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Abstract

Open Information Extraction (OpenlE) struc-
tures information from natural language text in
the form of (subject, predicate, object) triples.
Supervised OpenlE is in principle only possi-
ble for English, for which plenty of labeled
data exists. Recent research efforts tackled
multilingual OpenlE by means of zero-shot
transfer from English, with massively multi-
lingual language models as vehicles of trans-
fer. Given that OpenlE is a highly syntactic
task, such transfer is bound to fail for languages
that are syntactically more complex and distant
from English. In this work, we verify this for
Japanese, for which the state-of-the-art OpenlE
transfer approach yields near-zero performance.
We next propose three Linguistic Feature Pro-
jection strategies, which lead to training data
that contains features of both the source (En-
glish) and target (Japanese) language, namely
(1) reordering of words in source-language ut-
terances to match the target language word or-
der (RO), (ii) code-switching (CS), and (iii)
insertion of Japanese case markers into English
utterances (CM). Experiments, on a newly con-
structed Japanese OpenlE benchmark, render
all three strategies effective and mutually com-
plementary. Further, we show that RO and CS,
as target language-agnostic strategies, also lead
to gains in transfer to German, a language syn-
tactically closer to English as the source.

1 Introduction

Open Information Extraction (OpenlE) is the task
of structuring relational information from natu-
ral language text into (subject, predicate, object)
triples (Banko et al., 2007). The task distinguishes
itself from other Information Extraction tasks by
being schema-free, i.e., requiring no pre-defined on-
tologies for entities and relations (Mausam, 2016).

Recently, neural OpenlE models — effectively
supervised OpenlE models based on pretrained
LMs — have attracted much attention from the com-
munity (Stanovsky et al., 2018; Cui et al., 2018;

Kolluru et al., 2020). These models yield reason-
able OpenlE performance for English, the only
language for which labeled OpenlE data is plenti-
ful. The lack of labeled data prevents training sim-
ilarly performant OpenlE models for most other
languages. Because of this, approaches that aim to
support multilingual OpenlE, e.g., Multi2OIE (Ro
et al., 2020) and MILIE (Kotnis et al., 2022), resort
to (zero-shot) cross-lingual transfer of the model
trained on English OpenlE data, exploiting mas-
sively multilingual LMs such as mBERT (Devlin
et al., 2019) or XLM-R (Conneau et al., 2020) as
the vehicle of transfer. Cross-lingual transfer with
multilingual LMs, especially for lower-level syntac-
tic tasks, has been shown ineffective for target lan-
guages that are linguistically distant from English
as the source language (Lauscher et al., 2020). Con-
versely, structural similarity between languages,
including word-ordering and word frequency distri-
butions, seems to be the critical factor of successful
cross-lingual transfer with multilingual LMs K et al.
(2020). Kotnis et al. (2022) show that cross-lingual
transfer for OpenlE based on mBERT is also far
from robust: they show massive performance drops
even for target languages that exhibit moderate syn-
tactical dissimilarities with respect to English, such
as German or Arabic.

In this work, we set out to improve the cross-
lingual transferability of neural OpenlE, from En-
glish (EN) to syntactically dissimilar languages,
with a special focus on Japanese (JA). To this end,
we first create a comprehensive OpenlE evaluation
benchmark for Japanese. We adopt the BenchlE
evaluation paradigm (Gashteovski et al., 2022) that
rewards only fully correct and non-redundant ex-
tractions, rather than token overlap with gold ex-
tractions. We extend the existing multilingual
BenchlE dataset with the Japanese portion. Us-
ing Japanese BenchlE, we observe that zero-shot
transfer to Japanese — as a language highly syntacti-
cally dissimilar to English — yields near-zero perfor-
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Figure 1: Dependency parsing trees (SpaCy, Honnibal
and Montani (2017)) of an EN-JA parallel sentence pair.
Gray lines in between represent alignment results from
a token-level aligner (Dou and Neubig, 2021). As a
visual aid, we highlight content words with the same
semantic meaning using the same color.

mance, even when combined with cross-lingual la-
bel projection strategies (Faruqui and Kumar, 2015;
Kolluru et al., 2022).

Having analyzed the differences in word order
and structure of dependency trees between lan-
guages on pairs of parallel sentences (as illustrated
in Figure 1), we propose several linguistic fea-
ture projection (LFP) strategies to improve cross-
lingual transfer for OpenlE between syntactically
dissimilar languages (in our case, primarily En-
glish and Japanese). The LFP strategies we em-
ploy facilitate the transfer by constructing an in-
termediate language (to which we refer as pseudo-
English), which effectively interpolates between
English as the source language and the target lan-
guage (Japanese). Concretely, we investigate three
different LFP strategies: (1) reordering (RO): re-
order words in the English sentences to match the
word order of the Japanese translation (see Fig-
ure 2); (2) code-switching (CS): replace some of
the English tokens with their Japanese word align-
ments (Figure 3); while code-switching has no ef-
fect on syntactical alignment, we expect it to push
pseudo-English closer to Japanese lexically; and (3)
case marker insertion (CM): insert Japanese case
markers, i.e., special linguistic units that give im-
portant hints about the grammatical roles of noun
phrases, into the English sentence (Figure 4); while
RO and CS can be used for any target language
(see §4.3), CM is tailored specifically for Japanese.

We automatically translate OpenlE-labeled En-
glish training data to the target language and apply
the three LFP strategies. Finally, we train the state-
of-the-art neural MILIE (Kotnis et al., 2022) on

the obtained pseudo-English data. Evaluation on
Japanese BenchlE renders all three LFPs effective,
and mutually complementary: their combination
pushes Japanese OpenlE performance from (near
to) zero to zero-shot transfer performance of lan-
guages syntactically closer to English (e.g., Ger-
man). Furthermore, we show that RO and CS, two
target language-agnostic strategies, also improve
OpenlE performance for German, a language that is
syntactically more similar to English than Japanese.

2 Japanese BenchlE
2.1 OpenlE: Task Definition

OpenlE is the task of collecting structured facts in
the form of (s, p, o) from natural language texts,
where s, p, and o stand for subject, predicate, and
object, respectively. Here, we define all compo-
nents of structured facts as text spans extracted
from the original text. Given a natural language
sentence S = wi, ws, ..., Wy, the goal is to ex-
tract all structured facts in S as a set of triples

T = {(81>p1701)7 (32,]92, 02>a C) (skapka Ok)}

2.2 Creating Japanese BenchlE

BenchlE (Gashteovski et al., 2022) is a multi-
lingual benchmark that estimates OpenlE per-
formance more reliably than measures based on
token overlaps leveraged by prior benchmarks
like OIE2016 (Stanovsky and Dagan, 2016) and
CaRB (Bhardwaj et al., 2019). BenchlE defines
fact synsets that group all (s, p, 0) valid extractions
that describe the same fact (Table 1). If the ex-
traction perfectly matches any one of the gold ex-
tractions of a synset, then the corresponding fact
is regarded as correctly extracted. Being complete,
BenchlE rewards only exact matches against some
gold extractions and avoids excessive rewarding
of systems that produce highly overlapping extrac-
tions that describe the same fact.

We create a Japanese portion of BenchlE fol-
lowing the annotation process described in Gash-
teovski et al. (2022). We ask a bilingual annota-
tor native in Japanese and fluent in English to (i)
first translate sentences from English BenchlE to
Japanese and then (ii) label the fact synsets us-
ing an annotation tool, AnnlE (Friedrich et al.,
2022). Finally, following the annotation guide-
lines of BenchlE, we detect and optionalize some
tokens that do not affect the meaning of clauses.!

'This is important in order not to unnecessarily penalize
OpenlE systems. For more details, we refer the reader to



Sentence: A large gravestone was erected in 1866, over 100 years after his death.

after his death

id subject predicate object

1 [A] [large] gravestone was erected in 1866

[A] [large] gravestone was erected in 1866

[A] [large] gravestone was erected in 1866

2 [A] [large] gravestone was erected [over 100 years] after his death
[

[A] [large] gravestone

was erected [over 100 years]

Table 1: An example sentence in English BenchlE (Gashteovski et al., 2022) with 2 fact synsets. A fact synset
contains one or more gold extractions. Tokens in brackets ([]) are optional and can be omitted in extractions.

To aid the annotation process, we detect optional
Japanese tokens automatically based on their posi-
tions in dependency trees: these are the dependent
tokens linked to their governors with the depen-
dency relation aux from the Japanese UD label
set (Tanaka et al., 2016; Asahara et al., 2018). We
also make optional case markers, a special type of
functional token present in Japanese (we provide
more details in §3.2.3).

2.3 Baseline OpenlE Transfer Methods

We first evaluate the performance of MILIE (Kotnis
et al., 2022) — a state-of-the-art OpenlE system
based on mBERT — on Japanese BenchlE, after
subjecting it to two standard transfer techniques
for token level tasks: (i) zero-shot cross-lingual
transfer and (ii) label projection. We show the
performance for these standard transfer approaches
in the first two rows of Table 2 (see §4).

Zero-Shot Transfer. We evaluate MILIE trained
on English OpenlE data directly on Japanese
BenchlE. Unfortunately, the model yields an F;
score of 0.0 on Japanese BenchlE (reference per-
formance on English BenchlE is 28.61, see Ap-
pendix B.2), confirming our suspicion that zero-
shot OpenlE transfer between structurally dissim-
ilar languages fails. A closer look at the extrac-
tions, revealed that all of them reflected the Subject-
Predicate-Object order, i.e., the predicate was al-
ways a span of text from the sentence located be-
tween the spans extracted as the subject and object.
This clearly reflects the Subject-Verb-Object (SVO)
common in English, but highly unusual in Japanese,
for which the most common word order is Subject-
Object-Verb (SOV).

Direct Label Projection. We carry out a second
pilot experiment, facilitating the transfer by means
of direct label projection (direct LP, Yarowsky et al.
(2001); Akbik et al. (2015); Aminian et al. (2019)).

Gashteovski et al. (2022).

To this end, we first automatically translate la-
beled sentences from the English training set to
Japanese. We then find word alignments for each
parallel EN-JA sentence pair, using a state-of-the-
art word aligner (we provide details in §3.1. Finally,
we use the obtained word alignments to transfer
the token-level labels (which belong to the stan-
dard BIO scheme for sequence labeling) to the
Japanese sentence. For example, consider the sub-
ject span (labeled in the original English sentence)
s = (wi", wit,, ws,) with the induced EN-JA
word alignment (wg", wjf‘), (wil o, wza_l ); note that
wgy ¢ 1s not aligned with any Japanese token in this
case. The corresponding subject span in Japanese
is then s = (w)' |, w}'). The Japanese triple ob-
tained this way is then considered to be a “gold” ex-
traction from the automatically-translated Japanese
sentence. We then use this label-projected noisy
Japanese OpenlE corpus to train MILIE. While
better than zero-shot transfer, label projection still
yields near-zero performance (1% F;) on Japanese
BenchlE, making the corresponding MILIE model
unavailing for practical usage.

3 Linguistic Feature Projection

We have shown that MILIE trained with English
data fails to extract valid relation triples from
Japanese text. Based on insights of previous
works (K et al., 2020; Gashteovski et al., 2022;
Kotnis et al., 2022), as well as our own observation
in §2.3, it is reasonable to conclude that transfer
failure is due to systematic syntactic discrepan-
cies between English and Japanese. We propose
to remedy for this with Linguistic Feature Projec-
tion (LFP), that is, by converting labeled English
sentences into pseudo-English that reflects the syn-
tactic properties of Japanese. This way, we aim to
(1) emulate Japanese syntax in our training data
while, unlike with label projection, (2) retaining
clean token-level OpenlE labels.

Concretely, we propose three LFP strategies:
reordering (RO), code-switching (CS), and case



marker insertion (CM). Reordering is meant to
bridge the difference in word order between the
languages, code-switching brings additional lexico-
semantic alignment, whereas case marker inser-
tion — as the only language-specific manipulation —
caters for both syntactic and lexical differences.

3.1 Preprocessing

To perform LFP from Japanese to English, we
first need to translate labeled English sentences
to Japanese and induce word alignments.

Machine Translation. We assume that high-
quality OpenlE training data is available in En-
glish but not in the target language (Japanese).
We thus need to first generate Japanese texts par-
allel to English texts to serve as points of refer-
ence for Japanese linguistic features. To gener-
ate the parallel data, we resort to a state-of-the-art
EN-JA neural machine translation system. Specifi-
cally, for each sentence S = w{™, ws", ..., w5
with n tokens, we obtain its Japanese translation
Sia = i wd, ... wih with m tokens.

Word Alignment. Next, we perform word align-
ment between S and S7* with the help of a pre-
trained neural aligner. This way, we effectively
split English tokenbs into two disjoint groups:
(1) Wen—ia: English tokens with one (or more)
Japanese tokens aligned to them, and (2) TWe»7*i2;
English tokens not aligned to any Japanese tokens.

3.2 LFP Strategies

Throughout this section we use the following En-
glish sentence as a running example: “Ivan will
give a book to Anna”, with its Japanese transla-
tion shown in Figure 1. The example contains a
knowledge fact that can be structured as a triple
(Ivan, give a book to, Anna). Each LFP strategy
that we introduce below is then applied to both
texts and corresponding triples.

3.2.1 Reordering

Sentences. For each sentence S written in En-
glish, our goal is to reorder the words to form a
new sentence SR, that reflects the word order of
the Japanese translation S3. We first reorder En-
glish words based on the order of their aligned
Japanese counterparts. We reposition each aligned
English token w$® € W2 according to the in-
dex of its Japanese alignment w;a in 59, If we™ is
aligned with multiple Japanese tokens, we choose
the Japanese token for which the word alignment

177y Ik K% TvF T HITLH =ZAHD
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7
Ivan will give a book to Anna
1 reorder
1 5 7 6 3 2
Ivan book Anna to give will
1insert
1 5 7 6 3 4 2
Ivan book Anna to give a will

Figure 2: The reordering strategy.

model yielded the highest confidence. As shown
in the example in Figure 2, ‘give’ is placed after
‘book’ because ‘give’ is aligned to ‘@ |F %’ and
‘book’ is aligned to ‘“A%’, and ‘A’ comes after ‘&
\7' %" in the Japanese translation. In the second
step, we insert English tokens without alignment
wit € TWen7 into the reordered sentence: for
each such token, we place it directly after the clos-
est preceding aligned token wi™ € Wen—ia In the
example from Figure 2, we place ‘a’ after ‘give’ as
its closest preceding token.

Triples. Tokens within each triple element (i.e.,
subject, predicate, and object) are then reordered
to match the token ordering of the new, re-
ordered pseudo-English sentence. In the ex-
ample, the triple (Ivan, give a book to, Anna) be-
comes (Ivan, book to give a, Anna).

3.2.2 Code-Switching

Code-switching, or code-mixing, is a common phe-
nomenon in multilingual communities, with speak-
ers seamlessly switching between two or more lan-
guages, even within sentences. Inspired by Kir-
ishnan et al. (2021), we adopt code-switching to
produce sentences comprising both English and
Japanese tokens. Training on the code-switched
sentences, we expect the MILIE (and mBERT as its
underlying LM) to establish better and task-specific
lexico-semantic alignments between the two lan-
guages. Training on code-switched data is thus
expected to improve target language (Japanese)
performance compared to training on English (or
pseudo-English) sentences alone.

Sentences. For each sentence S°" written in En-
glish, we replace words with their Japanese coun-
terparts to form a code-switched sentence S¢i. For
each English token w* € W™ aligned to a
Japanese token wy", we replace it by w’" with prob-



17y F AR x TvF L »HTLH EAD
1 2 3 4 5 6 7 8
1 4 5 6 7
Ivan will give a book to Anna
1c0de-switch
1 2 3 4 S 6 7
177> will give a A 12  Anna

Figure 3: The code-switching strategy.

ability p. As in RO, we choose wy" that is most
confidently aligned to w®™ € We"i2 by the word
aligner. We introduce the hyperparameter p as the
percentage of aligned English tokens to be replaced
with their Japanese alignments. As shown in Fig-
ure 3, if we set p = 0.5, half of the aligned English
tokens will be replaced by their Japanese counter-
parts. In this specific example, we have ‘Ivan’
replaced with ‘-7 ™7 7 >°, “to’ replaced with *(Z”,
and ‘book’ replaced with ‘ZA’, while ‘will’, ‘give’,
and ‘Anna’ are unchanged.

Triples. Similar as in RO, in CS we switch the
tokens of the triple elements according to their re-
placements (or lack thereof) in S¢g. In this ex-
ample, the triple (Ivan, give a book to, Anna) be-

comes (1 7' 7 ~, give a & 2, Anna).

3.2.3 Inserting Case Markers

Our last LFP strategy is specifically tailored for
Japanese, and focuses on case markers, a special
class of functional tokens in Japanese.

Case Markers in Japanese. Case markers (kaku-
Jjoshi) are special functional tokens that immedi-
ately follow noun phrases (NP) they refer to. Case
markers indicate the grammatical role of their re-
spective NPs, and thus provide important signals
for syntactic tasks like OpenlE. In the example
from Figure 1, the 4th Japanese token, ‘% (wo)’ is a
case marker that commonly accompanies the object
of an action. In this example, ‘% (wo)’ indicates
that ‘/R(book)’ is the object of ‘@ |J 5 (give)’.
Case markers thus reveal a lot about the syntactic
structure of Japanese sentences: e.g., the Universal
Dependency (UD) annotations for Japanese have
rules that determine dependency labels based on
case markers (Tanaka et al., 2016; Asahara et al.,
2018; Omura and Asahara, 2018). Under UD, the
case marker and the NP it modifies are connected
by a dependency arc labeled case, as in Figure 1.

17y E K & TUF AT TS EHS
1 2 3 4 5 7 8
1 3 4 5 6 7
Ivan will give a  book to Anna

1insert case marker

12 3 4 5 6 7 8 9 10
Ivan (& will give a book % to (Z Anna

Figure 4: The case marker insertion strategy.

Sentences. For each English sentence S, our
goal is to insert Japanese case markers at the ad-
equate position, resulting in a new sentence S¢iy;.
For each English token w® € W™ that is
aligned to some Japanese token w’", we check

whether w}il,
If so, we insert w)’, directly after w™. In the
example from Figure 4, given the word alignment
pairs (Ivan, 1 7' 7 ), (book, &) and (Anna, 7
> F), we insert case markers ‘1¥’, ‘%’ and ‘12’
after ‘Ivan’, ‘book’ and ‘Anna’, respectively, into

the English sentence.

following wY", is a is a case marker.

Triples. To preserve the contiguity of each span,
we also insert case markers in the triples. In this
example, the triple corresponding to sentence S¢i
is (Ivan 1%, give a book %, Anna (Z).

4 Experiments

Experimental questions. We have introduced
three LFP strategies to bridge the gap between En-
glish and Japanese both structurally and lexically.
In this section, we describe the experiments we
conducted with the aim of answering the following
questions: (Q1) Are proposed LFP strategies ef-
fective in EN-JA cross-lingual transfer for OpenlE?
(Q2) Which of the LFP strategy helps the most
in cross-lingual OpenlE transfer? (Q3) Could RO
and CS, as language-agnostic LFP strategies, be
beneficial for other target languages?

Baselines. In addition to zero-shot transfer and
label projection (discussed in §2.3) as sanity-check
baselines, we additionally compare our LFP strate-
gies against the recently-proposed state-of-the-art
cross-lingual transfer technique for OpenlE dubbed
Alignment-Augmented Constrained Translation
(AACTrans, Kolluru et al. (2022)). AACTrans is
essentially a sequence-to-sequence model for trans-
ferring OpenlE training data from source to target
language. AACTrans aims to improve consistency



between the transferred sentence and triples by en-
suring that triples consist only of tokens present
in the sentence. AACTrans requires a parallel cor-
pus, a machine translation model, and a word align-
ment model between the source and target language.
We train three different neural OpenlE models —
GenOIE, Gen2OIE, both proposed together with
AACTrans (Kolluru et al., 2022), and MILIE (Kot-
nis et al., 2022) — on data generated by AACTrans
via Cross-Lingual Projection (CLP, Faruqui and
Kumar (2015)), a type of label projection. It is
worth noting that transferring OpenlE training data
with AACTrans (via CLP) is time-consuming as it
requires multiple rounds of MT training.”

Pre-trained Systems for LFP. Three pre-trained
systems are required for our LFP strategies. Specif-
ically, we employ: (1) the EN-JA machine transla-
tion system from Morishita et al. (2020) to translate
English training data to Japanese;® (2) the multi-
lingual word aligner AWESOME®* from Dou and
Neubig (2021) to align words between English sen-
tences and their automatically-translated Japanese
counterparts; and, for the CM strategy, (3) the de-
pendency parser trained on the Japanese UD Tree-
bank (Omura and Asahara, 2018) from SpaCy.’

Configurations. We create seven proxy datasets,
one for each possible combination of the three pro-
posed LFP strategies and train MILIE (Kotnis et al.,
2022) on each of the datasets. The source data is
the English OpenlE4 training set from Zhan and
Zhao (2020), commonly used in prior work (Ro
et al., 2020; Kotnis et al., 2022). We train MILIE
on top of mBERT (Devlin et al., 2019), arguably
the most widely used massively multilingual LM.
We follow Kotnis et al. (2022) and set the batch
size, learning rate, and the number of epochs to 128,
3e-5, and 2.0, respectively. For code-switching, we
set the replacement rate to p = 0.2 (i.e., we switch
20% of English tokens), after searching over the
grid {0.2,0.5,1.0}. We evaluate each system in
terms of F; score on Japanese BenchlE, where each
fact is considered correctly extracted if at least one
system extraction exactly matches any of the gold
extractions of its respective fact synset. All re-

Mt took us ca. 10 GPU-days to carry out EN-JA data
transfer. We refer the reader to Kolluru et al. (2022) for more
details on AACTrans (with CLP).

Shttp://www.kecl.ntt.co.jp/icl/lirg/
jparacrawl/

*nttps://github.com/neulab/
awesome—align

Shttps://spacy.io/models/ja

Model P R F,

Baselines
zero-shot MILIE 0.00 0.00 0.00
direct LP MILIE 21.57 055 1.08
AACTrans GenOIE 0.00 0.00 0.00
AACTrans Gen20IE 025 0.11 0.16
AACTrans MILIE 20.44 058 1.13
LFP Strategies
RO CS CM
v v v MILIE 1575 5.80 8.48
v v MILIE 19.27 481 17.69
v v MILIE 13.06 4.34 6.51
v MILIE 15.03 244 417
v v MILIE 1.50 044 0.68
v MILIE 274  0.11 0.21
v MILIE 0.07 0.03 0.04

Table 2: Precision (P), Recall (R) and F; scores (%) on
Japanese BenchlE. AACTrans is with CLP as described
in (Kolluru et al., 2022), based on our reproduction ex-
periments. RO, CS and CM refer to reordering, code-
switching and case marker insertion, respectively. See
visualization of standard derivations in Appendix B.1.

ported performance scores are averages over three
runs corresponding to initializations with different
random seeds. We provide further details about the
experimental setup in Appendix A. Main results
are shown in Table 2. We next discuss the results
w.r.t. our experimental questions.

4.1 Q1: Effectiveness of LFP strategies

AACTrans+CLP fails on EN-JA transfer. Much
like zero-shot transfer and simple label projec-
tion, AACTrans (with CLP) exhibits near-zero per-
formance on Japanese BenchlE, irrespective of
the underlying OpenlE model (GenOIE/Gen2OIE,
or MILIE). We believe that this is because CLP
(Faruqui and Kumar, 2015) fails between English
and Japanese: as noted by Kolluru et al. (2022),
CLP implicitly and strongly assumes that contigu-
ous spans in the source language correspond to
contiguous spans in the target language, which is
rarely the case between English and Japanese sen-
tences. As depicted in Figure 1, “give a book™ at
indices (3,4,5) in the English sentence is aligned
to a discontiguous span “A & 1+ % (indices 3,7)
in the Japanese sentence. This leads to many in-
complete extractions in the Japanese dataset that
AACTrans automatically creates.

LFP strategies outperform baselines. The sys-
tem trained on data created by combining all three
LFP strategies we propose vastly outperforms the
baselines by over 7 points in F; score and yields
Japanese OpenlE performance that is better than
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zero-shot transfer performance for German, a lan-
guage much closer to English (cf. Table 3). Interest-
ingly, AACTrans and direct label projection strate-
gies, with MILIE as the OpenlE model, exhibit
decent prediction, but extract very few of the gold
facts from BenchlE, which makes them unavailing
for practical OpenlE applications, e.g., knowledge
base population (Gashteovski et al., 2020).

4.2 Q2: Ablations across LFP strategies

Bridging syntactic differences matters the most.
We observe a drastic drop in performance if we
eliminate the reordering (RO) strategy. Specifi-
cally, not performing RO and applying only CS
and CM yields an F; drop of 7.8, bringing us back
to the realm of near-zero performance. In contrast,
disabling code-switching and case marker inser-
tion results in much smaller performance drops
of 0.79 and 1.97 F; points, respectively. When
the strategies are applied in isolation (i.e., without
other strategies), RO also yields much better per-
formance (4.2 Fy) than CS and CM (near-zero per-
formance). RO alone improves the performance by
over 4 F; points over the weak baseline (zero-shot)
and about 3 F; points over the strong LP baselines
(direct LP and AACTrans). While CS and CM do
not help on their own, they bring substantial further
gains when combined with RO.

The above observation reveals that reordering
contributes most to the cross-lingual transfer perfor-
mance for OpenlE, confirming that neural OpenlE
models heavily rely on word order signals. This ex-
plains why transfer to Japanese and German, both
languages with a high degree of word order free-
dom, is worse than cross-lingual transfer to, e.g.,
Chinese.® We thus conclude that bridging syntacti-
cal differences play a more essential role in cross-
lingual transfer for OpenlE than lexical alignment.

4.3 Q3: LFP strategies for German

To answer the third question regarding the effec-
tiveness of the strategies for other languages, we
conduct experiments on German (DE), another lan-
guage with word ordering different from English.
It is notable that compared with Japanese, German
is more similar to English in terms of typology and
lexical overlap. Consequently, we assume that the
machine translator and the word aligner of EN-DE

®Chinese obtains an F; score of 20.5 in Kotnis et al. (2022),
whereas our best scores for Japanese and German are 8.48 and
11.54, respectively.

Precision Recall F;

Baselines
zero-shot 12.704261  3.841071 5.894111
direct LP 2232412 6.114047  9.59+060
LFP Strategies
RO CS

v v 17.08402 8721023 11.541026

v 12834040 5.964021  8.114020
Ve 17'14:i:1.16 4.27:{:0.05 6,83:‘:0.04

Table 3: Precision, Recall, and F; scores (%) of MILIE
on German BenchlE. RO and CS refer to reordering
and code-switching, respectively. Values after + show
the standard derivation of 3 runs. We omit AACTrans
for German due to the time required to collect the nec-
essary data for this method.

EN word with # JA/DE words aligned

. A
80 DE
T 601
[e)]
E I
C
§40' I
[]
[oN
20 A
o-&l I —
0 1 2 3 4 5

6 7 8 9
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Figure 5: Statistics showing the percentage of English
words aligned to the number of Japanese/German words.

should be more reliable than EN-JA, thus yielding
better label projections.

Settings. For machine translation, we adopt
the EN-DE machine translation model pretrained
on WMTI19 (Barrault et al., 2019) provided by
fairseq (Ng et al., 2019)’. For word alignments,
we adopt the same multilingual word aligner AWE-
SOME as for EN-JA. Since German does not con-
tain case markers, we only perform cross-lingual
data transfer using the other two strategies: RO
and CS. The performance of MILIE trained on the
proxy data is evaluated on German BenchlE (Gash-
teovski et al., 2022), with results shown in Table 3.

LFP strategies also work on German. For Ger-
man, we also see the combination of both LFP
strategies yield the best performance, outperform-
ing the strongest baseline by nearly 2 F; points.

In contrast to EN-JA, RO by itself does not beat
the direct LP baseline. To investigate the cause, we

"https://github.com/facebookresearch/
fairseqg/blob/main/examples/translation/


https://github.com/facebookresearch/fairseq/blob/main/examples/translation/
https://github.com/facebookresearch/fairseq/blob/main/examples/translation/

quantify the statistics of word alignments between
English training data and the automatically trans-
lated Japanese/German respective counterparts in
Figure 5. We find that the EN-JA alignments leave
more English words unaligned or aligned to more
than 1 word compared to the EN-DE alignments.
In other words, the word aligner for EN-DE pro-
vides more 1-to-1 mappings. Such 1-to-1 mappings
promise better label projection results, making di-
rect LP a stronger baseline for this language pair.

The observation indicates that our proposed LFP
strategies exhibit superiority especially when the
automatic translation and word alignment are less
reliable. The situation is more likely to happen
when the target language is a low-resource lan-
guage or distant from the source language.

5 Related Work

Although OpenlE has been a heated topic since
proposed by Banko et al. (2007), most of the dis-
cussions are focused on English (Mausam et al.,
2012; Del Corro and Gemulla, 2013; Angeli et al.,
2015; Mausam, 2016; Stanovsky et al., 2018; Kol-
luru et al., 2020). While some efforts have been
made on non-English languages, these methods
are rule-based, relying heavily on pre-defined syn-
tactic rules (Zhila and Gelbukh, 2014; Guarasci
etal., 2020; Wang et al., 2021). The rules, however,
are highly language-dependent and hard to transfer
between different languages.

Faruqui and Kumar (2015) proposed to translate
non-English sentences into English, extract rela-
tions with existing English systems, and project
the extracted labels back to the non-English lan-
guage. However, Claro et al. (2019) pointed out
that cross-lingual transfer depending solely on ma-
chine translation is not reliable. In addition, we
observe that such cross-lingual label projections
tend to be suboptimal when the target language is
syntactically distant from English.

More recently, neural OpenlE systems trained
with supervised data exhibit reasonable perfor-
mance (Stanovsky et al., 2018; Kolluru et al., 2020).
Similar to most neural systems, these systems
are free from hand-crafted rules, while the perfor-
mance is guaranteed by the large scale of training
data. Developing multi- and cross-lingual Ope-
nlE systems have hence become increasingly more
important since training data in non-English lan-
guages are difficult to obtain (Claro et al., 2019).

To this end, Ro et al. (2020) and Kotnis

et al. (2022) designed OpenlE systems on top of
mBERT (Devlin et al., 2019) and trained the sys-
tems on English data. Although these systems ex-
hibited reasonable zero-shot performance on some
languages, the performance gap between different
languages is severe. For example, the performance
on German and Arabic is worse than that on Chi-
nese and Galician (Kotnis et al., 2022). We pos-
tulated that the performance gap is due to drastic
syntactical differences, such as the word order, be-
tween these languages and English. This assump-
tion has been confirmed in our experiments, where
the reordering of English sentences proved to be
especially effective in bridging the gap between
such languages and English.

Kolluru et al. (2022) proposed AACTrans to au-
tomatically generate training data in the target lan-
guage by translating English sentences and their
extractions. However, we observed the approach
suffers from a low recall on Japanese OpenlE. In
contrast, our proposed LFP strategies to promote
cross-lingual transfer vastly outperform this base-
line by over 7 F; points on EN-JA cross-lingual
transfer. It is also notable that AACTrans is more
time-consuming than our proposed methods.

6 Conclusion

This work tackles the issue of transferring knowl-
edge from English to a syntactically-different lan-
guage, using Japanese as the representative. To
this end, we first propose Japanese BenchlE, a test
set for Japanese OpenlE. We observed existing ap-
proaches yielding extremely low F; scores on the
test set. We thus promote EN-JA cross-lingual trans-
fer by combating their differences. Specifically,
we introduced three Linguistic Feature Projection
(LFP) strategies for generating a proxy dataset that
contains the linguistic features of both English and
Japanese. Through experiments, we confirmed that
OpenlE systems trained on the generated proxy
dataset outperform all baselines on Japanese. Abla-
tion studies showed that reordering English words
to resemble the typical word order of Japanese
was the most important ingredient for encourag-
ing cross-lingual transfer. Apart from Japanese,
German also benefits from the LFP strategies.

Future works include examining the effective-
ness of proposed LFP strategies on other language
pairs and extending the strategies to syntax levels,
such as dependency tree alignment or projection.



Limitations

Although this work improves cross-lingual transfer
between English and another distant language, sev-
eral limitations exist. Firstly, the Japanese BenchlE
could be biased as it is annotated by only one an-
notator. The reliability of our proposed benchmark
could be improved by recruiting more annotators.
Secondly, the proposed linguistic feature projection
strategies presume the accessibility of pre-trained
machine translation systems and word aligners.
For low-resource language pairs where these pre-
trained systems are unavailable, the cross-lingual
transfer could be difficult. Thirdly, one of our in-
troduced LFP strategies, i.e., case marker insertion,
is specific to Japanese.

Ethical Considerations

Although we do not foresee a substantial ethical
concern in our proposed strategies, there may be a
side effect passed down from the pre-trained sys-
tems. It is thus important to choose nontoxic and
reliable machine translation and word alignment
systems during pre-processing.

Note that during data collection, we obey the
General Data Protection Regulation (GDPR) law®
that protects both the annotators and the data.
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#Sentences  #Fact Synsets  #Ext./#Syn.
EN 300 1,350 101.00
DE 300 1,086 75.27
JA 298 1,207 45,693.83

Table 4: Statistics of multilingual BenchIE. Ext. is short
for gold extractions and Syn. is short for fact synsets.
We only include languages discussed in this paper.

Alisa Zhila and Alexander Gelbukh. 2014. Open infor-
mation extraction for Spanish language based on syn-
tactic constraints. In Proceedings of the ACL 2014
Student Research Workshop, pages 78-85, Baltimore,
Maryland, USA. Association for Computational Lin-
guistics.

A Detailed Experiment Settings

A.1 Dataset Statistics

The basis of our training data is the OpenlE cor-
pus provided by Zhan and Zhao (2020).° The
dataset contains 1,109,411 English sentences with
2,175,294 corresponding triples. For the zero-shot
baseline, we adopt the dataset as-it-is, while for
other approaches, we apply cross-lingual transfer
techniques on the dataset to create proxy data. Fi-
nal training data is collected after several steps of
pre-processing as described in Kotnis et al. (2022).

For evaluation, we test our systems on
BenchlE (Gashteovski et al., 2022). The statis-
tics of BenchlE are shown in Table 4. Notably,
Japanese BenchlE has more instances due to the
massive number of case markers being automati-
cally optionalized in the gold annotations. As a fu-
ture direction, it is meaningful to improve Japanese
BenchlE by revising the annotation guideline and
recruiting more human annotators.

A.2 Model Parameters

We adopt pre-trained machine translation systems
and neural word aligners without finetuning in this
work. The only neural system we are training is MI-
LIE. Notably, we hide the dependency label infor-
mation from MILIE, further reducing the number
of trainable parameters. Hiding such information
also makes our experiment result slightly different
from those reported in the original paper. As a re-
sult, the system has 177.9M trainable parameters
in total.

*https://github.com/zhanjunlang/Span_
OIE
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Figure 6: Evaluation results of MILIE on Japanese and
German BenchlE. Error bars demonstrate the standard
derivations.

A.3 Computational Budgets

Throughout this paper, we conduct experiments on
NVIDIA TITAN RTX GPUs (24GB RAM). As pre-
processing, we automatically translate sentences in
the English training data into the target language
using a machine translation system. The transla-
tion takes approximately 48 GPU hours. After that,
we perform word alignments between the original
sentence and the automatically translated sentence,
taking approximately 10 GPU hours. Note that the
both the machine translation and the word align-
ment need to be performed only once for each lan-
guage pair. The automatically translated sentence
and the word alignments are reused for all exper-
iments regarding the language pair. The training
on each proxy dataset created using the proposed
strategies takes up to 20 hours on a single GPU.

B Additional Experiment Results

B.1 Descriptive Statistics

In this section, we visualize the experiment results
reported in Table 2 and 3 with the standard devia-
tion, as shown in Figure 6. The results are arranged
in descending order of F; scores.
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Precision Recall F,
EN 3893.065 21951034 28.611047
DE 17.08+022  8.724023 11.54 4026
JA 15751080  5.80+008 8.48+0.17

Table 5: Precision, Recall, and F; scores (%) of BenchlE
on multiple languages. For EN, we report the perfor-
mance of system trained on English data. For DE and
JA, we report the best performance of systems trained
on the proxy dataset generated from LFP. Values after
=+ show the standard derivation over 3 runs.

B.2 Performance on English BenchlE

Here, we show the performance of MILIE on En-
glish BenchlE to quantitively show the difficulty of
BenchlE. As in Table 5, MILIE, the current state-
of-the-art neural OpenlE system, scores no more
than 30 F; points on English BenchlE. Given that
the system is trained on the same language, i.e.,
English, as it is evaluated, we witness the difficulty
of BenchlE. Therefore, we emphasize the success
of our proposed LFP strategies in bringing up the
system’s performance on Japanese BenchlE, with-
out using any human-annotated data for Japanese
OpenlE.



