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Abstract1

Artificial neural network models have emerged as promis-2

ing mechanistic models of brain function, but there is3

little consensus on the correct method for comparing4

activation patterns in these models to brain responses.5

Drawing on recent work on mechanistic models in phi-6

losophy of neuroscience, we propose that a good com-7

parison method should mimic the Inter-Animal Transform8

Class (IATC) - the strictest set of functions needed to9

accurately map neural responses between subjects in a10

population for the same brain area. Using the IATC, we11

can map bidirectionally between model responses and12

brain data, assessing how well the model can masquer-13

ade as a typical subject using the same kinds of trans-14

forms needed to map across animal subjects. We attempt15

to empirically identify the IATC in three settings: a simu-16

lated population of neural network models, a population17

of mouse subjects, and a population of human subjects.18

In each setting, we find that the empirically identified IATC19

enables accurate neural predictions while also achiev-20

ing high specificity (i.e. distinguishing response patterns21

from different areas while strongly aligning same-area re-22

sponses between subjects). In some settings, we find23

evidence that the IATC is shaped by specific aspects of24

the neural mechanism, such as the non-linear activation25

function. Using IATC-guided transforms, we obtain new26

evidence, convergent with previous findings, in favor of27

topographical deep neural networks (TDANNs) as models28

of the visual system.29

Keywords: similarity scores, model-brain comparison, neural30

prediction31

Introduction32

Artificial neural network (ANN) models have been found to ex-33

hibit internal activation patterns that predict aspects of neural34

activity in a wide variety of brain areas (Zipser & Andersen,35

1988; Olshausen & Field, 1996; Yamins et al., 2014; Storrs36

et al., 2021; Kell et al., 2018; Zhuang et al., 2021; Khaligh-37

Razavi & Kriegeskorte, 2014; Sussillo et al., 2015; Wang et38

al., 2021; Schrimpf et al., 2021; Mineault et al., 2021; Nayebi39
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Figure 1: Model-brain comparison using inter-animal
transforms. (A) Model-brain mappings: We seek a principled
method for comparing model responses to brain responses
using predictive mappings. (B) The Inter-Animal Transform
Class (IATC) is the strictest set of functions required to map
responses accurately between subjects in a population for a
given brain area. (C) We propose to use the empirically iden-
tified IATC to map bidirectionally between a candidate model’s
responses and brain responses in order to assess whether the
model can masquerade as a typical animal subject.

et al., 2021, 2024). These results naturally raise the question40

of whether these models can serve as mechanistic models41

of brain function, at least at some level of abstraction (Cao &42

Yamins, 2021; Kriegeskorte & Diedrichsen, 2016). Although a43

variety of methods have been proposed for quantitatively as-44

sessing neural response similarity between models and brains45

(Sucholutsky et al., 2023), there is little consensus on what the46

correct method is.47

A particularly stringent approach to comparing models to48

brains would be to use 1-1 matching, i.e. attempting to bijec-49

tively identify each ANN model unit with a unique neuron in50

a target animal’s brain. However, a key challenge complicat-51

ing model-brain mapping is the fact that the target of model-52

ing is not a single idealized brain, but rather a population of53

brains that are all somewhat different from each other. In fact,54



inter-subject variability can be substantial – in humans, the55

estimated number of neo-cortical neurons can vary between56

subjects by up to a factor of 2 (Haug, 1987), and even the ex-57

act number of functionally identified brain areas can vary (Gao58

et al., 2022). As a result, 1-1 matching is likely to be problem-59

atic. A more sophisticated approach to model-brain mapping60

is therefore needed.61

A first generation of approaches to this problem used lin-62

ear mappings to compare models to brains (Yamins et al.,63

2014), but concerns have arisen that the linear mapping class64

is too flexible to strongly separate models of the brain (Ko-65

rnblith et al., 2019; Ding et al., 2021; Conwell et al., 2022).66

More recent methods have thus focused on “stricter” mapping67

classes, such as soft matching (Khosla & Williams, 2023), that68

tighten the criteria for model-brain similarity while still allowing69

comparisons between different-sized populations of neurons70

(unlike 1-1 matching).71

Here we develop the idea of the Inter-Animal Transform72

Class (IATC), a concept that has been introduced in philoso-73

phy of neuroscience to handle the problem of between-subject74

variability when building mechanistic models (Cao & Yamins,75

2021). As defined in that work, the IATC is the strictest (small-76

est) class of functions that maps responses between any two77

subjects in a natural population, matching the same brain area78

across subjects with as high accuracy as possible (Fig. 1B).179

Both the strictness and mapping accuracy criteria are impor-80

tant: a good IATC candidate must (by virtue of mapping accu-81

racy) succeed in aligning same-area responses across sub-82

jects, while (by virtue of strictness) separating responses from83

different areas. This pair of desiderata naturally suggests a84

meta-metric of specificity, which evaluates the extent to which85

a mapping simultaneously achieves high cross-subject within-86

area identifiability while maintaining between-area separabil-87

ity (Fig. 2A). As an extension of specificity, we also consider88

whether similarity scores under a mapping method correlate89

with inter-area distances in a known hierarchy (Fig. 2B).90

Though defined relative to a population of real individuals,91

the IATC can be used to compare artificial networks to brains.92

Specifically, we propose to use the empirically-identified IATC93

itself to map between models and brains – in effect, mea-94

suring how well the model can masquerade as a member of95

the population (Fig. 1C). A key implication of this IATC-based96

approach is that model-brain mappings should be performed97

bidirectionally between models and brain data, just as when98

comparing two brains to each other, rather than only mapping99

in one direction (from model to brain).100

A primary challenge in applying the IATC is how to practi-101

cally identify it for a given population. Ideally, we would es-102

timate the IATC directly using large-scale optimization tech-103

niques applied to a massive neural dataset with many sub-104

jects. In the absence of the required data and techniques for105

doing so, here we instead evaluate a spectrum of well-known106

1The maximum possible accuracy that is obtainable may be less
than perfect because different subjects’ neural representations can
have different metamers (Feather et al., 2023), and therefore different
neural encoding functions with different null spaces.
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Figure 2: Evaluating candidate transform classes for
specificity and hierarchy. (A) It is desirable for a mapping
to achieve high specificity – simultaneously achieving within-
area identifiability and between-area separability when map-
ping responses between animals. Each dot is a response
profile for a particular subject and brain area. The schematic
barplots represent likely outcomes for model separation when
comparing models to brains. (B) To capture more graded re-
lationships beyond specificity, we also look at the correlation
between dissimilarity scores and distances in a known hierar-
chy.

methods, such as linear regression and soft matching, against107

the two basic IATC criteria: they should map responses across108

subjects within an area as accurately as possible, while sepa-109

rating responses from different areas.110

We first evaluate candidate transform classes on a simu-111

lated population of artificial neural network models. Because112

we have complete knowledge of the network structure and can113

“measure” responses for all units over many stimuli, we are114

able to observe how the specific form of the activation func-115

tion in the network shapes the relationships between model116

subjects’ responses. This motivates a new transform class117

that maps responses across model subjects with close-to-118

maximum predictivity and high specificity, yielding a reason-119

able estimate of the IATC. We then evaluate these different120

methods on real neural datasets, including both mouse elec-121

trophysiology and human fMRI recordings.122

Results123

Testing candidate IATCs for a simulated population124

We first evaluate transform classes on a simulated popula-125

tion of neural networks (Figure 3A) against the IATC crite-126

ria by testing for same-area predictivity as well as for speci-127

ficity. Our simulated population consists of neural networks128

based on a state-of-the-art model of mouse visual cortex:129

an AlexNet trained with contrastive learning on 64x64 inputs130

(Nayebi et al., 2022). We further modified the model to use131
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Figure 3: Assessing same-area similarity in the model population reveals a “zippering” effect caused by the model
activation function. (A) We attempt to identify the IATC for a model population by first assessing within-area similarity when
mapping between differently seeded model subjects. (B) Zippering effect: Ridge regression accurately maps pre-non-linearity
responses, but not post-non-linearity responses, between subjects at each layer. (C) Post-non-linearity responses can be thought
of as corresponding to firing rates, while pre-non-linearity responses can be thought of as corresponding to EPSPs (excitatory
post synaptic potentials). (D) Inverse Linear Softplus: A schematic of a transform class that considers the effect of the non-
linearity. Step 1 inverts the non-linearity to recover the pre-non-linearity activations of one subject, step 2 applies a fitted linear
transform to predict the pre-non-linearity activations of the other subject, and step 3 re-applies the non-linearity to predict post-
non-linearity activations.

a softplus activation function followed by Poisson-like noise132

to better mimic neuronal response characteristics. To gener-133

ate a population of model subjects, we vary the random seed134

controlling the weight initialization and training data order. We135

map responses between subjects using 10000 activation pat-136

terns driven by ImageNet-validation stimuli (80/20 train-test137

split), evaluating the test R2, median across target neurons for138

a given model layer, averaged in both directions and across139

all pairs of subjects.140

The activation function has a substantial effect on141

same-layer response similarity between model subjects.142

Because a viable IATC candidate must map responses accu-143

rately across different subjects for the same layer, we first eval-144

uate ridge regression, which has been widely used for neural145

response prediction (Canatar et al., 2024). Surprisingly, ridge146

regression achieves only moderate same-layer predictivity for147

intermediate model layers when mapping post-softplus acti-148

vations between subjects (Fig. 3B). This raises the possibility149

that the IATC might require highly non-linear transforms such150

as those implemented by an MLP, which if true would suggest151

that model subjects trained from different random seeds are152

highly dissimilar in their learned representations.153

However, we observe a “zippering” effect: at each layer,154

pre-non-linearity responses are close to linearly related be-155

tween subjects, but the activation function disrupts these lin-156

ear relationships for post-non-linearity responses, before the157

next layer’s pre-non-linearity responses become linearly re-158

lated again (Figure 3B). This effect suggests that the model159

subjects are actually similar, despite the apparent divergence160

suggested by the failure of ridge regression to map post-non-161

linearity responses accurately. Pre-non-linearity activations162

can be thought of as corresponding to trial-averaged EPSPs163

in real neurons, while post-non-linearity activations can be164

thought of as corresponding to trial-averaged firing rates (Fig-165

ure 3C). Because EPSPs are hard to measure, we develop an166

IATC candidate that works for post-non-linearity responses.167

Improving cross-subject mapping by considering the168

non-linear activation function. The results for ridge re-169

gression pre- and post-non-linearity suggest that an ideal170

IATC candidate must consider the effect of the non-linearity on171

the relationships between different subjects’ post-non-linearity172

responses. We develop a transform class called Inverse Lin-173

ear Softplus, which inverts the softplus activation function, ap-174

plies a fitted linear mapping between the two subjects, and175

re-applies the softplus activation to predict the target subject’s176

post-softplus responses (Fig. 3D). Building on an established177

framework of generalized linear models (GLMs) (McCullagh &178

Nelder, 2019; Chichilnisky, 2001), we use a GLM whose in-179

verse link function is precisely matched to the softplus activa-180

tion in order to fit the linear mapping and re-apply the softplus181

activation function. This yields substantially higher predictivity182

than ridge regression when mapping post-softplus activations183

(Fig. 4A).184

In the case of real neural data, we may not know the ex-185

act form of the activation function, and we therefore develop186

versions of our transform class that attempt to approximately187

account for the activation function. Linear Softplus (unlike188

Inverse Linear Softplus) approximately inverts the activation189

function (step 1 of Fig. 3D) for the source model subject by190

using Yeo-Johnson scaling. Yeo-Johnson scaling applies a191

power transformation to make the post-non-linearity features192

normally distributed, and thus more closely resemble the dis-193

tribution of pre-non-linearity responses. Linear Nonlinear, in194

addition to approximately inverting the activation function, also195

approximates the activation function as an exponential func-196

tion when re-applying it for the target model subject (step 3197
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Figure 4: Predictivity and specificity for a spectrum of candidate transform classes on a simulated model population.
(A) Same-layer predictivity when mapping responses between model subjects. (B) Specificity and hierarchy correlation for
different transform classes. (C) Multidimensional scaling (MDS) plots to visualize dissimilarity scores, when mapping response
profiles between all layers and all subjects. Each dot is a response profile for a particular subject and model layer. Distances
between dots are optimized to match the dissimilarities using a particular comparison method. (D) A scatterplot comparing
predictivity and specificity across transform classes. While the exact shape of the Pareto frontier for predictivity and specificity is
unknown, we identify a bounded region (shaded blue) that contains at least one Pareto-optimal point. The diagonal of this region
represents the maximum possible distance from our best IATC candidate (Inverse Linear Softplus) to the Pareto frontier.

of Fig. 3D). Even approximately accounting for the activation198

function improves predictivity compared to ridge regression,199

and the more precisely the activation function is accounted200

for, the better the predictivity (Fig. 4A) - that is, Inverse Lin-201

ear Softplus outperforms Linear Softplus, which in turn out-202

performs Linear Nonlinear.203

We next compare the predictivity of Inverse Linear Softplus204

to the maximum achievable same-layer predictivity, estimated205

using a 7-layer MLP trained on 1 million response patterns206

driven by ImageNet-train stimuli. The MLP does not yield sub-207

stantially greater same-layer predictivity, providing some evi-208

dence that Inverse Linear Softplus is already close to the pre-209

dictivity ceiling - as required for a viable IATC candidate.210

Accounting for the activation function also improves211

area-identification specificity. A viable IATC candidate212

must not only align same-area responses between subjects,213

but also be as strict as possible, thus presumably able to sep-214

arate responses from different layers. While Inverse Linear215

Softplus achieves high same-layer predictivity, it is not obvious216

that that it should also achieve high specificity. For example, if217

Inverse Linear Softplus improves predictivity by mapping more218

accurately between any pair of response profiles (including219

those from different layers), then we might see a decrease in220

specificity.221

Our primary metric for specificity is a version of the silhou-
ette score (Rousseeuw, 1987). A silhouette score close to 1
indicates that responses from different model layers (or brain
areas) are well separated compared to responses from the
same model layer (or brain area) (Fig. 2A). For a given re-
sponse profile i, we compute:

s(i) =
b(i)−a(i)

max(b(i),a(i))

where a(i) is the mean dissimilarity between i and other re-222

sponse profiles for the same model layer, and b(i) is the mean223

dissimilarity between i and response profiles from all other224

model layers. We take the mean score over all model sub-225

jects and layers. As an extension of specificity, we also look226

at the Pearson correlation between dissimilarity scores and227

distances between layers in the model hierarchy (Fig. 2B).228

Inverse Linear Softplus increases specificity (Fig. 4B). The229

reason is that, by improving predictivity for the same-layer, In-230

verse Linear Softplus improves a key component of specificity,231

identification of same-layer similarity across subjects, while232

maintaining inter-layer separation (Fig. 4C).233



Although classical RSA (Representational Similarity Anal-234

ysis) is not a predictive mapping method (instead comparing235

summary statistics of population responses), we can still eval-236

uate it for specificity as a useful benchmark against which our237

IATC candidates can be compared, as it is widely used for238

neural response comparisons (Kriegeskorte et al., 2008). We239

find that Inverse Linear Softplus outperforms RSA in terms of240

specificity (Fig. 4B).241

Both very strict and very flexible methods impair speci-242

ficity. Soft matching, a strict method that matches individ-243

ual units between populations, is not only worse for predictiv-244

ity (Fig. 4A), but also for specificity (Fig. 4B) as evaluated245

using the silhouette score. The reason is that soft match-246

ing (because of its low same-layer predictivity) has low same-247

layer identifiability and therefore low specificity (Fig. 4C). Soft248

matching also has lower specificity as evaluated using hierar-249

chy correlation (Fig. 4B). This is because soft matching rates250

adjacent layers, such as layers 2 and 3, as dissimilar even251

compared to more distant layers, such as layers 2 and 4 (Fig.252

4C).253

At the other extreme, the flexible 7-layer MLP does not max-254

imize specificity, because it reduces inter-layer separation,255

though the gain in same-layer identifiability slightly improves256

its specificity over ridge regression. This result illustrates the257

importance of identifying the strictest set of transforms that258

maps accurately across subjects. Inverse Linear Softplus and259

the MLP achieve similar levels of same-layer predictivity, but260

Inverse Linear Softplus is more constrained, leading to higher261

specificity.262

These results illustrate the utility of the IATC, as attempting263

to identify it yielded a transform class that achieves high pre-264

dictivity and high specificity. In fact, our best IATC candidate265

approaches the Pareto frontier for predictivity and specificity266

(Fig. 4D).267

Testing IATC candidates for a mouse population268

We now evaluate our methods on a mouse population, us-269

ing Neuropixels recordings for 31 subjects in 6 brain areas270

averaged over 50 trials while the mice passively viewed 118271

different visual stimuli. We evaluate methods for predictivity272

and specificity when comparing responses between mouse273

subjects and also examine their ability to separate candidate274

models of the mouse brain.275

Rank order of transform classes is largely similar be-276

tween mouse and model populations. The rank order of277

transform classes in terms of same-area predictivity provides278

evidence for which transform classes are better IATC can-279

didates (despite the absolute scores being limited by rela-280

tively few response patterns for fitting the transforms, as well281

as a limited neuronal sample). As in the model population,282

soft matching achieves the lowest same-area predictivity, with283

linear regression performing substantially better (Figure 5A).284

Moreover, our biologically motivated transform classes that285

account for the activation function further improve predictivity286

on the mouse data over linear regression.287

The fact that transform classes that account for the activa-288

tion function are best for same-area predictivity hints at the289

possibility that, just as in the simulated population, the pre-290

non-linearity responses of two typical mouse subject are re-291

lated by a linear transform, and the relationship between post-292

non-linearity responses is modified by the non-linearity. The293

fact that Linear Softplus (which models the activation func-294

tion as a softplus) performs about the same as Linear Non-295

linear (which models the activation function as an exponen-296

tial) means that we cannot tell, based on our results, which297

of these activation functions better models the activation func-298

tions generating the mouse responses.299

Strict methods that attempt to match individual units, such300

as soft matching, are worse for specificity compared to ridge301

regression and our biologically motivated transform classes302

(Figure 5B). This confirms that low predictivity can lead to low303

specificity by limiting same-area identifiability between sub-304

jects. Furthermore, this confirms that the most promising can-305

didate IATCs - Linear Nonlinear and Linear Softplus - are con-306

strained enough to separate responses from different brain307

areas, in addition to being flexible enough to align same-area308

responses between mouse subjects.309

Bidirectional mapping can improve separation between310

brain models. We also evaluate how well each method311

separates different candidate models with respect to their312

assessed similarity to the mouse brain responses. We313

map 5 layers from four candidate models to the mouse re-314

sponses: the ReLU-based AlexNet model of mouse visual315

cortex (Nayebi et al., 2022), our noisy softplus version of that316

model, a ResNet model trained on ImageNet categorization317

with 64x64 resolution stimuli, and a VGG-16 model trained on318

ImageNet categorization with 224x224 resolution stimuli (un-319

like the low resolution mouse visual system). We apply the320

same noise correction procedure for predictivity scores used321

in (Nayebi et al., 2022) to account for trial-to-trial variability322

(App. H). Model separation for a given area is evaluated as323

the absolute difference in assessed brain similarity between324

models (averaged over model pairs and model layers).325

Typically, when mapping models to brains, model re-326

sponses are mapped to brain responses, but the other direc-327

tion of mapping is not considered. Guided by the IATC, we328

map bidirectionally, just as we do when aligning two mouse329

brains (Figure 5C). When mapping models to brain data,330

stricter mappings such as soft matching separate models331

more strongly, but the opposite pattern occurs when mapping332

brain data to models. When the scores for both mapping di-333

rections are averaged, the methods are all roughly compara-334

ble in terms of model separability. These results indicate that335

stricter methods like soft matching are not generally better for336

model separation. Furthermore, mapping in both directions337

can increase separation between models compared to unidi-338

rectional mapping from model to brain.339

Overall, the results in this section show that our IATC re-340

sults for the model population generalize to some extent to341
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scores. To estimate distances in the visual hierarchy, we assign a hierarchy level of 1 to V1, 2 to V2, 3 to V3, 4 to hV4, and 5 to
each of higher lateral, higher parietal and higher ventral. (C) MDS plots to visualize dissimilarity scores.

real brain data. In particular, we find evidence that the IATC342

for the mouse population is shaped by the non-linear activa-343

tion function. Moreover, we again find that viable candidates344

for the IATC (such as Linear Nonlinear) are relatively good for345

both prediction and specificity. Our results also highlight the346

importance of the IATC’s bidirectionality for model separation.347

Testing IATC candidates on a human population348

We evaluate transform classes on a large scale human fMRI349

dataset, the Natural Scenes Dataset (Allen et al., 2021), and350

evaluate methods for predictivity and specificity when map-351

ping between human subjects for 7 visual areas: V1, V2, V3,352

hV4, as well as a higher area in each of the lateral, ventral,353

and parietal streams. Finally, we use IATC-guided bidirec-354

tional mapping to better separate between models of the hu-355

man visual system.356

Ridge regression achieves the best intra-area cross-sub-357

ject predictivity. We again find that soft matching is unable358

to map across subjects with high predictivity. A more flexi-359

ble transform, ridge regression, is needed to map more accu-360

rately across subjects (Figure 6A). Although Linear Nonlinear361

is close to ridge regression in terms of predictivity, it does not362

do noticeably better, perhaps because the low resolution of363

fMRI data obscures the effect of the non-linearity.364

Ridge regression improves specificity and visual hierar-365

chy identification. Under the mean-area silhouette score,366

soft matching performs worse than other methods while ridge367

regression performs best, suggesting that soft matching has368

lower specificity than ridge regression (Figure 6B). Ridge re-369

gression scores are more correlated with distances in the vi-370

sual hierarchy, suggesting that ridge regression better tracks371

differences across the functional hierarchy. The improved hi-372

erarchical correlation for ridge regression compared to soft373

matching is apparent on an MDS plot visualizing distances be-374

tween response profiles for different subjects and brain areas375

(Figure 6C).376

We also consider sparse regressions (Prince et al., 2024),377

which use a lasso penalty to encourage sparse weights (with378

or without a positive weights constraint). These methods379

are stricter than ridge regression, but not as strict as soft380
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Figure 7: Using bidirectional IATC-guided mapping to improve model separation. We map between models and human
fMRI responses (Natural Scenes Dataset), replicating analyses from Fig. 6A,B of Margalit et al. (2023) and Fig.4F of Khosla &
Williams (2023) that compared linear regression (model to brain direction) to stricter methods that match individual units, such
as 1-1 mapping or soft matching. Unlike the prior analyses, we map bidirectionally between models and brains, as required
by the IATC approach. (A) Comparing topographic models (Margalit et al., 2023) with different training objectives (TDANN,
Categorization, Absolute Spatial Loss), and spatial loss strengths (α) to higher ventral stream ROI. A key comparison is between
the TDANN with intermediate spatial loss α = 0.25 (highlighted with gray bar) and non-topographic models (α = 0). The TDANN
with α= 0.25 was found in Margalit et al. (2023) to best match the brain based on a one-to-one mapping and based on predicting
topographic organization of the visual cortex. (B) Comparing two CNN models (ResNet and Alexnet) and two transformer models
(ViT-B/16 and R50+ViT-B/16) to higher visual areas, as in Khosla & Williams (2023).

matching. We observe a loss in predictivity and specificity for381

sparse regressions (Fig. 6A,B), highlighting that even some-382

what stricter-than-linear methods can impair predictivity and383

specificity. Although we cannot compare ridge regression to384

a very flexible control such as an MLP given the dataset size385

(1000 response patterns), ridge regression seems to be the386

best IATC candidate.387

Bidirectional IATC-guided mapping improves separation388

of candidate brain models. Recent work (Margalit et al.,389

2023; Finzi et al., 2022) introduced a topographic model390

(TDANNs) of the visual system that combines functional and391

spatial constraints. While the TDANN with an intermediate392

level of spatial loss strength α = 0.25 predicted topograph-393

ical properties of visual cortex better than alternative mod-394

els, a key question has been whether the TDANN’s response395

patterns quantitatively match neuronal responses better than396

non-topographic models. Here, the issue of a correct compar-397

ison method has been crucial, as unidirectional linear regres-398

sion (from model to brain) failed to differentiate the TDANN399

from non-topographic models, while a 1-1 mapping did (Mar-400

galit et al., 2023, Fig. 6A,B). However, the very strictness of 1-401

1 mapping limited brain predictivity and the inter-animal noise402

ceiling, leaving it unclear how strong the evidence is in favor of403

the TDANN model. We therefore investigated whether IATC-404

guided methods could distinguish between the TDANN and405

alternative models in terms of matching neuronal responses.406

Guided by the IATC, we did ridge regression in both direc-407

tions between models and the brain. Although linearly map-408

ping model responses to the brain data does not separate409

strongly between the models, linearly mapping the brain data410

to the model responses separates strongly between the mod-411

els (Figure 7A), identifying the TDANN with α = 0.25 or 0.5412

as being the most brain-like, convergent with soft matching re-413



sults and also with prior evidence in favor of that model (Mar-414

galit et al., 2023). In fact, model separation using bidirectional415

ridge regression is much larger than for soft matching. This416

result can be attributed to the fact that soft matching is an ex-417

tremely strict method, which results in low predictivity scores418

for all models (Figure 7A, right-most plot). By distinguish-419

ing more strongly between TDANN (α = 0.25,5) and alterna-420

tive models such as non-topographically constrained models421

(α = 0), IATC-guided bidirectional ridge regression provides422

stronger evidence in favor of the TDANN.423

Along similar lines, Khosla & Williams (2023) observed424

cases where linearly mapping models to brain responses did425

not separate models, but soft matching did. Revisiting this426

analysis but with bidirectional mappings, we found that bidi-427

rectional ridge regression increased model separation over428

soft matching (Fig. 7B), further confirming the utility of IATC-429

guided bidirectional mappings.430

Discussion431

The IATC provides a principled framework for model-brain432

comparison by identifying the strictest set of transforms433

needed to map neural responses accurately between animal434

subjects in a population (for the same brain area). We find in435

three settings (model population, mouse population, and hu-436

man population) that a working estimate of the IATC achieves437

both high predictivity and high specificity, two key desiderata438

for a model-brain comparison method. In a simulated popu-439

lation of neural networks, we identified how the neuronal acti-440

vation function shapes the IATC, leading to a transform class441

that improves predictivity and specificity relative to standard442

mapping classes. On a mouse electrophysiology dataset, we443

also find evidence that the IATC is constrained by the neu-444

ronal activation function, suggesting that IATC results for the445

model population can meaningfully generalize to real brain446

data. On a human dataset, the resolution of the fMRI data447

does not allow us to observe an effect of the activation func-448

tion on the IATC, but we still see differentiation between can-449

didate transform classes that is consistent with our findings450

from simulated population and mouse data. Moreover, we451

use the IATC-guided bidirectional mappings to enable better452

model-brain comparisons, uncovering new evidence differen-453

tiating topographic models of the visual system compared to454

non-topographic models.455

When beginning this work, we assumed that the goals of456

specificity and predictivity would likely be in tension – with457

stricter methods (such as soft matching) being better for speci-458

ficity of model identification and worse at prediction, and more459

flexible methods (such as linear regression) showing the op-460

posite pattern (Ding et al., 2021; Kornblith et al., 2019; Con-461

well et al., 2022; Finzi et al., 2022). However, the intuition462

that stricter methods are generally better for specificity over-463

looks the fact that specificity requires identifying high similarity464

across subjects for responses of the same type, not just sep-465

arating responses of different types. Extremely strict methods466

fail to align same-area responses well across subjects, lead-467

ing to low identifiability and thus low specificity (Fig. 2A). On468

each population, the best working estimate of the IATC im-469

proves same-area identifiability by mapping responses accu-470

rately across subjects, while still maintaining inter-area sepa-471

ration, leading to high specificity. Thus, there is, in fact, no real472

tension between specificity and predictivity.473

A key aspect of the IATC approach is to map bidirection-474

ally between models and brains, not just in the model to brain475

direction, just as when comparing two brains to each other.476

Considering both directions can reveal cases where a given477

model contains spurious features, improving model separa-478

tion. Unlike previous works that motivated symmetry with the479

assumption that similarity scores must be distance metrics480

(Williams et al., 2021; Khosla & Williams, 2023), under our481

IATC approach, similarity naturally emerges from bidirectional482

relationships between brains in a population. Our approach483

also differs from work that treated both directions of map-484

ping as separate, potentially inconsistent methods (Soni et al.,485

2024) rather than as two components of a single method. In486

future work, we plan to further investigate bidirectional map-487

pings and address potential limitations, such as how subsam-488

pling of neurons may affect the brain-to-model direction.489

A limitation of our results using a simulated population is490

the question of whether the sources of variability we consider491

(different seeds for weight initialization and training data order)492

are anything like sources of actual brain variation. In future493

work, we will work towards a “generative model” that more494

accurately describes inter-subject variability.495

A second direction for improvement will be to improve IATC496

estimation. Rather than evaluating a small set of transform497

classes as done in this paper, we hope to systematically learn498

the IATC in a data-driven fashion using large-scale optimiza-499

tion techniques. An especially exciting possibility will be to500

use such data-driven estimation methods to strengthen and501

refine the preliminary results we show here suggesting that502

neural circuit mechanisms constrain the IATC. This will be an503

increasingly realistic prospect as neural datasets grow in size504

(with many subjects, neurons per subject, and stimuli).505

Recent work has shown that neural networks, and likely506

the brain, have privileged axes in their representations: unit-507

level tuning curves that are similar between subjects, and508

which cannot be linearly remixed without constraint (Khosla &509

Williams, 2023). A natural synthesis of this result with our find-510

ings would be a hybrid “Linear Subspace-Nonlinear” transform511

class, similar to the Linear Nonlinear transform class that mod-512

els the activation function, but where the linear portion of the513

transform is constrained by the preferred axes to specific sub-514

spaces of allowable transforms. This hybrid would be stricter515

than full Linear-Nonlinear, but more flexible than soft match-516

ing. We hypothesize that such a transform class would be a517

better estimate of the true IATC and would occupy a “sweet518

spot” on the strictness-flexibility continuum (Fig. 8). Actually519

estimating these transform subspaces will likely involve novel520

data-driven discovery and optimization methods.521
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Appendix684

A Central hypercolumn selection685

In order to map between units with similar functional roles (at least for the same model layer), we do our model-model fits using686

only the central hyper-column of units in each layer (i.e. the units whose receptive field is directly at the middle of the input687

image). Indeed, even when constraining the mapping to use only the central hyper-column, we are able to identify high similarity688

across model instances for the same layer, at least when assessing pre-non-linearity responses using a linear transform.689

B Soft matching as a transform class690

While Khosla & Williams (2023) do not explicitly formulate the soft matching score as a predictive mapping, it can be formulated
as one. Computing the soft matching score involves maximizing:

Σi, jTi jCi j

where T is the transport matrix, subject to the constraints that the columns of the matrix sum to 1/NY , while the rows sum to691

1/NX , and C is the matrix of Pearson correlations between each source neuron and each target neuron. The transport matrix692

can be interpreted as a joint probability distribution over source neurons and target neurons (where the marginal distributions693

are uniform discrete). Thus, the soft matching score is the expected correlation between source and target neurons, according694

to joint probabilities encoded by the optimal transport matrix.695

Since maximizing the above objective requires identifying source neurons that are highly correlated with each target neuron,
we can use the source neurons to predict the value of each target neuron, weighted by the probabilities in the optimal transport
matrix. First, for each source neuron Xi and target neuron Yj, we can predict Yj ’s responses across a set of stimuli (symbolized
as the vector Y j) based on Xi’s responses to those stimuli (symbolized as X j) as:

Ŷ j =
σ(Y j)

σ(Xi)
[Xi − X̄i]Ci j + Ȳ j

This is essentially using the correlation Ci j to do ordinary least squares between Xi’s responses and Yj ’s responses.696

For a single target neuron Yj, we compute the expected value of these correlation-based predictions across source neurons,
if we sampled source neurons according to the conditional probability distribution P(X = Xi|Y = Yj). Since Ti j = P(Xi,Yj) and
P(Yj) = 1/NY , it follows that P(X = Xi|Y = Yj) = NY Ti j . Using these conditional probabilities, the overall prediction Ŷ j then
becomes:

Ŷ j = NY σ(Y j)Σi
Xi − X̄i

σ(Xi)
Ti jCi j + Ȳ j

C Motivating the softplus activation function with a simple model of a noisy spiking process697

Our simulation of spike counts is based on the following highly simplified model. We assume that a neuron receives total input698

X ∼ N (µ,σ2) and that during a single time interval equal to the neuron’s refractory period (which we assume to be about 1 ms),699

the neuron either fires once or not at all, depending on whether X > T , where T is a fixed threshold (Fig. 9A). We count the700

number of spikes over a 100 ms time range, and average over 100 trials.701

Under this model, the total mean (over trials) spike count St(µ) over a time period t (expressed as a function of the mean total
input to the neuron µ) is equal to t/R∗Φ(µ−T,σ2), where Φ is the Gaussian CDF. This means that the activation function should
have a sigmoid shape, which saturates at sufficiently high mean inputs (Fig. 9B). However, many cortical neurons are thought
to fire in the fluctuation driven, unsaturated regime (Van Vreeswijk & Sompolinsky, 1996). We therefore focus on unsaturating
functions like softplus and fit these functions to spike counts that we simulated in the unsaturated regime (Fig. 9C). The softplus
function is defined as:

softplus(x) = ln(1+ ex)

D Noisy Softplus AlexNet models702

To obtain our noisy softplus variant of the AlexNet mouse model, every ReLU sub-layer in the AlexNet models is exchanged for703

a Softplus sub-layer followed by a Poisson-like noise block whose mean is the output of the Softplus sub-layer. PyTorch enables704

noisy models to be trained using a reparameterization trick, but only for certain probability distributions (not for the Poisson705

distribution). We use the Gamma distribution as a stand-in for Poisson, choosing shape parameter k = λ, where λ is the Poisson706

parameter (which is chosen to be the output of the Softplus sub-layer), and scale parameter θ = 1. This allows us to replicate707

two statistical properties of Poisson variables: non-negative samples and variance-mean ratio of 1, both of which are important708

for using Linear Nonlinear, Linear Softplus and Inverse Linear Softplus (which all use a Poisson GLM) to predict the responses.709
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Figure 9: A more biologically consistent activation function. (A) Biological activation functions are the result of a noisy
spiking process. Because summed inputs to neurons are noisy, the firing probability is positive even when the mean input is
sub-threshold. Here, the probability of spiking is represented as the size of the blue region. (B) The resulting activation function,
unlike ReLU, is strictly positive and increasing. Dots represent simulated spike counts, which are Poisson-distributed in the limit
of very small firing rates. (C) Fitting different activations to simulated spike counts, allowing for scaling and translation. Softplus
fits spike counts the best in the sub-threshold regime. The exponential activation also function performs somewhat better than
ReLU. Intuitively, the reason ReLU does not fit as well is that it has a hinge that prevents it from capturing the smooth increase
in firing rate. Spike counts are plotted for a single trial. (D) We replaced each ReLU non-linearity in the models with a softplus
non-linearity and a Poisson-like noise sampler.

To avoid numerical difficulties for small values of k = λ, we scale the softplus outputs by 100 before sampling from the Gamma710

distribution. We then train the noisy softplus models so that their instance recognition training score (as well as validation score711

on ImageNet categorization) are equal to those of the ReLU-based AlexNet models.712

E Inverting the softplus function in Inverse Linear Softplus713

In order to invert the softplus non-linearity as the first step of Inverse Linear Softplus, we apply the inverse of the softplus function
to the softplus model responses in a given layer, averaged over 50 trials. Because the softplus outputs at every model layer
are scaled by 100 before taking Poisson-like samples from the Gamma distribution (App. D), we un-scale the trial-averaged
responses before applying the softplus inverse. The inverse of the softplus function is well-defined (because softplus is strictly
increasing) and has the following formula:

softplus−1(y) = ln(ey −1)

In practice, to avoid numerical difficulties for very small values of y, we do not apply this formula directly and instead use a more714

numerically stable implementation of the softplus inverse adapted from the TensorFlow library (Abadi et al., 2015).715

F Yeo-Johnson scaling in Linear Nonlinear and Linear Softplus716

When the activation function is known exactly and its inverse is well-defined (as in the case of the Softplus-based model), we717

can directly invert the activation function to recover the pre-non-linearity responses. However, when mapping animals to animals718

(or, if enough neurons are measured, animals to models), we cannot easily invert the activation function if we do not know719

its exact form for a given neuron. Yeo-Johnson scaling uses a power transformation to make the features closer to normally720

distributed over the stimuli. We expect this transformation to make the post-non-linearity features more correlated with pre-non-721

linearity responses because the non-linear activation function skews the distribution of the pre-non-linearity responses (which722

are roughly normally distributed over the stimuli). Indeed, we find that Yeo-Johnson scaling noticeably increases the Pearson723

correlation (Fig. 10) with the pre-non-linearity responses for the noisy softplus models, almost as much as if you had directly724

applied the inverse of the softplus activation function to the post-non-linearity responses. We hypothesize that Yeo-Johnson725

scaling has a similar effect in the case of animal firing rates.726

We implement Yeo-Johnson scaling with the PowerTransformer class in sklearn (Pedregosa et al., 2011). The power transform727

fits one parameter. To implement Yeo-Johnson scaling as the first step of Linear Nonlinear or Linear Softplus, we put the728

PowerTransformer object followed by a GLM object into an sklearn Pipeline, so that the power parameter is only fit on the training729

data, not on test data.730

G Implementation details of GLMs731

The GLM object is created using the glum package (Thompson et al., 2025). Each GLM specifies the inverse link function that732

relates the linear prediction to the response variable (such as ReLU, exponential or softplus), and the assumed noise structure733
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Figure 10: Correlation between post-non-linearity responses and pre-non-linearity responses after transforming the
post-non-linearity responses in different ways (responses are for the noisy softplus models, averaged over 50 trials).
We focus on correlation here because Yeo-Johnson scaling does not improve the R2 score with respect to pre-non-linearity
features (i.e. it does not directly match them), which makes sense as it is merely unskewing the distribution of post-NL features,
which are already rather correlated with pre-NL features. Nevertheless, increased correlation implies that the pre-NL features
can be more easily matched after linear re-weighting, as is done in Linear Nonlinear or Linear Softplus.

in the response variable (Poisson noise in the case of Linear Nonlinear or Linear Softplus). The weights of the specified GLM734

are then optimized through Iterative Reweighted Least Squares.735

The inverse link function in Linear Softplus or Inverse Linear Softplus involves a scaling parameter c:

ŷ = c∗ softplus(θT x)

where ŷ is the output of the inverse link function (i.e. the predicted values for the target responses), x is the vector of predictors736

(trial averaged responses of the source model after applying either Yeo-Johnson scaling or exactly inverting the activation func-737

tion) and θ is the fitted linear weights. When predicting noisy softplus model responses, we set c = 100, the same softplus output738

scaling we used when training the models themselves. But when fitting Linear Softplus to predict mouse responses, we do not739

know a priori the optimal scaling parameter and must cross-validate values of c along with the ridge penalty using GridSearchCV740

in sklearn.741

H Noise correction when comparing models to mouse data742

When mapping between model responses and trial-averaged mouse responses (Fig. 5C), it is important to account for trial-to-
trial variability. Here we briefly describe the noise correction procedure that is used to obtain more accurate predictivity scores.
The full derivation of this procedure is found in Nayebi et al. (2022). The goal of the procedure is to accurately estimate the
following quantity:

Corr(M (rtrain; tB
train)test, tB

test)

where M is a given mapping method (such as ridge regression), rtrain is the model responses in a given layer (which, except743

for the noisy softplus models, are deterministic) over the training stimuli, tB
train is the true trial-averaged (averaged over the ideal744

limit of infinitely many trials) responses of a particular subject and brain area B over training stimuli, M (rtrain; tB
train)test are the745

test predictions under the mapping method of the target animal’s responses over the test stimuli using the model responses as746

predictors, and tB
test are the actual ground-truth responses of the target animal over test stimuli. This quantity cannot be directly747

computed because we do not have infinitely many trials per stimulus, and instead must estimate it based on finitely many trials748

(50 trials per stimulus in the case of the Allen Institute mouse data).749

To perform the noise correction, we use bootstrapping. For each bootstrapped sample, we separate the N = 50 trials into
two split halves of 25 trials each (indexed in the notation given below by 1 and 2) and take the trial-averaged response for each
stimulus for each split half of those trials. Then the noise-corrected predictivity (in terms of Pearson correlation) is computed as:

median

〈
Corr

(
M (rℓtrain;sB

1,train)test,sB
2,test

)
√

C̃orr
(

M (rℓtrain;sB
1,train)test,M (rℓtrain;sB

2,train)test

)
× C̃orr

(
sB

1,test,s
B
2,test

)
〉



where the median is computed over the target animal’s neurons, and the ⟨...⟩ represents an average over all bootstrap samples.750

The C̃orr represents a Spearman-Brown corrected Pearson correlation rather than a raw Pearson correlation. sB
i, train/test repre-751

sents the trial-averaged responses of the subject for split-half i (which is either 1 or 2) over the train stimuli or test stimuli (unlike752

t which was the ideal trial-average over infinitely many trials).753

In most cases, we use 100 bootstrapping samples, and 10 train-test splits. However, in some cases, we use fewer bootstrap-754

ping samples and train-test splits because of computation time constraints. In particular, whenever we map from VGG-16 to755

mouse responses, or whenever we use Linear Nonlinear, we use 16 bootstrapping samples and 1 train-test split.756

I Noise correction when comparing models to human fMRI data757

The bootstrapping approach to noise correction described in App. H is not possible in the case of the human fMRI data, where
there are only 3 trials per stimulus, not 50 trials. We instead use the method of noise correction recommended in Allen et al.
(2021). The idea is to simply divide the raw R2 predictivity (with respect to a given target voxel) by the noise ceiling of that target
voxel, which is computed as:

NC =
ncsnr2

ncsnr2 + 1
n

where ncsnr stands for “noise ceiling signal-to-noise ratio” and is provided for each voxel with the Natural Scenes Dataset, and758

n is the number of trials (3). This accounts for trial-to-trial variability when mapping model units to noisy voxel responses. When759

mapping in the other direction, from noisy voxels to model units, we set NC = 1, since the models of the human visual system760

we consider are all deterministic. It is worth noting that this procedure can only account for noise in the target voxel, but cannot761

account for noise in the source predictors (which is certainly an issue when either mapping brain-to-brain or brain-to-model).762

Developing statistical methods to correct for source noise is a major open challenge for future research.763
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