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Abstract

Open Information Extraction (OpenIE) struc-001
tures information from natural language text in002
the form of (subject, predicate, object) triples.003
Supervised OpenIE is in principle only possi-004
ble for English, for which plenty of labeled005
data exists. Recent research efforts tackled006
multilingual OpenIE by means of zero-shot007
transfer from English, with massively multi-008
lingual language models as vehicles of trans-009
fer. Given that OpenIE is a highly syntactic010
task, such transfer is bound to fail for languages011
that are syntactically more complex and distant012
from English. In this work, we verify this for013
Japanese, for which the state-of-the-art OpenIE014
transfer approach yields near-zero performance.015
We next propose three Linguistic Feature Pro-016
jection strategies, which lead to training data017
that contains features of both the source (En-018
glish) and target (Japanese) language, namely019
(i) reordering of words in source-language ut-020
terances to match the target language word or-021
der (RO), (ii) code-switching (CS), and (iii)022
insertion of Japanese case markers into English023
utterances (CM). Experiments, on a newly con-024
structed Japanese OpenIE benchmark, render025
all three strategies effective and mutually com-026
plementary. Further, we show that RO and CS,027
as target language-agnostic strategies, also lead028
to gains in transfer to German, a language syn-029
tactically closer to English as the source.030

1 Introduction031

Open Information Extraction (OpenIE) is the task032

of structuring relational information from natu-033

ral language text into (subject, predicate, object)034

triples (Banko et al., 2007). The task distinguishes035

itself from other Information Extraction tasks by036

being schema-free, i.e., requiring no pre-defined on-037

tologies for entities and relations (Mausam, 2016).038

Recently, neural OpenIE models – effectively039

supervised OpenIE models based on pretrained040

LMs – have attracted much attention from the com-041

munity (Stanovsky et al., 2018; Cui et al., 2018;042

Kolluru et al., 2020). These models yield reason- 043

able OpenIE performance for English, the only 044

language for which labeled OpenIE data is plenti- 045

ful. The lack of labeled data prevents training sim- 046

ilarly performant OpenIE models for most other 047

languages. Because of this, approaches that aim to 048

support multilingual OpenIE, e.g., Multi2OIE (Ro 049

et al., 2020) and MILIE (Kotnis et al., 2022), resort 050

to (zero-shot) cross-lingual transfer of the model 051

trained on English OpenIE data, exploiting mas- 052

sively multilingual LMs such as mBERT (Devlin 053

et al., 2019) or XLM-R (Conneau et al., 2020) as 054

the vehicle of transfer. Cross-lingual transfer with 055

multilingual LMs, especially for lower-level syntac- 056

tic tasks, has been shown ineffective for target lan- 057

guages that are linguistically distant from English 058

as the source language (Lauscher et al., 2020). Con- 059

versely, structural similarity between languages, 060

including word-ordering and word frequency distri- 061

butions, seems to be the critical factor of successful 062

cross-lingual transfer with multilingual LMs K et al. 063

(2020). Kotnis et al. (2022) show that cross-lingual 064

transfer for OpenIE based on mBERT is also far 065

from robust: they show massive performance drops 066

even for target languages that exhibit moderate syn- 067

tactical dissimilarities with respect to English, such 068

as German or Arabic. 069

In this work, we set out to improve the cross- 070

lingual transferability of neural OpenIE, from En- 071

glish (EN) to syntactically dissimilar languages, 072

with a special focus on Japanese (JA). To this end, 073

we first create a comprehensive OpenIE evaluation 074

benchmark for Japanese. We adopt the BenchIE 075

evaluation paradigm (Gashteovski et al., 2022) that 076

rewards only fully correct and non-redundant ex- 077

tractions, rather than token overlap with gold ex- 078

tractions. We extend the existing multilingual 079

BenchIE dataset with the Japanese portion. Us- 080

ing Japanese BenchIE, we observe that zero-shot 081

transfer to Japanese – as a language highly syntacti- 082

cally dissimilar to English – yields near-zero perfor- 083
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イヴァン は 本 を アンナ に あげる　 だろう
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7
Ivan will give a book to Anna
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Figure 1: Dependency parsing trees (SpaCy, Honnibal
and Montani (2017)) of an EN-JA parallel sentence pair.
Gray lines in between represent alignment results from
a token-level aligner (Dou and Neubig, 2021). As a
visual aid, we highlight content words with the same
semantic meaning using the same color.

mance, even when combined with cross-lingual la-084

bel projection strategies (Faruqui and Kumar, 2015;085

Kolluru et al., 2022).086

Having analyzed the differences in word order087

and structure of dependency trees between lan-088

guages on pairs of parallel sentences (as illustrated089

in Figure 1), we propose several linguistic fea-090

ture projection (LFP) strategies to improve cross-091

lingual transfer for OpenIE between syntactically092

dissimilar languages (in our case, primarily En-093

glish and Japanese). The LFP strategies we em-094

ploy facilitate the transfer by constructing an in-095

termediate language (to which we refer as pseudo-096

English), which effectively interpolates between097

English as the source language and the target lan-098

guage (Japanese). Concretely, we investigate three099

different LFP strategies: (1) reordering (RO): re-100

order words in the English sentences to match the101

word order of the Japanese translation (see Fig-102

ure 2); (2) code-switching (CS): replace some of103

the English tokens with their Japanese word align-104

ments (Figure 3); while code-switching has no ef-105

fect on syntactical alignment, we expect it to push106

pseudo-English closer to Japanese lexically; and (3)107

case marker insertion (CM): insert Japanese case108

markers, i.e., special linguistic units that give im-109

portant hints about the grammatical roles of noun110

phrases, into the English sentence (Figure 4); while111

RO and CS can be used for any target language112

(see §4.3), CM is tailored specifically for Japanese.113

We automatically translate OpenIE-labeled En-114

glish training data to the target language and apply115

the three LFP strategies. Finally, we train the state-116

of-the-art neural MILIE (Kotnis et al., 2022) on117

the obtained pseudo-English data. Evaluation on 118

Japanese BenchIE renders all three LFPs effective, 119

and mutually complementary: their combination 120

pushes Japanese OpenIE performance from (near 121

to) zero to zero-shot transfer performance of lan- 122

guages syntactically closer to English (e.g., Ger- 123

man). Furthermore, we show that RO and CS, two 124

target language-agnostic strategies, also improve 125

OpenIE performance for German, a language that is 126

syntactically more similar to English than Japanese. 127

2 Japanese BenchIE 128

2.1 OpenIE: Task Definition 129

OpenIE is the task of collecting structured facts in 130

the form of (s, p, o) from natural language texts, 131

where s, p, and o stand for subject, predicate, and 132

object, respectively. Here, we define all compo- 133

nents of structured facts as text spans extracted 134

from the original text. Given a natural language 135

sentence S = w1, w2, . . . , wn, the goal is to ex- 136

tract all structured facts in S as a set of triples 137

T = {(s1, p1, o1), (s2, p2, o2), . . . , (sk, pk, ok)}. 138

2.2 Creating Japanese BenchIE 139

BenchIE (Gashteovski et al., 2022) is a multi- 140

lingual benchmark that estimates OpenIE per- 141

formance more reliably than measures based on 142

token overlaps leveraged by prior benchmarks 143

like OIE2016 (Stanovsky and Dagan, 2016) and 144

CaRB (Bhardwaj et al., 2019). BenchIE defines 145

fact synsets that group all (s, p, o) valid extractions 146

that describe the same fact (Table 1). If the ex- 147

traction perfectly matches any one of the gold ex- 148

tractions of a synset, then the corresponding fact 149

is regarded as correctly extracted. Being complete, 150

BenchIE rewards only exact matches against some 151

gold extractions and avoids excessive rewarding 152

of systems that produce highly overlapping extrac- 153

tions that describe the same fact. 154

We create a Japanese portion of BenchIE fol- 155

lowing the annotation process described in Gash- 156

teovski et al. (2022). We ask a bilingual annota- 157

tor native in Japanese and fluent in English to (i) 158

first translate sentences from English BenchIE to 159

Japanese and then (ii) label the fact synsets us- 160

ing an annotation tool, AnnIE (Friedrich et al., 161

2022). Finally, following the annotation guide- 162

lines of BenchIE, we detect and optionalize some 163

tokens that do not affect the meaning of clauses.1 164

1This is important in order not to unnecessarily penalize
OpenIE systems. For more details, we refer the reader to
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Sentence: A large gravestone was erected in 1866, over 100 years after his death.
id subject predicate object
1 [A] [large] gravestone was erected in 1866

[A] [large] gravestone was erected in 1866
[A] [large] gravestone was erected in 1866

2 [A] [large] gravestone was erected [over 100 years] after his death
[A] [large] gravestone was erected [over 100 years] after his death

Table 1: An example sentence in English BenchIE (Gashteovski et al., 2022) with 2 fact synsets. A fact synset
contains one or more gold extractions. Tokens in brackets ([]) are optional and can be omitted in extractions.

To aid the annotation process, we detect optional165

Japanese tokens automatically based on their posi-166

tions in dependency trees: these are the dependent167

tokens linked to their governors with the depen-168

dency relation aux from the Japanese UD label169

set (Tanaka et al., 2016; Asahara et al., 2018). We170

also make optional case markers, a special type of171

functional token present in Japanese (we provide172

more details in §3.2.3).173

2.3 Baseline OpenIE Transfer Methods174

We first evaluate the performance of MILIE (Kotnis175

et al., 2022) – a state-of-the-art OpenIE system176

based on mBERT – on Japanese BenchIE, after177

subjecting it to two standard transfer techniques178

for token level tasks: (i) zero-shot cross-lingual179

transfer and (ii) label projection. We show the180

performance for these standard transfer approaches181

in the first two rows of Table 2 (see §4).182

Zero-Shot Transfer. We evaluate MILIE trained183

on English OpenIE data directly on Japanese184

BenchIE. Unfortunately, the model yields an F1185

score of 0.0 on Japanese BenchIE (reference per-186

formance on English BenchIE is 28.61, see Ap-187

pendix B.2), confirming our suspicion that zero-188

shot OpenIE transfer between structurally dissim-189

ilar languages fails. A closer look at the extrac-190

tions, revealed that all of them reflected the Subject-191

Predicate-Object order, i.e., the predicate was al-192

ways a span of text from the sentence located be-193

tween the spans extracted as the subject and object.194

This clearly reflects the Subject-Verb-Object (SVO)195

common in English, but highly unusual in Japanese,196

for which the most common word order is Subject-197

Object-Verb (SOV).198

Direct Label Projection. We carry out a second199

pilot experiment, facilitating the transfer by means200

of direct label projection (direct LP, Yarowsky et al.201

(2001); Akbik et al. (2015); Aminian et al. (2019)).202

Gashteovski et al. (2022).

To this end, we first automatically translate la- 203

beled sentences from the English training set to 204

Japanese. We then find word alignments for each 205

parallel EN-JA sentence pair, using a state-of-the- 206

art word aligner (we provide details in §3.1. Finally, 207

we use the obtained word alignments to transfer 208

the token-level labels (which belong to the stan- 209

dard BIO scheme for sequence labeling) to the 210

Japanese sentence. For example, consider the sub- 211

ject span (labeled in the original English sentence) 212

sen = (wen
i , wen

i+1, w
en
i+2) with the induced EN-JA 213

word alignment (wen
i , w

ja
j ), (w

en
i+2, w

ja
j−1); note that 214

wen
i+1 is not aligned with any Japanese token in this 215

case. The corresponding subject span in Japanese 216

is then sja = (w
ja
j−1, w

ja
j ). The Japanese triple ob- 217

tained this way is then considered to be a “gold” ex- 218

traction from the automatically-translated Japanese 219

sentence. We then use this label-projected noisy 220

Japanese OpenIE corpus to train MILIE. While 221

better than zero-shot transfer, label projection still 222

yields near-zero performance (1% F1) on Japanese 223

BenchIE, making the corresponding MILIE model 224

unavailing for practical usage. 225

3 Linguistic Feature Projection 226

We have shown that MILIE trained with English 227

data fails to extract valid relation triples from 228

Japanese text. Based on insights of previous 229

works (K et al., 2020; Gashteovski et al., 2022; 230

Kotnis et al., 2022), as well as our own observation 231

in §2.3, it is reasonable to conclude that transfer 232

failure is due to systematic syntactic discrepan- 233

cies between English and Japanese. We propose 234

to remedy for this with Linguistic Feature Projec- 235

tion (LFP), that is, by converting labeled English 236

sentences into pseudo-English that reflects the syn- 237

tactic properties of Japanese. This way, we aim to 238

(1) emulate Japanese syntax in our training data 239

while, unlike with label projection, (2) retaining 240

clean token-level OpenIE labels. 241

Concretely, we propose three LFP strategies: 242

reordering (RO), code-switching (CS), and case 243
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marker insertion (CM). Reordering is meant to244

bridge the difference in word order between the245

languages, code-switching brings additional lexico-246

semantic alignment, whereas case marker inser-247

tion – as the only language-specific manipulation –248

caters for both syntactic and lexical differences.249

3.1 Preprocessing250

To perform LFP from Japanese to English, we251

first need to translate labeled English sentences252

to Japanese and induce word alignments.253

Machine Translation. We assume that high-254

quality OpenIE training data is available in En-255

glish but not in the target language (Japanese).256

We thus need to first generate Japanese texts par-257

allel to English texts to serve as points of refer-258

ence for Japanese linguistic features. To gener-259

ate the parallel data, we resort to a state-of-the-art260

EN-JA neural machine translation system. Specifi-261

cally, for each sentence Sen = wen
1 , wen

2 , . . . , wen
n262

with n tokens, we obtain its Japanese translation263

Sja = wja
1 , w

ja
2 , . . . , w

ja
m with m tokens.264

Word Alignment. Next, we perform word align-265

ment between Sen and Sja with the help of a pre-266

trained neural aligner. This way, we effectively267

split English tokenbs into two disjoint groups:268

(1) W en→ja: English tokens with one (or more)269

Japanese tokens aligned to them, and (2) W en̸→ja:270

English tokens not aligned to any Japanese tokens.271

3.2 LFP Strategies272

Throughout this section we use the following En-273

glish sentence as a running example: “Ivan will274

give a book to Anna”, with its Japanese transla-275

tion shown in Figure 1. The example contains a276

knowledge fact that can be structured as a triple277

(Ivan, give a book to,Anna). Each LFP strategy278

that we introduce below is then applied to both279

texts and corresponding triples.280

3.2.1 Reordering281

Sentences. For each sentence Sen written in En-282

glish, our goal is to reorder the words to form a283

new sentence Sen
RO that reflects the word order of284

the Japanese translation Sja. We first reorder En-285

glish words based on the order of their aligned286

Japanese counterparts. We reposition each aligned287

English token wen
i ∈ W en→ja according to the in-288

dex of its Japanese alignment wja
j in Sja. If wen

i is289

aligned with multiple Japanese tokens, we choose290

the Japanese token for which the word alignment291

イヴァン は 本 を アンナ に あげる　だろう
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7
Ivan will give a book to Anna

1 5 7 6 3 2
Ivan book Anna to give will

1 5 7 6 3 4 2
Ivan book Anna to give a will

reorder

insert

1

Figure 2: The reordering strategy.

model yielded the highest confidence. As shown 292

in the example in Figure 2, ‘give’ is placed after 293

‘book’ because ‘give’ is aligned to ‘あげる’ and 294

‘book’ is aligned to ‘本’, and ‘本’ comes after ‘あ 295

げる’ in the Japanese translation. In the second 296

step, we insert English tokens without alignment 297

wen
j ∈ W en̸→ja into the reordered sentence: for 298

each such token, we place it directly after the clos- 299

est preceding aligned token wen
i ∈ W en→ja. In the 300

example from Figure 2, we place ‘a’ after ‘give’ as 301

its closest preceding token. 302

Triples. Tokens within each triple element (i.e., 303

subject, predicate, and object) are then reordered 304

to match the token ordering of the new, re- 305

ordered pseudo-English sentence. In the ex- 306

ample, the triple (Ivan, give a book to,Anna) be- 307

comes (Ivan, book to give a,Anna). 308

3.2.2 Code-Switching 309

Code-switching, or code-mixing, is a common phe- 310

nomenon in multilingual communities, with speak- 311

ers seamlessly switching between two or more lan- 312

guages, even within sentences. Inspired by Kr- 313

ishnan et al. (2021), we adopt code-switching to 314

produce sentences comprising both English and 315

Japanese tokens. Training on the code-switched 316

sentences, we expect the MILIE (and mBERT as its 317

underlying LM) to establish better and task-specific 318

lexico-semantic alignments between the two lan- 319

guages. Training on code-switched data is thus 320

expected to improve target language (Japanese) 321

performance compared to training on English (or 322

pseudo-English) sentences alone. 323

Sentences. For each sentence Sen written in En- 324

glish, we replace words with their Japanese coun- 325

terparts to form a code-switched sentence Sen
CS. For 326

each English token wen ∈ W en→ja aligned to a 327

Japanese token wja
j , we replace it by wja

j with prob- 328
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イヴァン は 本 を アンナ に あげる　だろう
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7
Ivan will give a book to Anna

1 2 3 4 5 6 7
イヴァン will give a 本 に Anna

code-switch

1

Figure 3: The code-switching strategy.

ability p. As in RO, we choose wja
j that is most329

confidently aligned to wen ∈ W en→ja by the word330

aligner. We introduce the hyperparameter p as the331

percentage of aligned English tokens to be replaced332

with their Japanese alignments. As shown in Fig-333

ure 3, if we set p = 0.5, half of the aligned English334

tokens will be replaced by their Japanese counter-335

parts. In this specific example, we have ‘Ivan’336

replaced with ‘イヴァン’, ‘to’ replaced with ‘に’,337

and ‘book’ replaced with ‘本’, while ‘will’, ‘give’,338

and ‘Anna’ are unchanged.339

Triples. Similar as in RO, in CS we switch the340

tokens of the triple elements according to their re-341

placements (or lack thereof) in Sen
CS. In this ex-342

ample, the triple (Ivan, give a book to,Anna) be-343

comes (イヴァン, give a本に,Anna).344

3.2.3 Inserting Case Markers345

Our last LFP strategy is specifically tailored for346

Japanese, and focuses on case markers, a special347

class of functional tokens in Japanese.348

Case Markers in Japanese. Case markers (kaku-349

joshi) are special functional tokens that immedi-350

ately follow noun phrases (NP) they refer to. Case351

markers indicate the grammatical role of their re-352

spective NPs, and thus provide important signals353

for syntactic tasks like OpenIE. In the example354

from Figure 1, the 4th Japanese token, ‘を(wo)’ is a355

case marker that commonly accompanies the object356

of an action. In this example, ‘を(wo)’ indicates357

that ‘本(book)’ is the object of ‘あげる(give)’.358

Case markers thus reveal a lot about the syntactic359

structure of Japanese sentences: e.g., the Universal360

Dependency (UD) annotations for Japanese have361

rules that determine dependency labels based on362

case markers (Tanaka et al., 2016; Asahara et al.,363

2018; Omura and Asahara, 2018). Under UD, the364

case marker and the NP it modifies are connected365

by a dependency arc labeled case, as in Figure 1.366

イヴァン は 本 を アンナ に あげる　だろう
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7
Ivan will give a book to Anna

1 2 3 4 5 6 7 8 9 10
Ivan は will give a book を to に Anna

insert case marker

1

Figure 4: The case marker insertion strategy.

Sentences. For each English sentence Sen, our 367

goal is to insert Japanese case markers at the ad- 368

equate position, resulting in a new sentence Sen
CM. 369

For each English token wen ∈ W en→ja that is 370

aligned to some Japanese token wja
j , we check 371

whether wja
j+1, following wja

j , is a is a case marker. 372

If so, we insert wja
j+1 directly after wen. In the 373

example from Figure 4, given the word alignment 374

pairs (Ivan,イヴァン), (book,本) and (Anna,ア 375

ンナ), we insert case markers ‘は’, ‘を’ and ‘に’ 376

after ‘Ivan’, ‘book’ and ‘Anna’, respectively, into 377

the English sentence. 378

Triples. To preserve the contiguity of each span, 379

we also insert case markers in the triples. In this 380

example, the triple corresponding to sentence Sen
CM 381

is (Ivanは, give a bookを,Annaに). 382

4 Experiments 383

Experimental questions. We have introduced 384

three LFP strategies to bridge the gap between En- 385

glish and Japanese both structurally and lexically. 386

In this section, we describe the experiments we 387

conducted with the aim of answering the following 388

questions: (Q1) Are proposed LFP strategies ef- 389

fective in EN-JA cross-lingual transfer for OpenIE? 390

(Q2) Which of the LFP strategy helps the most 391

in cross-lingual OpenIE transfer? (Q3) Could RO 392

and CS, as language-agnostic LFP strategies, be 393

beneficial for other target languages? 394

Baselines. In addition to zero-shot transfer and 395

label projection (discussed in §2.3) as sanity-check 396

baselines, we additionally compare our LFP strate- 397

gies against the recently-proposed state-of-the-art 398

cross-lingual transfer technique for OpenIE dubbed 399

Alignment-Augmented Constrained Translation 400

(AACTrans, Kolluru et al. (2022)). AACTrans is 401

essentially a sequence-to-sequence model for trans- 402

ferring OpenIE training data from source to target 403

language. AACTrans aims to improve consistency 404
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between the transferred sentence and triples by en-405

suring that triples consist only of tokens present406

in the sentence. AACTrans requires a parallel cor-407

pus, a machine translation model, and a word align-408

ment model between the source and target language.409

We train three different neural OpenIE models –410

GenOIE, Gen2OIE, both proposed together with411

AACTrans (Kolluru et al., 2022), and MILIE (Kot-412

nis et al., 2022) – on data generated by AACTrans413

via Cross-Lingual Projection (CLP, Faruqui and414

Kumar (2015)), a type of label projection. It is415

worth noting that transferring OpenIE training data416

with AACTrans (via CLP) is time-consuming as it417

requires multiple rounds of MT training.2418

Pre-trained Systems for LFP. Three pre-trained419

systems are required for our LFP strategies. Specif-420

ically, we employ: (1) the EN-JA machine transla-421

tion system from Morishita et al. (2020) to translate422

English training data to Japanese;3 (2) the multi-423

lingual word aligner AWESOME4 from Dou and424

Neubig (2021) to align words between English sen-425

tences and their automatically-translated Japanese426

counterparts; and, for the CM strategy, (3) the de-427

pendency parser trained on the Japanese UD Tree-428

bank (Omura and Asahara, 2018) from SpaCy.5429

Configurations. We create seven proxy datasets,430

one for each possible combination of the three pro-431

posed LFP strategies and train MILIE (Kotnis et al.,432

2022) on each of the datasets. The source data is433

the English OpenIE4 training set from Zhan and434

Zhao (2020), commonly used in prior work (Ro435

et al., 2020; Kotnis et al., 2022). We train MILIE436

on top of mBERT (Devlin et al., 2019), arguably437

the most widely used massively multilingual LM.438

We follow Kotnis et al. (2022) and set the batch439

size, learning rate, and the number of epochs to 128,440

3e-5, and 2.0, respectively. For code-switching, we441

set the replacement rate to p = 0.2 (i.e., we switch442

20% of English tokens), after searching over the443

grid {0.2, 0.5, 1.0}. We evaluate each system in444

terms of F1 score on Japanese BenchIE, where each445

fact is considered correctly extracted if at least one446

system extraction exactly matches any of the gold447

extractions of its respective fact synset. All re-448

2It took us ca. 10 GPU-days to carry out EN-JA data
transfer. We refer the reader to Kolluru et al. (2022) for more
details on AACTrans (with CLP).

3http://www.kecl.ntt.co.jp/icl/lirg/
jparacrawl/

4https://github.com/neulab/
awesome-align

5https://spacy.io/models/ja

Model P R F1

Baselines
zero-shot MILIE 0.00 0.00 0.00
direct LP MILIE 21.57 0.55 1.08
AACTrans GenOIE 0.00 0.00 0.00
AACTrans Gen2OIE 0.25 0.11 0.16
AACTrans MILIE 20.44 0.58 1.13
LFP Strategies
RO CS CM
✓ ✓ ✓ MILIE 15.75 5.80 8.48
✓ ✓ MILIE 19.27 4.81 7.69
✓ ✓ MILIE 13.06 4.34 6.51
✓ MILIE 15.03 2.44 4.17

✓ ✓ MILIE 1.50 0.44 0.68
✓ MILIE 2.74 0.11 0.21

✓ MILIE 0.07 0.03 0.04

Table 2: Precision (P), Recall (R) and F1 scores (%) on
Japanese BenchIE. AACTrans is with CLP as described
in (Kolluru et al., 2022), based on our reproduction ex-
periments. RO, CS and CM refer to reordering, code-
switching and case marker insertion, respectively. See
visualization of standard derivations in Appendix B.1.

ported performance scores are averages over three 449

runs corresponding to initializations with different 450

random seeds. We provide further details about the 451

experimental setup in Appendix A. Main results 452

are shown in Table 2. We next discuss the results 453

w.r.t. our experimental questions. 454

4.1 Q1: Effectiveness of LFP strategies 455

AACTrans+CLP fails on EN-JA transfer. Much 456

like zero-shot transfer and simple label projec- 457

tion, AACTrans (with CLP) exhibits near-zero per- 458

formance on Japanese BenchIE, irrespective of 459

the underlying OpenIE model (GenOIE/Gen2OIE, 460

or MILIE). We believe that this is because CLP 461

(Faruqui and Kumar, 2015) fails between English 462

and Japanese: as noted by Kolluru et al. (2022), 463

CLP implicitly and strongly assumes that contigu- 464

ous spans in the source language correspond to 465

contiguous spans in the target language, which is 466

rarely the case between English and Japanese sen- 467

tences. As depicted in Figure 1, “give a book” at 468

indices (3,4,5) in the English sentence is aligned 469

to a discontiguous span “本あげる” (indices 3,7) 470

in the Japanese sentence. This leads to many in- 471

complete extractions in the Japanese dataset that 472

AACTrans automatically creates. 473

LFP strategies outperform baselines. The sys- 474

tem trained on data created by combining all three 475

LFP strategies we propose vastly outperforms the 476

baselines by over 7 points in F1 score and yields 477

Japanese OpenIE performance that is better than 478
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zero-shot transfer performance for German, a lan-479

guage much closer to English (cf. Table 3). Interest-480

ingly, AACTrans and direct label projection strate-481

gies, with MILIE as the OpenIE model, exhibit482

decent prediction, but extract very few of the gold483

facts from BenchIE, which makes them unavailing484

for practical OpenIE applications, e.g., knowledge485

base population (Gashteovski et al., 2020).486

4.2 Q2: Ablations across LFP strategies487

Bridging syntactic differences matters the most.488

We observe a drastic drop in performance if we489

eliminate the reordering (RO) strategy. Specifi-490

cally, not performing RO and applying only CS491

and CM yields an F1 drop of 7.8, bringing us back492

to the realm of near-zero performance. In contrast,493

disabling code-switching and case marker inser-494

tion results in much smaller performance drops495

of 0.79 and 1.97 F1 points, respectively. When496

the strategies are applied in isolation (i.e., without497

other strategies), RO also yields much better per-498

formance (4.2 F1) than CS and CM (near-zero per-499

formance). RO alone improves the performance by500

over 4 F1 points over the weak baseline (zero-shot)501

and about 3 F1 points over the strong LP baselines502

(direct LP and AACTrans). While CS and CM do503

not help on their own, they bring substantial further504

gains when combined with RO.505

The above observation reveals that reordering506

contributes most to the cross-lingual transfer perfor-507

mance for OpenIE, confirming that neural OpenIE508

models heavily rely on word order signals. This ex-509

plains why transfer to Japanese and German, both510

languages with a high degree of word order free-511

dom, is worse than cross-lingual transfer to, e.g.,512

Chinese.6 We thus conclude that bridging syntacti-513

cal differences play a more essential role in cross-514

lingual transfer for OpenIE than lexical alignment.515

4.3 Q3: LFP strategies for German516

To answer the third question regarding the effec-517

tiveness of the strategies for other languages, we518

conduct experiments on German (DE), another lan-519

guage with word ordering different from English.520

It is notable that compared with Japanese, German521

is more similar to English in terms of typology and522

lexical overlap. Consequently, we assume that the523

machine translator and the word aligner of EN-DE524

6Chinese obtains an F1 score of 20.5 in Kotnis et al. (2022),
whereas our best scores for Japanese and German are 8.48 and
11.54, respectively.

Precision Recall F1

Baselines
zero-shot 12.70±2.61 3.84±0.71 5.89±1.11
direct LP 22.32±1.26 6.11±0.47 9.59±0.69

LFP Strategies
RO CS
✓ ✓ 17.08±0.22 8.72±0.23 11.54±0.26

✓ 12.83±0.40 5.96±0.21 8.11±0.29
✓ 17.14±1.16 4.27±0.05 6.83±0.04

Table 3: Precision, Recall, and F1 scores (%) of MILIE
on German BenchIE. RO and CS refer to reordering
and code-switching, respectively. Values after ± show
the standard derivation of 3 runs. We omit AACTrans
for German due to the time required to collect the nec-
essary data for this method.
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Figure 5: Statistics showing the percentage of English
words aligned to the number of Japanese/German words.

should be more reliable than EN-JA, thus yielding 525

better label projections. 526

Settings. For machine translation, we adopt 527

the EN-DE machine translation model pretrained 528

on WMT19 (Barrault et al., 2019) provided by 529

fairseq (Ng et al., 2019)7. For word alignments, 530

we adopt the same multilingual word aligner AWE- 531

SOME as for EN-JA. Since German does not con- 532

tain case markers, we only perform cross-lingual 533

data transfer using the other two strategies: RO 534

and CS. The performance of MILIE trained on the 535

proxy data is evaluated on German BenchIE (Gash- 536

teovski et al., 2022), with results shown in Table 3. 537

LFP strategies also work on German. For Ger- 538

man, we also see the combination of both LFP 539

strategies yield the best performance, outperform- 540

ing the strongest baseline by nearly 2 F1 points. 541

In contrast to EN-JA, RO by itself does not beat 542

the direct LP baseline. To investigate the cause, we 543

7https://github.com/facebookresearch/
fairseq/blob/main/examples/translation/
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quantify the statistics of word alignments between544

English training data and the automatically trans-545

lated Japanese/German respective counterparts in546

Figure 5. We find that the EN-JA alignments leave547

more English words unaligned or aligned to more548

than 1 word compared to the EN-DE alignments.549

In other words, the word aligner for EN-DE pro-550

vides more 1-to-1 mappings. Such 1-to-1 mappings551

promise better label projection results, making di-552

rect LP a stronger baseline for this language pair.553

The observation indicates that our proposed LFP554

strategies exhibit superiority especially when the555

automatic translation and word alignment are less556

reliable. The situation is more likely to happen557

when the target language is a low-resource lan-558

guage or distant from the source language.559

5 Related Work560

Although OpenIE has been a heated topic since561

proposed by Banko et al. (2007), most of the dis-562

cussions are focused on English (Mausam et al.,563

2012; Del Corro and Gemulla, 2013; Angeli et al.,564

2015; Mausam, 2016; Stanovsky et al., 2018; Kol-565

luru et al., 2020). While some efforts have been566

made on non-English languages, these methods567

are rule-based, relying heavily on pre-defined syn-568

tactic rules (Zhila and Gelbukh, 2014; Guarasci569

et al., 2020; Wang et al., 2021). The rules, however,570

are highly language-dependent and hard to transfer571

between different languages.572

Faruqui and Kumar (2015) proposed to translate573

non-English sentences into English, extract rela-574

tions with existing English systems, and project575

the extracted labels back to the non-English lan-576

guage. However, Claro et al. (2019) pointed out577

that cross-lingual transfer depending solely on ma-578

chine translation is not reliable. In addition, we579

observe that such cross-lingual label projections580

tend to be suboptimal when the target language is581

syntactically distant from English.582

More recently, neural OpenIE systems trained583

with supervised data exhibit reasonable perfor-584

mance (Stanovsky et al., 2018; Kolluru et al., 2020).585

Similar to most neural systems, these systems586

are free from hand-crafted rules, while the perfor-587

mance is guaranteed by the large scale of training588

data. Developing multi- and cross-lingual Ope-589

nIE systems have hence become increasingly more590

important since training data in non-English lan-591

guages are difficult to obtain (Claro et al., 2019).592

To this end, Ro et al. (2020) and Kotnis593

et al. (2022) designed OpenIE systems on top of 594

mBERT (Devlin et al., 2019) and trained the sys- 595

tems on English data. Although these systems ex- 596

hibited reasonable zero-shot performance on some 597

languages, the performance gap between different 598

languages is severe. For example, the performance 599

on German and Arabic is worse than that on Chi- 600

nese and Galician (Kotnis et al., 2022). We pos- 601

tulated that the performance gap is due to drastic 602

syntactical differences, such as the word order, be- 603

tween these languages and English. This assump- 604

tion has been confirmed in our experiments, where 605

the reordering of English sentences proved to be 606

especially effective in bridging the gap between 607

such languages and English. 608

Kolluru et al. (2022) proposed AACTrans to au- 609

tomatically generate training data in the target lan- 610

guage by translating English sentences and their 611

extractions. However, we observed the approach 612

suffers from a low recall on Japanese OpenIE. In 613

contrast, our proposed LFP strategies to promote 614

cross-lingual transfer vastly outperform this base- 615

line by over 7 F1 points on EN-JA cross-lingual 616

transfer. It is also notable that AACTrans is more 617

time-consuming than our proposed methods. 618

6 Conclusion 619

This work tackles the issue of transferring knowl- 620

edge from English to a syntactically-different lan- 621

guage, using Japanese as the representative. To 622

this end, we first propose Japanese BenchIE, a test 623

set for Japanese OpenIE. We observed existing ap- 624

proaches yielding extremely low F1 scores on the 625

test set. We thus promote EN-JA cross-lingual trans- 626

fer by combating their differences. Specifically, 627

we introduced three Linguistic Feature Projection 628

(LFP) strategies for generating a proxy dataset that 629

contains the linguistic features of both English and 630

Japanese. Through experiments, we confirmed that 631

OpenIE systems trained on the generated proxy 632

dataset outperform all baselines on Japanese. Abla- 633

tion studies showed that reordering English words 634

to resemble the typical word order of Japanese 635

was the most important ingredient for encourag- 636

ing cross-lingual transfer. Apart from Japanese, 637

German also benefits from the LFP strategies. 638

Future works include examining the effective- 639

ness of proposed LFP strategies on other language 640

pairs and extending the strategies to syntax levels, 641

such as dependency tree alignment or projection. 642
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Limitations643

Although this work improves cross-lingual transfer644

between English and another distant language, sev-645

eral limitations exist. Firstly, the Japanese BenchIE646

could be biased as it is annotated by only one an-647

notator. The reliability of our proposed benchmark648

could be improved by recruiting more annotators.649

Secondly, the proposed linguistic feature projection650

strategies presume the accessibility of pre-trained651

machine translation systems and word aligners.652

For low-resource language pairs where these pre-653

trained systems are unavailable, the cross-lingual654

transfer could be difficult. Thirdly, one of our in-655

troduced LFP strategies, i.e., case marker insertion,656

is specific to Japanese.657

Ethical Considerations658

Although we do not foresee a substantial ethical659

concern in our proposed strategies, there may be a660

side effect passed down from the pre-trained sys-661

tems. It is thus important to choose nontoxic and662

reliable machine translation and word alignment663

systems during pre-processing.664

Note that during data collection, we obey the665

General Data Protection Regulation (GDPR) law8666

that protects both the annotators and the data.667
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A Detailed Experiment Settings 926

A.1 Dataset Statistics 927

The basis of our training data is the OpenIE cor- 928

pus provided by Zhan and Zhao (2020).9 The 929

dataset contains 1,109,411 English sentences with 930

2,175,294 corresponding triples. For the zero-shot 931

baseline, we adopt the dataset as-it-is, while for 932

other approaches, we apply cross-lingual transfer 933

techniques on the dataset to create proxy data. Fi- 934

nal training data is collected after several steps of 935

pre-processing as described in Kotnis et al. (2022). 936

For evaluation, we test our systems on 937

BenchIE (Gashteovski et al., 2022). The statis- 938

tics of BenchIE are shown in Table 4. Notably, 939

Japanese BenchIE has more instances due to the 940

massive number of case markers being automati- 941

cally optionalized in the gold annotations. As a fu- 942

ture direction, it is meaningful to improve Japanese 943

BenchIE by revising the annotation guideline and 944

recruiting more human annotators. 945

A.2 Model Parameters 946

We adopt pre-trained machine translation systems 947

and neural word aligners without finetuning in this 948

work. The only neural system we are training is MI- 949

LIE. Notably, we hide the dependency label infor- 950

mation from MILIE, further reducing the number 951

of trainable parameters. Hiding such information 952

also makes our experiment result slightly different 953

from those reported in the original paper. As a re- 954

sult, the system has 177.9M trainable parameters 955

in total. 956

9https://github.com/zhanjunlang/Span_
OIE
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Figure 6: Evaluation results of MILIE on Japanese and
German BenchIE. Error bars demonstrate the standard
derivations.

A.3 Computational Budgets957

Throughout this paper, we conduct experiments on958

NVIDIA TITAN RTX GPUs (24GB RAM). As pre-959

processing, we automatically translate sentences in960

the English training data into the target language961

using a machine translation system. The transla-962

tion takes approximately 48 GPU hours. After that,963

we perform word alignments between the original964

sentence and the automatically translated sentence,965

taking approximately 10 GPU hours. Note that the966

both the machine translation and the word align-967

ment need to be performed only once for each lan-968

guage pair. The automatically translated sentence969

and the word alignments are reused for all exper-970

iments regarding the language pair. The training971

on each proxy dataset created using the proposed972

strategies takes up to 20 hours on a single GPU.973

B Additional Experiment Results974

B.1 Descriptive Statistics975

In this section, we visualize the experiment results976

reported in Table 2 and 3 with the standard devia-977

tion, as shown in Figure 6. The results are arranged978

in descending order of F1 scores.979

Precision Recall F1

EN 38.93±0.65 21.95±0.34 28.61±0.47
DE 17.08±0.22 8.72±0.23 11.54±0.26
JA 15.75±0.80 5.80±0.08 8.48±0.17

Table 5: Precision, Recall, and F1 scores (%) of BenchIE
on multiple languages. For EN, we report the perfor-
mance of system trained on English data. For DE and
JA, we report the best performance of systems trained
on the proxy dataset generated from LFP. Values after
± show the standard derivation over 3 runs.

B.2 Performance on English BenchIE 980

Here, we show the performance of MILIE on En- 981

glish BenchIE to quantitively show the difficulty of 982

BenchIE. As in Table 5, MILIE, the current state- 983

of-the-art neural OpenIE system, scores no more 984

than 30 F1 points on English BenchIE. Given that 985

the system is trained on the same language, i.e., 986

English, as it is evaluated, we witness the difficulty 987

of BenchIE. Therefore, we emphasize the success 988

of our proposed LFP strategies in bringing up the 989

system’s performance on Japanese BenchIE, with- 990

out using any human-annotated data for Japanese 991

OpenIE. 992
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