in an unsupervised manner. At test
time, the model is given only a few examples from a downstream task and is expected to
generalize Wang et al. (2020). This technique has found applications in text-generation
(GPT-x) Brown et al. (2020), image classification (Sung et al., 2018; Snell et al., 2017), graph
neural networks Garcia and Bruna (2018), text to visual-data generation Wu et al. (2022),
and neural architecture search Wistuba and Grabocka (2021) Cao et al. (2023). ExPT is
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capable of performing few-shot learning for black-box optimization in a variety of domains.
Moreover, ExPT is pretrained on synthetically generated data with no prior knowledge of
the downstream objective.

Appendix B. Additional experiments

B.1 Evaluation in the few-shot poorest setting

Table 2: Comparison of ExPT and the baselines on the few-shot poorest setting of 5
Design-Bench tasks. We report the median, max, and mean performance across 3 random
seeds. Higher scores and lower ranks are better. Blue denotes the best entry in the column,
and Violet denotes the second best.

Baseline D’Kitty Ant TF Bind 8 TF Bind 10 Mean score (↑) Mean rank (↓)

Dfew-shot(best) 0.307 0.124 0.124 0.000 — —

Median

MINs 0.480± 0.156 0.316± 0.040 0.437± 0.007 0.463± 0.003 0.424± 0.052 3.5
COMs 0.733± 0.023 0.401± 0.026 0.111± 0.000 0.459± 0.006 0.426± 0.014 4.3

BONET 0.310± 0.000 0.236± 0.047 0.319± 0.018 0.461± 0.017∗ 0.332± 0.021 4.8
BDI 0.309± 0.000 0.192± 0.012 0.365± 0.000 0.454± 0.017 0.330± 0.007 5.5

GP-qEI 0.883± 0.000 0.565± 0.001 0.439± 0.000 0.467± 0.000 0.589± 0.000 2.0
ExPT 0.922± 0.009 0.686± 0.090 0.552± 0.042 0.489± 0.013 0.662± 0.039 1.0

Max

MINs 0.841± 0.014 0.721± 0.031 0.962± 0.019 0.648± 0.025 0.793± 0.022 3.3
COMs 0.931± 0.022 0.843± 0.020 0.124± 0.000 0.739± 0.057 0.659± 0.025 3.3

BONET 0.929± 0.031 0.557± 0.118 0.809± 0.038 0.519± 0.039∗ 0.704± 0.057 5.0
BDI 0.939± 0.002 0.693± 0.109 0.913± 0.000 0.596± 0.020 0.785± 0.033 3.5

GP-qEI 0.896± 0.000 0.887± 0.000 0.439± 0.000 0.645± 0.021 0.717± 0.005 3.8
ExPT 0.946± 0.018 0.965± 0.004 0.873± 0.035 0.615± 0.022 0.850± 0.020 2.3

Mean

MINs 0.623± 0.051 0.015± 0.017 0.464± 0.009 0.463± 0.002 0.391± 0.020 3.3
COMs 0.607± 0.021 0.033± 0.003 0.109± 0.001 0.454± 0.004 0.301± 0.007 4.8

BONET 0.490± 0.023 0.234± 0.052 0.318± 0.018 0.459± 0.018 0.375± 0.028 4.0
BDI 0.364± 0.004 0.215± 0.021 0.369± 0.000 0.453± 0.018 0.350± 0.011 4.8

GP-qEI 0.533± 0.001 0.018± 0.000 0.439± 0.000 0.470± 0.002 0.365± 0.001 3.5
ExPT 0.871± 0.018 0.646± 0.061 0.549± 0.032 0.488± 0.011 0.639± 0.031 1.0

Table 2 shows the superior performance of ExPT in few-shot poorest, the more challenging
setting. ExPT achieves the highest score in 10/12 individual tasks and metrics, and also
achieves the highest score and the best rank across tasks on average. Notably, in terms of the
mean score, ExPT beats the best baseline by a large margin, achieving an improvement of
40%, 176%, and 18% on D’Kitty, Ant, and TF Bind 8, and 70% on average. The performance
of most baselines drops significantly from the random to the poorest setting, including
BONET, the second-best method in the random setting. This was also previously observed
in the BONET paper (Krishnamoorthy et al., 2022). Interestingly, the performance of
ExPT, MINs, and GP-qEI is not affected much by the quality of the few-shot data, and
even improves in certain metrics. We hypothesize that even though the dataset is of lower
quality, it may contain specific anti-correlation patterns about the problem that the model
can exploit.

B.2 Synthetic experiments

We evaluate the performance of ExPT in a synthetic experiment, where we train ExPT on
data generated from Gaussian Processes (GPs) with an RBF kernel and test the model on
four out-of-distribution functions drawn from four different kernels: Matern, Linear, Cosine,
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and Periodic. We pretrain the model for 2000 iterations with 128 synthetic functions at
each iteration. We randomize the length scale parameter ℓ ∼ U [5.0, 10.0] and function scale
parameter σy ∼ U [1.0, 10.0] of the RBF kernel to increase pretraining data diversity. For
each function generated, we sample 228 data points that we separate into 100 context points
and 128 target points and train the model using the loss function in (??). Each input x is a
32-dimensional vector, and each dimension is sampled from a uniform distribution U [−3, 3].
For each test function, we sample a large dataset of 20000 data points. We then randomly
select 100 samples from the data points with function values lower than the 20th percentile
as the few-shot data. We condition the model on this few-shot dataset and the maximal
value y⋆ in the large dataset to generate 256 candidates and report the best score achieved.
We normalize the score to [0, 1] using the worst and the best value in the large dataset.

Figure 2 shows the performance of ExPT on four test functions through the course of
training. The model performs well on all four functions, achieving scores that are much
higher than the max value in the few-shot dataset, and approaching the true optimal value,
even for kernels that are significantly different from RBF like Cosine and Periodic. Moreover,
the performance improves consistently as we pretrain, showing that pretraining facilitates
generalization to out-of-distribution functions with very few examples. See Appendix B for a
detailed setup of this experiment.
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Figure 2: The performance of ExPT on 4 out-of-distribution synthetic tasks through the
pretraining phase. We average the performance across 3 seeds.

B.3 Pretraining analysis

In addition to the absolute performance, we investigate the performance of ExPT on
downstream tasks through the course of pretraining. Figure 3 shows that the performance
of ExPT in most tasks improves consistently as the number of pretraining steps increases.
This shows that synthetic pretraining on diverse functions facilitates the generalization to
complex real-world functions. In Ant, the performance slightly drops between 4000 and 10000
iterations. Therefore, we can further improve ExPT if we have a way to stop pretraining at
a point that likely leads to the best performance in downstream tasks. However, in practice,
we do not have the luxury of testing on real functions during pretraining. Alternatively, we
could perform validation and early stopping on a set of held-out, out-of-distribution synthetic
functions. We leave this to future work.

B.4 Few-shot optimization for multiple objectives

As we mention in Section 2, one advantage of unsupervised pretraining is the ability to
optimize for multiple objectives during the adaptation phase. In this section, we show that
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Figure 3: The median and mean performance of ExPT of 4 Design-Bench tasks through the
course of pretraining. We average the performance across 3 seeds.

the same pretrained ExPT model is capable of optimizing different objectives in D’Kitty
and Ant domains. We create two variants of the original D’Kitty, namely D’Kitty-45 and
D’Kitty-60, whose objectives are to navigate the robot to goals that are 45◦ and 60◦ away
from the original goal, respectively. For Ant, we create Ant-vy where the goal is to run as
fast as possible in the vertical Y direction (as opposed to horizontal X direction in Ant)
direction, and Ant-Energy, where the goal is to preserve energy. We detail how to construct
these tasks in Appendix E. We use the same pretrained models for all these tasks. During
adaptation, the model conditions on the Dfew-shot and y⋆ for each task for optimization.

We evaluate ExPT on these tasks in the poorest setting. Table 3 shows that ExPT
performs well on all tasks, where the median and mean scores are better than the best value
in Dfew-shot, and the max score is close to 1. For the Ant, Ant-vy, and Ant-Energy tasks, we
visualize the behavior of the optimal designs that are discovered at https://imgur.com/a/
zpgI4YL. When subject to the same policy-network (optimizing for horizontal X speed), the
robots optimized for different objectives behave differently; the optimal Ant is capable of
leaping forward to move quickly in X; Ant-vy is able to jump up to maximize speed in Y ;
Ant-Energy is capable of ‘sitting down’ to conserve energy.

Table 3: ExPT’s performance on different objectives in D’Kitty and Ant domains. We
pretrain one model for all tasks in the same domain. The performance is averaged across 3
seeds.

Task D’Kitty D’Kitty-45 D’Kitty-60 Ant Ant-vy Ant-Energy

Dfew-shot(best) 0.307 0.297 0.344 0.124 0.210 0.189

Median ExPT 0.922± 0.009 0.611± 0.007 0.569± 0.010 0.686± 0.090 0.613± 0.009 0.635± 0.028
Max ExPT 0.976± 0.004 0.954± 0.008 0.973± 0.004 0.965± 0.004 0.923± 0.049 0.950± 0.033
Mean ExPT 0.871± 0.018 0.619± 0.016 0.584± 0.008 0.646± 0.061 0.599± 0.005 0.608± 0.025

B.5 Forward modeling versus Inverse modeling

As we mentioned in Section 2.2, two possible approaches exist to pretrain ExPT on synthetic
data. We take the inverse modeling approach for ExPT throughout the paper, as we train
ExPT to directly produce design inputs x′s. In this section, we empirically validate our
design choices by comparing ExPT with TNP-ED, its forward counterpart. TNP-ED’s
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architecture is similar to ExPT’s in Figure 1, except that the target points now contain
xm+1:N instead of ym+1:N , the decoder is a 1-layer MLP, and the predicted outputs are
ŷm+1:N . We call this model TNP-ED because a model named TNP (Nguyen and Grover,
2022) with a similar architecture was previously proposed in the context of meta-learning.
We pretrain TNP-ED using a simple mean-squared error loss L =

∑N
i=m+1(ŷi − yi)

2. After
pretraining, we condition TNP-ED on Dfew-shot and the best inputs in this dataset, and
perform gradient ascent with respect to these inputs to obtain better points.

Table 4: Comparison of inverse modeling (ExPT) versus forward modeling (TNP-ED) on
Ant and D’Kitty in random (left) and poorest (right) settings. We average the performance
across 3 seeds.

Baseline D’Kitty Ant

Dfew-shot(best) 0.883 0.563

Median ExPT 0.902± 0.006 0.705± 0.018
TNP-ED 0.770± 0.009 0.438± 0.007

Mean ExPT 0.865± 0.016 0.639± 0.026
TNP-ED 0.670± 0.037 0.451± 0.018

Baseline D’Kitty Ant

Dfew-shot(best) 0.307 0.124

Median ExPT 0.922± 0.009 0.686± 0.090
TNP-ED 0.309± 0.000 0.197± 0.005

Mean ExPT 0.871± 0.018 0.646± 0.061
TNP-ED 0.405± 0.004 0.237± 0.005

Table 4 compares the performance of ExPT and TNP-ED on D’Kitty and Ant with
respect to the median score and mean score. ExPT achieves significantly better performance
in all metrics, especially in the poorest setting. This is because forward models suffer from
poor out-of-distribution generalization, and performing gradient ascent on this model may
result in points that have high values under the model but are very poor when evaluated
using the true functions. This validates our inverse modeling approach.

Appendix C. ExPT pretraining details

Data generation For each domain, we pretrain ExPT for 10,000 iterations with 128
synthetic functions in each iteration, corresponding to a total number of 1,280,000 synthetic
functions. For each function, we randomly sample 228 input x′s from the unlabeled dataset
Dunlabeled and generate the values y′s from a Gaussian Process with an RBF kernel. To
increase the diversity of synthetic data, we randomize the two hyperparameters, length
scale ℓ ∼ U [5.0, 10.0] and function scale σ ∼ U [1.0, 1.0], when generating each function.
Additionally, we add Gaussian noises ϵ ∼ N (0, 0.1) to each input x sampled from Dunlabeled
to enlarge the pretraining inputs. For each generated function, we use 100 points as context
points and the remaining 128 as target points, and train the model to optimize (??). During
the adaptation phase, we condition the pretrained ExPT model on the labeled few-shot
dataset Dfew-shot and the target function value y⋆ to generate designs x′s.

Architectural details In all experiments, we use the same ExPT architecture. Before
feeding to the Transformer encoder, we embed the (y, x) context pairs with a 1-layer MLP
and embed the target y′s with another 1-layer MLP. The transformer encoder has 4 layers
with a hidden dimension of 128, 4 attention heads, GELU activation, and a dropout rate of 0.1.
For the VAE model, we use a standard isotropic Gaussian distribution as the prior. Both
the VAE encoder and VAE decoder have 4 layers with a hidden dimension of 512, and the
latent variable z has a dimension of 32.
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Optimization details In Design-Bench experiments, we pretrain ExPT for 10,000 itera-
tions with 128 synthetic functions in each iteration. We use AdamW optimizer (Kingma and
Ba, 2014; Loshchilov and Hutter) with a learning rate of 5e− 4 and (β1, β2) = (0.9, 0.99).
We use a linear warmup schedule for 1000 steps, followed by a cosine-annealing schedule for
9000 steps.

Appendix D. Excluded Design-Bench tasks

D.1 Superconductor

We found the approximate oracle provided by Design-Bench not accurate enough to provide
a reliable comparison of optimization methods on this task. Figure 4 plots the score values
in the dataset against the score values predicted by the approximate oracle, which shows a
weak correlation between these two values.
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Figure 4: The correlation between the score values in the dataset (x-axis) and the score
values predicted by the approximate oracle (y-axis) in Superconductor.

D.2 Hopper

As noted in previous works that use Design-Bench Krishnamoorthy et al. (2022), the oracle
provided for the Hopper task is inconsistent with the true-dataset values. The outputs of
the oracle on the dataset are skewed heavily towards low-function values, which makes it an
unreliable task for evaluation.

D.3 ChEMBL

As observed in previous works (Trabucco et al., 2022; Krishnamoorthy et al., 2022), all
methods produced nearly the same results on the ChEMBL task, so we excluded it in our
experiments.
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Appendix E. Additional ablation and analysis

E.1 Effects of GP hyperparameters

We empirically examine the impact of two GP hyperparameters, the variance σ and the
length scale ℓ, on the performance of ExPT. Specifically, we evaluate the performance of
ExPT on D’Kitty and Ant when σ is too small (ExPT-small-σ) or too large (ExPT-large-σ),
and when ℓ is too small (ExPT-small-ℓ) or too large (ExPT-large-ℓ). In ExPT-small-σ and
ExPT-large-σ, we sample σ from U [0.01, 0.1] and U [100, 200], respectively. In ExPT-small-ℓ
and ExPT-large-ℓ, we sample ℓ from U [0.1, 1.0] and U [100, 200], respectively.

Table 5: Impact of σ and ℓ on ExPT performance on Ant and D’Kitty in random (left) and
poorest (right) settings. We average the performance across 3 seeds.

Baseline D’Kitty Ant

Dfew-shot(best) 0.883 0.563

Median

ExPT 0.902± 0.006 0.705± 0.018
ExPT-small-σ 0.915± 0.006 0.661± 0.111
ExPT-large-σ 0.797± 0.000 0.471± 0.012
ExPT-small-ℓ 0.793± 0.004 0.459± 0.005
ExPT-large-ℓ 0.795± 0.003 0.460± 0.003

Mean

ExPT 0.865± 0.016 0.639± 0.026
ExPT-small-σ 0.896± 0.016 0.630± 0.089
ExPT-large-σ 0.752± 0.013 0.534± 0.015
ExPT-small-ℓ 0.726± 0.018 0.518± 0.018
ExPT-large-ℓ 0.725± 0.016 0.528± 0.006

Baseline D’Kitty Ant

Dfew-shot(best) 0.307 0.124

Median

ExPT 0.922± 0.009 0.686± 0.090
ExPT-small-σ 0.862± 0.064 0.656± 0.098
ExPT-large-σ 0.792± 0.004 0.489± 0.019
ExPT-small-ℓ 0.792± 0.006 0.462± 0.004
ExPT-large-ℓ 0.795± 0.003 0.460± 0.004

Mean

ExPT 0.871± 0.018 0.646± 0.061
ExPT-small-σ 0.755± 0.085 0.606± 0.077
ExPT-large-σ 0.726± 0.016 0.547± 0.012
ExPT-small-ℓ 0.725± 0.019 0.529± 0.014
ExPT-large-ℓ 0.722± 0.014 0.530± 0.011

The results in Table 5 show that overall, suboptimal values of σ and ℓ lead to a substantial
drop in the performance of ExPT on both tasks. It is also noticeable that ℓ has a more
significant influence on the performance than σ. In other words, the shape of the synthetic
functions has a more critical impact on downstream performances than the magnitudes of
the function values. A too small ℓ or large ℓ results in synthetic functions that exhibit either
excessive oscillations or excessive smoothness, leading to poor generalization to downstream
functions.

E.2 Construction of new D’Kitty and Ant tasks

This section details how we constructed new objectives from the original D’Kitty and Ant that
we used to evaluate ExPT in Section B.4. For each new objective, we apply the corresponding
oracle to the inputs x′s in the original dataset to create the dataset for the objective.

Ant tasks In Ant, the original goal is to design a morphology that allows the Ant robot to
run as fast as possible in the x (horizontal) direction. The objective function is the sum of
rewards in 100 time steps, where the reward R at each time step is defined as:

R = Forward reward + Survival reward − Control cost − Contact cost, (1)

where Forward reward = (xt − xt−1)/dt is the velocity of the Ant in the x direction.
In Ant-vy, the reward at each time step is similar, except that Forward reward =

(yt − yt−1)/dt is the velocity of the Ant in the y (vertical) direction. In other words, we aim
to design morphologies that allow the robot to run fast in the y direction.
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In Ant-Energy, the reward at each time step is:

R = 1 + Survival reward − Control cost − Contact cost, (2)

which means we incentivize the robot to conserve energy instead of running fast.

D’Kitty tasks In D’Kitty, the goal is to design a morphology that allows the D’Kitty
robot to reach a fixed target location, and the objective function f is the Euclidean distance
to the target. In the original D’Kitty task, the target location is on the vertical line from
the starting point. In the two new tasks D’Kitty-45 and D’Kitty-60, the target locations are
45 deg and 60 deg away from the original target, respectively.

D'Kitty

D'Kitty-45

D'Kitty-60

Figure 5: Different D’Kitty tasks. The red dot denotes the starting location, and the green
dots are the target locations.

E.3 ExPT with sequential sampling

A significant advantage of ExPT is its ability to adapt to any objective function purely
through in-context learning. This means that the model can refine its understanding of the
underlying objective function given more data points in a very efficient manner. In this
section, we explore an alternative optimization scheme for ExPT, namely sequential sampling,
which explicitly utilizes the in-context learning ability of the model. Specifically, instead of
producing Q = 256 inputs simultaneously, we sample one by one sequentially. That is, we
condition the model on Dfew-shot and y⋆ to sample the first point, evaluate the point using
the black-box function, and add the point together with its score to the context set. We
repeat this process for 256 times.

Table 6 shows that ExPT with sequential sampling performs better than simultaneous
sampling on D’Kitty and Ant in both random and poor settings. Especially on Ant in
the poorest setting, ExPT-Sequential achieves improvements of 20% and 19% over ExPT
in terms of the median and mean performance, respectively. Intuitively, as we add more
data points to the context set, ExPT-Sequential is able to updates its understanding of the
structure of the objective function, consequently leading to improved performance.
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Table 6: Comparison of simultaneous (ExPT) and sequential (ExPT-Seq) sampling on Ant
and D’Kitty in random (left) and poorest (right) settings. We average the performance
across 3 seeds.

Baseline D’Kitty Ant

Dfew-shot(best) 0.883 0.563

Median ExPT 0.902± 0.006 0.705± 0.018
ExPT-Seq 0.903± 0.005 0.719± 0.013

Mean ExPT 0.865± 0.016 0.639± 0.026
ExPT-Seq 0.872± 0.010 0.669± 0.017

Baseline D’Kitty Ant

Dfew-shot(best) 0.307 0.124

Median ExPT 0.922± 0.009 0.686± 0.090
ExPT-Seq 0.928± 0.012 0.822± 0.055

Mean ExPT 0.871± 0.018 0.646± 0.061
ExPT-Seq 0.923± 0.011 0.767± 0.048

E.4 Effects of |Dunlabeled|

We empirically examine the effects of the size of Dunlabeled on the downstream perfor-
mance of ExPT. Specifically, we subsample the x′s in the public dataset with a ratio
r ∈ {0.01, 0.1, 0.2, 0.5, 1.0}. Adaptation and evaluation are the same as in Section 4.
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Figure 6: The performance of ExPT on Dkitty and Ant in the random (left) and poorest
(right) setting when we vary the training data ration r. We average the performance across 3
seeds.

Figure 6 shows the median and mean performance of ExPT on Dkitty and Ant in both
random and poorest settings with respect to the ratio r. In the random setting, ExPT is
able to reach or surpass the best data point in the few-shot dataset by using as few as
0.2 of the pretraining data. In the poorest setting, ExPT performs better than the best
dataset point with only 0.01 of the pretraining data. Moreover, the performance improves
consistently as the pretraining data size increases, suggesting that we can achieve even better
performance by simply using more unlabeled data for pretraining. This result highlights the
unique capability of ExPT of learning from unlabeled data, providing new opportunities for
solving challenging optimization problems where unlabeled data is plentiful but labeled data
is scarce.
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E.5 Sorting context and target points

In the main experiments in Section 4, for each generated function during pretrainnig, we
sample 228 points that we divide randomly into 100 context points and 128 target points.
However, at adaptation, we condition on target output values that are likely to be higher
than the best input value in the context set. Therefore, it is natural to sort the context
points and target points during pretraining, so that the target inputs always have higher
values than the context inputs. We denote this pretraining mechanism as ExPT-sorted.

Table 7: Comparison of pretraining on randomly divided context and target points (ExPT)
versus sorted context and target points (ExPT-sorted) on Ant and D’Kitty in random (left)
and poorest (right) settings. We average the performance across 3 seeds.

Baseline D’Kitty Ant

Dfew-shot(best) 0.883 0.563

Median ExPT 0.902± 0.006 0.705± 0.018
ExPT-Sorted 0.811± 0.019 0.631± 0.015

Mean ExPT 0.865± 0.016 0.639± 0.026
ExPT-Sorted 0.794± 0.020 0.590± 0.014

Baseline D’Kitty Ant

Dfew-shot(best) 0.307 0.124

Median ExPT 0.922± 0.009 0.686± 0.090
ExPT-Sorted 0.911± 0.003 0.685± 0.044

Mean ExPT 0.871± 0.018 0.646± 0.061
ExPT-Sorted 0.900± 0.003 0.642± 0.035

Table 7 shows that ExPT-sorted underperforms ExPT in the random setting, while
performing very similarly in the poorest setting. This indicates that learning to predict any
points provides a better and more general pretraining objective than only learning to predict
points with high values.

E.6 Comparisons with more baselines

In addition to the baselines in Section 4, we compare ExPT with 3 variants of Gradient
Ascent, a method that was considered in previous works (Trabucco et al., 2022; Kumar and
Levine, 2020; Trabucco et al., 2021; Krishnamoorthy et al., 2022). The Grad. Asc baseline
simply learns a forward model and finds an optimal x∗ by taking 200 gradient-ascent steps to
improve an existing input x. The two variants Grad. Min and Grad. Mean create ensembles
of forward models and perform gradient ascent using the min and mean ensemble predictions.

Tables 8 and 9 show the performance of ExPT and all baselines in the random and
poorest settings. We see that while the gradient ascent methods perform well on certain
tasks, with good performance on the TF-Bind8 task in particular, ExPT is still the best
performing method in all settings and metrics.

Appendix F. Compute

All training is done on 10 AMD EPYC 7313 CPU cores and one NVIDIA RTX A5000 GPU.

Appendix G. Reproducibility

We made a strong effort to ensure that our work can be reproduced properly. In Section 3, we
provide a comprehensive description of our methodology, while in Section 4 and Appendix B,
we provide the specifics of our pretraining and evaluation setup, as well as our choice of
hyperparameters. We compare our approach with various baseline methods from different
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Table 8: Comparison of ExPT and the baselines on the few-shot random setting of 4 Design-
Bench tasks. We report median, max, and mean performance across 3 random seeds. Higher
scores are better. Blue denotes the best entry in the column, and Violet denotes the second
best.

Baseline D’Kitty Ant TF Bind 8 TF Bind 10 Mean score (↑)

Dfew-shot(best) 0.883 0.563 0.439 0.466 —

Median

MINs 0.859± 0.014 0.485± 0.152 0.416± 0.019 0.468± 0.014 0.557± 0.050
COMs 0.752± 0.007 0.411± 0.012 0.371± 0.001 0.468± 0.000 0.501± 0.005

BONET 0.852± 0.013 0.597± 0.119 0.441± 0.003 0.483± 0.009 0.593± 0.036
BDI 0.592± 0.020 0.396± 0.018 0.540± 0.032 0.438± 0.034 0.492± 0.026

GP-qEI 0.842± 0.058 0.550± 0.007 0.439± 0.000 0.467± 0.000 0.575± 0.016
Grad. Asc 0.403± 0.134 0.088± 0.017 0.492± 0.017 0.492± 0.018 0.369± 0.0465
Grad. Min 0.712± 0.028 0.220± 0.035 0.504± 0.025 0.465± 0.008 0.475± 0.024

Grad. Mean 0.437± 0.180 0.150± 0.037 0.551± 0.029 0.485± 0.018 0.406± 0.066
ExPT 0.902± 0.006 0.705± 0.018 0.473± 0.014 0.477± 0.014 0.639± 0.013

Max

MINs 0.930± 0.010 0.890± 0.017 0.814± 0.030 0.639± 0.017 0.818± 0.019
COMs 0.920± 0.010 0.841± 0.044 0.686± 0.152 0.656± 0.020 0.776± 0.057

BONET 0.909± 0.012 0.888± 0.024 0.887± 0.053 0.702± 0.006 0.847± 0.024
BDI 0.918± 0.006 0.806± 0.094 0.906± 0.074 0.532± 0.023 0.791± 0.049

GP-qEI 0.896± 0.000 0.887± 0.000 0.513± 0.104 0.647± 0.011 0.736± 0.029
Grad. Asc 0.775± 0.032 0.240± 0.032 0.923± 0.005 0.675± 0.017 0.653± 0.0215
Grad. Min 0.822± 0.053 0.434± 0.092 0.960± 0.002 0.632± 0.009 0.712± 0.039

Grad. Mean 0.829± 0.009 0.337± 0.063 0.957± 0.010 0.668± 0.034 0.698± 0.029
ExPT 0.973± 0.005 0.970± 0.004 0.933± 0.036 0.677± 0.048 0.888± 0.023

Mean

MINs 0.624± 0.025 0.009± 0.013 0.415± 0.030 0.465± 0.015 0.378± 0.021
COMs 0.515± 0.050 0.020± 0.006 0.369± 0.003 0.471± 0.004 0.344± 0.016

BONET 0.837± 0.023 0.579± 0.024 0.448± 0.011 0.484± 0.009 0.587± 0.017
BDI 0.570± 0.032 0.385± 0.012 0.536± 0.032 0.444± 0.027 0.484± 0.026

GP-qEI 0.505± 0.006 0.019± 0.001 0.439± 0.001 0.473± 0.002 0.359± 0.003
Grad. Asc 0.400± 0.073 0.090± 0.018 0.513± 0.014 0.492± 0.017 0.374± 0.031
Grad. Min 0.599± 0.068 0.221± 0.034 0.531± 0.015 0.462± 0.009 0.453± 0.032

Grad. Mean 0.527± 0.079 0.150± 0.038 0.569± 0.028 0.438± 0.017 0.421± 0.041
ExPT 0.865± 0.016 0.639± 0.026 0.476± 0.010 0.474± 0.015 0.614± 0.017

approaches on multiple tasks in Design-Bench (Trabucco et al., 2022) with distinct properties.
Our results are averaged over 3 seeds and we also report the standard deviation. Additionally,
we conduct several ablation experiments to examine how sensitive ExPT is to different
hyperparameters.

Appendix H. Broader impact

The field of offline black-box optimization can have positive impacts in many spheres,
including in drug-discovery, nuclear reactor design, and optimal robot design. The few-shot
setting that we introduce in this work is also highly relevant to these fields which have
large quantities of unlabelled data, but only a limited quantity of labelled data points. It is
also worth noting however, that it is possible to use black-box optimization in general for
malicious purposes such as to produce chemicals with harmful properties. Even though our
work does not directly enable such use cases, this possibility should be taken into account
when applying ExPT and similar frameworks to these kinds of impactful real-world scenarios.
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Table 9: Comparison of ExPT and the baselines on the few-shot poorest setting of 4 Design-
Bench tasks. We report the median, max, and mean performance across 3 random seeds.
Higher scores are better. Blue denotes the best entry in the column, and Violet denotes the
second best.

Baseline D’Kitty Ant TF Bind 8 TF Bind 10 Mean score (↑)

Dfew-shot(best) 0.307 0.124 0.124 0.000 —

Median

MINs 0.480± 0.156 0.316± 0.040 0.437± 0.007 0.463± 0.003 0.424± 0.052
COMs 0.733± 0.023 0.401± 0.026 0.111± 0.000 0.459± 0.006 0.426± 0.014

BONET 0.310± 0.000 0.236± 0.047 0.319± 0.018 0.461± 0.017∗ 0.332± 0.021
BDI 0.309± 0.000 0.192± 0.012 0.365± 0.000 0.454± 0.017 0.330± 0.007

GP-qEI 0.883± 0.000 0.565± 0.001 0.439± 0.000 0.467± 0.000 0.589± 0.000
Grad. Asc 0.741± 0.026 0.321± 0.012 0.425± 0.064 0.419± 0.073 0.477± 0.044
Grad. Min 0.806± 0.004 0.454± 0.061 0.357± 0.040 0.376± 0.079 0.498± 0.046

Grad. Mean 0.742± 0.054 0.472± 0.066 0.350± 0.014 0.395± 0.019 0.489± 0.038
ExPT 0.922± 0.009 0.686± 0.090 0.552± 0.042 0.489± 0.013 0.662± 0.039

Max

MINs 0.841± 0.014 0.721± 0.031 0.962± 0.019 0.648± 0.025 0.793± 0.022
COMs 0.931± 0.022 0.843± 0.020 0.124± 0.000 0.739± 0.057 0.659± 0.025

BONET 0.929± 0.031 0.557± 0.118 0.809± 0.038 0.519± 0.039∗ 0.704± 0.057
BDI 0.939± 0.002 0.693± 0.109 0.913± 0.000 0.596± 0.020 0.785± 0.033

GP-qEI 0.896± 0.000 0.887± 0.000 0.439± 0.000 0.645± 0.021 0.717± 0.005
Grad. Asc 0.837± 0.038 0.684± 0.071 0.821± 0.077 0.568± 0.019 0.728± 0.052
Grad. Min 0.910± 0.009 0.801± 0.029 0.842± 0.066 0.555± 0.028 0.777± 0.033

Grad. Mean 0.882± 0.028 0.807± 0.046 0.747± 0.055 0.542± 0.039 0.745± 0.042
ExPT 0.946± 0.018 0.965± 0.004 0.873± 0.035 0.615± 0.022 0.850± 0.020

Mean

MINs 0.623± 0.051 0.015± 0.017 0.464± 0.009 0.463± 0.002 0.391± 0.020
COMs 0.607± 0.021 0.033± 0.003 0.109± 0.001 0.454± 0.004 0.301± 0.007

BONET 0.490± 0.023 0.234± 0.052 0.318± 0.018 0.459± 0.018 0.375± 0.028
BDI 0.364± 0.004 0.215± 0.021 0.369± 0.000 0.453± 0.018 0.350± 0.011

GP-qEI 0.533± 0.001 0.018± 0.000 0.439± 0.000 0.470± 0.002 0.365± 0.001
Grad. Asc 0.659± 0.069 0.334± 0.018 0.432± 0.061 0.427± 0.042 0.463± 0.048
Grad. Min 0.794± 0.003 0.454± 0.051 0.374± 0.018 0.386± 0.044 0.502± 0.029

Grad. Mean 0.702± 0.083 0.467± 0.050 0.356± 0.023 0.405± 0.018 0.483± 0.044
ExPT 0.871± 0.018 0.646± 0.061 0.549± 0.032 0.488± 0.011 0.639± 0.031
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