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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has made significant strides in unravel-
ing the intricate cellular diversity within complex tissues. This is particularly crit-
ical in the brain, presenting a greater diversity of cell types than other tissue types,
to gain a deeper understanding of brain function within various cellular contexts.
However, analyzing scRNA-seq data remains a challenge due to inherent measure-
ment noise stemming from dropout events and the limited utilization of extensive
gene expression information. In this work, we introduce scHyena, a foundation
model designed to address these challenges and enhance the accuracy of scRNA-
seq analysis in the brain. Specifically, inspired by the recent Hyena operator, we
design a novel Transformer architecture called singe-cell Hyena (scHyena) that is
equipped with a linear adaptor layer, the positional encoding via gene-embedding,
and a bidirectional Hyena operator. This enables us to process full-length scRNA-
seq data without losing any information from the raw data. In particular, our model
learns generalizable features of cells and genes through pre-training scHyena us-
ing the full length of scRNA-seq data. We demonstrate the superior performance
of scHyena compared to other benchmark methods in downstream tasks, including
cell type classification and scRNA-seq imputation.

1 INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is a powerful technique for profiling gene expression
levels at single-cell resolution, enabling molecular characteristics of complex biological systems in
both normal and disease states (Saliba et al., 2014; Rood et al., 2022). Through scRNA-seq, several
key objectives can be achieved, including cell type annotation (Li et al., 2020; Hao et al., 2021), the
discovery of novel cell types (Villani et al., 2017), the identification of marker genes (Jaitin et al.,
2014), and the analysis of cellular heterogeneity (Papalexi & Satija, 2018; Kinker et al., 2020). It
is worth noting that the brain exhibits a particularly diverse range of cell types compared to other
tissues (Saunders et al., 2018; Hodge et al., 2019). Therefore, conducting scRNA-seq analysis in the
brain is especially important to gain a deeper understanding of brain function within various cellular
contexts.

Despite its utility, there are significant challenges in scRNA-seq data analysis. Firstly, the quantity
of mRNA in a single cell is quite limited so there is a risk of failing to capture gene expression,
known as the ‘dropout’ phenomenon. Consequently, scRNA-seq data often contains numerous zero
counts, and it becomes crucial to distinguish between true and false zero counts. To address dropout
events, various imputation methods for scRNA-seq data have been developed (Huang et al., 2018;
Li & Li, 2018; Van Dijk et al., 2018; Arisdakessian et al., 2019; Eraslan et al., 2019). However, it is
worth noting that many of these existing methods tend to have long computational runtimes. Hence,
there is a need for an efficient method to impute missing values in scRNA-seq data.

Another challenge arises from the long sequence length of scRNA-seq data. Typically, scRNA-seq
measures the expression levels of tens of thousands of genes, and cell type annotation methods (Aran
et al., 2019; Li et al., 2020; Hao et al., 2021; Yang et al., 2022b) classify cell types based on gene
expression patterns. However, dealing with information from all genes can be challenging due to
the high computational complexity requirements or the limited capacity of the models. As a result,
many annotation methods select highly variable genes (HVGs) consisting of a few thousand genes
and rely solely on the expression levels of these HVGs. However, the selection of HVGs is not only
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Figure 1: The proposed scHyena consists of several novel innovations: linear adaptor layer, gene-
embedding, and bidirectional Hyena operator. Following pre-training, scHyena can be applied to
various downstream tasks, including cell type classification and scRNA-seq imputation.

sensitive to parameter choices but also subject to variability across different datasets and batches
(e.g., different patients). Furthermore, if the number of HVGs chosen is insufficient, it may lead to
the loss of important cellular information. Therefore, there is a need for analysis methods capable
of handling information from all genes.

In recent years, the foundation models have gained attention and have been explored for a wide range
of data types (Devlin et al., 2018; Brown et al., 2020; Bommasani et al., 2021; Ramesh et al., 2021).
In general, foundation models undergo a pre-training phase using unlabeled, extensive datasets via
self-supervised learning to acquire generalizable features within the data domain. Following this
pre-training, these foundation models can be effectively applied to various downstream tasks by fine-
tuning them with smaller, labeled datasets. More recently, a novel operator known as Hyena (Poli
et al., 2023) has been introduced as an alternative to the self-attention mechanism in Transformers
to reduce the computational complexity of self-attention. Thanks to this reduction in complexity,
Hyena is capable of handling input sequences containing hundreds of thousands of tokens, leading
to improved performance when dealing with long sequences.

Inspired by these developments, here we introduce scHyena, a foundation model that incorporates
the Hyena operator for the analysis of scRNA-seq data from brain tissues (Fig. 1). scHyena is a
Transformer-based model equipped with the Hyena operator, enabling it to process scRNA-seq data
without the need for dimension reduction or the selection of HVGs. Through pre-training our model
using masked expression modeling, we demonstrate its applicability to downstream tasks such as
cell type classification and scRNA-seq imputation. Furthermore, we provide evidence that scHyena
outperforms comparative methods in these downstream tasks across four different datasets from
different brain tissues. Our contributions can be summarized as follows.

• We introduce scHyena, a model designed to handle full-length scRNA-seq data by leverag-
ing the Hyena operator. To adapt the Hyena operator to our scRNA-seq analysis, we extend
it into a non-causal operator, referred to as a bidirectional Hyena.

• To encode continuous scRNA-seq data, we introduce a linear layer as the adapter layer
instead of discretizing and tokenizing input values. To the best of our knowledge, this is
the first approach to deal with the continuous data with a Hyena operator. This approach
enables us to encode scRNA-seq data without any loss of information, leading to improved
performance in downstream tasks.

• In place of positional encoding in the standard Hyena, we incorporate gene encoding to
provide gene-related information to the model. Although this has been demonstrated in
other transformer architecture, it has not been explored before with Hyena operator and our
work is the first successful demonstration.

• scHyena demonstrates superior performance compared to baseline methods in two down-
stream tasks. Particularly, scHyena excels in filtering out doublets in cell type classification
and imputing scRNA-seq data with biologically meaningful values.
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2 BACKGROUND

2.1 SELF-ATTENTION

The self-attention operator (Vaswani et al., 2017) is a fundamental mechanism of Transformers.
Specifically, given a sequence u ∈ RL×D with a length of L, each head of the scaled self-attention
operator maps u to y ∈ RL×D through a self-attention operator A(u):

A(u) = σ(uWqW
⊤
k u⊤), y = A(u)uWv, (1)

where Wq,Wk,Wv ∈ RD×D represent learnable linear projections for query, key, and value, re-
spectively, and σ denotes the softmax and scaling operator. Through the self-attention operator,
it becomes possible to capture pairwise relationships among all tokens and learn the global con-
text of the input sequence. However, one limitation is that self-attention becomes computationally
expensive for long sequences, with a complexity of O(L2).

To address this computational challenge, several approaches have been developed to reduce the cost
of self-attention. For instance, the factorized self-attention has been proposed for the sparse Trans-
former (Child et al., 2019). The factorized self-attention reduces the memory and computational
requirements of self-attention by allowing self-attention heads to attend only to a subset of tokens.
Another approach is the Performer (Choromanski et al., 2021) which aims to reduce the memory
complexity of self-attention. By decomposing the self-attention matrix, Performer can store the
implicit attention matrix with linear memory complexity, enabling it to handle longer sequences
compared to Transformers with the original self-attention mechanism. However, these approaches
require custom kernels that are difficult to reproduce and may involve trade-offs between memory
complexity and model expressivity.

2.2 HYENA

A discrete convolution between an input signal u with length L and a convolution filter h is defined
as follows:

yt = (h ∗ u)t =
L−1∑
τ=0

ht−τuτ . (2)

Typically, in convolutional neural networks, the filter size is shorter than the input signal to manage
computational complexity effectively. However, when the filter is parameterized as a function of
step t (i.e. ht = γθ(t)), it becomes possible to construct a long convolution filter without a large
increase in the number of parameters. This type of convolution is referred to as implicit convolution.

Figure 2: The Hyena operator.

Hyena operator (Poli et al., 2023) was introduced as a
replacement for self-attention in Transformers using the
implicit convolution. Specifically, the Hyena operator is
characterized by a recurrent structure that involves long
convolutions and element-wise gating:

y = xN ·(hN ∗(xN−1 ·(hN−1 ∗(· · ·x1 ·(h1 ∗v))))) (3)

where (v, x1, · · · , xN ) represent the projections of the in-
put, N is the number of recurrence, and · refers to the
element-wise gating.

Fig. 2 illustrates the Hyena operator with N = 3. Specif-
ically, the transformation of the input signal u into the
projections (v, x1, x2, x3) involves a linear layer and con-
volution operation. Subsequently, the projection v under-
goes long convolution with the long convolution filter hn

and is subjected to element-wise gating with xn. In this
context, element-wise gating entails performing element-
wise multiplication between the input and the correspond-
ing projection xn. Finally, the output y is generated by passing the result through another linear
layer. Notably, the convolution filters with a length L are parameterized implicitly by a learnable
function, enabling the performance of long convolutions without a large increase in the number
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of parameters. Consequently, it becomes possible to capture long-range context without relying
on self-attention. Furthermore, by performing the convolution in the Fourier domain using a fast
Fourier transform (FFT), each convolution operation’s time complexity is reduced to O(L log2 L).
This reduced complexity allows the Hyena to handle longer sequences compared to self-attention.

3 SCHYENA

This section discusses scHyena, our novel extension of Hyena for single-cell RNA-seq analysis.

3.1 EXTENDING HYENA FOR FULL-LENGTH RNA-SEQ

Bidirectional Hyena. The discrete convolution shown in Eq. (1) can be also represented in matrix
form as follows:

y = Shu =


h0 h−1 · · · h−L+1

h1 h0 · · · h−L+2

...
...

. . .
...

hL−1 hL−2 · · · h0




u0

u1

...
uL−1

 (4)

where Sh ∈ RL×L is the Toeplitz matrix. In the vanilla Hyena operator, the filter ht is defined only
for t = 0, . . . , L− 1 and has zeroes at other positions. Consequently, the output at a given position
t is solely dependent on the input from the past because h−1, . . . , h−L+1 in Eq. (4) are zeroes. This
inherent causality in the Hyena operator makes it suitable for applications in autoregressive language
models.

However, in the context of scRNA-seq data, the notion of time causality is not relevant, and all genes
can potentially have relationships regardless of their positions along the sequence. Therefore, for
our model, we require a non-causal, bidirectional operator. To address this requirement, we design
our convolution filters with a length of 2L − 1, defining them for t = −L + 1, . . . , L − 1. This
modification allows the output y to depend on the entire input across all positions.

Linear Adaptor Layer for Expression Embedding. An input scRNA-seq consists of the nor-
malized expression levels of L genes, denoted as (C1, C2, . . . , CL). Unlike natural language where
words are tokenized into discrete tokens and each token is mapped to a unique embedding, gene
expression levels are continuous values and cannot be discretized. In a previous method (Yang et al.,
2022b), an attempt was made to address this issue by discretizing the expression values into bins.
However, this approach carries the potential risk of information loss in the scRNA-seq data. To mit-
igate this concern, we encode the expression levels into expression embeddings (E1, E2, . . . , EL)
using a linear adapter layer, in contrast to traditional tokenization approaches. This allows us to
represent gene expression levels without any loss of information.

Gene Embedding. Another difference between language and scRNA-seq data is that the order of
genes in scRNA-seq carries no inherent meaning. Instead, it is crucial to provide information about
which gene’s expression level each position in the sequence represents. To address this requirement,
we incorporate gene embeddings into the scHyena model, rather than using positional encoding em-
ployed in the original Transformers. In this approach, each gene is encoded with its own embedding
(G1, G2, . . . , GL), which is then added to the expression embeddings. This method allows us to
provide the scHyena model with explicit gene-related information.

3.2 PRE-TRAINING

Fig. 3(a) illustrates the pre-training stage of scHyena model. Specifically, to pre-train our model, we
employ a technique called masked expression modeling (MEM), inspired by the concept of masked
language modeling (Devlin et al., 2018). Specifically, we randomly replace a subset of input em-
beddings with the [MASK] embedding, and then scHyena is trained to predict the expression levels
of the genes that have been masked. We choose masking probability from a range of [0.05, 0.4], and
we only mask nonzero values since distinguishing between true and false zero values is not feasible.
As mentioned in Section 3.1, it is important to note that all genes can have relationships, irrespective
of their positions. Therefore, masked expressions should be predicted by taking into consideration
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Figure 3: (a) During the pre-training stage, scHyena is trained using masked expression modeling
(MEM) to acquire general representations of scRNA-seq data. The continuous expression levels
are transformed into expression embeddings through a linear adaptor layer. Additionally, gene em-
beddings are used instead of positional encoding, which are then combined with the expression
embeddings. The bidirectional Hyena blocks receive the aggregated embeddings as inputs and are
trained to predict the masked expression levels. (b) During the fine-tuning process for cell type clas-
sification, we prepend the [CLS] token to the input scRNA-seq data. The embedding of the [CLS]
token is then utilized as an input for the classification head, which is responsible for predicting the
cell type. (c) During the fine-tuning process for scRNA-seq imputation, a relatively low masking
probability is applied to zero values compared to non-zero values.

other genes, regardless of their positions. By incorporating bidirectional Hyena blocks introduced
in 3.1, we empower scHyena to predict expression levels at masked positions. Specifically, the
objective function for pre-training scHyena can be formulated as follows:

ℓMEM =
∑
i∈M

(Ci − C ′
i)

2 (5)

where M represents the set of masked indices, Ci and C ′
i denote the label and predicted gene

expression level, respectively. Through this pre-training process, scHyena acquires generalizable
features related to cells and genes.

3.3 FINE-TUNING FOR DOWNSTREAM TASKS

Cell Type Classification. Cell type annotation or classification is one of the most crucial tasks
in scRNA-seq analysis, particularly in the context of the brain. Fig. 3(b) illustrates the fine-tuning
stage of scHyena for cell type classification. To adapt the pre-trained scHyena model for cell type
classification, we prepend a [CLS] token to the input scRNA-seq data. Utilizing bidirectional Hyena
blocks, we enable the [CLS] token to encapsulate comprehensive information about the genes in the
input. Once the input scRNA-seq data passes through the embedding layer and bidirectional Hyena
blocks, the embedding of the [CLS] token is directed to a classification head. The final output of this
head produces logits corresponding to cell types, and scHyena is fine-tuned using the cross-entropy
loss, ℓcls = −

∑Nc

i=1 yi log pi, where Nc represents the number of cell types in the data, yi denotes
the cell type label, and pi signifies the Softmax probability derived from the output of scHyena.

scRNA-Seq Imputation. Imputing missing values in scRNA-seq data is crucial, given the preva-
lence of zeroes resulting from dropout events. One approach to imputation is to directly adapt the
pre-training strategy. However, in pre-training, zero values are not masked, potentially causing the
model to learn to replace true zero values with other values. Alternatively, if we randomly mask
zero values with the same probability as non-zero values, the model may lean towards outputting
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Figure 4: The UMAP visualization results of cell embeddings obtained from the pre-trained scHyena
model on two datasets (AC: astrocyte, MG: microglia, OL: oligodendrocyte, OPC: oligodendrocyte
progenitor cell, EXN: excitatory neuron, INN: inhibitory neuron, EC: endothelial cell, PC: pericyte).
(a) Lau dataset. (b) Smajic dataset.

zeroes predominantly. This is due to the fact that the majority of values in scRNA-seq data are ze-
roes. To address this issue, we differentiate the masking probabilities for zero values and non-zero
values. Specifically, we apply a masking probability of 0.4 to non-zero values, while zero values are
masked with a probability of 0.04. This helps to balance the masking of zero and non-zero values.
However, a challenge arises in distinguishing true zero values from false zeroes (dropout), and the
model may impute false zeroes as actual zeroes. Fortunately, our scHyena model incorporates gene
embeddings, which enables it to learn the expression level tendencies of each gene. Fig. 3(c) illus-
trates the fine-tuning stage for scRNA-seq imputation, and the loss function for the imputation task
is the same as the pre-training loss function, Eq. (5).

4 EXPERIMENTS

Dataset. To pre-train our model, we utilize two publicly available brain scRNA-seq datasets from
previous studies (Kamath et al., 2022; Wang et al., 2022). For our downstream tasks, we evaluate
the performance of our method on four additional datasets, referred to as the Lau (Lau et al., 2020),
Leng (Leng et al., 2021), Smajic (Smajić et al., 2022), and Zhu (Zhu et al., 2022) datasets. To ensure
consistency across all datasets, we process them uniformly by mapping gene IDs to Ensembl stable
gene IDs, resulting in datasets containing expression information for 19,306 genes with unique
Ensemble IDs. As part of our preprocessing pipeline for scRNA-seq data, we initially filtered out
cells with a total gene expression level of less than 200. Subsequently, we normalize the gene
expression values so that the total count of gene expressions of each cell is set to 10,000. Finally,
we apply log normalization (log(x + 1)) to obtain the final pre-process data. For more detailed
information about our datasets, please refer to Appendix A.

Pre-Training. We implemented our model based on the official source code of Hyena and Hye-
naDNA (Poli et al., 2023; Nguyen et al., 2023). To construct scHyena model, we set N as 3 in Eq.
(3) and stack four bidirectional Hyena blocks (M = 4 in Fig. 3). For the pre-training phase, we
trained the model for 2 epochs using AdamW optimizer (Loshchilov & Hutter, 2019) with a learn-
ing rate of 1e-4. The pre-training took approximately 3.5 days with a batch size of 8 in two RTX
3090 units. To demonstrate that the scHyena has learned meaningful cell representations during
pre-training, we extract the cell features from the pre-trained scHyena model and visualize them in
a 2D space using UMAP (McInnes et al., 2018). Specifically, we obtain the model’s output with
the shape of L × D, where L represents the length of scRNA-seq data, and D is the embedding
dimension of the model. We then compute the average along the first dimension, resulting in cell
embeddings of dimension D for each cell.

Fig. 4 displays the UMAP embedding results on two datasets that were not utilized during pre-
training. As depicted in Fig. 4(a) (Lau dataset), most cell embeddings form clusters with other em-
beddings representing the same cell type, except for excitatory neurons (EXN) and inhibitory neu-
rons (INN). Notably, this occurs even though no cell type information was provided to the scHyena
model during the pre-training phase. In the case of the excitatory and inhibitory neurons, while they
are not distinctly separated on the UMAP plot, it is evident that there are regions within the clus-
ter where each neuron type exhibits greater cohesion. Furthermore, Fig. 4(b) demonstrates more
clearly separated results when using the Smajic dataset. These findings provide convincing evidence
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Experiment Data Method
F1-score

Cell Type Macro Micro WeightedAC MG OL OPC EXN INN EC PC DT

With DT

Lau

Seurat 0.909 0.922 0.959 0.860 0.931 0.939 0 0.594 0.435 0.875 0.728 0.872
SciBet 0.968 0.974 0.981 0.970 0.988 0.983 0.650 0.949 0.816 0.964 0.920 0.962

scBERT 0.984 0.981 0.990 0.987 0.990 0.984 0.942 0.913 0.911 0.979 0.965 0.979
scHyena 0.988 0.991 0.990 0.981 0.992 0.985 0.916 0.917 0.923 0.982 0.965 0.982

Leng

Seurat 0.977 0.972 0.981 0.981 0.965 0.985 0 0.617 0.382 0.950 0.762 0.949
SciBet 0.978 0.967 0.988 0.972 0.987 0.990 0.836 0.952 0.495 0.972 0.907 0.967

scBERT 0 0 0 0 0.558 0 0 0 0 0.387 0.062 0.216
scHyena 0.991 0.985 0.992 0.986 0.992 0.989 0.857 0.952 0.789 0.984 0.948 0.983

Smajic

Seurat 0.982 0.971 0.984 0.990 0.629 0.756 0.973 0.770 0.300 0.943 0.817 0.944
SciBet 0.987 0.995 0.993 0.976 0.780 0.755 0.973 0.783 0.293 0.962 0.937 0.953

scBERT 0 0 0.758 0 0 0 0 0 0 0.610 0.084 0.463
scHyena 0.997 0.998 0.997 0.993 0.840 0.821 0.982 0.958 0.844 0.984 0.937 0.983

Zhu

Seurat 0.964 0.964 0.988 0.810 0.986 0.981 0.953 0.976 0.248 0.945 0.874 0.943
SciBet 0.984 0.990 0.994 0.988 0.990 0.988 0.960 1 0.721 0.982 0.957 0.980

scBERT 0 0 0.378 0 0 0 0 0 0 0.233 0.042 0.088
scHyena 0.991 0.992 0.996 0.995 0.992 0.991 0.979 1 0.833 0.988 0.974 0.987

Without DT

Lau

Seurat 0.999 0.999 1 0.999 0.997 0.993 0.992 0.99 - 0.998 0.996 0.998
SciBet 1 1 1 0.999 0.998 0.992 0.975 0.983 - 0.998 0.993 0.998

scBERT 0 0 0 0 0.543 0 0 0 - 0.373 0.068 0.202
scHyena 0.999 0.999 1 0.998 0.998 0.994 0.967 0.979 - 0.998 0.992 0.998

Leng

Seurat 0.999 0.999 0.999 0.996 0.996 0.992 1 0.967 - 0.996 0.993 0.996
SciBet 1 0.999 0.999 0.995 0.998 0.995 1 0.984 - 0.998 0.996 0.998

scBERT 0 0 0 0 0.573 0 0 0 - 0.402 0.073 0.230
scHyena 0.999 0.997 1 0.990 0.998 0.994 0.978 0.967 - 0.997 0.990 0.997

Smajic

Seurat 1 1 1 1 0.850 0.756 1 1 - 0.992 0.951 0.992
SciBet 1 1 1 1 0.852 0.758 1 1 - 0.992 0.951 0.992

scBERT 0 0 0.775 0 0 0 0 0 - 0.633 0.097 0.491
scHyena 1 1 1 1 0.891 0.851 0.997 0.995 - 0.994 0.967 0.994

Zhu

Seurat 1 0.999 0.999 0.999 0.997 0.995 1 0.988 - 0.998 0.997 0.998
SciBet 1 0.998 1 1 0.996 0.991 1 1 - 0.997 0.998 0.997

scBERT 0 0 0.389 0 0 0 0 0 - 0.242 0.049 0.094
scHyena 0.999 0.998 1 0.999 0.998 0.995 0.993 0.988 - 0.998 0.996 0.998

Table 1: Cell type classification results on various methods (AC: astrocyte, MG: microglia, OL:
oligodendrocyte, OPC: oligodendrocyte progenitor cell, EXN: excitatory neuron, INN: inhibitory
neuron, EC: endothelial cell, PC: pericyte, DT: doublet).

that our scHyena model learns meaningful cell representations during the pre-training phase. The
UMAP plots for the other two datasets can be found in the Appendix D.

Cell Type Classification. scRNA-seq techniques often process cells individually, but sometimes
multiple cells are captured in the same reaction, forming hybrid transcriptomes called doublets (Ma-
cosko et al., 2015; Zheng et al., 2017; Cao et al., 2017). Identifying doublets typically relies on
unique molecular identifier (UMI) counts or the presence of multiple marker genes. However, accu-
rate detection can be challenging due to cellular diversity and overlap with intermediate cell states
expressing markers of multiple types. In the scHyena model, we have also incorporated a doublet
detection mode as a part of cell type classification.

To assess the performance of scHyena in the cell type classification task, we conducted a compar-
ative analysis with three baseline methods: Seurat (Hao et al., 2021), SciBet (Li et al., 2020), and
scBERT (Yang et al., 2022b). To ensure the reproducibility of our results on our datasets, we referred
to the official source codes of these baseline methods. Furthermore, in experiments involving dou-
blets, we employed DoubletFinder (McGinnis et al., 2019) in conjunction with Seurat for doublet
identification.

Table 4 displays the F1-scores for each cell type, as well as the macro, micro, and weighted averages
of the F1-scores for cell type classification methods. Overall, scBERT exhibits poor performance,
primarily due to its tendency to output only one class in most cases. It appears that scBERT is not
robust for imbalanced datasets, as it frequently predicts the most common cell types in the dataset
(the distribution of each cell type in the datasets is provided in Table A in Appendix A). In exper-
iments involving doublets, Seurat struggles to classify endothelial cells (EC) within the Lau and
Leng datasets. This issue arises because DoubletFinder missed some doublet samples before the
clustering process in Seurat. As a result, the presence of remaining doublets complicates the sep-
aration of the clusters of endothelial cells and pericytes (PC), both of which are vascular cells. In
comparison to Seurat, SciBet exhibits relatively better performance in filtering out doublets from the
Lau and Zhu datasets and performs well in other cell types. However, in the case of the Leng and
Smajic datasets, SciBet struggles to filter out doublets, leading to an overall drop in performance. On
the other hand, scHyena demonstrates the highest F1-scores in most cases in experiments involving
doublets. It excels at filtering out doublets with high accuracy, resulting in an overall enhancement
of F1-scores in cell type classification. Furthermore, even when doublets are excluded from the ex-
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Figure 5: Box plot for co-expression scores between 40 cell type marker genes along the group of
doublets. For statistical significance test, two-sided Welch’s t-test was performed for each pair of
type of doublet, corrected by Benjamini Hochberg (∗: P < 0.05, ∗∗: P < 0.01, ∗ ∗ ∗: P < 0.001, n.s:
non-significant).

periments, scHyena still delivers similar or superior performance compared to the baseline methods.
Confusion matrices for the cell type classification experiments are available in Appendix D.

Given the absence of the ground-truth reference, we further investigated about whether scHyena
detect better doublet-like feature compared to other tools in more detail. To estimate the doublet-like
feature without the reference, we adopt a marker gene co-expression scoring scheme from Scrublet
(Wolock et al., 2019), which measures the associated pattern of expression level between each pair
of genes. We compare scHyena to other tools by dividing doublets into three annotation groups
- common, scHyena specific, and other algorithm specific - and measure the co-expression score
levels of cell type specific marker genes in each group. In Fig. 5, commonly specific doublet
groups show the highest scores in most cases of comparison. Moreover, the scHyena specific group
presented higher co-expression scores compared to other tool specific groups. Specifically, scHyena
significantly shows higher scores than Seurat in all data except Zhu. The median co-expression
scores were also higher than the score of SciBet in all four datasets, although two datasets, Leng
and Smajic show statistically non-significant due to the small size of the SciBet specific doublet
group. In total, scHyena could distinguish out doublet-like features more robustly than other doublet
classification tools.

scRNA-Seq Imputation. To assess the imputation performance of scHyena, we conducted com-
parisons with baseline methods, MAGIC (Van Dijk et al., 2018) and DCA (Eraslan et al., 2019).
For the quantitative evaluation, we employed the following procedure: we masked non-zero values
in the input data and applied the imputation methods to predict these masked values. To ensure a
comprehensive evaluation, we divided the non-zero indices into five sub-groups and assessed the im-
putation methods independently for each sub-group. This assessment involved measuring the Mean
Squared Error (MSE) and Pearson correlation coefficient between true values and imputed values at
masked indices.

Fig. 6 presents joint plots comparing true values and imputed values along with MSEs and Pearson
correlation coefficients for each group in the Smajic dataset. The figure clearly demonstrates that
scHyena outperforms both the MAGIC and DCA methods in terms of MSE and Pearson correlation
coefficients. Notably, the joint plots reveal that scHyena exhibits a distribution similar to the true
values, unlike other baseline methods. In the joint plots of scHyena, most dots align near the y = x
graph, while the dots in the joint plots of other methods fall below the y = x line. These findings
strongly indicate that scHyena excels in imputing non-zero values with significantly lower error
compared to other methods. Joint plots for other datasets can be found in Appendix D.3.

For a more in-depth analysis of the imputation performance of scHyena, we impute zero values in
the scRNA-seq data using various methods and then project them into a 2D space using UMAP.
In theory, if the zero values are imputed with appropriate values, the samples should form denser
clusters with other samples of the same cell type when the imputed scRNA-seq data is projected.

Fig. 7 illustrates the UMAP plots of raw and imputed scRNA-seq data for the Smajic dataset. In
the first column, even though cells of the same types are clustered together, cells from different
batches (patients) are far apart when projecting the raw counts. Notably, oligodendrocytes (OL)
exhibit noticeable batch effects in Fig. 7(b), indicating that the cells are grouped more by technical
arrangement than biological factors. Conversely, MAGIC corrects the batch effect and helps group
cells of the same types by imputing zero values. However, in the UMAP of imputed samples by
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Figure 6: Joint plots comparing true values and imputed values predicted by the imputation methods
on the Smajic dataset (x-axis: true values, y-axis: imputed values). The values in the upper left
corner of each scatter plot represent MSEs and Pearson correlation coefficients.

Figure 7: The UMAP visualization of raw and imputed scRNA-seq data for the Smajic dataset. The
figures are labeled with (a) the cell type and (b) batch (patient).

MAGIC, the clusters of astrocytes (AC) and microglia (MG) are not completely separated in some
regions. Regarding DCA, the batch effects in oligodendrocytes remain uncorrected, suggesting that
the imputed values by DCA are not accurate. In contrast, when scRNA-seq data imputed by scHyena
are projected, they form dense clusters with cells of the same brain cell type. Particularly, as shown
in the last column of Fig. 7(a) and (b), the oligodendrocytes form the densest cluster compared to
other columns, even though they come from different batches. This indicates that scHyena imputes
zero values with biologically meaningful counts, leading to the correction of batch effects. For more
UMAP visualization results, please refer to Appendix D.3.

5 CONCLUSION

In this study, we introduced scHyena, a foundation model for scRNA-seq analysis of brain tissue.
We leveraged our pre-trained scHyena model for key downstream tasks: cell type classification,
doublet detection, and scRNA-seq imputation. Our extensive experiments demonstrated that our
proposed method consistently outperforms existing baseline methods in both cell type classification
and scRNA-seq imputation. While we specifically applied scHyena to a few downstream tasks, its
utility may extend to a broader spectrum of brain-related applications, including providing valuable
insights into diseases such as Alzheimer’s or Parkinson’s, which is our future research scope. Addi-
tionally, by pre-training scHyena with scRNA-seq data from various tissue types, we anticipate its
applicability expanding to a wider array of downstream tasks.

9
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ETHICS STATEMENT

The utilization of foundation models such as scHyena offers significant benefits for advancing our
understanding of complex biological systems and potentially improving medical research. However,
ethical considerations must guide its use to ensure responsible data handling, avoid biases, and
protect individual privacy, underscoring the importance of ethical guidelines and regulations in the
application of such models.

REPRODUCIBILITY STATEMENT

We provide detailed implementation information in Section 4 and additional details in Appendix B.
A comprehensive description of the datasets used in our experiments can be found in Section 4 and
Appendix A. Our source code is available for access at the following link: https://github.
com/scHyena2023/scHyena.
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A DATASET

Collection of Published Human Brain scRNA-Seq Data. For published data, 14 distinct
snRNA-seq processed data were collected in the form of gene by cell count matrices, with the follow-
ing identifiers; GSE140231 (Agarwal et al., 2020), GSE148822 (Gerrits et al., 2021), GSE178265
(Kamath et al., 2022), GSE157827 (Lau et al., 2020), GSE147528 (Leng et al., 2021), GSE129308
(Otero-Garcia et al., 2022), GSE174367 (Morabito et al., 2021), GSE167494 (Sadick et al., 2022),
GSE157783 (Smajić et al., 2022), GSE160936 (Smith et al., 2022), GSE184950 (Wang et al., 2022),
GSE163577 (Yang et al., 2022a), GSE188545 (Zhang et al., 2023), GSE202210 (Zhu et al., 2022).

To integrate the data along the same transcriptome information, Ensembl stable gene id was used
instead of the gene symbol. We concatenated all the data along the union set of Ensembl id, where
61,325 genes remained. The undetected genes in each cell were set as 0. Genes of chromosome Y
or without annotation information in GRCh38 version 108 GTF file were first filtered out. Genes
detected at least one for more than 0.5% of whole cells except for Kamath dataset were only selected
as target genes, remaining 19,306 unique Ensembl id.

Among the data, six different types of data were selected as datasets for scHyena model; Kamath
(Kamath et al., 2022), Wang (Wang et al., 2022) for model pre-training, Lau (Lau et al., 2020), Leng
(Leng et al., 2021), Smajic (Smajić et al., 2022), Zhu (Zhu et al., 2022) for downstream tasks. These
data were selected based on the following considerations. Kamath and Wang datasets, which contain
the largest size of nuclei, were selected for model pre-training. Since both data are enriched with
specific diseases and tissues (Parkinson’s disease and substantia nigra), we design test data to cover
diverse types of tissues and diseases, especially for the same number of Alzheimer’s disease and
Parkinson’s disease to compensate for the biases. Lau and Leng datasets were selected for the case of
Alzheimer’s disease, covering three different types of the tissue-prefrontal cortex, caudal entorhinal
cortex, and superior frontal gyrus while preserving the large size of nucleus. For Parkinson’s disease,
Smajic and Zhu datasets were selected, covering the substantia nigra and frontal cortex, respectively.

Dataset AC MG OL OPC EXN INN EC PC DT ETC Total (train/test)

Pre-training Kamath 40,848 34,816 185,451 15,148 28,031 11,570 5,786 3,927 5,603 99,132 430,312 (430,312/0)
Wang 5,942 7,803 81,378 8,361 5,987 840 4,804 2,137 21,202 6,716 145,170 (145,170/0)

Downstream Tasks

Lau 12,157 4,719 30,571 9,223 50,572 18,932 540 444 12,427 - 139,585 (99,801/39784)
Leng 6,650 2,260 11,904 3,038 19,926 9,656 194 135 3,590 - 57,353 (47,269/10,084)

Smajic 5,018 3,717 20,956 2,674 980 705 194 1,641 1,479 - 37,364 (29,491/7,873)
Zhu 7,077 4,386 22,773 4,737 19,200 11,763 233 156 3,425 - 73,750 (57,729/16,021)

Table 2: The distribution of cell types in the datasets (AC: astrocyte, MG: microglia, OL: oligoden-
drocyte, OPC: oligodendrocyte progenitor cell, EXN: excitatory neuron, INN: inhibitory neuron,
EC: endothelial cell, PC: pericyte, DT: doublet, ETC: others).

Cell Type Annotation Based on Unsupervised Clustering. The collected count matrices were
preprocessed based on the canonical SCANPY analysis pipeline (Wolf et al., 2018). Produced data
were integrated with the collected public data along the 19,306 unified list of genes. Patients with
less than 200 cells were also filtered out, a total of 2,408,023 nuclei from 461 patients remained. To
distinguish the doublet produced by the experimental error of the single-cell technique, we perform
Scrublet (Wolock et al., 2019) to calculate the doublet score and predict the doublet of each single
cell. Doublet score was used for annotating doublet-enriched clusters. To cluster cells into each
cell type, the top 2,000 highly variable genes were first selected based on analytic Pearson residu-
als (Lause et al., 2021) and used for the computation of PCA coordinates and clustering. The total
UMI count sum was normalized to be equal to 50,000 for each single cell, log2-transformed with
pseudo-count 1. Normalized data of highly variable genes were then scaled by scanpy.pp.scale and
PCA coordinates were computed by scanpy.pp.pca with default parameters. To remove the con-
founded factors between patients, Harmony correction (Korsunsky et al., 2019) was performed on
PCA coordinates across patients of single cells. Neighborhoods of each single cell were calculated
by scanpy.pp.neighbors with the parameter of 20 PC components and 40 nearest neighbors. The data
were then reduced on the 2-dimensional plane through UMAP. Leiden clustering was performed on
resolution 1.8 to finally distinguish 69 distinct clusters.

To annotate the cell type for each cluster, the expression level of known marker genes for major
cell types in the human brain was investigated along those clusters. By checking 40 distinct marker
genes, 51 clusters were annotated to 11 distinct cell types including 8 major brain cell types; Oligo-
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Figure 8: Distribution of four different types of meta data on UMAP for 8 major cell types.

dendrocyte (CLDN11 and MBP), Astrocyte (AQP4 and ALDH1L1), Microglia (C1QC and CSF1R),
Endothelial cell (CLDN5 and FLT1), Pericyte (PDGFRB), Oligodendrocyte progenitor cell (OPC;
PDGFRA and VCAN), Excitatory neuron (SYT1, SLC17A7, and SLC17A6) and Inhibitory neuron
(SYT1, GAD1, and GAD2), and 3 subtypes; Neuron subtype 1 (SYT1, SLC17A6, and GAD2), Neu-
ron subtype 2 (SYT1, neither SLC17A6 nor GAD2), and Myeloid subtype 1 (GNLY and CD44).
One cluster that did not show a specific expression pattern toward a list of marker genes was an-
notated as unidentified. 17 Clusters that showed an average of doublet score more than 0.1 were
annotated as Doublet. Among the clusters, a single cell annotated as one of 8 major cell types
and doublets were used for the cell type classification task of the model (Fig. 8). There were no
clustering biases on non-neuronal cells, presenting homogeneous clusters. Excitatory neurons were
forms of several distinguishable clusters, which may be due to the diversity of neuron populations
compared to glial cells.

B EXPERIMENTAL DETAILS

B.1 DOWNSTREAM TASKS

For all downstream tasks, we fine-tuned the model over 5 epochs using the AdamW optimizer
(Loshchilov & Hutter, 2019) with a learning rate of 1e-5. The fine-tuning process was executed
using two RTX 3090 units. Additionally, we set aside ten percent of the training set as a validation
set. The model with the best performance on the validation set was selected for inference.

Cell Type Classification. For cell type classification, we employ the embedding of the [CLS]
token as the input for the classification head, which consists of a linear layer. Since scRNA-seq data
is not composed of discrete tokens, directly prepending the [CLS] token to the input scRNA-seq
data is not feasible. Instead, as demonstrated in the Vision Transformer (Dosovitskiy et al., 2020),
we prepend a learnable [CLS] embedding to the embeddings of the input scRNA-seq data.

We rely on samples where the cell type has been identified in the cell type classification task to ensure
accurate performance evaluation. We partition each dataset for downstream tasks into training and
testing sets, with the number of cells in each set detailed in Table A. In experiments excluding
doublets, we exclude all cells labeled as doublets, omitting them from both the training and testing
phases.

scRNA-Seq Imputation. As previously mentioned in the main text, we conducted two exper-
iments to evaluate the imputation performance of scHyena. In the first experiment, we initially
divided non-zero values into five groups. Subsequently, we masked each group separately and con-
ducted imputation for quantitative evaluation. To assess the imputation performance, we calculated
the Mean Squared Error (MSE) and Pearson correlation coefficient between the true values and the
imputed values. All MSEs and Pearson correlation coefficients were computed based on normalized
counts after log normalization. Subsequently, we imputed zero values in the scRNA-seq dataset and
assessed the impact on cell clustering. Similar to the first experiment, we divided the zero values
into ten sub-groups and performed separate imputations for each sub-group. After each imputation,
the imputed sequences were merged to create fully imputed scRNA-seq data.
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Figure 9: The UMAP visualization results of cell embeddings obtained from the pre-trained scHyena
model on two datasets (AC: astrocyte, MG: microglia, OL: oligodendrocyte, OPC: oligodendrocyte
progenitor cell, EXN: excitatory neuron, INN: inhibitory neuron, EC: endothelial cell, PC: pericyte).
(a) Leng dataset. (b) Zhu dataset.

UMAP. Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)
(McInnes et al., 2018) is a widely-used technique for reducing the dimensionality of high-
dimensional data and visualizing it in a lower-dimensional space. In our experiments, we employed
UMAP. For UMAP, we configured the hyperparameters with n neighbors = 15 and min dist = 0.5.

C BASELINE METHODS

C.1 CELL TYPE CLASSIFICATION

Seurat. Seurat (Hao et al., 2021) is one of the popular tools for single-cell analysis. In our analysis,
we followed the official tutorial for cell clustering. After clustering, we manually assigned cell types
to each cluster by comparing the marker genes of each cell type with the marker genes of each
cluster. In experiments involving doublets, we utilized DoubletFinder (McGinnis et al., 2019) in
conjunction with Seurat. Both Seurat and DoubletFinder are implemented in R, and we used Seurat
version 4.3.0.

SciBet. SciBet (Li et al., 2020) is a supervised cell type annotation method designed for scRNA-
seq data. To classify cell types using SciBet, we followed the tutorial provided by the authors. For
training SciBet, we utilized the same training set as used for training our scHyena model.

scBERT. scBERT (Yang et al., 2022b) is a pre-trained model for cell type annotation of scRNA-
seq data based on the Performer (Choromanski et al., 2021). Similar to scHyena, scBERT also
employs a pre-training strategy that involves masking some nonzero expression levels. Additionally,
scBERT also uses the entire expression level data without reducing the number of genes because it is
based on the Performer, which provides reduced memory complexity. However, a key difference is
that scBERT discretizes the expression levels by binning them, whereas we use the expression levels
without any discretization. Furthermore, because the pre-trained weights provided by the authors of
scBERT were not specifically trained for brain cells and the list of genes differed from our dataset,
we conducted our own pre-training of the scBERT model using the same datasets that were used for
pre-training scHyena. The official code for scBERT only provides code for fine-tuning, so we re-
implemented the pre-training code based on the official fine-tuning code and used the official code
for fine-tuning the model for cell type classification.

C.2 SCRNA-SEQ IMPUTATION

MAGIC. Markov Affinity-based Graph Imputation of Cells (MAGIC) (Van Dijk et al., 2018) is an
algorithm designed for denoising scRNA-seq data. In our implementation, we utilized the Python
version of MAGIC and followed the guidelines outlined in the official tutorial.
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Figure 10: Dot plots displaying the expression patterns of marker genes for 8 major types of brain
cells in cells classified as pericytes by each method. The expression values were log2 transformed,
scaled for each study, and then averaged.

DCA. Deep Count Autoencoder (DCA) (Eraslan et al., 2019) is the method designed for denoising
scRNA-seq data through the use of a zero-inflated negative binomial loss function. To implement
DCA, we utilized the official source code and followed the tutorial provided by the authors.

D ADDITIONAL RESULTS

D.1 CELL EMBEDDING OF PRE-TRAINED SCHYENA

In addition to the results in Section 3.3, Fig. 9 presents the UMAP visualization of cell embeddings
generated by pre-trained scHyena on two additional datasets. As observed in Fig. 4, the majority of
cells cluster together with cells of the same type, except for excitatory and inhibitory neurons, which
form a joint cluster.

D.2 CELL TYPE CLASSIFICATION

Fig. 10 displays the expression patterns of marker genes in cells that classified to pericytes, catego-
rized into common, scHyena specific, and other specific groups. As depicted in Fig. 10, the scHyena
specific groups exhibit relatively high expression level in pericyte marker genes, while endothelial
marker genes are highly expressed in the Seurat specific or SciBet specific groups.

Figs. 11 and 12 show the confusion matrices of cell type classification methods on various datasets.
Again, scHyena shows outstanding performance on cell type classification.

D.3 SCRNA-SEQ IMPUTATION

Fig. 13 depicts the joint plots comparing true values with values imputed by various imputation
methods. Figs. 14 to 16 display the UMAP plots of raw and imputed scRNA-seq data for the Lau,
Leng, and Zhu datasets, respectively.
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Figure 11: Confusion matrices of cell type classification methods on the Lau, Smajic, and Zhu
datasets with doublets (rows: labels, columns: predictions).
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Figure 12: Confusion matrices of cell type classification methods on the Lau, Leng, Smajic, and Zhu
datasets without doublets (rows: labels, columns: predictions).
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Figure 13: Joint plots comparing true values and imputed values predicted by the imputation meth-
ods on the (a) Lau dataset (b) Leng dataset, and (c) Zhu dataset (x-axis: true values, y-axis: imputed
values). The values in the upper left corner of each scatter plot represent MSEs and Pearson corre-
lation coefficients.
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Figure 14: The UMAP visualization of raw and imputed scRNA-seq data for the Lau dataset. The
figures are labeled with (a) the cell type and (b) batch (patient).

Figure 15: The UMAP visualization of raw and imputed scRNA-seq data for the Leng dataset. The
figures are labeled with (a) the cell type and (b) batch (patient).

Figure 16: The UMAP visualization of raw and imputed scRNA-seq data for the Zhu dataset. The
figures are labeled with (a) the cell type and (b) batch (patient).
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