
Debugging Concept Bottleneck Models
through Removal and Retraining

Eric Enouen
Cornell University

enouen@cs.cornell.edu

Sainyam Galhotra
Cornell University

sg@cs.cornell.edu

Abstract

Concept Bottleneck Models (CBMs) use a set of human-interpretable concepts
to predict the final task label, enabling domain experts to not only validate the
CBM’s predictions, but also intervene on incorrect concepts at test time. However,
these interventions fail to address systemic misalignment between the CBM and
the expert’s reasoning, such as when the model learns shortcuts from biased data.
To address this, we present a general interpretable debugging framework for CBMs
that follows a two-step process of Removal and Retraining. In the Removal step,
experts use concept explanations to identify and remove any undesired concepts.
In the Retraining step, we introduce CBDebug, a novel method that leverages the
interpretability of CBMs as a bridge for converting concept-level user feedback into
sample-level auxiliary labels. These labels are then used to apply supervised bias
mitigation and targeted augmentation, reducing the model’s reliance on undesired
concepts. We evaluate our framework with both real and automated expert feedback,
and find that CBDebug significantly outperforms prior retraining methods across
multiple CBM architectures (PIP-Net, Post-hoc CBM) and benchmarks with known
spurious correlations.

1 Introduction

Concept Bottleneck Models (CBMs) [1] have emerged as a powerful architecture for interpretable
vision classification. A CBM consists of two stages: a concept extractor first predicts a set of
human-understandable concepts, which are then passed to an inference layer to produce the final label.
This intermediate representation allows domain experts to inspect the model’s reasoning process and
verify whether it aligns with their own. This capability is crucial in high-stakes domains, such as
healthcare or scientific analysis, where errors are costly and expert validation is essential.

Beyond passive validation, CBMs enable test-time interventions [1, 2]. An expert can review the
predicted concepts and directly correct them to influence the final prediction. For example, if a
radiologist corrects a mispredicted concept, such as marking a lesion as present when the model
missed it, the diagnosis may shift from benign to malignant. Such interventions elevate the expert
from a passive auditor to an active participant in decision making. However, the effectiveness of these
interventions hinges on a critical assumption: the learned concepts must align with expert knowledge.
In practice, this alignment is often fragile. Data quality issues, sampling bias, and incomplete concept
vocabularies can lead models to exploit spurious correlations or overlook key factors [3, 4]. Because
test-time edits address only surface errors, the same reasoning flaws inevitably reappear on new
samples.

Existing approaches fall short of achieving reliable alignment and are prone to such issues. Supervised
CBMs attempt to enforce alignment by sharing a concept vocabulary with annotators, but they
require costly per-sample labels and remain vulnerable to concept leakage, which can obscure global

Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems (NeurIPS
2025).

Waterbird

Landbird

Encoder Φ Encoder Φ′

Removal Retraining

h h′

Waterbird

Landbird
Encoder

𝝓

𝜙(𝑋)

𝝓:

𝐡′ f′(x)

 = { }

 = { }

(a) Removal. User removes undesired
concepts Cspur .

{Waterbird, Landbird}

Prediction
Label

(b) Retraining. Update encoder ϕ and simple layer h
based on Cspur .

Figure 1: Our debugging framework for incorporating a domain expert’s knowledge into a concept
bottleneck. Removal (a): The user inspects concept explanations and selects undesired concepts to
remove, such as background concepts in bird classification. Retraining (b): The concept extractor
and inference layer are retrained based on this feedback, updating the CBM to remove dependence
on undesired concepts while maintaining reliance on task-relevant concepts.

misalignment [5, 6]. Unsupervised CBMs [7, 8] reduce labeling demands by discovering concepts
from data or leveraging foundation models, yet this flexibility increases the risk that the learned
concept set diverges from expert understanding.

In this work, we present a general debugging framework for CBMs that enables experts to globally
edit a model’s reliance on undesired concepts, ensuring that its predictions are not only accurate but
also right for the right reasons [9], and aligned with the domain expert’s reasoning. This framework
follows a two-step process of Removal and Retraining (Figure 1).

In the Removal step (Figure 1a), experts evaluate concept explanations and eliminate those spuriously
correlated with the label. For example, an ornithologist may remove background concepts unrelated
to bird species [10]. However, removal alone is insufficient: remaining concepts may still carry
signals from the removed ones, and task-relevant concepts may have been ignored in favor of spurious
ones. To address this, we introduce a Retraining step (Figure 1b) that leverages expert feedback to
guide the model toward an expert-aligned concept set.

To implement our retraining step, we propose CBDebug (Concept Bottleneck Debugger), which
operationalizes interpretable debugging by treating expert feedback as a causal intervention. CBDebug
leverages the interpretability of CBMs as a bridge to first convert the expert feedback into sample-level
auxiliary labels. Then, using the estimated auxiliary labels, performs a reweighting and augmentation
scheme to approximate the counterfactual distribution where the undesired concepts have no effect
on the label. In summary, we make the following core contributions:

• We present an interpretable debugging framework for CBMs, extending to a more general architec-
ture and enabling domain experts to globally edit model reasoning.

• We introduce CBDebug, a retraining approach that first approximates sample-level auxiliary labels
from concept-level feedback, then reweights and augments the dataset to reduce reliance on
undesired concepts and better align the model with expert reasoning.

• We validate our framework across multiple CBMs (PIP-Net, Post-hoc CBM) and datasets with
known spurious correlations. CBDebug most effectively leverages user feedback on spurious
concepts, outperforming prior work on ProtoPNets and improving worst-group accuracy by up to
26% over the original model, with strong results when feedback is automated with an LLM.

2 Related Work

We review prior work on concept bottleneck models, interpretable debugging, and bias mitigation,
and position our approach at their intersection.

Concept Bottleneck Architecture. Concept bottleneck models (CBMs) [1] decompose prediction
into a concept extraction stage and an inference stage. While supervised CBMs require concept
annotations to ensure alignment with human-defined attributes, such labels are costly to obtain and

2

cannot be assumed for spurious concepts. We focus on recent unsupervised CBMs, which learn
concepts directly from data and allow experts to discover and address undesired shortcuts.

These models fall into two main architectural families. ProtoPNets [7] and their extensions [11–13],
learn prototypical patches from the training set to make predictions. In this family, concept-level
explanations take the form of representative image patches from the training data. VLM-CBMs [8] use
a CLIP backbone to score the presence of textual concepts, as explored in many approaches [14, 15, 6],
where concept-level explanations are the textual descriptions of each concept. Our framework can
also extend to post-hoc XAI methods (e.g., interpreting neurons from class activation maps Zhou et al.
[16] as concepts). In this work we focus on concept bottlenecks, which are interpretable-by-design,
and evaluate one representative from each family: PIP-Net [11] and Post-hoc CBM [14].

Interpretable Debugging. The goal of interpretable debugging is to enable a domain expert to
interact with an interpretable model to detect and correct undesired behaviors. Early work focused on
explanatory interactive learning [9, 17, 18], with subsequent extensions to neuro-symbolic models
[19, 20]. Bontempelli et al. [21] advanced these approaches, focusing on ProtoPNets and removing
the need for a fixed concept vocabulary. Building on top of these works, we focus on a generalized
unsupervised CBM architecture [22].

Within unsupervised CBMs, spurious concept removal has been explored in both ProtoPNets and
VLM-CBMs: Nauta et al. [23] study removal in PIP-Net on medical datasets, while Yuksekgonul
et al. [14] and Rao et al. [10] evaluate similar strategies for VLM-CBMs. Retraining efforts have
focused mainly on ProtoPNets, such as adding object segmentation maps for extra supervision [24] or
ProtoPDebug [21] which applies a forgetting loss to marked concepts. Donnelly et al. [25] bypasses
the need for retraining, but is limited to random patch selection for learning new concepts. For
VLM-CBMs, Bontempelli et al. [26] outline debugging strategies but lack empirical evaluation. We
build on these directions with a general debugging framework for CBMs and an effective retraining
approach, CBDebug, that leverages a novel connection between interpretable debugging and bias
mitigation to remove undesired concepts and better align models with expert feedback.

Bias Mitigation. Interpretable debugging and bias mitigation are related but distinct. Debugging
aligns a model with an expert’s reasoning through explicit feedback, while bias mitigation aims to
improve robustness by reducing reliance on spurious correlations. We further explore connections
to two main groups of bias mitigation: supervised methods, which incorporate auxiliary labels, and
unsupervised methods, which estimate spurious correlations directly from data.

Supervised methods require auxiliary labels to reduce the impact of spurious correlations [27–30].
While these approaches cannot be directly applied to unsupervised CBMs, CBDebug utilizes a crucial
connection between interpretable debugging and these methods. By leveraging the model’s inter-
pretability, we can bridge concept-level human feedback to sample-level auxiliary labels, effectively
removing the reliance on any concept marked as undesired by the domain expert. This is accom-
plished by collecting the activation scores for each concept on every sample, which can then be used
to form the auxiliary labels. Specifically, we instantiate our approach with permutation weighting
[31], which can handle high-dimensional, real-valued auxiliary labels. This allows us to use concept
activations directly, unlike methods such as GroupDRO [28] that require discrete groups and would
necessitate an additional clustering step to convert activation scores.

Unsupervised methods have similarly been proposed that relax the requirement for auxiliary labels.
These approaches either automatically estimate spurious groups [32–34] or reweight samples based on
assumptions about how spurious correlations are learned during training [35–38]. Instead of relying
on underlying assumptions about model training dynamics, our method focuses only on removing
concepts marked directly by a domain expert. While the two approaches can overlap, interpretable
debugging offers a distinct and complementary advantage: it gives the expert fine-grained control
over what should be removed. For example, an expert may wish to keep certain ‘spurious’ concepts
if they know they will perform well in practice, or may wish to remove ‘core’ concepts to debug
what the model would use instead. This ensures the resulting model is aligned with the domain
knowledge of the expert, which is critical for interpretable models that are part of a human-machine
team. Further discussion and results can be found in Appendix C.4.

3

3 Concept Bottleneck Debugging Framework

In this section, we formalize our interpretable debugging framework, for leveraging expert feedback
to eliminate undesired concepts and aligning the model’s reasoning with the expert’s preferences. We
first define the general class of concept bottleneck models our framework supports. Then, we outline
our two-step debugging process: how concept-level user feedback is collected during the removal
step and the formal goal of the retraining step.

3.1 Concept Bottleneck

We denote a concept bottleneck model as a pair {ϕ, h}. The concept extractor ϕ : X → Rm maps
an input x ∈ X to a vector of m concept activation scores, and the inference layer h : Rm → Y ,
typically a sparse linear layer, maps these activations to the output label. The core requirement for a
concept bottleneck is that each concept has a corresponding human-interpretable explanation, and we
review recent work that falls under this definition in Section 2 (Concept Bottleneck Architecture).

Specifically, we focus on unsupervised CBMs, which eliminate the need for auxiliary labels and are
thus applicable to a broader range of real-world settings. These models enable automatic concept
discovery, making them scalable, but they are also prone to learning concepts that are entirely spurious
or irrelevant from the perspective of a domain expert. Our framework is particularly well-suited
to address this challenge, as it provides a mechanism for experts to inspect, debug, and guide the
concepts learned by these scalable models. Furthermore, standard CBMs are not immune to shortcut
learning: unsupervised CBMs simply make these shortcuts more explicit, rather than hidden among
other concepts, enabling users to identify and remove them.

3.2 Removal

We focus on the removal of concepts that encode biases undesirable for the classification task, as
identified by the domain expert. For instance, when classifying birds, the expert may wish to remove
confounded concepts that capture background information rather than features of the birds themselves.
Our framework does not assume a specific structure or representation for the underlying concepts.
Instead, it operates in a general setting where each concept is associated with an explanation, allowing
our method to be applied across a variety of concept discovery approaches.

To guide concept removal, we adopt a simple binary feedback mechanism: each concept is either
retained or marked for removal, based on expert input. This minimal supervision design ensures
that our approach remains broadly applicable and easy to integrate into real-world workflows, where
experts may have limited time or domain knowledge to provide detailed annotations.

We illustrate our Removal process in Figure 1a. We assume a trained CBM {ϕ, h} with learned
concept set C = {c1, . . . , cm}. A domain expert inspects the learned concept set by interacting with
the concept explanations and identifies a subset Cspur ⊂ C to remove. We remove all concepts in
Cspur from the concept set. Then, we pass the edited CBM {ϕ, h} and Cspur to the retraining step.

3.3 Retraining

There are two main failure modes when removing Cspur from C. First, if any remaining concepts
partially encode information from the undesired concepts, removal alone may not fully eliminate
their influence. Second, if the model relied too heavily on the undesired concepts, removal can leave
the model unable to perform well. These limitations motivate the need for retraining, which adapts
the CBM to maintain high performance while avoiding reliance on the marked undesired concepts.

Having obtained human feedback in the form of a set of concepts Cspur deemed spurious for the task,
we face a crucial challenge: how can we most effectively use this feedback to improve the model’s
reasoning and performance?

We illustrate our Retraining process in Figure 1b. The retraining algorithm is given the trained concept
bottleneck {ϕ, h}, the training dataset (X, Y), and the set of undesired concepts Cspur. The goal of
this step is to return an updated concept bottleneck {ϕ′, h′} that maintains high task performance by
leveraging other, more task-relevant concepts instead of Cspur.

4

Auxiliary Factor Discovery Augmentation

Permutation WeightingΦ

C=0

C=1

V

Y’V

Y

0.6 1.5 3.3 0.9

Augment Label ReweightDs Do

Spurious
patches

𝝓 V
0.7

1.0

V, Y
Importance

Weight

𝝓(
0.7
1.0

()

()

Waterbirds

Figure 2: Overview of CBDebug (Concept Bottleneck Debugger), which consists of three main steps.
First, the encoder ϕ computes the concept activations for undesired concepts in Cspur to generate the
approximated auxiliary label V̂. Second, permutation weighting utilizes V̂ and the class label Y to
compute the odds of the sample being drawn from the unconfounded distribution, generating weights
U. Third, augmentation is performed on X based on the undesired concepts Cspur and weights U to
generate Xaug . Finally, we retrain {ϕ, h} on (Xaug, Y) weighted by U and return {ϕ′, h′}.

4 CBDebug: Concept Bottleneck Debugger

To achieve this goal, we introduce CBDebug (Figure 2), which operationalizes interpretable debugging
by treating expert feedback as a causal intervention. Intuitively, CBDebug treats undesired concepts
as observed confounders and approximates the counterfactual distribution where those confounders
have no effect on the label. This human-in-the-loop approach allows experts to explicitly select or
refine the set of undesired concepts, giving them a transparent mechanism to steer the model, unlike
methods that rely on unsupervised group discovery (see Bias Mitigation in Section 2).

In practice, CBDebug consists of three main stages:

• Label (Section 4.1): Convert concept-level feedback into sample-level auxiliary labels by scoring
each sample with the CBM. The activation scores V̂ approximate the true auxiliary labels V for
undesired concepts.

• Reweight (Section 4.2): Apply permutation weighting [31] on (V̂, Y) to compute sample weights
U that approximate the unconfounded distribution.

• Augment (Section 4.3): Use the sample weights U to selectively augment bias-aligned samples,
yielding a dataset Xaug that further reduces shortcut reliance.

We then fine-tune the concept bottleneck with the augmented dataset (Xaug, Y) weighted by sample
weights U and return the refined concept bottleneck {ϕ′, h′}.

4.1 Label

The first stage of our approach (Label in Figure 2) generates sample-level auxiliary labels from the
expert’s feedback. For example, a user may mark background concepts like ‘beach’ or ‘grass’ as
undesired for the task of classifying birds. We then utilize the trained CBM’s concept extractor to
collect the activation scores for the marked concepts on the entire training dataset.

Formally, the labeling step takes the trained concept extractor ϕ, the training samples X, and the
spurious concept set Cspur as input. It returns V̂, a matrix of dimension N × |Cspur|, where N is the
number of samples.

V̂ =
[
ϕCspur

(xi)
]n
i=1

where ϕ(xi) are the concept activation scores of all concepts in C for sample xi, and ϕCspur
(xi)

denotes the subselection of those concept activation scores for only the concepts in Cspur.

5

4.2 Reweight

The second stage of our approach (Reweight in Figure 2) utilizes a supervised bias mitigation
approach to reweight the training dataset to reduce the correlation between V̂ and Y . For example, if
backgrounds spuriously correlate with class label, the reweighting scheme may assign a low weight
to a waterbird on a ‘beach’ background and a high weight to a waterbird on a ‘grass’ background,
forcing the model to learn features that generalize beyond the undesired background concept.

We adopt permutation weighting [31], later applied to shortcut removal by Zheng and Makar [27], to
perform reweighting. Unlike group-based reweighting approaches such as GroupDRO [28], which
require discrete group labels and often struggle with groups that have low support (necessitating
clustering of V̂), permutation weighting naturally accommodates multi-dimensional, continuous
auxiliary labels. By directly enforcing independence between V̂ and Y , it provides a more general
and stable mechanism.

Formally, the reweighting step takes the approximated auxiliary labels V̂ and the class labels Y as
input. It returns sample weights U.

Given V̂ and Y , we first construct two datasets. A dataset D is constructed as V̂ concatenated
with Y representing the confounded distribution, where there exists a correlation between the label
Y and auxiliary label V̂. Then, we create a new dataset D′ by randomly permuting the label Y
in the original dataset. This naturally breaks any correlation between Y and V̂, representing the
unconfounded distribution.

We then train a binary predictor η : Y × V̂ → {0, 1} to predict the probability of a sample belonging
to the unconfounded dataset D′ compared to the confounded dataset. Finally, we compute a weight
ui for each sample

ui =
η(yi, vi)

1− η(yi, vi)
(1)

where η(yi, vi) denotes the estimated probability that a sample belongs to D′. To ensure robust
weights, we perform K-fold cross validation and average over multiple permutations.

4.3 Augment

The third stage of our approach (Augment in Figure 2) aims to further reduce the correlation
between V̂ and Y through augmentation. While reweighting is effective, it can lead to unstable
training when the spurious groups are highly imbalanced, as a few samples are given very large
weights. Augmentation offers a more robust way to mitigate bias in these scenarios by generating
new samples for underrepresented groups. For example, we augment the image of a waterbird on a
water background with an image of bamboo from the concept bank, while leaving the image of a
waterbird on a land background untouched.

Formally, the augmentation step takes the training samples X, sample weights U, and the concept
set Cspur as input. It returns new training samples Xaug that further reduce the correlation between
undesired concepts and the class label. Importantly, because these concepts were explicitly marked
as undesired by the user, we do not change the label Y .

Samples assigned a low weight are more likely to be aligned with the bias we want to remove, and
so we would like to focus our augmentation on these samples. To accomplish this, we can convert
each sample weight ui into an augmentation probability paug(xi). We first invert the sample weight
ui by subtracting each weight from the maximum sample weight assigned. Then we normalize the
resulting values to [0, 1] to convert them into probabilities, and raise the probabilities to a power γ to
increase contrast and reduce the likelihood of augmenting useful samples.

We then augment each sample with probability paug(xi). Our augmentation strategy is dependent
on the concept representation: For ProtoPNets we randomly select k spurious concepts from Cspur
and perform CutMix [39] using one of the top ten most activated patches for each concept. For
VLM-CBMs we randomly select a spurious concept from Cspur and perform Mixup [40] with an
image of that concept selected from a text-to-image–generated concept bank, following DISC [38].

6

Table 1: Average and Worst-Group Accuracy on MetaShift and Waterbirds with PIP-Net and Post-hoc
CBM. Best in bold, second best underlined. Average and standard deviation reported over the three
initial seeds for Original and over the six debugging sessions for removal and all retraining approaches.
CBDebug consistently improves worst-group accuracy across models and datasets.

Method PIP-Net Post-hoc CBM
Waterbirds MetaShift Waterbirds MetaShift

Average Worst Average Worst Average Worst Average Worst

Original 92.3±0.3 71.9±2.7 80.9±1.3 52.4±2.0 63.5±1.3 25.8±3.0 92.9±0.4 84.5±2.2

Remove 92.6±0.4 74.4±2.2 81.4±0.6 55.0±2.6 61.2±18.8 13.9±15.8 89.0±4.8 73.9±15.0

Retrain 92.4±0.1 72.5±1.0 81.2±1.6 53.3±2.1 66.9±2.8 33.2±6.4 93.1±0.7 84.4±2.7

ProtoPDebug 92.5±0.1 71.6±1.9 80.9±1.4 52.4±1.4 - - - -

Ours
Reweight Only 93.2±0.4 74.2±4.8 81.8±1.4 56.1±1.3 80.0±8.0 55.6±15.2 93.1±0.4 87.3±1.8

Augment Only 92.4±0.6 75.5±2.9 82.2±1.7 55.6±3.3 64.5±4.8 25.9±11.4 92.6±1.7 86.3±4.5

CBDebug 93.7±0.7 79.4±4.3 82.3±1.7 57.3±3.1 73.6±6.3 51.9±16.2 93.4±1.0 89.3±1.3

5 Experiments

To evaluate our approach, we aim to answer the following questions: Q1: Quantitatively, how does
CBDebug perform on both real (Section 5.1) and automated (Section 5.2) feedback sources? Q2:
Qualitatively, does CBDebug effectively remove dependence on undesired concepts and lead to a more
robust concept set (Section 5.3)? We also explore additional ablations of our method and comparisons
to unsupervised baselines in Appendix C.

Datasets. We use datasets with known spurious correlations: Waterbirds [28], MetaShift [41],
CelebA [42], and ISIC [43]. These datasets provide concrete testbeds for assessing how well
CBDebug reduces reliance on undesired concepts, as their group structures allow performance to be
measured directly across subpopulations.

Models. We evaluate a representative ProtoPNet (PIP-Net [11]) and VLM-CBM (Post-hoc CBM
[14]) on these datasets. PIP-Net uses a ConvNeXt-tiny backbone, while Post-hoc CBM uses a
CLIP-ViT-L-14 backbone for all datasets except ISIC where BioMedCLIP [44] is used, and both are
trained following the authors’ original implementation. For Post-hoc CBM, we use a combination
of synthetic concepts from Wu et al. [38] and curated high-quality concepts following Oikarinen
et al. [15] (Appendix B). Each model is trained with three random seeds per dataset, and we report
average-group and worst-group accuracy averaged across seeds (see Appendix A.1 for additional
training details). For ISIC we follow Wu et al. [38] and report test AUROC since there are 27 distinct
groups.

Setup. After training the original models, we collect feedback from a real or automated domain
expert to identify spurious concepts (Appendix A.2). Since the expert feedback is aligned with the
known spurious correlations, we utilize the robustness of the model as a measure for the effectiveness
of each retraining algorithm. For PIP-Net, we fine-tune the entire model for half the original training
epochs. For Post-hoc CBM, we freeze the backbone and retrain only the linear layer.

Baselines. We compare CBDebug against the following baselines (Appendix A.3):

• Removal. Removes undesired concepts without further retraining.
• Retraining. Takes the model after removal and fine-tunes it on the training dataset, following a

standard fine-tuning protocol.
• ProtoPDebug [21]. Collects image patches in input space representing undesired concepts into a

forget set, penalizes the encoder for activating on forget set patches.
• Reweight/Augment Only. These ablations evaluate our main components in isolation: the Label

and Reweight step (without augmentation) and the Augment step (without reweighting).

5.1 Can CBDebug effectively retrain based on user feedback?

To answer this question, we run debugging sessions with six real users. Each user performed the
removal step for each of the four dataset-model combinations evaluated in Table 1 (Appendix A.2).
For both models, users are instructed to select spurious concepts. For PIP-Net, users are shown the

7

Table 2: Average and Worst-Group Accuracy for Automated Feedback on Post-hoc CBM. Average
and standard deviation reported over the three initial seeds. CBDebug consistently outperforms the
original model and standard retraining.

Method Waterbirds MetaShift CelebA ISIC
Average Worst Average Worst Average Worst AUROC

Original 63.5±1.3 25.8±3.0 92.9±0.4 84.5±2.2 76.2±0.8 8.7±0.9 39.3±3.7

Remove 64.6±20.7 2.5±1.1 90.5±4.6 79.6±12.7 19.9±9.1 6.5±9.1 41.7±16.9

Retrain 69.0±2.2 38.0±5.5 92.4±0.5 83.0±2.2 79.9±0.9 22.2±5.9 37.7±5.9

Ours
Reweight Only 80.1±10.0 61.9±15.8 92.0±1.8 84.1±5.2 73.9±5.4 53.3±5.3 52.6±5.2

Augment Only 67.4±2.7 32.9±6.7 92.0±1.5 84.4±4.8 71.5±6.2 38.9±12.6 18.6±8.1

CBDebug 76.0±2.8 58.3±6.0 93.0±1.7 87.5±2.8 68.7±4.1 51.3±3.9 58.0±11.6

top ten most activated patches from the training dataset and optionally three example images showing
which patch the concept activates on. For Post-hoc CBM, users are shown the full set of learned
concepts and they can select concepts that seem spurious for the task. We fine-tune according to each
user’s feedback on each model, making each session an end-to-end debugging run.

Baselines. Our results are shown in Table 1. For PIP-Net, our removal baseline provides a modest
boost to worst-group accuracy, improving performance by 2.5% on Waterbirds and 2.6% on MetaShift.
In contrast, for Post-hoc CBM, removal substantially reduces worst-group accuracy. We hypothesize
that this is because Post-hoc CBM’s more limited concept set (roughly 10-30) causes it to ignore
other task-relevant concepts in favor of the dominant shortcut, making it more sensitive to removing
bias-aligned concepts than PIP-Net, which learns far more concepts (around 100-200) (Appendix A.2).
For both models, there remains a significant gap between the worst-group and average-group accuracy,
indicating that spurious correlations were not fully eliminated. While concept removal can yield
incremental improvements, it cannot by itself encourage the model to discover new, robust concepts
and is insufficient for fully addressing shortcut reliance.

The Retrain baseline further illustrates this point. For PIP-Net, it performs worse than Removal,
while for Post-hoc CBM, it improves performance on Waterbirds but not on MetaShift. These results
suggest that even when spurious concepts are explicitly removed, retraining on the biased dataset can
cause the same correlations to leak back into the model’s representations, highlighting the need for a
more targeted retraining approach.

CBDebug. In contrast to these naive baselines, CBDebug improves worst-group accuracy by 7.5%
on Waterbirds and 4.9% on MetaShift for PIP-Net, and by 26.1% on Waterbirds and 4.8% on
MetaShift for Post-hoc CBM. CBDebug surpasses the previous state-of-the-art interpretable debugger,
ProtoPDebug, while integrating its component steps into a framework that delivers more stable gains
across settings. These consistent improvements across architectures and datasets highlight CBDebug
as a reliable and effective method for debugging based on real user feedback.

5.2 Can CBDebug effectively retrain based on automated feedback?

As our framework incorporates a domain expert in the loop, a natural question is whether this
feedback can be automated with recent advances in foundation models. To explore this, we use
LLMs to provide automated feedback for Post-hoc CBM on Waterbirds and MetaShift. Automation
reduces both human effort and cost, enabling us to further extend experiments to CelebA [42] and
ISIC [43]. For Post-hoc CBM, the automated “user” provides a binary judgment on the spuriosity of
each text-based concept. Additional details can be found in Appendix A.2.

Baselines. As shown in Table 2, while the Reweight Only baseline achieves superior worst-group
performance on Waterbirds and CelebA, its results are less stable across datasets, underperforming
on MetaShift. Similarly, the Removal method proves highly volatile on ISIC and MetaShift, where it
occasionally performs well but frequently collapses below the original model’s performance.

CBDebug. In contrast, CBDebug offers a more reliable and robust solution, consistently outperform-
ing the original model across all tested benchmarks, with gains of up to 42.6% over the original
model on CelebA.

8

Table 3: Top five concepts for Post-hoc CBM before retraining, after retraining normally, and after
retraining with CBDebug. Retrain learns new background concepts (highlighted in blue and green) to
replace the ones removed. CBDebug effectively removes background concepts, replacing them with
more robust concepts.

Class Original Retrain CBDebug

Waterbird

hooked seabird beak beach duck-like body
sea gull-like body hooked seabird beak

harbor water orange wings
lake hooked seabird beak orange eyes

gull-like body duck-like body orange nape

Landbird

olive crown olive upper tail olive upper tail
tree-clinging-like body bamboo iridescent bill

forest green primary color blue upper tail
olive upper tail tree-clinging-like body olive crown

tree olive breast hawk-like body

(a) Concepts before retraining (b) Concepts after retraining with CBDebug

Figure 3: The six most highly activated concepts for the Original model trained on Waterbirds and the
model after retraining with CBDebug. CBDebug removes both concepts representing bamboo from
the concept set and replaces them with more robust concepts representing bird features.

5.3 Does CBDebug effectively remove dependence on undesired concepts?

We visualize the concept bottleneck before and after retraining with CBDebug on Waterbirds to better
understand the impact of our approach on the concept set. For Post-hoc CBM, results in Table 3
show that while baseline retraining still finds new spurious correlations to replace the removed
ones, CBDebug effectively removes these concepts from the representation and replaces them with
task-relevant concepts. Similarly, Figure 3 shows that for PIP-Net, two land concepts that previously
dominated the predictions were effectively removed and replaced with more robust bird concepts.
In both scenarios, CBDebug effectively removes dependence on spurious attributes. Additional
visualizations are provided in Appendix C.2.

6 Conclusions

We address the problem of misalignment between a model’s behavior and domain expert reasoning,
often caused by shortcuts from biased data. We propose a general interpretable debugging framework
and introduce CBDebug, which leverages the interpretability of the model to convert high-level
concept feedback into sample-level labels. Empirical results show that CBDebug outperforms prior
retraining methods across multiple CBMs, datasets, and both real and automated feedback sources.

7 Acknowledgements

This research was supported by a gift to the LinkedIn–Cornell Bowers Strategic Partnership, and a
grant from Infosys. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect those of the sponsors.

9

References
[1] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim,

and Percy Liang. Concept bottleneck models. In International conference on machine learning,
pages 5338–5348. PMLR, 2020.

[2] Mateo Espinosa Zarlenga, Katie Collins, Krishnamurthy Dvijotham, Adrian Weller, Zohreh
Shams, and Mateja Jamnik. Learning to receive help: Intervention-aware concept embedding
models. Advances in Neural Information Processing Systems, 36:37849–37875, 2023.

[3] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR 2011, pages
1521–1528. IEEE, 2011.

[4] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

[5] Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing leakage in concept
bottleneck models. Advances in Neural Information Processing Systems, 35:23386–23397,
2022.

[6] Divyansh Srivastava, Ge Yan, and Lily Weng. Vlg-cbm: Training concept bottleneck models
with vision-language guidance. Advances in Neural Information Processing Systems, 37:
79057–79094, 2024.

[7] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su.
This looks like that: deep learning for interpretable image recognition. Advances in neural
information processing systems, 32, 2019.

[8] Nicola Debole, Pietro Barbiero, Francesco Giannini, Andrea Passerini, Stefano Teso, and
Emanuele Marconato. If concept bottlenecks are the question, are foundation models the
answer? arXiv preprint arXiv:2504.19774, 2025.

[9] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. Right for the right rea-
sons: Training differentiable models by constraining their explanations. arXiv preprint
arXiv:1703.03717, 2017.

[10] Sukrut Rao, Sweta Mahajan, Moritz Böhle, and Bernt Schiele. Discover-then-name: Task-
agnostic concept bottlenecks via automated concept discovery. In European Conference on
Computer Vision, pages 444–461. Springer, 2024.

[11] Meike Nauta, Jörg Schlötterer, Maurice Van Keulen, and Christin Seifert. Pip-net: Patch-based
intuitive prototypes for interpretable image classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2744–2753, 2023.

[12] Chiyu Ma, Jon Donnelly, Wenjun Liu, Soroush Vosoughi, Cynthia Rudin, and Chaofan Chen.
Interpretable image classification with adaptive prototype-based vision transformers. arXiv
preprint arXiv:2410.20722, 2024.

[13] Zachariah Carmichael, Suhas Lohit, Anoop Cherian, Michael J Jones, and Walter J Scheirer.
Pixel-grounded prototypical part networks. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 4768–4779, 2024.

[14] Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. In The
Eleventh International Conference on Learning Representations, 2023.

[15] Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept
bottleneck models. In The Eleventh International Conference on Learning Representations,
2023.

[16] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2921–2929, 2016.

10

[17] Stefano Teso and Kristian Kersting. Explanatory interactive machine learning. In Proceedings
of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pages 239–245, 2019.

[18] Patrick Schramowski, Wolfgang Stammer, Stefano Teso, Anna Brugger, Franziska Herbert,
Xiaoting Shao, Hans-Georg Luigs, Anne-Katrin Mahlein, and Kristian Kersting. Making deep
neural networks right for the right scientific reasons by interacting with their explanations.
Nature Machine Intelligence, 2(8):476–486, 2020.

[19] Wolfgang Stammer, Marius Memmel, Patrick Schramowski, and Kristian Kersting. Interactive
disentanglement: Learning concepts by interacting with their prototype representations. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10317–10328, 2022.

[20] Wolfgang Stammer, Patrick Schramowski, and Kristian Kersting. Right for the right concept:
Revising neuro-symbolic concepts by interacting with their explanations. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 3619–3629, 2021.

[21] Andrea Bontempelli, Stefano Teso, Katya Tentori, Fausto Giunchiglia, Andrea Passerini, et al.
Concept-level debugging of part-prototype networks. In Proceedings of the The Eleventh
International Conference on Learning Representations (ICLR 23). ICLR 2023, 2023.

[22] Eleonora Poeta, Gabriele Ciravegna, Eliana Pastor, Tania Cerquitelli, and Elena Baralis. Concept-
based explainable artificial intelligence: A survey. CoRR, 2023.

[23] Meike Nauta, Johannes H Hegeman, Jeroen Geerdink, Jörg Schlötterer, Maurice van Keulen,
and Christin Seifert. Interpreting and correcting medical image classification with pip-net. In
European Conference on Artificial Intelligence, pages 198–215. Springer, 2023.

[24] Alina Jade Barnett, Fides Regina Schwartz, Chaofan Tao, Chaofan Chen, Yinhao Ren, Joseph Y
Lo, and Cynthia Rudin. A case-based interpretable deep learning model for classification of
mass lesions in digital mammography. Nature Machine Intelligence, 3(12):1061–1070, 2021.

[25] Jon Donnelly, Zhicheng Guo, Alina Jade Barnett, Hayden McTavish, Chaofan Chen, and
Cynthia Rudin. Rashomon sets for prototypical-part networks: Editing interpretable models in
real-time. In Proceedings of the Computer Vision and Pattern Recognition Conference, pages
4528–4538, 2025.

[26] Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini, and Stefano Teso. Toward a unified
framework for debugging concept-based models. arXiv preprint arXiv:2109.11160, 2021.

[27] Jiayun Zheng and Maggie Makar. Causally motivated multi-shortcut identification and removal.
Advances in Neural Information Processing Systems, 35:12800–12812, 2022.

[28] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[29] Maggie Makar, Ben Packer, Dan Moldovan, Davis Blalock, Yoni Halpern, and Alexander
D’Amour. Causally motivated shortcut removal using auxiliary labels. In International Confer-
ence on Artificial Intelligence and Statistics, pages 739–766. PMLR, 2022.

[30] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is
sufficient for robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

[31] David Arbour, Drew Dimmery, and Arjun Sondhi. Permutation weighting. In International
Conference on Machine Learning, pages 331–341. PMLR, 2021.

[32] Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No subclass
left behind: Fine-grained robustness in coarse-grained classification problems. Advances in
Neural Information Processing Systems, 33:19339–19352, 2020.

[33] Seonguk Seo, Joon-Young Lee, and Bohyung Han. Unsupervised learning of debiased repre-
sentations with pseudo-attributes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16742–16751, 2022.

11

[34] Rwiddhi Chakraborty, Adrian Sletten, and Michael C Kampffmeyer. Exmap: Leveraging
explainability heatmaps for unsupervised group robustness to spurious correlations. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12017–12026, 2024.

[35] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In International Conference on Machine Learning, pages 6781–6792.
PMLR, 2021.

[36] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from failure:
De-biasing classifier from biased classifier. Advances in Neural Information Processing Systems,
33:20673–20684, 2020.

[37] Mateo Espinosa Zarlenga, Swami Sankaranarayanan, Jerone TA Andrews, Zohreh Shams,
Mateja Jamnik, and Alice Xiang. Efficient bias mitigation without privileged information. In
European Conference on Computer Vision, pages 148–166. Springer, 2024.

[38] Shirley Wu, Mert Yuksekgonul, Linjun Zhang, and James Zou. Discover and cure: Concept-
aware mitigation of spurious correlation. In International Conference on Machine Learning,
pages 37765–37786. PMLR, 2023.

[39] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 6023–6032,
2019.

[40] Hongyi Zhang. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412,
2017.

[41] Weixin Liang and James Zou. Metashift: a dataset of datasets for evaluating contextual distri-
bution shifts and training conflicts. In International Conference on Learning Representations,
2022.

[42] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[43] Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi, Stephen Dusza, David
Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, et al. Skin lesion
analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging
collaboration (isic). arXiv preprint arXiv:1902.03368, 2019.

[44] Sheng Zhang, Yanbo Xu, Naoto Usuyama, Hanwen Xu, Jaspreet Bagga, Robert Tinn, Sam
Preston, Rajesh Rao, Mu Wei, Naveen Valluri, et al. Biomedclip: a multimodal biomedical
foundation model pretrained from fifteen million scientific image-text pairs. arXiv preprint
arXiv:2303.00915, 2023.

[45] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11976–11986, June 2022.

[46] Jihye Choi, Jayaram Raghuram, Yixuan Li, Suman Banerjee, and Somesh Jha. Adaptive concept
bottleneck for foundation models. In ICML 2024 Workshop on Foundation Models in the Wild.

[47] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011.

12

A Experimental Details

A.1 Initial Training

We evaluate two models, each representative of a major family of concept bottlenecks:

• PIP-Net [11]: A patch-based concept bottleneck that learns prototypes from the training data using
self-supervised losses to make predictions.

• Post-hoc CBM [14]: A text-based concept bottleneck that maps the embedding space of a model
to similarity scores to textual concepts with concept activation vectors or CLIP embeddings.

We evaluate these two models on three popular subpopulation shift benchmarks:

• Waterbirds [28]: A synthetic dataset where the background (water vs. land) acts as the spurious
attribute. It contains 4795 training samples.

• MetaShift [41]: A natural dataset where the spurious attribute is the scene context (indoor vs.
outdoor). We use the version derived from the COCO dataset rather than Visual Genome, containing
2738 training samples.

• CelebA [42]: A face attribute dataset where gender (female vs. male) serves as the spurious
attribute. It includes 162770 training samples.

• ISIC [43]: A medical imaging dataset for skin lesion classification into benign or malignant. The
spurious attributes are ‘dark corners’, ‘hair’, ‘gel borders’, ‘gel bubbles’, ‘ruler’, ‘ink markings/s-
taining’, and ‘patches’. We follow the setup from DISC [38] with five different splits testing
reliance on spurious features.

All experiments were conducted on a compute node with 112 CPU cores, 1 TB of RAM, and
2×NVIDIA RTX 6000 Ada GPUs. In the next three sections, we explain the experimental details for
the components of our approach. Section A.1 describes how we train the original models, Section A.2
describes our user or automated debugging of the original models, and Section A.3 describes our
retraining approaches based on the user feedback.

In our experiments we first train each model with three random seeds. For both models we utilize the
hyperparameters recommended in their work.

For PIP-Net, we utilize a ConvNeXt-tiny [45] backbone. We pretrain for 10 epochs, then train in the
second stage for 60 epochs. We utilize a batch size of 128 for pretraining and 64 for training and a
learning rate of 0.0005 for the backbone, and 0.05 for the linear layer. For Post-hoc CBM, we use a
CLIP-ViT-L-14 backbone. The first step is to initialize a concept bank, which we describe in detail in
Section B. We utilize a λsparse = 0.02 for all datasets.

A.2 User Debugging Sessions

In this section we detail our user study. We run six different debugging sessions with computer
science graduate students. Each debugging session consisted of the user marking concepts as spurious
on four different tasks: {Waterbirds + PIP-Net, Waterbirds + Post-hoc CBM, MetaShift + PIP-Net,
MetaShift + Post-hoc CBM}.

We first show the task description given to study participants, and then provide examples of the user
interface for selecting concepts as spurious or not.

Before beginning our small-scale user study, we sought IRB guidance. As the first step, we contacted
the IRB office affiliated with the authors’ institution, providing a description of our planned study
design to determine the appropriate next steps. The compliance assistant responded that, because
the research focused on the debugging method and did not involve collecting any user information,
“I can confirm based on the information you’ve provided that we would not consider this project to
meet the regulatory definition of human participant research, and therefore you do not need to submit
an application to conduct the work as you have described it.” Based on this determination, we did not
proceed with a formal application.

Participants were computer science graduate students who voluntarily chose to take part in the
debugging sessions. The study was not part of a course requirement, and participation was not tied
to grades, credit, or other obligations. No personal data or sensitive information was collected, and
the activities involved brief, task-focused feedback on visual model explanations. Participation was

13

entirely voluntary, and no compensation was provided. Participants were informed of the study’s
purpose and that their contributions would be used in a research paper.

User Study Task Description

In this study, you will help improve two state-of-the-art interpretable vision classification models:
PIP-Net and Post-hoc CBM. These models aim to explain their predictions using human-understandable
concepts.

However, these interpretable models still suffer from shortcut learning, where they latch on to spurious
correlations that do not hold robustly in the real world. A classic example is a model trained to recognize
wolves that mistakenly learns to associate the presence of snow in the background with the wolf class,
because most training images of wolves happened to include snowy scenes.

In this study, we give you the opportunity to improve these models by identifying and removing such
spurious concepts.

Models
• PIP-Net learns visual concepts. You will be shown visual features the model has identified as

important. Each concept has both its top-10 image patches visualized as well as three images
where this prototype is marked as active that can be optionally viewed. Mark concepts that do
not focus on the correct object for the classification task.

• Post-hoc CBM uses text-based concepts. We’ve seeded its concept bank with some potentially
spurious candidates in addition to the core concepts, and you’ll see which concepts the model
relied on. Mark those that seem irrelevant or non-causal for the prediction.

Datasets and Tasks
You will perform this analysis across three datasets:

• Waterbirds – Classify images as either a waterbird (e.g. Albatross, Auklet, Gull) or landbird (e.g.
Woodpecker, Hummingbird, Warbler).

• MetaShift – Classify images as either a dog or cat.

Task Details
For each dataset, you will:

1. Review the concepts learned by each model and how they relate to the prediction labels.

2. Flag any concepts you believe are misleading, spurious, or unrelated to the class being predicted.

You will repeat this process for both models. Your input will help teach the model which concepts to
unlearn to build a more robust concept set.

We also automate the feedback for Post-hoc CBM with a large language model, GPT-3.5-turbo.
We show below the task description prompt used, with the specific classification_task_description
dependent on the dataset being used.

Automated User Study Task Description

You are a helpful assistant that classifies visual concepts as either SPURIOUS or NOT SPURIOUS.
The classification task is: {classification_task_description}
A concept is considered SPURIOUS if:
1. It is NOT a physical or anatomical attribute of the object itself.
2. It may correlate with the label due to dataset bias (e.g., background scenery or co-occurring objects), but
is not causally related to the object’s identity.

Respond only with SPURIOUS or NOT SPURIOUS and a brief justification.

Classification Task Descriptions

• Waterbirds: “distinguish between WATERBIRDS and LANDBIRDS.”

• MetaShift: “distinguish between common animal categories such as CATS and DOGS.”

• CelebA: “distinguish between people with BLONDE HAIR and DARK HAIR.”

We then show the number of initial concepts used by the model compared to the number removed
by the users. For the user results, we average the initial concepts over the random three seeds, the

14

(a) Example of our user interface for patch-based models

(b) Example of our user interface for text-based models

Figure 4: Participants are shown concepts learned by the model and asked to flag those that are
spurious for the classification task.

removed concepts over the six debugging sessions. For the automated results, we average over the
three random seeds.

For PIP-Net (Figure 5), we see fairly consistent results across the six users and three random seeds,
showing that users generally agree on which concepts are spurious. Since we have two users
annotating each model, we can also compute the average agreement. On Waterbirds the average
agreement is 97.9%, and on MetaShift the average agreement is 82.4%.

For Post-hoc CBM (Figure 6), the users again seem to remove around the same number of concepts,
although the agreement scores vary much more with average agreement on Waterbirds being 51.4%
and average agreement on MetaShift being 44.8%. However, we point out that even though the
agreement is not high, retraining can still work well across users as we show in our main results.

Finally we also show our automated results on Post-hoc CBM (Figure 7), showing that it removes
more concepts on average than the real users.

Additionally, while we focus on automating text-based models in this work, multi-modal models
could be utilized to extend the automated results to patch-based models and we leave exploration of
this to future work.

15

Wate
rbi

rds

Meta
Sh

ift
0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f C
on

ce
pt

s

Avg. Initial Concepts
Avg. Removed Concepts

Figure 5: Number of concepts marked as spurious during the debugging sessions for real users on
PIP-Net.

Wate
rbi

rds

Meta
Sh

ift
0

5

10

15

20

Nu
m

be
r o

f C
on

ce
pt

s

Avg. Initial Concepts
Avg. Removed Concepts

Figure 6: Number of concepts marked as spurious during the debugging sessions for real users on
Post-hoc CBM.

16

Wate
rbi

rds

Meta
Sh

ift

Cele
bA

0

5

10

15

20

Nu
m

be
r o

f C
on

ce
pt

s

Avg. Initial Concepts
Avg. Removed Concepts

Figure 7: Number of concepts marked as spurious during the debugging sessions for automated users
on Post-hoc CBM.

A.3 Retraining

We then describe our retraining process. For PIP-Net we fully fine-tune the original model for an
additional 30 epochs. We use a batch size of 64 with a reduced learning rate of 1e−5 for the backbone,
and 0.05 for the linear layer. For Post-hoc CBM, we follow the original work and keep the backbone
and concept layer frozen, only retraining the linear layer. We keep λsparse = 0.02.

We then retrain according to each of the following retraining algorithms:

• Remove: Remove the concepts from the concept bottleneck (e.g. zero out weights in linear layer).
• Retrain: Perform removal, then continue fine-tuning without performing any intervention for

PIP-Net, and retrain linear layer for Post-hoc CBM.
• ProtoPDebug: Add a forgetting loss for spurious concept activations directly to the loss term.

ProtoPDebug cannot be applied to Post-hoc CBMs because the loss is added to the concept
bottleneck layer, but Post-hoc CBM only the final layer is retrained.

• Augment: Augment the training dataset and then retrain. For PIP-Net, we randomly select one
of the top ten patches for each concept and randomly paste five patches within each image. For
Post-hoc CBM, we utilize the synthetic concept bank from Wu et al. [38] to perform Mixup with,
but a text-to-image model could create a concept bank for any text-based concepts used. We
augment with a fixed value, keeping 0.75 of the original image and 0.25 of the spurious concept
image for Mixup.

• Reweight: Reweight all samples in the training dataset according to our permutation weighting
scheme and then retrain. For PIP-Net these weights are applied to the classification loss, and for
Post-hoc CBM these weights are applied when retraining the final linear layer.

• CBDebug: Combine both Reweight and Augment and then retrain. Augmentation probabilities
are computed by squaring the normalized inverted weights. Reweight all samples according to
our permutation weighting scheme, and augment samples that were assigned low weights by our
scheme to further reduce the impact of the spurious attribute. We use γ = 2 for all datasets except
ISIC, where we use γ = 5.

17

B Full Concept Banks

We begin this section by motivating our methodology for concept bank creation. Prior work [46]
on the distributional robustness of concept bottlenecks uses synthetic concepts from Wu et al. [38]
as the concept bank for training Post-hoc CBMs. We first note that their subselection of certain
concepts requires knowledge of the underlying classification task and so in our work we do not
subselect categories, except for ISIC where we only use texture concepts as defined in Wu et al. [38].
Additionally, as can be seen in Figure 4 of Choi et al. [46], there are no concepts that distinguish
well between waterbirds and landbirds. Since we are working with real users, a model that learns
exclusively spurious concepts where all concepts are removed by the user is not useful.

Below we present the concept bank for each dataset used in this paper. Each dataset utilizes the
synthetic concepts from Wu et al. [38], and then also utilizes our set of curated concepts. We first
present the synthetic concept set utilized on all datasets.

Synthetic Concept Set

blackness, blueness, greenness, redness, whiteness, concrete, granite, leather, laminate, metal, blotchy,
blurriness, stripes, polka dots, knitted, cracked, frilly, waffled, scaly, lacelike, grooved, stratified, gauzy,
marbled, flecked, stained, braided, matted, meshed, cobwebbed, spiralled, dotted, crosshatched, wrinkled,
woven, potholed, crystalline, paisley, veined, fibrous, studded, bubbly, pleated, grid, perforated, porous,
interlaced, smeared, honeycombed, sprinkled, chequered, lined, banded, bumpy, zigzagged, swirly, pitted,
freckled, bamboo, beach, bridge, bush, canopy, earth, field, flower, flowerpot, fluorescent, forest, grass,
ground, harbor, hill, lake, mountain, muzzle, palm, path, plant, river, sand, sea, snow, tree, water, awning,
base, bench, building, earth, fence, field, ground, house, manhole, path, snow, streets, air-conditioner,
apron, armchair, back-pillow, balcony, bannister, bathrooms, bathtub, bed, bedclothes, bedrooms, cabinet,
carpet, ceiling, chair, chandelier, chest-of-drawers, countertop, curtain, cushion, desk, dining-rooms, door,
door-frame, double-door, drawer, drinking-glass, exhaust-hood, figurine, fireplace, floor, flower, flowerpot,
fluorescent, ground, handle, handle-bar, headboard, headlight, house, jar, lamp, light, microwave, mirror,
ottoman, oven, pillow, plate, refrigerator, sofa, stairs, toilet, bird, cat, cow, dog, horse, mouse, paw, arm,
back, body, ear, eye, eyebrow, female-face, leg, male-face, foot, hair, hand, head, inside-arm, knob, mouth,
neck, nose, outside-arm, ashcan, airplane, bag, bus, beak, bicycle, blind, board, book, bookcase, bottle,
bowl, box, brick, basket, bucket, bumper, can, candlestick, cap, car, cardboard, ceramic, chain-wheel,
chimney, clock, coach, coffee-table, column, computer, counter, cup, desk, engine, fabric, fan, faucet, flag,
floor, food, foot-board, frame, glass, keyboard, lid, loudspeaker, minibike, motorbike, napkin, pack, painted,
painting, pane, paper, pedestal, person, pillar, pipe

To add more useful concepts, we add the attributes from CUB [47], translated to natural language, to
the concept bank for the Waterbirds dataset. For ISIC, we utilize the eight concepts from Yuksekgonul
et al. [14]. For MetaShift and CelebA, we instead curate a set of concepts using a large language
model similar to Oikarinen et al. [15], with a simpler prompt and more powerful model, GPT-4o. We
also perform some manual pruning to ensure the concepts are useful for the given task (for example,
removing cat and dog from the synthetic concept bank for MetaShift, or removing background
concepts from the curated concept bank).

We utilize these concept banks as a proof of concept that CBDebug helps text-based models, and
leave further exploration of the impact of different concept banks to future work.

Curated Concept Set Prompt

You are a concept generation assistant. Generate a list of clear and concise concepts that are im-
portant visual features for a ‘class_name’. Generate a list of concepts, with each concept appearing
on a separate line. Do not include any extra formatting, descriptions, or explanations—just the raw concepts.

Concepts:

Then, we show the curated concept set for each dataset.

18

Waterbirds Curated Concept Set

curved beak, dagger beak, hooked beak, needle beak, hooked seabird beak, spatulate beak, all-purpose
beak, cone beak, specialized beak, blue wings, brown wings, iridescent wings, purple wings, rufous wings,
grey wings, yellow wings, olive wings, green wings, pink wings, orange wings, black wings, white wings,
red wings, buff wings, blue upperparts, brown upperparts, iridescent upperparts, purple upperparts, rufous
upperparts, grey upperparts, yellow upperparts, olive upperparts, green upperparts, pink upperparts,
orange upperparts, black upperparts, white upperparts, red upperparts, buff upperparts, blue underparts,
brown underparts, iridescent underparts, purple underparts, rufous underparts, grey underparts, yellow
underparts, olive underparts, green underparts, pink underparts, orange underparts, black underparts,
white underparts, red underparts, buff underparts, solid breast, spotted breast, striped breast, multi-colored
breast, blue back, brown back, iridescent back, purple back, rufous back, grey back, yellow back, olive
back, green back, pink back, orange back, black back, white back, red back, buff back, forked tail tail,
rounded tail tail, notched tail tail, fan-shaped tail tail, pointed tail tail, squared tail tail, blue upper tail,
brown upper tail, iridescent upper tail, purple upper tail, rufous upper tail, grey upper tail, yellow upper
tail, olive upper tail, green upper tail, pink upper tail, orange upper tail, black upper tail, white upper
tail, red upper tail, buff upper tail, spotted head, malar head, crested head, masked head, unique pattern
head, eyebrow head, eyering head, plain head, eyeline head, striped head, capped head, blue breast, brown
breast, iridescent breast, purple breast, rufous breast, grey breast, yellow breast, olive breast, green breast,
pink breast, orange breast, black breast, white breast, red breast, buff breast, blue throat, brown throat,
iridescent throat, purple throat, rufous throat, grey throat, yellow throat, olive throat, green throat, pink
throat, orange throat, black throat, white throat, red throat, buff throat, blue eyes, brown eyes, purple
eyes, rufous eyes, grey eyes, yellow eyes, olive eyes, green eyes, pink eyes, orange eyes, black eyes, white
eyes, red eyes, buff eyes, about the same as head bill, longer than head bill, shorter than head bill, blue
forehead, brown forehead, iridescent forehead, purple forehead, rufous forehead, grey forehead, yellow
forehead, olive forehead, green forehead, pink forehead, orange forehead, black forehead, white forehead,
red forehead, buff forehead, blue under tail, brown under tail, iridescent under tail, purple under tail,
rufous under tail, grey under tail, yellow under tail, olive under tail, green under tail, pink under tail,
orange under tail, black under tail, white under tail, red under tail, buff under tail, blue nape, brown
nape, iridescent nape, purple nape, rufous nape, grey nape, yellow nape, olive nape, green nape, pink
nape, orange nape, black nape, white nape, red nape, buff nape, blue belly, brown belly, iridescent belly,
purple belly, rufous belly, grey belly, yellow belly, olive belly, green belly, pink belly, orange belly, black
belly, white belly, red belly, buff belly, rounded-wings wings, pointed-wings wings, broad-wings wings,
tapered-wings wings, long-wings wings, large size, small size, very large size, medium size, very small
size, upright-perching water-like body, chicken-like-marsh body, long-legged-like body, duck-like body,
owl-like body, gull-like body, hummingbird-like body, pigeon-like body, tree-clinging-like body, hawk-like
body, sandpiper-like body, upland-ground-like body, swallow-like body, perching-like body, solid back,
spotted back, striped back, multi-colored back, solid tail, spotted tail, striped tail, multi-colored tail, solid
belly, spotted belly, striped belly, multi-colored belly, blue primary color, brown primary color, iridescent
primary color, purple primary color, rufous primary color, grey primary color, yellow primary color, olive
primary color, green primary color, pink primary color, orange primary color, black primary color, white
primary color, red primary color, buff primary color, blue legs, brown legs, iridescent legs, purple legs,
rufous legs, grey legs, yellow legs, olive legs, green legs, pink legs, orange legs, black legs, white legs,
red legs, buff legs, blue bill, brown bill, iridescent bill, purple bill, rufous bill, grey bill, yellow bill, olive
bill, green bill, pink bill, orange bill, black bill, white bill, red bill, buff bill, blue crown, brown crown,
iridescent crown, purple crown, rufous crown, grey crown, yellow crown, olive crown, green crown, pink
crown, orange crown, black crown, white crown, red crown, buff crown, solid wing, spotted wing, striped
wing, multi-colored wing

MetaShift Curated Concept Set

Long snout, Short snout, Floppy ears, Upright ears, Round eyes, Slit pupils, Curled tail, Straight tail,
Stocky body, Slim body, Wide muzzle, Narrow muzzle, Large nose, Small nose, Broad paws, Small paws,
Short, dense fur, Fine, soft fur, Simple or spotted coat, Striped or marbled coat, Short whiskers, Long
whiskers, Expressive face, Neutral face, Square or upright posture, Crouched or perched posture

CelebA Curated Concept Set

Light color, Dark color, Low contrast, High contrast, Warm, yellow tones, Cool, brown tones, Light
eyebrows, Dark eyebrows, Light lashes, Dark lashes, Finer hair, Thicker hair, Soft texture, Coarse texture,
Less visible roots, More visible roots

19

ISIC Curated Concept Set

blue-white veil, regular dots and globules, irregular dots and globules, regression structures, irregular
streaks, regular streaks, atypical pigment network, typical pigment network

20

C Ablations

C.1 Permutation Weighting

Permutation Weighting utilizes two main hyperparameters that we ablate in this section. The first is
the number of folds K in K-fold cross-validation. We perform K-fold cross-validation in order to
utilize all of our training data to train the classifier while evaluating on unseen data. We also average
the weights over multiple random permutations of the dataset to get a more robust estimate of the
weights.

We then evaluate the impact of these hyperparameters on the assigned sample weights. In Table 4
and Table 5 we evaluate different combinations of the number of folds and number of permutations,
and report the average weight assigned to each subgroup in the Waterbirds dataset. We found that the
average weights per group is fairly robust to these hyperparameters, but as you increase the number
of folds and decrease the number of permutations, the average weights for the minority subgroups
increase. For our main results, we select five permutations and five folds to balance computational
cost and robustness.

Table 4: Effect of number of folds (permutations fixed at 5) on average weights for each Waterbirds
subgroup for a randomly selected user.

Class (y) Landbird Landbird Waterbird Waterbird
Background (a) Land Water Land Water

Training Samples 3498 184 56 1057

Average Weight (2 folds) 1.1 2.6 5.5 0.6
Average Weight (5 folds) 1.1 2.9 7.1 0.6
Average Weight (10 folds) 1.1 3.2 8.3 0.7

Table 5: Effect of number of permutations (folds fixed at 5) on average weights for each Waterbirds
subgroup for a randomly selected user.

Class (y) Landbird Landbird Waterbird Waterbird
Background (a) Land Water Land Water

Training Samples 3498 184 56 1057

Average Weight (1 permutation) 1.0 2.8 7.7 0.6
Average Weight (5 permutations) 1.1 2.9 7.1 0.6
Average Weight (10 permutations) 1.1 2.8 6.6 0.6

21

C.2 Does CBDebug effectively remove dependence on spurious attributes?

We obtain the same visualizations of concepts before and after retraining for all the rest of the
datasets and model combinations we test on. We see similar results as before, showing that CBDebug
can effectively remove spurious concepts. In Table 6 the original model learns ‘bookcase’ which
correlates highly with being indoors, and the retrained model learns ‘bedroom’ which correlates
highly with being indoors as well. For CBDebug, none of its top five concepts correlate highly with
the spurious attribute (indoor vs. outdoor). In Figure 8, we see that the concepts learned by PIP-Net
are not as well disentangled on MetaShift compared to Waterbirds (see our discussion in Section A.1).
Finally, in Table 7, the original model learns the concept ‘male face’ for dark hair and ‘female face’
for blonde hair, but both baseline retraining and CBDebug remove the reliance on these main spurious
concepts. CBDebug also learns ‘Dark color’, which better correlates with dark hair than ‘building’.

(a) Concepts before retraining (b) Concepts after retraining with CBDebug

Figure 8: The six most highly activated concepts for the Original model trained on MetaShift and
the model after retraining with CBDebug. PIP-Net learns less disentangled concepts on MetaShift,
making the intervention less clear visually.

Table 6: Top five concepts for Post-hoc CBM before retraining, after retraining normally, and after
retraining with CBDebug on MetaShift.

Class Original Retrain CBDebug

Cat

Curled tail Curled tail Long whiskers
Long whiskers Long whiskers Short whiskers
Short whiskers Short whiskers Slit pupils

mouse bedroom bird
bookcase Short, dense fur Curled tail

Dog

Floppy ears Floppy ears Short snout
Wide muzzle Wide muzzle Long snout
Short snout Short snout Floppy ears

Narrow muzzle Narrow muzzle Wide muzzle
Long snout Long snout Narrow muzzle

Table 7: Top five concepts for Post-hoc CBM before retraining, after retraining normally, and after
retraining with CBDebug on CelebA.

Class Original Retrain CBDebug

Dark Hair

male face building Dark color
blackness counter granite

box ceiling mirror
building eyebrow eyebrow

- pillar house

Blonde Hair

Less visible roots Less visible roots Less visible roots
More visible roots More visible roots More visible roots

female face freckled freckled
- - matted

22

C.3 Augmentation Probabilities

To convert the sample weights into probabilities, we first substract each from the max and then
normalize them to [0, 1]. This ends up with an extremely right-skewed distribution, so we also add
a hyperparameter γ to control this skew by taking the augmentation probabilities to the power of
γ. We plot the histogram for γ = 1 and γ = 2 in Figure 9 with 100 bins on the Waterbirds dataset.
Additionally, this hyperparameter enables simple interpolation between our two approaches, because
as γ → ∞ you do not augment any samples and recover normal permutation weighting.

We found γ = 2 to work well in practice and leave extensive hyperparameter-tuning for future work.

0.0 0.2 0.4 0.6 0.8 1.0
Augmentation Probability

100

101

102

103

Co
un

t

Distribution of Augmentation Probabilities

(a) Augmentation Probabilities with γ = 1.

0.0 0.2 0.4 0.6 0.8 1.0
Augmentation Probability

100

101

102

103

Co
un

t

Distribution of Augmentation Probabilities

(b) Augmentation Probabilities with γ = 2.

Figure 9: Augmentation Probabilities computed on Waterbirds, with counts plotted on a log-scale.
Squaring helps reduce the extreme right skew of the probabilities, reducing the probability that
non-spurious samples get augmented.

23

C.4 Comparisons to Unsupervised Bias Mitigation Approaches

While CBDebug offers a distinct approach from popular unsupervised bias mitigation pipelines: giving
direct control to a domain expert who interacts with the downstream machine learning model instead
of relying on training dynamics to guess what spurious correlations might be present, we do test our
approach on bias mitigation datasets, where unsupervised bias mitigation pipelines can serve as a
useful benchmark for the effectiveness of CBDebug.

We evaluate two unsupervised bias mitigation approaches on Waterbirds and MetaShift with PIP-Net:
Just train twice [35] (JTT) and Learning from Failure [36] (LfF). Following Espinosa Zarlenga
et al. [37], we perform hyperparameter tuning using average validation accuracy, to avoid leaking
privileged information about the underlying groups. For JTT, we select the number of epochs T
from (1, 5, 25) and the upweighting term λup from (10, 25, 50), and select (T, λup) = (10, 25) for
Waterbirds and (10, 5) for MetaShift. For LfF we select the bias amplification term q from (0.05, 0.1,
0.25, 0.5, 0.75, 0.9, 0.95) and select q = 0.9 for Waterbirds and q = 0.95 for MetaShift.

Our results are shown in Table 8. While JTT shows no meaningful improvement, LfF does improve
the worst-group accuracy compared to the original model. CBDebug demonstrates a stronger ability
to mitigate bias, improving worst-group accuracy over both of these unsupervised pipelines. This
highlights CBDebug’s effectiveness in leveraging expert feedback on spurious concepts to fine-tune
the model.

Table 8: Average and Worst-Group Accuracy on Waterbirds and MetaShift with PIP-Net.
Method Waterbirds MetaShift

Average Worst Average Worst

Original 92.3±0.3 71.9±2.7 80.9±1.3 52.4±2.0

Remove 92.6±0.4 74.4±2.2 81.4±0.6 55.0±2.6

Retrain 92.4±0.1 72.5±1.0 81.2±1.6 53.3±2.1

ProtoPDebug 92.5±0.1 71.6±1.9 80.9±1.4 52.4±1.4

JTT 91.8±0.1 71.7±2.6 80.7±0.5 51.9±1.6

LfF 92.8±0.2 75.4±0.8 81.5±0.3 56.0±1.4

Ours
Reweight Only 93.2±0.4 74.2±4.8 81.8±1.4 56.1±1.3

Augment Only 92.4±0.6 75.5±2.9 82.2±1.7 55.6±3.3

CBDebug 93.7±0.7 79.4±4.3 82.3±1.7 57.3±3.1

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction are shown in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations of our work in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

25

Justification: We present some theoretical grounding for our framework, but do not present
new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Reproducibility information can be found in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

26

Answer: [Yes]
Justification: We provide all details for replicating our results in the Appendix and will
release our codebase in the final version of the paper and in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe all core details in Section 5 and full training and test details
necessary to understand our results in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation calculated either over three initial seeds, or
over six debugging sessions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Information on computer resources can be found in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader societal impacts of our work in Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

28

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper focuses on fundamental research, and does not release data or
models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets and models used are publicly available.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

29

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Code will be released in the final version of the paper, and all details will be
followed.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The full text of instructions given to participants can be found in the Appendix.
Compensation was not provided as the study was small-scale and participation was solicited
on a voluntary basis.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: While the paper utilizes user feedback, our study did not meet the regulatory
definition of human participant research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

30

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Details on prompts for initial concept generation and automated feedback can
be found in the Appendix.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Concept Bottleneck Debugging Framework
	Concept Bottleneck
	Removal
	Retraining

	CBDebug: Concept Bottleneck Debugger
	Label
	Reweight
	Augment

	Experiments
	Can CBDebug effectively retrain based on user feedback?
	Can CBDebug effectively retrain based on automated feedback?
	Does CBDebug effectively remove dependence on undesired concepts?

	Conclusions
	Acknowledgements
	Experimental Details
	Initial Training
	User Debugging Sessions
	Retraining

	Full Concept Banks
	Ablations
	Permutation Weighting
	Does CBDebug effectively remove dependence on spurious attributes?
	Augmentation Probabilities
	Comparisons to Unsupervised Bias Mitigation Approaches

