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Figure 1: Overview of OmniEarth-Bench. Our benchmark spans six Earth science spheres and
cross-sphere, encompassing 109 expert-curated tasks derived from 33 data sources. This involved
the efforts of 20 experts and 45 crowd-sourcing annotators contributing to the annotations.

ABSTRACT

Existing benchmarks for multimodal learning in Earth science offer limited, siloed
coverage of Earths spheres and their cross-sphere interactions, typically restricting
evaluation to the human-activity sphere or atmosphere and to at most 16 tasks.
Holistically evaluating MLLMs on observational data across all Earth spheres
faces three limitations: multi-source heterogeneous data, unlocking scientific
formulation, and cross-sphere reasoning. Therefore, we introduce OmniEarth-
Bench, the first multimodal benchmark that systematically spans all six spheres:
atmosphere, lithosphere, oceansphere, cryosphere, biosphere, and human-activity
sphere, and cross-sphere. Built with a scalable, modular pipeline that ingests
33 native Earth-observation sources and expert-in-the-loop curation, OmniEarth-
Bench produces 29,855 standardized, expert-curated annotations. All annotations
are organized into a four-level hierarchy (Sphere, Scenario, Ability, Task), en-
compassing 109 expert-curated evaluation tasks. Experiments on 9 state-of-the-
art MLLMs reveal that even the most advanced models struggle with our bench-
marks, where none of them reach 35% accuracy, revealing systematic gaps in

Earth-system cognitive ability. The dataset and evaluation code were released at
OmniEarth-Benchl,


https://anonymous.4open.science/r/OmniEarth-Bench-B1BD
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1 INTRODUCTION

Earth scientists study critical environmental and societal problems by modeling Earth’s inter-
connected subsystems (Bergen et all, PIT9), such as the atmosphere, lithosphere, hydrosphere,
cryosphere, biosphere, and human-activity sphere (Supei, 2023), which together determine plane-
tary behavior and risks. Cross-sphere couplings underpin many high-impact discoveries and appli-
cations: for example, accurate flood prediction depends on atmospheric precipitation, biospheric
soil moisture, and lithospheric runoff (Victfor ef-all, 2074). Earth Observational (EO) data from satel-
lites and in-situ networks have expanded dramatically, creating an opportunity to use data-driven
methods to reveal process couplings and improve monitoring, forecasting, and decision support in
domains such as disaster response, ecosystem management, and climate science (Reichsfein ef all,
2019; Wang et all, 2023; Ma, 2023; IZhief all, 2024).

Recently, multimodal large language models (MLLMs) and their benchmarks have advanced core
capabilities, including visual perception, long-context modeling, and chain-of-thought (CoT) rea-
soning (Cnrefall, 2074); [Tong et all, 2024, Fuef all, 20273; Ciefall, P0723; Saikh ef all, 2027, Zhang
ef-all, D0074d; Jiang et all, P075). In remote sensing, a growing array of multimodal benchmarks
has been introduced to tackle large-scale (Wang et all, 2075; Cua efall, 2075), multispectral (Zhang
ef-all, 2024c; Sonief all, Z075), and other applications (Zhon“ef-all, P073; Cief-all, P075). Atmo-
spheric science is now following suit, deploying multimodal models for severe weather events (M3
ef-all, 2024), meteorological heatmaps (Chenef all, 2074)), and climate event forecasting (Lief-all,
2074d). Given that the Earth system comprises six major spheres and their intricate couplings, we
face an overarching challenge: how can we holistically evaluate MLLLMs cognitive ability under
a unified benchmark for observation data across all spheres? We identify three key attributes of
Earth science that give rise to this challenge:

(1) Multi-source heterogeneous data: EO data are multi-source and heterogeneous (e.g., multi-
spectral satellite imagery, seismic signals, weather reanalysis, microwave sea-ice concentration),
demanding careful spatiotemporal co-registration, quality control, and variable/units harmonization
across sensors and scales to yield credible labels and supervision for cross-sphere tasks. Observation
Data in Fig [l show that heterogeneous EO data cover six earth spheres and cross-sphere.

(2) Unlocking scientific formulation: Across Earth science, many tasks demand fine-grained
scientific reasoning-for example, multifaceted diagnosis of the El NifioSouthern Oscillation
(ENSO) (Ham ef all, PZ0T9) and carbon-flux estimation (Forfierefall, P074) that quantifies exchange
rates between the biosphere and the atmosphere. Creating authoritative evaluation dimensions re-
quires domain experts to define scientifically meaningful, sphere-specific tasks and to assess each
dimensions suitability as a target for MLLM evaluation. Task Distribution and Task Categories in
Fig. [ show that each sphere requires coordinated, discipline-specific experts to unlock scientific
formulation.

(3) Cross-sphere reasoning: Many Earth processes
are intrinsically cross-sphere (e.g., precipitationsoil-
runoff, oceanatmosphere exchange), models and
evaluations must capture interactions rather than iso-
lated patterns. This requires domain experts to for-
malize the interaction pathway and identify a sci-
entific definition set across spheres and to translate
these agreements into evaluation criteria that faith-
fully reflect inter-sphere dynamics. A cross-sphere
example in the Task Categories of Fig. [ shows
that cross-sphere tasks require coordinated expertise
from experts across different spheres.

In this paper, we introduce OmniEarth-Bench, a
systematic benchmark to evaluate the cognitive abil-
ity of MLLMs across all six Earth science spheres
and their couplings. To ensure scientific validity,
we engaged 2-5 domain experts per sphere to de-
fine evaluation dimensions and select or curate rel-
evant observational datasets (e.g., MODIS and other
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Table 1: Comparison between existing vision-language benchmarks and our benchmark.  rep-
resents semi-automated, i.e., machine generation followed by human verification.

D: Observation | Data Source . Ta.sk

ataset Spheres Cross-Sphere Data Volume Volume Dimensions Expert
Volume Annotation

ScienceQA (Saikhefall, Z0Z2) - 21,000 127

Seed-Bench (Cietall, Z073) - 19,242 12

MME (Eii&tall, Fi73) - 2,374 14 (V]

MMBench (Lieran, poza) - 3,217 20 (V]

MME-Realworld (Zhang et all, Z024d) - 29,429 43 o

ZeroBench (Koberisetall, ZZS) - 100

MME-CoT (Jiang et all, P173) - 1,130

VRSBench (Ciefall, Pi74d) human-activity sphere (V] 2 175,703 12

XLRS-Bench (Wang etall, Z023) Human-activity sphere (V] 6 45,008 16 (V]

RSIEval (HuZetall, Z023) Human-activity sphere (V] 1 933 1

UrBench (Zhonetall, ZO7S) Human-activity sphere o 6 11,600 11

WeatherQA (Maefall, Z074) Atmosphere (V] 1 8,000 2

ClimateIQA (I-&fall, Z074d) Atmosphere o 2 254,040 4

CLLMate (Cietall, 20244d) Atmosphere o 2 7,747 1

OmniEarth-Bench \ 6 Spheres \ o \ o \ 33 | 29,855 109 (]

satellite/in-situ sources). The annotation team (20 experts plus 45 crowd annotators) produced and
quality-checked 29,855 expert-curated annotations organized into a four-level hierarchy (Sphere,
Scenario, Ability, Task). The final benchmark contains 109 L-4 Tasks across seven thematic spheres
(the six spheres plus an explicit cross-sphere). As shown in Fig. @ and summarized in Tab. [,
OmniEarth-Bench substantially expands both the breadth and scientific coherence of EO evalua-
tion compared with prior work. Our evaluations across nine state-of-the-art MLLMs reveal large
and systematic failure modes (none exceed 35% overall accuracy), demonstrating the pressing need
for Earth-system modeling and specialized reasoning mechanisms.

The key contributions are:

* A unified Earth-observation processing pipeline. We build a scalable, modular pipeline
that ingests 33 native Earth-science data sources and, via expert-in-the-loop curation, pro-
duces 29,855 standardized, expert-curated annotations by 20 domain experts and 45 anno-
tators to constitute the OmniEarth-Bench evaluation set.

* A four-level, sphere-complete evaluation framework. We provide the first benchmark
that systematically covers all six Earth spheres and explicit cross-sphere scenarios, orga-
nized into a four-level hierarchy with 109 L-4 sub-dimensions to measure breadth and
real-world relevance beyond prior, siloed EO benchmarks.

* Comprehensive evaluations. Comprehensive evaluations on nine state-of-the-art MLLMs
reveal that even the most advanced models struggle with our benchmarks. Especially, in
some cross-sphere tasks, the performance of leading models like GPT-40 drops to 0.0%.

2 RELATED WORK

Earth Multimodal Benchmark. Recent advancements in large multimodal models (MLLMs) have
accelerated progress in Earth sciences (Kuckreja et all, P00174; Muhtfar_ef all, P174), leading to the
development of several evaluation benchmarks (Cief-all, P074d; Wang et all, 2025; Ma“ef-all, 2024;
Chen ef all, P074)). Current benchmarks primarily target the human-activity sphere and atmosphere.
In the human-activity sphere, remote sensing-based benchmarks include RSIEval (Huef-all, P03,
VRSBench (Cief-all, P074d), XLRS-Bench (Wang et all, Z025), and so on. Atmospheric bench-
marks include WeatherQA (Ma“efall, 2024, ClimateIQA (Chenefall, 2074)) and CLLMate (Liefall,
7074d). However, these benchmarks exhibit notable limitations: 1) They typically address iso-
lated spheres, neglecting cross-sphere interactions essential to real-world Earth science challenges.
2) They offer limited evaluation dimensions, for example, atmospheric benchmarks assessing fewer
than four question types.

General Multimodal Benchmark. Large-scale vision-language models (VLMs) have shown great
promise in multimodal tasks such as scene understanding and visual sentiment analysis, prompting
the development of diverse benchmarks to quantitatively assess their capabilities. However, earlier
benchmarks mostly targeted specific domains with limited evaluation tasks (e.g., visual ground-
ing (Snun“ef-all, P077; Zhan“efall, P073) or visual question answering (VQA) (Hudson & Manning,
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Figure 3: Pipeline of OmniEarth-Bench. Our pipeline comprises 4 stages: Source Screening, Task
Construction, Dataset Construction, and Quality Control, all led by experts. The first two stages are
exclusively conducted by experts, while crowd-sourcing annotators assist in the latter two stages.

P0T9; Marino_efall, POTY; Goyal et all, 20177; Gurari_ef-all, DOTR; Singh et all, Z0TY)). Recent
efforts aim for more comprehensive assessments: MME (Fu_ef-all, P0073), MMBench (Liu_ef-all,
2074), Seed-Bench (Lief—all, 2023), MMT-Bench ([Ying et all, 2074), MME-Realworld (Zhang
et_all, 2024d), HLE (Phan_ef all, P025) and MMMU-Pro (Yue_ef all, 2024)). Multimodal chain-
of-thought (CoT) benchmarks were also developed, such as MME-CoT (Jiang et all, P025) and
ZeroBench (Roberfs ef all, P(075). Despite these advancements, two critical limitations remain:
1) Earth sciences have been largely neglected, with only SuperGPQA featuring a minimal number
(only 100 annotations) of geophysics-related textual questions. 2) Existing benchmarks overlook the
importance of observational data, a distinctive strength of Earth sciences (e.g., climate data grids,
seismic signals).

3 OMNIEARTH-BENCH

3.1 PIPELINE OF BENCHMARK

Source Screening. Our Benchmark comprises not only publicly available open-source datasets but
also a significant portion of data manually extracted by experts from satellite imagery and raw ob-
servational sources. For example, Vegetation Monitoring uses satellite imagery from MODIS and
expert-curated data from the Global Land Surface Satellite (GLASS), including Leaf Area Index,
Fractional Vegetation Cover, and Peak Vegetation Coverage Area. Moreover, for the Eddy data
in oceansphere, the chlorophyll (CHL) data used in this study were obtained by applying the OCI
empirical algorithm to Level-2 data acquired by the Geostationary Ocean Color Imager I (GOCI)
aboard the Oceanography and Meteorology Satellite (COMS). After careful selection and integra-
tion, we compiled a dataset originating from 33 distinct data sources spanning all Earth spheres. It is
crucial to clarify that 33 data sources refers to the raw data origins, not 33 different input modalities
(e.g., individual spectral bands or 1D signals). To ensure fair evaluation, domain experts processed
all data into MLLM-compatible formats, applying specific strategies tailored to the data character-
istics of each sphere. This process prioritized the native data structure; for instance, multi-spectral
data was converted into multiple single-channel grayscale images to avoid a dependency on poten-
tially misleading RGB visualizations. Tab.ll is a summary of the data sources used for each Earth
sphere, with detailed data organization and construction procedures presented in the Appendix B73.
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Table 2: Data source of different spheres, including open-source datasets, satellite websites, and
other observation data sources. We only exhibit the L1 and L2 dimensions. Processing pipeline for
each data source is shown in the Appendix B3.

L1 dimensons L2 deminesons Data Source

| Annotations Volume

Global Flood Forecasting GFF (Micforefall, P074) 873

Cross-sphere Bird Species Prediction SatBird ([leng et all, Z023) 2,253
Carbon Flux Monitoring CarbonSense (Eorfieref-all, Z024) 330

Urban Construction UBCvl (Huang et all, Z023) 3,161

Human-activity sphere | Land Use WHU-OHS (Cifefall, D0772) 2,990

Surface Disaster Assessment XView (Gupta et all, Z019) 3,851

. —— - TreeSatAl (Astrncefall, Z024)

Species Distribution Prediction OAM-TCD (Veifeh-NIichaz i< &FaT), PU7A) 2,819
Biosphere Vegetation Monitoring GLASS (Ciang et al], 2021 900
P Environmental Pollution Monitoring ROSID (Nuirseifov_efall, 20243) 246
Human Footprint Assessment HFP (Sanderson ef afl, PO7) 600

Crop Growth Monitoring MOPAD (Zheng et all, Z021d) 1,656
SEVIR Weather SEVIR (Neilleffe_ef-all, Z020) 893

Typhoon Events Digital Typhoon (Kifamofoefall, Z0723) 5,082
Atmosphere Short-term meteorological events ERAS (Hersbach-efall, O2(0) 140
SP Medium-term meteorological events ERAS (Hershachetall, DO20) 160
Seasonal meteorological events ERAS5 (Hersbach efall, ZO20) 60
Interannual climate change ERAS (Hershach-efall, ZO20) 60

Lithosphere Earthquake monitoring and prediction | STRAD (Mousaviefall, ZOT9) 1,500
SP Geological exploration imaging TGS-Salt (KainKaryam et all, Z019) 631
Marine Debris and Oil Pollution MADOS (Kikakiefall, PT174) 221
Oceansphere Marine Extreme Events ERASSTVS (Huang et all, ZTi17) 583
Marine Phenomenon Detection COMS (Wang et all, ZOZ4E), 570

. G02202 (SIC) (Meierefall, ZO21)
Crvosh Sea ice forecast PIOMAS (SChweiger et all, PIITT) 200
ryosphere Glacier analvsis CryoSat-2 (Helmefall, Z014) 30
acier analysis IceBridge (Studinget, Z014)

Task Construction. As shown in Fig.B, OmniEarth-Bench defines tasks across four hierarchical
levels (L1-L4): L1 covers the seven domains based on established geophysical spheres: atmosphere,
lithosphere, oceansphere, cryosphere, biosphere, human-activity sphere, and cross-sphere. L2 in-
cludes expert-approved, representative scenarios within each sphere, selected based on their sci-
entific and practical value (e.g., earthquake prediction). Tab.Dl illustrates representative scenarios
covered by the L1 and L2 levels. Detailed descriptions of the L3 and L4 dimensions for each sphere
are provided in the Appendix B3 and Appendix [A8. L3 comprises four core abilities: Perception,
General Reasoning, Scientific-Knowledge Reasoning, and CoT Reasoning. Perception and General
Reasoning align with previous works such as MMBench (Cioiefall, 2074) and XLRS-Bench (Wang
efall, P075), where Perception focuses on sensory inputs and Reasoning on inference. Scientific-
Knowledge Reasoning addresses complex reasoning tasks requiring deep domain expertise in Earth
sciences. CoT Reasoning evaluates the effectiveness of chain-of-thought processes within Earth
science scenarios. L4 provides further granularity by subdividing tasks based on the L1-L3 di-
mensions. Achieving robust general intelligence in Earth sciences requires MLLMs to perform
effectively across all hierarchical levels.

Benchmark Construction. For each of the six Earth spheres, this involved a dedicated team of 2-5
experts (Ph.D. holders or candidates) and 5-10 annotators (undergraduate and masters students). (1)
For each sphere, evaluation dimensions were collaboratively defined by domain experts and MLLM
specialists, ensuring high practical value and complexity. Cross-sphere tasks involved experts from
multiple domains. This approach addresses the limitations observed when crowd-sourcing annota-
tors proposed overly simplistic tasksfor example, Estimated Maximum Precipitation Level in atmo-
sphere, which GPT-40 solved with 97.7% accuracy. Expert-led design ensures meaningful evalua-
tion. (2) Experts were also responsible for defining data sources. For complex tasks, crowd-sourcing
annotators struggled with downloading and aligning data (e.g., MODIS and GLASS from NASA).
Thus, experts curated and organized datasets, with annotators assisting.

Quality Control. To ensure data integrity and task relevance, the quality control process involved
two main steps. Cross-Validation: Annotator outputs were systematically compared against expert-
provided annotation examples. Any discrepancies were flagged and reviewed by domain experts
to ensure annotation correctness, especially for complex tasks involving multi-source data. Final
Quality Assessment: specialists conducted thorough reviews to confirm that annotations adhered
to expert standards and maintained consistency across all tasks and spheres. High-quality annota-
tions were approved and incorporated into the dataset, while annotations that did not meet quality
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Figure 4: Examples of OmniEarth-Bench. OmniEarth-Bench comprises 109 unique L4 tasks,
each with distinct questions, answers, and images.

standards underwent iterative refinement through a feedback loop involving annotators and expert
supervision. This cyclical process ensured continuous improvement and maintained reliability.

3.2 TASK DIMENSIONS

OmniEarth-Bench defines tasks across four hierarchical levels (L1-L4), comprising 7 L1 dimensions,
25 L2 dimensions, 5 L3 dimensions, and 109 expert-defined L4 subtasks with real-world applicabil-
ity. One representative L4 subtask from each L1 sphere is illustrated in Fig B. We offer cross-sphere
as an example of the L1-L4 divisions, with details for other spheres given in the Appendix BT
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Figure 5: Details of Dimension in Cross-sphere. Cross-sphere has 3 L-2 dimensions, 2 L-3 dimen-
sions and 7 L-4 dimensions.

Cross-sphere tasks in Earth science carry high practical and societal importance (D1 Giuseppe et all,
P075; Darefall, 2073). As shown in Fig B, we select three representative L2 scenarios from socially
impactful applications, including Global Flood Forecasting (L2), Bird Species Prediction (L2) and
Carbon Flux Monitoring (L2). Due to their reliance on expert knowledge and complex reasoning,
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all are categorized as Scientific-Knowledge Reasoning (L.3). Despite the complexity of cross-sphere
scenarios, we successfully collaborated with domain experts to construct 7 high-value subtasks (L4
dimensions). Further details on full tasks are available in the Appendix BA7. Overall, the L1-L4
divisions provide a coherent evaluation framework across Earth science spheres, with dimensions
designed by domain experts to ensure high value.

3.3 STATISTICS AND ANALYSES

Overview Statistics. OmniEarth-Bench includes 109 o 3. Main statistics of OmniEarth-
expert-defined, high-value evaluation dimensions and Bench
29,855 samples annotated by both experts and crowd-

sourced contributors. As shown in Tab. [, it offers clear Statistic Number
advantages over existing benchmarks. Uniquely built on Total questions 20,855
observational Earth science datarather than exam-style - Cross-sphere 3456
datasetsOmniEarth-Bench spans all six spheres and cross- :gﬁ)‘;‘s}'l’;:t”“y sphere ot
sphere scenarios. Consistency metrics are reported in Tab. - Atmosphere 6.395
B, with additional details and dimension-specific indica- -gthOSphsre ?gi
tors provided in the Appendix B2, :Cf;;f;geff 330
Observational Data vs. Exam-questions Data. Unlike Question Formats 4
subject-based benchmarks like ScienceQA (Saikh ef all, g’i‘)‘iﬁ‘gﬁdﬁ:j";ﬁ]‘z}:‘;‘z‘z‘:"“’ g;gg;
2077), which rely on exam questions or online learn- - Visual grounding questions 2.697
ing problems followed by manual filtering, our approach - CoT questions 610
takes a fundamentally different path. While such methods - Images caption 76
could theoretically span all six Earth spheres, they face McQ ,
kev limitati (DB h ks like Sci A f - Single-image questions 24,108
two key limitations: ( ) Benchmarks li e menceQ. 0- - Multi-image questions 5.671
cus on scientific inquiry rather than practical geoscience - Maximum question length 213
applications, limiting their real-world relevance. (2) Their - Average question length 482
evaluation dimensions are constrained by a bottom-up CoT 4
design: questions are derived from existing image-text - Total key step annotation 3413
e . - Average key step annotation 5.8
pairs in papers, then filtered and categorized. In contrast, - Average key step length 14.8
OmniEarth-Bench follows a top-down strategy: domain - Maximum question length 101
. . . - Average question length 50.2
experts first define evaluation dimensions based on real-
world geoscience challenges and data availability, then Caption
. . . - Average word length 133.5
curate corresponding data. This ensures each task is both - Average sentence length 45

meaningful and grounded in practical utility.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP.

The MLLMs evaluated on OmniEarth-Bench are grouped into two categories: (a) open-source
VLMs, including Qwen2.5-VL (Wang_ et all, P024a), LLava-Onevision (Li_ef all, P0O74R), In-
terVL3 (Chen ef all, P073) and InternLM-XComposer-2.5 (Zhang et all, PZ074H); (b) closed-source
VLMs, such as GPT-40 (OpenAl, 2024), Gemini-2.0 (Team_ef all, P2023) and Claude 3.7 Sonnet
(Anthropid, 2023). All models were evaluated using LMMs-Eval (Zhang et all, 20244; Cief-all,
P0744). Details of the evaluation are shown in Appendix B and our code.

4.2 MAIN RESULTS

All MLLMs exhibit suboptimal performance across all 7 spheres. As illustrated in Tab. @ and
Tab. @, nearly all MLLMs achieve accuracy rates below 40%, significantly underperforming rel-
ative to their success on traditional perception or reasoning benchmarks (Cin_ef-all, D074; Masry
efall, 2027; Singh et all, 2019). Several factors likely contribute to this challenge. First, current
multimodal large models are typically trained without domain-specific Earth science data, which
impedes their ability to comprehend related queries. Second, many Earth science problems are
inherently complex, particularly cross-domain prediction tasks that demand in-depth, specialized
knowledge, which existing LLMs or MLLMs may not possess. Finally, OmniEarth-Bench provides
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Table 4. Experimental results on each sphere of VQA tasks, with models ranked by average
performance. ’Avg’ represents the average accuracy across sub-tasks. ’Experts’ means evaluation
results of 100 examples in each sphere by experts. We mark the highest score of each metric in
red , and the second highest underlined. Here, Cross., Atmo., Litho., Ocean., Cryo., Bio., and
Human. stand for Cross-sphere, Atmosphere, Lithosphere, Oceansphere, Cryosphere, Biosphere,
and Human-activity sphere.

Spheres (L1 dimensions)

Method Cross. Atmo. Litho. Ocean. Cryo. Bio. Human. Avg.
Experts | 9 96 91 95 93 97 95 | 934
Multiple choice question

Open-source MLLMs

Claude-3.7-Sonnet (Anthropid, Z073) 30.68 24.72 28.15 23.12 54.46 31.21 11.18 29.07
Gemini-2.0 (Team-efall, Z073) 16.93 20.83 38.94 16.94 58.52 20.83 23.74 28.10
GPT-40 (OpenAl, 21124) 0.04 9.64 12.80 13.35 37.48 1.97 2.76 11.15
Open-source MLLMs

InternVL3-72B (Zhiiefall, Z075) 19.19 33.98 23.39 20.22 74.56 31.99 29.46 33.26
InternVL3-7B (Zhuefall, Z073) 42.85 30.10 37.47 20.28 49.27 28.74 23.18 33.13
LLaVA-Onevision-7B (Ciefall, ZO74F) 19.26 33.69 28.72 24.54 46.40 37.31 30.62 31.51
InternLM-XComposer-2.5-7B (Dong et all, Z074) 19.78 17.45 28.88 21.06 40.04 30.67 24.76 26.09
Qwen2.5-VL-7B (Baiefall, Z0Z3) 9.85 9.25 18.65 13.95 17.85 10.94 6.23 12.39
Qwen2.5-VL-72B (Baiefall, ZO73) 3.92 4.82 22.43 16.27 5.88 14.91 8.63 10.98

Open-ended question

Closed-source MLLMs

Gemini-2.0 (leam_efall, Z073) 31.48 38.10 41.67 24.97 61.49 27.33 31.85 36.70
GPT-40 (OpenAl, 224d) 25.76 23.21 33.13 25.17 46.46 13.65 17.17 26.36
Open-source MLLMs

InternVL3-72B (Zhiefall, P2s) 29.51 39.14 27.51 32.45 53.87 38.29 34.67 36.49
Qwen2.5-VL-72B (Raiefall, ZO73) 24.78 22.08 38.62 31.17 15.23 20.22 16.87 24.14

high-resolution, intricate imagery, and the task of interpreting such complex visuals presents unique
obstacles for MLLMs. This underscores the pressing need for specialized models or advanced post-
training techniques to effectively address these challenges.

CoT Performance. Following the MME-CoT (Jiang et all, Z075), we leverage two interpretable
metrics to evaluate the CoT correctness: recall and precision. The two metrics respectively attend
to the two aspects of the CoT correctness: informativeness and accuracy. As shown in Tab. B,
InternVL3 outperformed Qwen2.5-VL and LLaVA-OneVision with the highest F1 score. Larger
open-source variants showed superior performance, underscoring the scalability of model size.

Table 6: Images caption performance on

Table 5: CoT performance on OmniEarth- OmniEarth-Bench

Bench

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE L CIDEr

Models ~ LLaVA-OneVision-7B  Qwen2.5-VL-7B  InternVL3-8B  InternVL3-78B Closed-source MLLMs

.y 3.7-Sonnet 545 246 1.04 036 554 6.13 134

Precision 89.83 92.72 94.02 94.74

Recall 2341 2012 3447 355 5.05 261 143 0.86 6.57 6.98 0.00
Open-source MLLMs

F1 | 37.14 4432 50.45 51.65 Qwen2.5-VL-7B 3.59 139 0.63 0.30 4.06 3.77 0.44
Qwen25-VL-72B 522 221 0.95 041 599 6.15 0.00

Caption performance. As shown in Tab. B, the closed-source models, particularly GPT-40, demon-
strated the strongest overall performance. However, the large open-source model Qwen2.5-VL-72B
achieved highly competitive results, significantly narrowing the gap. The substantial performance
leap from the 7B to the 72B version of Qwen2.5-VL strongly underscores the effective scalability
of model size for improving caption generation capabilities.

Table 7: Visual grounding performance on OmniEarth-Bench.

Spheres Metrics GPT-40 Gemini-2.0 Claude-3.7-Sonnet Qwen2.5-VL. LLaVA-OneVision InternVL38B InternVL3 78B
. Acc@0.5 0.02 0.03 0 0.59 0.2 0 2.36
Human-activity sphere Acc@0.7 0 0 0 0 0 0 02
Lithosphere Acc@0.5 0.08 0.13 0.02 53 0 8.94 43
P Acc@0.7 0 0.04 0 0.33 0 1.66 0.33
Oceansphere Acc@0.5 0.12 0.34 0.2 1.81 1.51 6.63 13.86
ansp Acc@0.7 0.01 0.06 0.07 0 0 0.6 3.61

Visual grounding performance. As shown in Tab.[, visual grounding on OmniEarth-Bench is low
across spheres and IoU thresholds: only InternVL3-78B leads in Oceansphere (Acc@0.5=13.86),
and human-activity sphere is hardest (peak 2.36), with general-purpose MLLMs near zero. The
weakness stems from domain shift to earth observation data (large-scale variation, clutter, small/e-
longated targets) and insufficient multi-scale alignment, which inflate errors at higher IoU.



Under review as a conference paper at ICLR 2026

4.3 FURTHER ANALYSIS

MCQ-style vs. Open-ended evaluation. Results in Tab. B show that open-ended evaluation often
yields higher scores, as models are free to respond in natural language without being constrained
by pre-defined choices. This setting better reflects real-world usage, where models are expected
to articulate answers directly. In contrast, MCQ-style evaluation offers a more standardized and
objective framework. By providing fixed answer choices, it reduces ambiguity in scoring and en-
sures comparability across models. The inclusion of an Unable to decide option further mitigates
the risk of models producing answers that appear reasonable but are logically inconsistent. As a re-
sult, while open-ended evaluation captures the flexibility of natural language reasoning, MCQ-style
benchmarks remain valuable for delivering fair and rigorous assessments.

Time-sensitive task. The Earth’s seven spheres
encompass numerous temporally correlated
tasks. ENSO, a key climate mode influenc-
ing global weather extremes via teleconnec-
tions (Iimmermann_ef all, Z00IX), has seen im-
proved forecasts through domain-specific Al
models (Ham et all, POT9; Guno_ef all, 2024).
As shown in Fig. B, prediction accuracy de-
clines with longer lead times, echoing the limi-
tations of specialized models. However, the per- Month

formance of MLLMs still lags behind tailored

models. Performance drops further for Indian Figure 6: GPT-40 performance on ENSO and
Ocean Dipole (I0D) predictions, aligning with 10D prediction with different lead months (pre-
challenges faced by existing methods (Linefall, vious).

2O2T).

40 & 37.25 38.56
b 10D
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Limited Gains from Scaling Model Size on Earth-Science Tasks. In Table B, we evaluate two
sizes of the InterVL3 model and find that the 72B InterVL3 does not provide a significant advan-
tage over the 7B model in our benchmarks, with performance even declining in some evaluation
metrics. This contrasts with the substantial improvements observed in general-domain tasks. This
performance bottleneck likely stems from the lack of Earth-science-specific knowledge, rather than
a limitation in model capacity. Even large MLLMs struggle to reason about unfamiliar scientific
concepts without targeted training on domain-specific data. These findings highlight the importance
of prioritizing the integration of domain-specific knowledge in future Earth-science MLLM devel-
opment, rather than merely increasing model size.

Impact of Model Safety on Results. In Tab. B, we observe that Qwen2.5-VL and GPT-40 perform
very poorly, even falling below the level of random guessing. However, this does not mean that
these two models have the worst perceptual and science-related abilities. We observe that these
models tend to refuse to answer when they are uncertain, whereas InternVL3 and LLaVA-Onevision
randomly guess an answer. For instance, Qwen2.5-VL-72B refused to answer 18,258 questions.
This safety mechanism in the models leads to the poor performance of Qwen2.5-VL and GPT-4o.

5 CONCLUSION

We have introduced OmniEarth-Bench, a foundational multimodal benchmark and the first to es-
tablish a systematic evaluation across all six spheres of the Earth system (atmosphere, lithosphere,
Oceansphere, cryosphere, biosphere, and human-activity sphere) along with their cross-sphere in-
teractions. This benchmark introduces 109 expert-curated evaluation dimensions and four hierarchi-
cal levels of reasoning (perception, general reasoning, expert-knowledge reasoning, and chain-of-
thought reasoning), representing a novel and rigorous evaluation design for geoscientific MLLMs.
Our results show that even state-of-the-art MLLMs (e.g., Claude) struggle with OmniEarth-Bench;
none of the tested models surpassed 35% accuracy. This stark performance gap underscores the
benchmarks difficulty and exposes fundamental limitations in current models geoscientific under-
standing. We anticipate that OmniEarth-Bench will serve as a catalyst for future research in geosci-
entific Al, guiding the development of models capable of expert-level analysis across Earths spheres
and enabling advanced applications in environmental monitoring and climate science.
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A APPENDIX

A.1 OVERVIEW OF THE APPENDIX

This appendix supplements the proposed OmniEarth-Bench with details excluded from the main
paper due to space constraints. The appendix is organized as follows:

* Sec. B2: More details of OmniEarth-Bench.

e Sec. A3: Data Processing Strategies for each Spheres.

¢ Sec. B74: Construction Details of Different Question Formats.

* Sec. A™S: Detailed results of specific sub-tasks (L-4 dimension).
* Sec. [A™A: Detailed results of specific sub-tasks (L-3 dimension).
* Sec.A72: Visualizations of samples and challenging cases.

* Sec.A=R: Datasheets for the OmniEarth-Bench dataset.

* Sec. B9: Discussion on limitations and societal impact.
* Sec.A: Usage of LLM.

A.2 MORE DETAILS OF OMNIEARTH-BENCH

This section provides additional details about the dataset. We begin with a visual illustration (Fig.H)
that highlights the structure and real-world applicability of OmniEarth-Bench, presenting a curated
example from each scientific sphere to show how the benchmark spans from high-level domains
(L1) down to specific, expert-defined tasks (L4). To complement this overview, Table B and Table
B present detailed statistics for each L4 dimension, along with their relationships to the L3 and L2
dimensions, fully clarifying the datasets structure and composition.

Experiments setup. Following MMBench (Cioiefall, 2074) and MME-Realworld (Zhang_ et all,
2074d) methods, in the MCQ format of the VQA task, we manually created 5 options for each ques-
tion: one correct answer, three distractors, and one special answer (unable to answer). We evaluated
the accuracy and reported the L-1 dimension for the VQA task, with L-3 and L-4 results available in
the Appendix A and Appendix A8. All scores in Tab. B are reported as percentages (%). For the
Grounding task, we used precision, assessing accuracy based on the intersection between predicted
and ground truth bounding boxes, with predictions deemed correct if IoU exceeds a threshold (0.5
and 0.7). For open-ended evaluation, we use an external LLM as a judge to automatically assess
the correctness of the generated answers. Following the XLLRS-Bench (Wang et all, Z075), to eval-
uate the quality of the generated captions, we employed a comprehensive suite of standard metrics,
including BLEU, METEOR, ROUGE_L, and CIDEr.

Human Annotations vs. GPT Annotations. All annotations are finished by experts and crowd-
sourcing annotators. Unlike MMBench Ciief-all (2024), we did not use tools like GPT-40 OpenAl
(P0724). It was driven by two key reasons: (1) GPT-40 cannot generate VQA data requiring deep
domain expertise. Tasks under the Scientific-Knowledge Reasoning (L3) demand substantial back-
ground knowledge and must be constructed collaboratively by experts. (2) Although GPT-40 can
generate samples for general perception or simple reasoning tasks, expert evaluation found the data
to be low quality and insufficiently challenging. For example, in the visual grounding task, GPT-
40 only detects highly salient structures, failing to support our goal of testing MLLMs on locating
diverse buildings across complex scenes. As a result, all OmniEarth-Bench data was exclusively
created by experts and annotators.

A.2.1 CROSS-SPHERE
* L2-Global Flood Forecasting:

— Flood Detecting: Predicts whether a flood event will occur in the near future based on
ground and atmospheric variables, including river discharge, 2-meter air temperature,
top-layer volumetric soil water content, snow depth water equivalent, total precipita-
tion, along with Sentinel VV / VH data from the preceding two days.
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— Flood Predicting: Predicts whether a flood event will occur in the near future based
on the same variables used in Flood Detecting, along with Sentinel VV / VH data from
the preceding two days.

¢ L2-Carbon flux monitoring:

— Carbon flux estimation:Refers to the process of quantifying the rate and direction
of carbon exchange (e.g., carbon dioxide) between the biosphere (vegetation and mi-
croorganisms, etc.) and the atmosphere, which tests the LLM’s ability to interpret
biogeochemical cycles, integrate multi-dimensional environmental data (e.g., satellite,
sensor networks), and apply physics-based or statistical models for climate change
analysis.

» L2-Bird species prediction:

— Most likely species to occur: Predicting the species with the highest likelihood of
presence in a specific habitat based on environmental variables (e.g., climate, habi-
tat type), testing the LLM’s ability to analyze spatial-environmental correlations and
prioritize species under data-driven constraints.

— Species occurrence probability estimation:Quantifying the probability of a species
being present in a given geographic area, evaluating the LLM’s grasp of probabilistic
reasoning and ecological variable weighting.

— Species richness estimation:Calculating the total number of distinct species within a
defined ecosystem or region, testing the LLLM’s capacity to integrate multi-modal data
to predict biodiversity.

A.2.2 HUMAN-ACTIVITY SPHERE

The human-activity sphere leverages remote sensing and mapping technologies across three key
scenarios: Urban Construction (L2), Land Use (L2), and Surface Disaster Assessment (L2). Ur-
ban construction supports planning and socio-economic analysis; land use classification underpins
environmental monitoring and resource management; and disaster assessment enables rapid post-
event response and risk mitigation. OmniEarth-Bench spans all four L3 capability dimensions in the
human-activity spherePerception, General Reasoning, Scientific-Knowledge Reasoning, and CoT
Reasoningwith 27 subtasks (L4 dimensions), surpassing all existing benchmarks in this domain L
efall (2074d); Wang et al] (2025). The complete task details are as follows.

e [.2-Surface Disaster Assessment:

— Change detection counting of post-disaster completely destroyed building: Com-
pares pre- and post-disaster images to count fully destroyed buildings, evaluating tem-
poral change detection.

— Counting of post-disaster partially damaged building: Detects and counts lightly
or moderately damaged structures in post-disaster imagery.

— Building damage prediction: Estimates potential damage severity from pre-disaster
views, testing risk assessment without ground truth.

— Disaster prediction: Predicts future disaster types using current imagery, evaluating
temporal modeling capabilities.

— Disaster type classification: Identifies disaster types (e.g., flood, earthquake) from
satellite images, testing visual pattern recognition.

— Geolocation estimation of disaster-affected regions from imagery: Predicts the ge-
ographic location of affected areas based on visual cues, assessing spatial referencing.

— Individual building damage assessment: Compares pre- and post-event imagery to
evaluate building-level structural changes.

— Multi-image individual visual localization task: Uses multi-temporal or multi-view
images to locate specific buildings, assessing multi-view reasoning.

— Spatial relationships under complex conditions: Infers spatial relations (e.g., rela-
tive position, containment) between objects in imagery, testing 3D reasoning.

— Visual grounding of damaged individual buildings: Locates damaged structures in
post-disaster imagery, evaluating anomaly detection and spatial precision.
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» L2-Urban Development:

— Fine-grained object type recognition: Classifies specified buildings in high-
resolution imagery, testing the models ability to distinguish visually similar structures.

— Overall counting: Counts all buildings or urban facilities in an image, evaluating
object detection and counting under complex conditions.

— Counting under complex conditions: Counts objects that meet given conditions
(e.g., attributes or constraints), testing constrained multimodal reasoning.

— Overall building height estimation:Estimates structural vertical dimensions using
multi-source geospatial inputs, assessing 3D reconstruction accuracy and cross-sensor
measurement consistency.

— Individual building height estimation: Estimates the height of an individual building
from satellite views, testing 2D-to-3D inference.

e [.2-Land Use:

— Overall land type classification: Identifies macro land cover types (e.g., urban, farm-
land, water), evaluating scene-level understanding.

— Fine-grained land type classification: Classifies specific land use (e.g., crop types)
at finer scales, testing detailed semantic discrimination.

— Visual localization of land use types: Locates specific land types within an image,
evaluating spatial perception.

— Counting of land types under complex conditions: Counts land use regions meeting
complex conditions, assessing constrained visual reasoning.

— Visual groudning of land types: Locates specific land types to evaluate the model’s
visual localization capability and land type classification ability.

A.2.3 BIOSPHERE

We present a biosphere-focused MLLM benchmark built on observational data and retrieval prod-
ucts, featuring 15 practical L4 subtasks. It includes four representative L2 scenarios: Vegetation
Monitoring (L2), Human Footprint Assessment (L2), Environmental Pollution Monitoring (L2),
Species Distribution Prediction (L2), and Crop Growth Monitoring (L2). Vegetation Monitoring
Crowfher ef all (2(0T5) evaluates plant and ecosystem health to support function assessment, carbon
accounting, and climate response. Human Footprint Assessment Venfer ef all (Z016) quantifies hu-
man impact on nature, informing sustainability and biodiversity strategies. Environmental Pollution
Monitoring Nurseifov_ef all (Z024H) identifies pollution events and their extent, guiding environ-
mental policy and mitigation. Species Distribution is a key concern in the biosphere, as it guides
biodiversity conservation and supports modeling species range shifts under climate and land-use
change. Crop Growth Monitoring Zheng et al] (ZO2Th) assesses crop health for precision agriculture
and sustainable farming. The complete task details are as follows.

* L2-Crop growth monitoring:
— Dead oil palm identification: Identifies dead trees in unmanned aerial vehicle (UAV)
imagery, testing the models domain knowledge in crop growth.
— Dead oil palm counting: Counting the number of dead trees in an image, testing the
models object counting capability.
* L2-Environmental pollution monitoring:
— Terrestrial oil spill counting: Counting oil spill points in satellite imagery, testing
the models ability in environmental pollution recognition and object counting.
— Terrestrial oil spill area calculation: Calculating the total area of oil spills in the
image, evaluating the model’s applicability in pollution events.
e L2-Human footprint assessment:

— Human footprint assessment: Assessing the impact of human activities in the region
based on imagery, testing the models ability to recognize and reason about human
activity features

— Human footprint index estimation: Calculating the human footprint index of a re-
gion, testing the models understanding of human activity patterns.
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» L2-Species Distribution Prediction:

— Tree species prediction: Identifying the type of tree that occupies the largest propor-
tion, testing the models ability to recognize features of different tree species.

— Tree species proportion prediction: Identifying the proportion of specific tree
species, testing the models ability in species recognition and statistical reasoning.

— Animal classification: Identifying animal species within the bounding box, testing
the models ability to extract local information and distinguish between different ani-
mal species.

— Geographical location inference of plant species: Inferring the geographic coordi-
nates from the image and the given tree species, testing the models domain knowledge
of tree species distribution.

— Global animal counting: Counting the number of animals in the image, testing the
models ability in animal instance extraction and counting.

— Species distribution prediction: Predicting the likely animal species in a region
based on the image and geographic coordinates, testing the models ability to extract
ecological features and its knowledge of species distribution.

» [2-Vegetation monitoring:

— Fractional vegetation cover estimation: Calculating the fractional vegetation cover
in the image, testing the models ability to recognize vegetation features.

— Leaf area index estimation: Calculating the leaf area index from multi-band imagery,
testing the models ability to comprehensively understand and utilize multi-source in-
formation.

— Peak vegetation coverage area grounding: Locating peak vegetation coverage areas
in the image using multi-band imagery, testing the models ability to localize vegetation
features.

A.2.4 ATMOSPHERE

The atmosphere is a key domain in Earth sciences with high practical value and extensive research
interest Gong et all (Z024); Stock_ef all (Z024). While existing benchmarks target specific atmo-
spheric sub-scenarios Ma“ef-all (2024); Chen ef all (2024); Liefall (Z0240), they lack comprehen-
sive domain-wide coverage. OmniEarth-Bench addresses this gap by defining evaluation dimensions
across six representative scenarios using data from ERAS Hershach ef all (2020), SEVIR NVeilleffe
efall (2020), and Typhoon Kifamofoefall (P023) datasets: Short-term Weather Events (L2), Medium-
term Weather Events (L2), Seasonal Weather Events (L2), Interannual Climate Variation (L2), Ty-
phoon Event (L2), and SEVIR Weather (L2). For example, the Typhoon Event dimension serves
as a flagship benchmark for atmospheric machine learning, supporting operational hazard forecast-
ing and advancing research on tropical cyclone intensity and structure. These six scenarios (L2)
span 36 expert-designed subtasks (L4 dimensions) with strong real-world relevance, substantially
surpassing existing atmospheric benchmarks. The complete task details are as follows.

* L2-Short-term weather events:
— Event intensity identification:Determine extreme intensity or variable value at given
position or region.
Event localization:Localize event center or moving direction of event.
Event trend analysis:Determine varying trend or speed of variable.
Event type identification:Determine type of current event.
Dynamic feature identification:Determine dynamic structure via multi-variable anal-
ysis.
— Event evolution analysis:Determine stage of event via multi-variable analysis.

— Thermodynamic feature identification:Determine thermodynamic features or struc-
ture via multi-variable analysis.

e [L2-Medium-term weather events:

— Cyclone movement identification: Determine moving direction of cyclone.
— Cyclone phase identification: Determine the different phase of cyclone
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Event intensity identification: Determine extreme intensity or variable value at given
position or region.

Event localization: Localize event center or moving direction of event.
Event trend analysis:Determine varying speed or trend of current event.

Geopotential pattern identification: Determine pattern / structure of given geopo-
tential.

Moisture flux analysis: Determine intensity of moisture flux transformation.
System identification: Determine dynamic structure via multi-variable analysis.

System evolution trend analysis: Determine the evolution stage of the current system
via multi-variable analysis.

* L2-Typhoon:

Pressure estimation:Using the same image stacks, the task outputs the minimum
sealevel pressure (hPa) at the cyclone eye; this complements wind speed and enables
pressurewind relationship validation.

Radius of major gale axis estimation:Using scatterometerderived peakgust layers,
the model regresses the semimajor radius (km) of 50kt gusts, characterising the reach
of damaging winds for early warning.

Radius of major storm axis estimation:From the segmented windfield map, the
model estimates the semimajor radius (km) of 34kt galeforce winds, quantifying the
storms main spatial extent and directly supporting surgerisk assessment.

Radius of minor gale axis estimation:Outputs the corresponding semiminor radius,
enabling a complete 2D description of the gust envelope.

Radius of minor storm axis estimation: Analogous to the above, but for the semimi-
nor radius, capturing asymmetric size features critical to trackshift sensitivity analysis.
Wind estimation:Given timesynchronised multispectral satellite images, models
must regress the stormcentre Imin sustained surface wind speed in kt, providing a
physicsconsistent proxy for SaffirSimpson intensity classification.

¢ [.2-Seasonal weather events:

Precipitation anomaly identification:Determine precipitation anomaly value at
given timestamp or region.

Seasonal comparison:Analysis of temperature/precipitation anomaly within a year.

Temperature anomaly identification:Determine temperature anomaly value at given
timestamp or region.

e [.2-Interannual climate variation:

ENSO feature analysis:Determine status or features of ENSO.

Long-term Precipitation trend analysis:Determine trend of precipitation anomaly
among years.

Long-term Temperature trend identification:Determine trend of temperature
anomaly among years.

e [.2-SEVIR Weather:

Event type prediction: Identifies storm event types based on visible and infrared
channels from satellite, along with Vertical Integrated Liquid (VIL) data from weather
radar.

Miss alarm estimation: Estimates the miss rate by comparing forecasted outputs
against SEVIR ground truth.

Movement prediction: Given a sequence of VIL data, MLLMs are required to iden-
tify the move direction of the convective system.

— Rotate center prediction

A.2.5 LITHOSPHERE

We firstly construct an MLLM benchmark for the lithosphere based on observational data, com-
prising 8 practical subtasks (.4 dimensions) . We define two representative L2 scenarios within
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the lithosphere: Seismic Monitoring and Prediction (L2) and Geophysical Exploration (L2). Seis-
mic monitoring and prediction [Allen & Melgai (P019), a critical domain in geosciences, aims to
uncover Earths internal dynamics and earthquake nucleation mechanisms, forming a theoretical ba-
sis for early warning and disaster mitigation. Geophysical exploration imaging Yu-& Ma (2021]),
by analyzing subsurface responses to physical fields such as seismic waves, electromagnetic fields,
and gravity/magnetic anomalies, enables high-resolution geological modeling essential for under-
standing subsurface structures, hydrocarbon exploration, and geological hazard assessment. The
complete task details are as follows.

» L2-Earthquake monitoring and prediction:

— P-wave phase picking: Taking three-component observed seismic waveforms as in-
put, output the arrival times of the P-wave characteristic seismic signals.

— S-wave phase picking: Taking three-component observed seismic waveforms as in-
put, output the arrival times of the S-wave characteristic seismic signals.

— Earthquake or noise classification: Distinguishing seismic signals from natural
earthquakes versus artificial noise or vibrations, testing the LLM’s understanding of
geophysical signal patterns, noise discrimination, and time-series data analysis.

— Earthquake magnitude estimation: Determine the earthquake magnitude based on
the seismic amplitude at the location of the S-wave seismic phase.

— Earthquake source-receiver distance inference:Single-station earthquake location
is simplified to determining the distance from the earthquake hypocenter to the geo-
phone through the distance between the P-wave and S-wave seismic phases.

* L2-Geophysics imaging:

— Salt body detection:Identifying subsurface salt dome structures in geological or seis-
mic data, testing the LLM’s domain knowledge in geophysics, spatial pattern recogni-
tion, and geological feature interpretation.

— salt body location:Precisely determining the spatial coordinates or depth of salt bod-
ies within geological formations, evaluating the LLM’s capability in spatial reasoning,
multi-dimensional data integration, and quantitative analysis accuracy.

A.2.6 OCEANSPHERE

We build a multi-layer MLLM benchmark for the oceansphere based primarily on satellite and anal-
ysis data products, featuring 8 practical 1.4 subtasks. This domain includes three representative L2
scenarios: Marine Oil Spills and Debris Monitoring (L2), Extreme Oceanic Events Warning (L2),
and Ocean Phenomena Detection (L2). The Marine Oil Spills and Debris Monitoring AI-Ruzouq
ef_all (2020) scenario uses multi-source remote sensing and in situ water quality data to track the
spatial distribution and temporal dynamics of oil contamination and floating debris, supporting envi-
ronmental management and emergency response. The Extreme Oceanic Events Warning Ham ef all
(P019); Cing et al] (2027) scenario targets the detection and prediction of major climate modes such
as El NinoSouthern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), aiming to mitigate
their societal and economic impacts. The Ocean Phenomena Detection scenario Dua_ef-all (Z019);
Koracinef all (20T4) involves identifying ocean features like eddies and marine fog, which are key
for maritime safety and ecological studies.

e [2-Extreme Events:

— Enso identification: Critical for mitigating global climate extremes, this task classi-
fies ENSO events (e.g., El Nifio and La Nifia) by analyzing the Pacific SST anomaly
maps.

— Iod identification:Essential for monsoon forecasting and reducing compound risks in
Indian Ocean nations, this task identifies Indian Ocean Dipole phases (positive/nega-
tive) from SST anomalies, similar to ENSO identification.

— Enso forecast: As a complement to ENSO identification, this task predicts whether or
what type of ENSO event will occur several months ahead using global SST anomaly
maps of the past six months, which requires the model to capture the temporal evolu-
tion process.
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— Iod forecast:As a complement to IOD identification, this task predicts IOD event
occurrence and type, similar to ENSO forecasting.

¢ [.2-Phenomenon Detection:

— Eddy identification: Fundamental for marine ecosystem management, this task iden-
tifies eddy types (cyclonic/anticyclonic) from the chlorophyll grayscale satellite im-
age.

— Marine fog detection:Critical for maritime safety and intelligent navigation, this task
identifies fog presence via satellite imagery.

— Eddy Localization : As a complement to eddy localization, this task detects the loca-
tion of eddies, enhancing search-and-rescue operations and pollution mitigation.

¢ [.2-Marine Debris and Oil Pollution:

— Marine Pollution Type Classification: Marine Pollution Type Classification refers to
the scientific method of systematically categorizing marine pollutants based on their
sources or characteristics (e.g., oil spills, plastic waste, chemical discharges)," which
can test an LLM’s domain knowledge in environmental science, multi-category se-
mantic comprehension, and fine-grained classification capabilities.

A.2.7 CRYOSPHERE

We conduct an MLLM benchmark for the cryosphere primarily based on sea ice reanalysis data,
glacial imagery, and graphical plots, incorporating 8 practical L4 subtasks. We identify two rep-
resentative L2 scenarios within the cryosphere: Sea Ice Forecasting (L2) and Glacier Analysis (L2).
Sea ice forecasting focuses on predicting the dynamic changes of sea ice in polar regions. Arctic
sea ice is crucial for understanding global climate change Budikova (2009); Zhou efall (2024). Its
continuous decline over the last few decades has made sea ice forecasting significant for navigating
through the Arctic Ocean during melting seasons. Moreover, the loss of the Antarctic sea ice would
greatly impact the global sea level. Glacier analysis Khan et all (20027); Chudley et al] (2025), aims
to study the glacial movements and changes of glaciers over time. The complete task details are as
follows.

* L2-Glacier analysis:

— Glacial Lake Recognition: A melting glacier could result in multiple glacial lakes.
Identifying them could provide valuable information for analyzing the variation trend
of glaciers. We provide the model with images of glacial lakes, glaciers, and regular
lakes. The model is asked to output the quantity of glacial lakes. This L4 task not only
assesses the model’s ability to identify glacial lakes from the others, it also assesses
whether the model is capable of accurately reasoning about the overall quantities.

— Glacier Melting Estimation: To evaluate the model’s ability to analyze glacier data,
we first present the model with the observation of glacier melting rate data and a sam-
ple chart showing the correlation between the melting rate and displayed color. Then,
we provide two predictive charts from different models, and the model is required
to identify which one better matches the provided real-world observation. Addition-
ally, we show the model images of different glaciers at various times to see if it can
determine which glacier is more likely to be in a melting state.

— Slide Recognition: This task is designed to assess the model’s ability to determine
glacier landslide risks. First, we show it images of different glaciers and ask it to judge
which one is more likely to experience a landslide based on their melting conditions.
Then, we provide traverse and longitudinal melting profiles showing the melting rates
and thickness of glaciers at different locations in Greenland, and ask the model to
determine which glacier is more prone to landslides.

e [.2-Sea ice forecast:

— SIC Estimate SIT: To further test the model’s ability to analyze sea ice concentration
data, we provide it with a sea ice thickness variation trend chart, and sea ice concen-
tration data from a date following the last point on that chart. The model is instructed
to forecast the sea ice thickness of the following day based on inputs.
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— SIC Estimate SIV: To explore the model’s ability to analyze sea ice concentration
data, we provide it with a sea ice volume variation trend chart, and sea ice concentra-
tion data from a date following the last point on that chart. We then assess whether the
model can accurately forecast the sea ice volume for the following day based on those
two inputs.

— SIT Trend Prediction: In this L4 task, we further evaluate the model’s ability to
directly analyze the trend data and make reasonable forecasts. Similarly, we provide
the model with the previous year’s sea ice thickness variation curve and the trend up to
a certain point in the following year. Then, the model is required to predict subsequent
sea ice thickness according to input data.

— SIV Trend Prediction: In this L4 task, we provide the model with the previous year’s
sea ice volume variation curve and the trend up to a certain point in the following year,
to test the model’s ability to make short-term forecasts of sea ice volume based on
given data.

— Sea Ice Extent Estimation: Questions in this L4 task are designed to assess the
model’s ability to distinguish between Antarctic and Arctic sea ice, determine the
melting season, i.e., evaluate the sea ice extent changes over time, and estimate the
sea ice extent area from a given sea ice concentration map.
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Table 8: Characteristics of each task (L4 dimension) in human-activity sphere, Biosphere,
Cross-sphere and Biosphere. Human-activity sphere has 27 subtasks, Biosphere has 15 subtasks,

Cross-sphere has 7 subtasks, Lithosphere has 8 subtasks.

L1 L2 L3 L4 Task Description Format Samples Answer Type
Change detection counting
of post-disaster completely VQA 502 | Multiple Choice/Open-ended
destroyedbuilding
Perception Counting of dica
g post-disaster Y g
partialy domaned building VQA 498 | Multiple Choice/Open-ended
Landslide events caption Images Caption 4 Caption
Building damage prediction VQA 499 | Multiple Choice/Open-ended
ter prediction VQA 500 | Multiple Choice/Open-ended
Dissaster type classification VQA 500 | Multiple Choice/Open-ended
Geolocation estimation of
disaster-affected  regions VQA 502 | Multiple Choice/Open-ended
from imagery
General Reasoning Individual building damage VQA 107 Multiple Choice/Open-ended
assessment
Surface Disaster Multi-image individual vi- VQA 102 | Multiple Choice/Open-ended
sual localization task
Spatial relationships under VQA 99 | Multiple Choice/Open-cnded
complex conditions
Visual grounding of dam- ) .
sz ingiidual baidings VQA 102 | Multiple Choice/Open-ended
Individual building damage VQA/CoT 107 | Multiple Choice/Open-ended
assessment
Multi-image individual vi- - ) .
o e VQA/CoT 102 | Multiple Choice/Open-ended
o
Human-activity sphere Spatial relationships under | o 5 ycq7 99| Multiple Choice/Open-ended
complex conditions
Visual grounding of dam- |y \ e 102 | Multiple Choice/Open-ended
aged individual buildings : :
Fine-grained object recog- VQA 514 | Multiple Choice/Open-ended
Perception nition
Overall counting VQA 502 | Multiple Choice/Open-ended
Counting under complex VQA 754 Multiple Choice/Open-ended
conditions
Individual building height .
coni tividy ¢ VQA 101 | Multiple Choice/Open-ended
Urban Development General Reasoning estimation
Overall building height esti- VQA 100 | Multiple Choice/Open-ended
mation
Individual ‘building height VQA/CoT 101 | Multiple Choice/Open-ended
estimation
CoT A
Overall building height esti- VQA/CoT 100 | Multiple Choice/Open-ended
mation
S{:’:'““ land type classifica- VQA 500 | Multiple Choice/Open-ended
Fine-grained land type clas- VQA 509 | Multiple Choice/Open-ended
) sification
Land Use Perception )
Visual groudning of land | i1 Grounding | 508 Bounding Box
types
Visual localization of land VQA 509 | Multiple Choice/Open-ended
use types
General Reasoning Complex land counting VQA 449 Multiple Choice/Open-ended
. ) Dead oil palm counting VQA 828 | Multiple Choice/Open-ended
Crop growth monitoring Perception
Dead oil palm identification VQA 828 | Multiple Choice/Open-ended
) - ) Terresirial oil spill area cal- VQA 123 | Multiple Choice/Open-ended
Environmental pollution monitoring Perception culation
Terrestrial oil spill counting VA 123 | Multiple Choice/Open-ended
2‘;’]‘:2‘" footprint - assess- VQA 300 | Multiple Choice/Open-ended
Human footprint tific-Knowledge Homan £ indox es
uman footprint index esti- VQA 300 | Multiple Choice/Open-ended
mation
Tree species prediction VQA 500 | Multiple Choice/Open-ended
Percepti i .
Biosphere ereeption ;’fﬁ:{"’“'es proportion pre VQA 500 | Multiple Choice/Open-ended
Animal classification VQA 108 | Multiple Choice/Open-ended
Species Distribution Prediction <eomraphical location infer-
Geographical location infer VQA 500 | Multiple Choice/Open-ended
) | ence of plant species
Expert- knowledge Deductive Reasoning ) . . .
Global animal counting VQA 110 | Multiple Choice/Open-ended
Specics distribution predic- VQA 1000 | Multiple Choice/Open-ended
Fractional vegetation cover VQA 300 | Multiple Choice/Open-ended
estimation
Vegetation monitoring Scientific-Knowledge Reasoning Leaf area index estimation VQA 300 Multiple Choice/Open-ended
Peak vegetation  coverage VQA 300 | Multiple Choice/Open-ended
area grounding
Most likely species to occur VQA 900 | Multiple Choice/Open-ended
Species occurrence proba- ) )
Bird species prediction Scientific-Knowledge Reasoning oy oxtimation T VoA 453 | Multiple Choice/Open-ended
Species richness estimation vQA 900 | Multiple Choice/Open-ended
Cross-sphere Carbon flux monitoring Scientific-Knowledge Reasoning Carbon flux estimation VQA 330 Multiple Choice/Open-ended
Flood detecting VQA 596 | Multiple Choice/Open-ended
Global Flood tific-Knowledge Flood VQA 277 | Multiple Choice/Open-ended
Flood events caption Images Caption 28 Caption
P-wave phase picking VQA 300 | Multiple Choice/Open-ended
Pexception S--wavé phase picking VQA 300 | Multiple Choice/Open-ended
Earthquake or noise classifi- VQA 300 | Multiple Choice/Open-ended
q and cation
) Earthquake magnitude esti- VQA 300 | Multiple Choice/Open-ended
Lithosphere ) mation
Scientific-Knowledge Reasoning Earthauake sourcerecciver
sarthquake source-receiver VQA 300 | Multiple Choice/Open-ended
distance inference
i Salt body location Visual Grounding | 302 Bounding Box
Geophysics imaging Perception
Salt body detection VQA 329 | Multiple Choice/Open-ended
Volcanic activity Perception Volcanic activity caption Images Caption 2 Caption
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Table 9: Characteristics of each task (L4 dimension) in Atmosphere, Oceansphere and
Cryosphere. Atmosphere has 36 subtasks, Oceansphere has 8 subtasks, Cryosphere has 8 subtasks.

L1 L2 L3 L4 Task Description Format Samples Answer Type
ENSO feature analysis VQA 86 Multiple Choice/Open-ended
Long-term  Precipitation . . ~
Interannual climate variation Perception trend analysis vea 0 Multiple Choice/Open-ended
Long-term Temperature . -
trend identification VQA 51 Multiple Choice/Open-ended
Cyclone movement identifi- VQA 185 | Multiple Choice/Open-cnded
cation
g()’/‘:\lone phase identifica- VQA 90 Multiple Choice/Open-ended
C-WAVE Caption Images Caption 17 Caption
Event localization VQA 93 Multiple Choice/Open-ended
Event intensity identifica- VQA 504 | Multiple Choice/Open-ended
X Perception tion
Medium-term weather events Event onset identification VQA 42 Multiple Choice/Open-ended
Event trend analysis VQA 575 Multiple Choice/Open-ended
H-WAVE Caption Images Caption 17 Caption
?copolcnual pattern identi- VQA 33 Multiple Choice/Open-ended
ication
Moisture flux analysis VQA 150 Multiple Choice/Open-ended
System identification VQA 231 Multiple Choice/Open-ended
Storm Caption Images Caption 8 Caption
o | System  evolution  trend VQA 91 | Multiple Choice/Open-cnded
Scientific-Knowledge Reasoning | analysis
Atmosphere Event type prediction VQA 300 Multiple Choice/Open-ended
Miss alarm estimati VQA 300 Multiple Choice/Open-ended
SEVIR Weather Scientific-Knowledge Reasoning 155 alarm estimation Q uitiple Choice/Upen-ende
Movement prediction VQA 200 Multiple Choice/Open-ended
Rotate center prediction VQA 93 Multiple Choice/Open-ended
Precipitation anomaly iden- VQA 75 | Multiple Choice/Open-ended
tification
Seasonal weather events Perception Seasonal comparison VQA 101 Multiple Choice/Open-ended
"ljemp:cralure anomaly iden- VQA 75 Multiple Choice/Open-ended
tification
E:ﬁm intensity - identifica- VQA 323 | Multiple Choice/Open-ended
Perception Event localization VQA 133 Multiple Choice/Open-ended
Event trend analysis VQA 297 Multiple Choice/Open-ended
Short-term weather events Event type identification VQA 139 Multiple Choice/Open-ended
Dynamic feature identifica- voa 40 | Multiple Choice/Open-ended
Scientific-Knowledge Reasoning | Event evolution analysis VQA 90 Multiple Choice/Open-ended
Thermodynamic  feature i ice e
identification VQA 40 Multiple Choice/Open-ended
Pressure estimation VQA 847 Multiple Choice/Open-ended
Radius of major gale axis VQA 847 | Multiple Choice/Open-ended
estimation
Radius of minor gale axis VQA 847 | Multiple Choice/Open-ended
estimation
Typhoon Scientific-Knowledge Reasoning . . .
Ra§llus .Of major storm axis VQA 847 Multiple Choice/Open-ended
estimation
Raf:hus .Ol Minor storm axis VQA 847 Multiple Choice/Open-ended
estimation
‘Wind estimation VQA 847 Multiple Choice/Open-ended
Perception Glacial Lake Recognition VQA 12 Multiple Choice/Open-ended
Glacier analysis L . Glacier Melting Estimation VQA 10 Multiple Choice/Open-ended
Scientific-Knowledge Reasoning
Slide Recognition VQA 8 Multiple Choice/Open-ended
SIC Estimate SIT VQA 20 Multiple Choice/Open-ended
Cryosphere
SIC Estimate SIV VQA 20 Multiple Choice/Open-ended
Sea ice forecast Scientific-Knowledge Reasoning | SIT Trend Prediction VQA 30 Multiple Choice/Open-ended
SIV Trend Prediction VQA 30 Multiple Choice/Open-ended
Sea Ice Extent Estimation VQA 100 Multiple Choice/Open-ended
. Enso identification VQA 146 Multiple Choice/Open-ended
Perception
Iod identification VQA 140 Multiple Choice/Open-ended
Extreme Events
L . Enso forecast VQA 152 Multiple Choice/Open-ended
Scientific-Knowledge Reasoning
Tod forecast VQA 145 Multiple Choice/Open-ended
Oceansphere | Marine Debris and Oil Pollution Perception Marine Pallution Type Clas- VQA 110 | Multiple Choice/Open-ended
Eddy identification VQA 204 Multiple Choice/Open-ended
. . Marine fog detection VQA 200 Multiple Choice/Open-ended
Phenomenon Detection Perception ) . i )
Eddy identificaiddy Local- | i o1 Grounding | 166 | Multiple Choice/Open-ended
izationtion
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A.3 DATA PROCESSING STRATEGIES FOR THE S1X SPHERES.

A key point of inquiry is how Multimodal Large Models (MLLMs) process or adapt to the full range
of input modalities provided in our dataset. This section elaborates on the data processing strategies
employed for the 33 diverse sources integrated into OmniEarth-Bench.

Our general workflow involves domain experts collaborating with annotators to manually transform
raw inputs into formats suitable for MLLMs, such as RGB images paired with questions. The
specific approach depends on the nature of the original data:

* When RGB images are available: Experts select scientifically relevant images for Visual Ques-
tion Answering (VQA) tasks and design corresponding questions, with annotators assisting in
formulating the responses and distractors.

* When only raw data is provided: Experts visualize key variables as RGB images based on
predefined dimensions and scientific conventions. Some detailed examples using meteorological
data are included below.

The complete processing code and pipeline documentation will be released on our project website
in a future update for community use. The following provides a detailed breakdown for several of
the Earth’s spheres.

Cryosphere To create a test-ready QA benchmark for Level-4 sea-ice analyticscovering Sea-Ice
Extent (SIE) estimation, Sea-Ice Volume (SIV) trend prediction, SIV-from-SIC estimation, Sea-Ice
Thickness (SIT) trend prediction, and SIT-from-SIC estimationwe (1) acquire daily sea-ice con-
centration fields from NSIDCs G02202-v4 archive and Arctic SIV time-series from PIOMAS, (2)
decode the NetCDF products with the open-source net CDF4 package, (3) derive daily SIE and
basin-averaged SIC, (4) plot SIE, SIC, and SIV evolutions as authoritative references, and (5) as-
semble questionanswer pairs that juxtapose data-driven ground-truth with intentionally misleading
distractors. Each question is purpose-built to probe a specific facet of sea-ice reasoning in multi-
modal large-language models.

Biosphere For multi-scenario ecological Q&A tasks, we built a high-resolution dataset combin-
ing remote sensing imagery, eco-meteorological data, and multi-source annotations. It includes
MODIS 7-band, Landsat, and UAV images; COCO-format dead oil palm labels; multi-band oil spill
masks; surface vegetation and human footprint indices; daily meteorological sequences (tempera-
ture, humidity, radiation, wind, precipitation); 19 SatBird bioclimatic variables; carbon flux (NEE)
observations; and structured metadata (CSV/JSON with means, species probabilities, and patch IDs).
Preprocessing involved three main stages:

1. Metric Computation and Normalization

* GLASS: Mean FVC x 0.004 and LAI x 0.1 values written to CSV.
* HFP: Aggregated raster means.

* CarbonSense: Removed missing rows, converted meteorological variables to text, and
aligned them with MODIS images.

e SatBird: Stratified by species richness and extracted species probabilities from hotspot
JSON.

¢ ROSID: Binarized masks, counted connected domains, and calculated oil spill area from
pixel count.

* MOPAD: Filtered category_id == 1 to count dead oil palms.
2. Image Standardization

* Converted SatBird . tif to . jpg, CarbonSense . pkl to .png.
* Linked GLASS/HFP patches to full 7-band MODIS imagery.
* Preserved original resolution for UAV and Landsat images.

3. Thresholding and Answer Binning

¢ Mapped continuous variables (FVC, LAI, HFP) to preset intervals.
* Generated distractors using +2040% (ROSID) or £210 trees (MOPAD) around ground truth.
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* Binned species occurrence probabilities into [0, 0.3], [0.3, 0.6], and [0.6, 1].
+ Converted oil spill pixel count x 900 m? to km? and rounded.

Atmosphere For atmospheric weather events, we primarily use reanalysis datasets such as ERAS,
with meteorological variables visualized as RGB images that include variable names, legends,
latitude-longitude grids, and national boundaries.

1. Short- and Medium-Term Events: We compiled global event records from 19792020, re-
trieved corresponding timestamps from ERAS, and used 1-hour and 6-hour intervals for short-
and medium-term events, respectively. For multivariable or long-duration cases, the interval was
increased fourfold to limit image volume.

2. Seasonal and Interannual Events: These longer-range events require post-processing of raw
model data. We use NOAAs Global Reports (2010.012025.03) featuring visualized anomalies
and regional summaries. Following LLaVA’s methodology, we use ChatGPT-40 to generate QA
pairs. Seasonal inputs include all 12 monthly reports from a given year; interannual tasks use
annual reports from 20102024.

Lithosphere For seismic waveform analysis, we leverage the large-scale Stanford Earthquake
Dataset (STEAD). The process involves several key stages: (1) we select high-quality, three-
component seismic waveforms and filter out samples with missing components or low signal-to-
noise ratios; (2) all waveforms are standardized to a uniform 100 Hz sampling rate, normalized,
and formatted into 60-second slices; and (3) these raw waveforms are converted into standardized
RGB image representations for visual analysis. Based on these images, we construct VQA tasks
covering five core seismic challenges: earthquake/noise classification, P-wave and S-wave arrival
picking, epicentral distance inference, and magnitude estimation. For each task, the ground-truth an-
swer (True Value) is derived from STEADs expert-annotated labels, while distractor answers (False
Values) are systematically generated by applying controlled perturbations to the true values to test
model robustness.

Oceansphere For the oceansphere, our data processing varies based on the source format. For
analyzing climate phenomena like the El Nifio-Southern Oscillation (ENSO), we use the ERSSTvS
Sea Surface Temperature (SST) dataset. The VQA construction involves: (1) calculating 30-year
centered climatology and 3-month averaged anomalies; (2) computing the Nifio3.4 index to classify
ENSO events; (3) visualizing the SST anomalies as RGB maps; and (4) selecting relevant maps to
construct question-answer pairs. This supports two primary tasks: identifying the current ENSO
state using Pacific anomaly maps from the peak DJF season, and forecasting future ENSO events
using a sequence of six consecutive global anomaly maps as input. For datasets that are already
in visible light RGB format, such as the MADOS dataset for marine pollution monitoring from
Sentinel-2 imagery, the process is more direct. It primarily involves selecting scientifically relevant
images and constructing VQA tasks around visually identifiable features, such as classifying pol-
lution types (e.g., oil spills, marine debris, floating algae) and visually localizing targets like oil
platforms or specific patches of contamination.

Human-activity sphere For the human-activity sphere, the data is predominantly in visible light
RGB format, simplifying the preprocessing pipeline. We utilize a range of specialized datasets such
as xView2, UBCvl, and WHU-OHS to construct VQA tasks focused on disaster impact assess-
ment and fine-grained urban and land-use analysis. These tasks include identifying disaster types
(e.g., floods, wildfires), counting damaged or destroyed buildings by comparing pre- and post-event
imagery, assessing the damage level of individual structures, and performing fine-grained urban anal-
ysis, such as object counting (vehicles, buildings), land-use classification (farmland, urban built-up),
and visual localization of specific man-made features.
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A.4 CONSTRUCTION DETAILS OF DIFFERENT QUESTION FORMATS.

A.4.1 CHAIN-OF-THOUGHT (COT) ANNOTATION DETAILS.

This section provides a detailed account of the motivation, scope, and rigorous workflow used to con-
struct the Chain-of-Thought (CoT) annotations for the Level-4 (L4) evaluation tasks in OmniEarth-
Bench.

Motivation and Scope During the developmental phase of our benchmark, we identified a subset of
tasks that were exceptionally challenging for current Multimodal Large Models (MLLMs). These
tasks, such as the visual localization of a single damaged building across pre- and post-disaster im-
agery, could not be solved through single-step perception or retrieval. They inherently require a
complex, multi-step reasoning process that involves identifying context, comparing features, elimi-
nating distractors, and finally pinpointing the target.

Therefore, the primary motivation for introducing CoT annotations was to create a mechanism to
explicitly evaluate the capacity of MLLMs to perform and follow logical, multi-step scientific rea-
soning. These annotations are designed as a gold standard for evaluation, not for model training.

This annotation effort was strategically focused on 6 of our most demanding sub-tasks, where such
complex reasoning is indispensable. In total, this resulted in a collection of 610 samples meticu-
lously annotated with detailed reasoning chains.

Annotation Paradigm and Workflow To ensure the quality, objectivity, and logical consistency
of our CoT annotations, we designed and implemented a rigorous, multi-stage, human-in-the-loop
workflow. This process was structured to leverage the capabilities of advanced Al while relying on
human expertise for creation and final validation. The workflow is detailed below:

1. AI-Generated Reference Chain. For each question, a high-quality reference reasoning chain
was first generated using the GPT-40 model. Crucially, to ensure the reference was accurate and
complete, the model was provided with both the question and the ground-truth answer. This ini-
tial chain served as a comprehensive, machine-generated example of a possible logical pathway.

2. Human-Authored Key Steps. Certified annotators, all holding at least a bachelor’s degree,
were then tasked with creating a new and independent set of crucial reasoning steps based on
their own analysis of the problem, using the Al-generated chain only as a reference.

3. Ensuring Logical Independence and Diversity. To prevent mere paraphrasing of the AI’s out-
put and to encourage diverse, human-centric logic, a strict quality constraint was enforced: the
semantic and logical overlap between the final human-authored steps and the initial Al-generated
reference chain had to be less than 20%. This ensured that our CoT annotations represent gen-
uine human reasoning patterns.

4. Domain Expert Verification. The newly created CoT annotations were subsequently passed to
our team of domain experts (Ph.D. students in relevant Earth science fields) for a final round of
verification. They meticulously checked each reasoning chain for:

* Logical Soundness: Ensuring the steps flow logically from one to the next.
e Scientific Accuracy: Validating any domain-specific knowledge or claims.

* Completeness: Confirming that all necessary steps to reach the correct conclusion are
present.

5. Refinement and Condensation. Lastly, all expert-validated steps were refined to be as concise
as possible. This involved removing redundant phrases and retaining only the core logic and
essential visual or data-driven cues. The goal was to produce an information-dense yet easy-
to-follow reasoning pathway that represents the most efficient and accurate thought process to
solve the task.

This structured paradigm guarantees that our CoT annotations are not only correct and logical but
also a robust and reliable tool for evaluating the sophisticated reasoning capabilities of advanced Al
models in the Earth sciences.
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A.4.2 OPEN-ENDED QUESTIONS ANNOTATION DETAILS.

Motivation and Scope To more rigorously assess the true generative and reasoning capabilities of
Multimodal Large Language Models (MLLMs), we introduced an open-ended question format for
the OmniEarth-Bench. The standard Multiple-Choice Question (MCQ) format, while efficient for
broad-scale evaluation, provides explicit options that can act as "scaffolds" or hints for the model.
This mitigates the risk of models guessing the correct answer from a limited set of choices without
genuine understanding. The open-ended format removes these scaffolds, compelling the model
to generate answers from scratch and providing a more challenging and realistic measure of its
knowledge and reasoning abilities in the Earth science domain.

The open-ended questions in OmniEarth-Bench are systematically transformed from the existing L4
subtasks originally designed in the MCQ format. This transformation process is not uniform but is
instead tailored to the intrinsic nature of the answer for each task. We categorized all L4 subtasks
into four distinct types to guide this conversion:

1. Classification with a small, fixed label set: Tasks where the answer is one of a few prede-
fined categories (e.g., ENSO phases).

2. Classification with a large label set: Tasks where the answer is a choice from a larger, but
still finite, set of options (e.g., direction of cyclone movement).

3. Exact regression: Tasks that require a precise numerical answer (e.g., counting objects).

4. Interval regression: Tasks where the answer is a numerical or temporal range (e.g., dura-
tion of an event).

Workflow The construction and validation of open-ended question-answer pairs followed a meticu-
lous, expert-driven workflow:

1. Task Classification: Domain experts first categorized each of the 103 L4 subtasks into one
of the four types defined in the Scope. This initial step determined the specific transforma-
tion strategy to be applied.

2. Prompt Transformation: Based on its category, the prompt for each task was re-
engineered:

* For tasks with small, fixed label sets, the multiple-choice options were removed, and
the question was rephrased to directly ask for the answer (e.g., "What is the ENSO
phase shown in the image?").

* For tasks with large label sets, the candidate labels were explicitly listed within the
prompt itself, instructing the model to choose and generate the answer from the pro-
vided list (e.g., "From the following list [North, Northeast, East...], what is the direc-
tion of movement...?").

* For exact regression tasks, the question was rephrased to directly ask for the numeri-
cal value (e.g., "How many deceased oil palm trees are in the image?").

* For interval regression tasks, the prompt was modified to specify the required answer
format (e.g., "Provide the time range in the format *Start Month - End Month’.").

3. Golden Answer Formulation: The correct option from the original MCQ (e.g., option
’C’) was converted into its full-text or numerical "golden answer" (e.g., the text "Strong El
Nifio" or the number "15").

4. Expert Review and Refinement: Finally, all newly generated open-ended questions and
their corresponding golden answers were rigorously reviewed by the domain experts. This
step ensured that the rephrased questions were unambiguous, scientifically accurate, and
that the golden answers remained correct and appropriately formatted.

Evaluation Method The evaluation of open-ended questions poses a unique challenge, as tradi-
tional exact string matching is often too rigid to account for semantically correct but varied natural
language responses. Therefore, we employ a Large Language Model (LLM) as an automated
judge for assessing the correctness of generated answers. Specifically, a powerful, state-of-the-art
LLM (e.g., GPT-40) is provided with the original question, the MLLM’s generated answer, and the
expert-defined golden answer. The LLM’s task is to determine whether the MLLM’s answer is se-
mantically equivalent to or sufficiently captures the essence of the golden answer, thereby marking
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it as correct or incorrect. This approach leverages the advanced semantic understanding capabilities
of LLMs to provide a more nuanced and fair assessment of open-ended generative performance,
overcoming the limitations of keyword-based or fixed-choice evaluations.

A.4.3 IMAGES CAPTION ANNOTATION DETAILS.

Motivation and Scope Standard image captioning benchmarks typically focus on describing the
literal content of an image, which is insufficient for the complex analytical needs of Earth science.
In this domain, a deep understanding requires not only recognizing visual patterns in satellite im-
agery but also integrating them with external, contextual scientific data. To address this gap, we
designed a specialized captioning task for OmniEarth-Bench. The motivation is twofold: first, to
create a benchmark that evaluates an MLLM’s ability to perform multimodal fusion, synthesiz-
ing information from both visual satellite data and textual historical disaster data; second, to test
a model’s capacity for domain-specific reasoning by requiring it to act as a meteorological expert,
thereby moving beyond simple object description to nuanced scientific interpretation.

The scope of this task is centered on significant climate-related disasters, leveraging a combination
of satellite and historical data sources.

1. Image Data Source: The visual data consists of multispectral images from the Microwave
Humidity Sounder (MHS) satellite. Each event is represented by a set of images corre-
sponding to MHS’s five distinct spectral bands, capturing 12 hours of observational data.

2. Contextual Data Source: The textual data is sourced from the EM-DAT International
Disaster Database, which provides detailed historical records of climate events.

3. Event Types: The task covers a range of severe weather and climate phenomena, including
storms, floods, landslides, wildfires, cold waves, and heat waves.

4. Output: The deliverable is a collection of image sets paired with single-paragraph, detailed
captions. Each caption cohesively integrates the visual evidence from the MHS imagery
with the factual context from the corresponding EM-DAT record.

Workflow The creation of the image-caption pairs followed a systematic, multi-stage workflow,
ensuring both scientific rigor and data quality.

1. Raw Data Acquisition and Preprocessing:

e Level 1B data from the MHS satellite, which is initially sparse and irregular, was
collected.

* This raw data was processed using a remapping algorithm to project the sparse obser-
vation points onto a regular, spatially coherent global grid, creating a dense image-like
representation for each spectral channel.

2. Event Identification and Cropping:
» Using the EM-DAT database, significant historical climate disasters were identified,
and their specific geographic locations and timelines were extracted.

* An event cropping algorithm was then applied to the global satellite data grids. For
each identified disaster, the corresponding 12-hour, 5-channel image sequence was
precisely cropped from the global map based on the event’s location and time.

3. Automated Caption Generation with Multimodal Input:

» The cropped set of multispectral satellite images and the associated textual disaster re-
port from EM-DAT were provided as combined input to a state-of-the-art LLM (GPT-
40).

* A specialized prompt was engineered to instruct the model to act as a "meteorological
analysis expert." The prompt explicitly required the model to generate a single, cohe-
sive paragraph that analyzes and describes the event by synthesizing relevant details
from both the images and the historical data.

4. Expert Review and Validation:

* Finally, every automatically generated caption underwent a rigorous review by human
domain experts. This validation step was crucial for verifying the scientific accuracy
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of the interpretation, the factual correctness of the fused information, and the overall
linguistic quality and coherence of the caption. Any captions that were inaccurate or
failed to properly integrate the data sources were either refined by experts or discarded
to maintain the high standard of the benchmark.
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A.5 DETAILED RESULTS OF SPECIFIC SUB-TASKS (L-4 DIMENSION).

Worse performance of Qwen2.5-VL. Qwen2.5-VL lagged behind contemporary open-source mod-
els like InterVL3 on Earth-related tasks, with both its 7B and 72B versions rarely ranking first in
any L4 subtask. Despite its larger parameter size, the 72B model often scored zero on multiple tasks.
However, this low accuracy shouldn’t be seen as a lack of capability.Qwen2.5-VL often responds
with E (unable to answer) when lacking domain knowledgean honest approach. In contrast, some
models tend to guess when uncertain, which is less desirable.

Many models scored zero on various sub-tasks. Even the top-performing InternVL3-78B failed
on several. GPT-40, a widely used closed-source model, recorded zero accuracy on nearly half the
tasks. These results underscore the effectiveness and domain specificity of our sub-task design.

No significant gap between closed-source and open-source models.  Although Gemini and
Claude3 slightly lag behind LLaVA-OneVision and InternVL3 on sub-tasks, the gap is minimal.
This indicates that open-source multimodal models are still well-suited for advancing Earth science
research and agent development, without relying exclusively on closed-source alternatives.

Poor performance of some subtasks in Cross-sphere. In the cross-sphere species richness pre-
diction task, no model surpassed 10% accuracy on 900 test samples, which aligns with expectations
given the task’s complexity. Integrating climate variables, satellite imagery, and vegetation factors
creates a highly intricate prediction challenge beyond the capabilities of current models.

Table 10: CoT performance of each L4 subtasks. We mark the highest score of each metric in
red , and second highest underlined.

Qwen2.5-VL-7B LLaVA-OneVision-7b InternVL3-8B InternVL3-78B
Task Num.
Multi-image Visual Localization 102 95.87 31.21  47.09 93.28 4036 56.34 93.89 4134 5740 97.49 4374  60.39
Visual grounding of damaged individual buildings 102 95.97 2598 4089 92.38 2292 36.73 95.86 3347  49.62 91.99 4258 5821
83.97 1450 24.73 83.73 18.17  29.86 93.82 20.00 3297 92.59 19.50  32.22

Spatial relationships under complex conditions 99 94.51 3598 52.12 91.75 2227 3584 93.79 36.60  52.65 96.25 3255  48.65

Individual building damage assessment 107 93.21 37.54 5352 87.93 1296 2259 92.79 40.74  56.62 95.58 39.06  55.46

\
‘Percisiun Recall Fl1 Percision  Recall Fl1 Percision  Recall Fl1 Percision  Recall Fl1
|
|
|
|
|
01|

\
\
\
\
Overall building height estimation ‘ 100
\
|
|

Individual building height estimation 92.49 1271 22.34 87.69 132 2295 91.77 1337  23.34 90.46 1436 24.78

InternVL3 outperforms other MLLMs in CoT tasks. The InterVL3 series performed strongly on
CoT tasks, with both the 7B and 78B models achieving top results across all subtasks, showcasing
their strength in geoscience chain-of-thought reasoning. Future geoscience reasoning tasks could
benefit from further training and application of this series.

Table 11: Visual Grounding performance one each L4 subtasks.

N ‘ Qwen2.5-VL-7B LLaVA-OneVision-7b InternVL3-8B InternVL3-78B GPT-40 Gemini-2.0 Claude-3-7
um

‘acc@O.S acc@0.7 acc@0.5  acc@0.7  acc@0.5 acc@0.7 acc@0.5 acc@0.7 acc@0.5 acc@0.7 acc@0.5 acc@0.7 acc@0.5 acc@0.7

\

|
Salt Body Location | 30

|

|

2 ‘ 0 0 53 0.33 8.94 1.66 4.3 0.33 0.08 0 0.13 0.04 0.02 0
Eddy Localization 166 ‘ 3.01 0 1.81 0.6 6.63 0.6 13.86 3.61 0.12 0.01 0.34 0.06 0.2 0.07
Visual Grounding of Land Types | 508 ‘ 0.2 0.00 0.59 0.20 2.56 0.59 236 0.20 0.02 0.00 0.03 0.00 0.00 0.00

Visual grounding performance is notably poor across all models It exposes two main shortcom-
ings: limited geoscientific knowledge and weak visual localization capabilities. Both open- and
closed-source models fall short in these aspects.
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Table 12: VQA Performance in L4 dimension. We mark the highest score of each metric in red ,
and second highest underlined.

Domain | L4-task | Num | @Wen25-VL  InternVL3

LLaVA-OV GPT-40 Gemini Claude3
\ | 78 72B 8B 78B 7B
Change detection... | 502 | 6.97 139 43.03 7251 85.06 0 74.1 10.36
Partially damaged... | 498 | 1.41 0 4.02 4598 50.6 0 11.24 0.8
Building damage... | 499 | 0.2 481 5.81 7.62 33.87 0 8.22 4
Disaster prediction | 500 | 0.8 5.6 4 0.6 0.6 0 0.2 2.8
Disaster type... | 500 | 1 62 66 82 1.6 0.4 42 112
Geolocation... 502 | 12.15 9.76  36.25 44.82 31.67 2.59 36.45 33.47
Fine-grained object... | 514 | 10.89 19.46 2198 30.35 48.05 0 47.67 16
Overall counting 502 | 1.99 259 18.13 17.13 21.12 0.2 31.67 0
Counting complex... | 754 | 0.4 0 31.75 19.05 18.25 0.27 9.28 0.93
Human-activity | Overall land... 509 0 02 196 1.38 1.38 0 1.57 1.18
Fine-grained land... | 509 | 393 6.68 26.13 6.48 39.88 39.29  30.26 32
Visual localization... | 509 | 1.38 3.54 5.11  4.52 1.77 0.39 6.68 1.57
Land types ... 449 | 3.12 334 245 16.04 14.7 0 5.35 0
Individual building | 107 | 093 748 2897 243  47.66 0 3551 1402
Multi individual ... | 102 | 10.78 13.73 28.43 53.92 67.65 8.82 41.81 43.14
Spatial relation ... 99 2222 2121 3333 36.36 23.23 2.02 3939 16.16
Visual grounding ... | 102 |35.29 37.25 5294 5294 65.69 2843 56.86  37.25
Overall height ... 509 0 0.2 1.96 1.38 1.38 0 1.57 1.18
Individual height ... | 101 0 0 45.54 0 38.61 0 0 0
Dead oil .. counting | 828 | 52.9 4795 48.67 73.67 7367 0 56.04 60.51
oil ..identification | 828 |85.51 70.65 81.52 83.33 85.63 0 51.81 77.29
oil spill area ... 123 0 0 569  5.69 0 0 0 0
oil spill counting ... | 123 0 0.81 41.46 53.66 22.76 0 7.32 0
footprint assess .. 300 | 0.33  0.67 36 26.33 22.67 0.67 7.67 26.67
footprint index .. 300 0 0 3.33 3.33 23.33 0 0 20
species prediction .. | 500 5 152 356 464 46.8 0.8 15.8 13.2
Biosphere species proportion.. | 500 0 0.2 26.2 1.8 184 0 5.2 2.4
Animal classification | 108 | 4.63 1.85 1574 27.78 43.52 0 9.26 2.78
Geographical ... 500 | 46 134 182 26 50 10.4 38.6 758
distsrfi’gﬁéf;nm 1000| 2.1 686 733 78 40.1 168 915 902
Fractional ... 300 0 0 13 25 56 0 3.67 46
Leaf area index... 300 0 0 7.33 14 50 0 0 29.33
animal counting... | 110 0 3.64 0 6.36 2.73 0.91 7.27 0
Peak vegetation... | 300 9 0.67 25 8.33 24 0 18.3 24
Most likely species... | 900 | 0.11 18.89 20.89 40.67 21.89 0.22 36.67 5922
Species occurrence... | 453 | 2.65 4.64 585 13.69 8.17 0 3.31 29.8
C h Species richness ... | 900 0 0 9 0.33 7.67 0 0 0
ross-sphere
Carbon flux .. 330 (1152 0 2485 0.61 25.45 0 0.61 0
Flood detecting 596 | 44.8 0 52.18 51.51 52.35 0 28.52 51
Flood predicting 277 0 0 91.7 8.3 0 0 3249  44.04
Glacial Lake .. 12 25 25 7575 75 50 66.67 66.67
Glacier Melting... 10 30 10 40 50 30 10 30 40
Slide Recognition... 8 65.5 0 375 625 62.5 12.5 62.5 50
Cryosphere SIC Est.imate SIT 20 0 0 55 100 45 85 80 90
SIC Estimate SIV 20 0 0 45 80 40 50 70 80
SIT Trend Prediction | 30 | 3.33 0 50 90 50 40 46.7 60
SIV Trend Prediction | 30 0 0 36.67 80 36.67 13.33 5333 20
Sea Ice Extent... 100 | 19 12 55 59 32 39 59 29
P‘“;?Zﬁifl}g‘m 300 8 1133 1067 16 8 6 2233 11
. Swavephase | 300 | 3667 3533 61.67 41 32 1667 4933 2833
Lithosphere picking R
Earthquake ormoise | 300 | 4467 8633 63 5933  52.33 50 9333 95
magnitude estim... | 300 | 1.33 0 38.33 0 32.67 0 26.67 1.67
source-receiver ... | 300 |20.33 0.67 3533 6.67 33 1.67 14 21.67
Salt body detection | 329 | 0.91 09834 1581 17.33 14.29 243 27.96 11.25
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Table 13: VQA Performance in L4 dimension. We mark the highest score of each metric in red ,
and second highest underlined.

Sphere | l4task | Num|QWen25-VL  InternVL3

LLaVA-OV GPT-40 Gemini Claude3
\ \ | 7B 72B 8B 78B 7B
Cyclone move... | 185 | 8.65 2.16 37.84 47.03 34.59 6.49 3838  44.32
Cyclone phase... 90 0 0 48.89 0 25.56 1.11 25.56 5.75
Event intensity... | 594 | 17.34 44.61 38.72 0 30.14 1321 53.62  33.28
Event localization | 93 |18.28 5.38 46.24 4194 33.33 1898 51.82  43.07
Event onset... 42 0 0 26.19 0 35.71 16.67  30.95 381
Event trend... 575 | 0.18 0 48.52 0 36.87 296  39.82 14.7
Geopotential... 33 |18.18 12.12 18.18 15.15 12.12 18.18  9.09 30.3
Moisture flux... 150 0 0 66.00 0 53.34 0 0 6.12
System... 231 | 433 17.75 33.77 0 22.94 18.18  40.69 52
System evolution... | 91 2.2 0 40.66 0 56.04 17.58  57.14 70
Event intensity... | 323 |18.89 13.62 50.77 0 34.37 30.64 5954 1831
Event localization | 133 | 1.5 0.75 47.37 0 13.53 2585 50.68 21.05
Event trend... 297 | 3.03 0 31.65 0 35.69 4.71 41.08  19.57
Event type... 139 |23.74 17.27 36.69 0 25.9 2374  27.34 0
Dynamic feature... | 40 | 45 675 375 0 2.5 15 27.5 30.77
Event evolution... | 90 0 0 24.44 0 222 0 21.11 8
Atmosphere Thermodynamic... | 40 0 0 15 0 0 7.5 20 15.79
Pressure... 847 0 0 0.83 0 30.34 0 0 0
Radius (gale)... 847 0 0 21.49  0.59 2491 0 0 35.42 :
Radius (storm)... | 847 0 0 23.02 0.71 14.76 0 0 47.23
minor gale ... 847 0 0 0 5.79 15.47 0 0 0
minor storm ... 847 0 0 1.89 0 4.84 0 0 0
Wind estimation | 847 0 0 0 5.79 30.46 0 0 0
Precipitation ... 75 0 1.33  21.33 28 22.67 6.67 28 16
Seasonal ... 101 | 891 99 46.53 0 45.54 27.52 405 40
Temperature ... 75 16 18.67 4533 57.33 48 29.33  49.33 48
ENSO feature... 86 |41.86 63.95 75.58 0 77.91 90.7 7558  73.26
Long.. 50| 0 0 34 48 26 20 26 32
Precipitation —

Long.. Temperature | 51 0 0 49.02 60.78 27.45 39.22 2549 2745
Event type .. 300 | 15 0 36 19 42.67 20.67 1 16
Miss alarm .. 300 0O 0 19 22 32 0 0.67 8.33
Movement .. 200 | 45 21 76.5 605 81 2 69 64.5

Rotate center... 93 | 323 215 6237 7527 46.24 0 6.45 58.06
ENSO .. 146 |21.92 3493 33.56 17.81 23.97 3151 2603 5137
10D Identification | 140 | 429 19.29 12.86 4.29 12.14 50 5.71 12.86
ENSO Forecast | 152 | 0 329 23.03 36.18 15.79 6.58 23.03 19.74
Oceansphere | JOD Forecast 1451 0 0 483 1862  18.62 0 0.69 0

Eddy Identification | 204 | 3.93 049 392 4.9 44.1 1.47 4.9 14.22
Marine Fog .. 200 | 67.5 55 61 57 53.5 3 55.5 555

Marine Pollution... | 110 | 0 091 273 273 3.64 0.91 2.73 8.18
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A.6 DETAILED RESULTS OF SPECIFIC SUB-TASKS (L-3 CAPABILITY).

This section highlights the performance of MLLMs across all L-3 capabilities. The VQA task is split
into perception, General reasoning, and Scientific-Knowledge Reasoning dimensions, with results
shown in Tables T4. Model performance varies across L3 dimensions: InterVL3 excels in perception,
Table 14: VQA Performance in L3 dimension. We mark the highest score of each metric in red ,
and second highest underlined.

|Qwen2.5-VL  InternVL3

L4-task LLaVA-OV GPT-40 Gemini Claude3
| 7B 72B 8B  78B 7B

Perception 13.42 1537 35.77 24.68 34.66 1540 3333 2697

General Reasoning 732 10.86 28.67 27.48 30.71 3.62 2122 1374

Scientific-Knowledge Reasoning | 8.2  5.72  30.89 27.49 30.18 8.74 23.66  31.62

LLaVA-OneVision in general reasoning, and Claude3 in scientific knowledge reasoning. Overall,
Inter VL3 shows consistently strong results, while Qwen2.5VL and GPT-4o fall notably behind.

A.7 SAMPLES AND CHALLENGING CASES OF OMNIEARTH-BENCH

In this section, we construct a detailed table (Tab. [3) analyzing model performance and error causes
for the L-4 subtask. We then use examples to thoroughly illustrate the errors for typical subtasks.
In this section, we present a case study analysis of the error types made by Gemini-2.0-Flash Team
ef all (2023), Qwen2.5-VL Baiefall (2075), and InterVL3 IZhu ef all (Z075) on various sub-tasks in
OmniEarth-Bench. We classify the errors into the following 6 categories:

Spatio-temporal Frame Confusion : The model misinterprets either the time sequence or the

spatial orientation / coordinate frame of the data, leading to a reversed trend, direction, or geographic
reference. See examples in Fig. [, Fig. [[3, etc.

Threshold / Severity Mis-estimation : Numeric values are read incorrectly or wrong thresholds
are applied, so strength or severity categories are wrong. See examples in Fig. [, Fig. [T, etc.

Image-feature Misinterpretation : Visual cues (texture, color, shape) are misread; key features
are missed or artefacts are mistaken for real features. See examples in Fig. I8, Fig. [, etc.

Domain-knowledge / Semantic Mis-match : Mis-application of non-visual expertise ecology,

climate thresholds, hazard mechanics so the scene is matched to an incorrect knowledge template.
See examples in Fig. B.

Over-cautious / Refusal : Adequate information is available, but the model answers Unable to
decide (or hedges) to avoid committing. See examples in Fig. B,Fig. [, etc.

Target Mis-location : The object or area specified in the prompt is not correctly identified, so all
subsequent reasoning is off target. See examples in Fig. [4.

Table 15: Table index of case study figures by sub-tasks (L-3 capability) with associated (error)
categories for each MLLM.

Case L-1 task

L-4 task

Gemini

Quwen2-VL

Internvl3

Fig.0
Fig.®
Fig.®

Atmosphere
Biosphere
Biosphere

Fig. B3 Cross-sphere

Fig. B3 Cross-sphere

Fig. B3 Cryosphere

Fig. B3 Cryosphere

Fig. B3 Lithosphere

Fig. B3 Oceansphere

Fig. B8 Oceansphere
Fig. B3 H

Movement Prediction
Dead Oil Palm counting
Species Distribution Prediction

Most likely species to occur

Global Flood Forecasting

SIC Estimate SIT

Sea Ice Extent Estimation
P-wave phase picking
ENSO Identification

Marine Fog Detection

D

Spatio-temporal Frame Confusion
Correct
Correct

Correct
Correct

Correct

Spatio-temporal Frame Confusion
Target Mis-location

tch

Spatio-temporal Frame Confusion
Over-cautious / Refusal
D i / Semantic Mi:

Correct
Over-cautious / Refusal
Correct

Over-cautious / Refusal
D i / Semantic Mi

Over-cautious / Refusal

I fe

I fe

¢

Threshold / Severity Mis-estimation

Threshold / Severity Mis-estimation
= pr—s == q

ge-feature Misi etation
Over-cautious / Refusal
Threshold / Severity Mis-estimation
—————— .

g
Spatio-temporal Frame Confusion
Target Mis-location

tch D

o
Correct
Target Mis-location

/ Semantic Mis
Threshold / Severity Mis-estimation

I feats

Domait / Semantic Mis

Spatio-temporal Frame Confusion
e -
g

/ Semantic Mis-match
Spatio-temporal Frame Confusion
e -

I Frars

ge-feature Misinterpretation
I frasre

¢

Fig. B3 Lithosphere

sphere

Fi -ained object type
carthquake source-receiver distance inference

ge-feature Misinterpretation
Correct

g
Image-feature Misinterpretation
Target Mis-location

g
Image-feature Misinterpretation
Over-cautious / Refusal
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-—|_Atmosphere |

“Question": The provided image sequence
represent the evolution of a convective system.
What is the moving direction of the convective
system in the sequence?

(A)to west
(B)to north
(C)to south
(D)to east
(E)Unable to decide"

“Correct Answer": "D" —

0:0 Spatio-temporal Frame Confusion

Gemini: "A"

“"Reasoning": "The sequence of images shows the convective system moving from right to
left. This indicates that the system is moving towards the west."

0:0 Spatio-temporal Frame Confusion

Qwen:A

"Reasoning": "The convective system is moving to the west. This is evident from the
sequence of images where the red and yellow areas, indicating intense convective
activity, are gradually shifting towards the left side of the frame. The green areas,
representing less intense activity, are expanding towards the right, which further
supports the westward movement. The overall pattern of the system's evolution shows a
consistent westward progression over time."

V]

Internvi3:D

", w

“Reasoning”: "The sequence of images shows the progression of a convective system over
time. By observing the position and movement of the red and yellow areas, which
represent higher temperatures or convective activity, we can see that the system is
moving from the left side of the images to the right. This indicates a movement to the
east.”

Figure 7: A sample case of Movement Prediction subtask.
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—|__Biosphere |

5

“"Question": "This is an unmanned aerial vehicle
(VAV) image capturing oil palm trees. How many
dead trees are in this image?"

(A) 3

(B) 8

©) 11

®)1

(E) Unable to decide

“Correct Answer": "D"

\/,
Gemini: D

“Reasoning": "Based on the image, I can only identify one tree that appears to be
dead or severely damaged. It is located in the upper-middle section of the image,
and it has a significantly different color and structure compared to the healthy
green oil palm trees."

}:Q Over-cautious / Refusal

Qwen:E

“"Reasoning": "The image shows a dense plantation of oil palm trees with no clear signs of
dead trees. The frees appear uniformly green and healthy, with no visible brown or
withered foliage that would indicate dead trees. The image resolution and angle may not
be sufficient to detect subtle signs of tree death. Without more detailed information or
a closer view, it is not possible to accurately count dead trees. Therefore, the best
answer is 'E' - Unable to decide."

0:0 Over-cautious / Refusal

Internvi3:E

"Reasoning”: "The image shows a large number of oil palm trees, but it is difficult to
determine the exact number of dead trees without a closer inspection or additional
information. The trees appear healthy and green, but there are no clear indicators of
dead trees visible from this aerial view."

Figure 8: A sample case of Dead Oil Palm counting subtask.
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| Biosphere |

8]

S

“Question": "Which species is most likely to live
in the region shown at the image? The latitude
is 60.1805513699° N, and the longitude is
24.9494441843° E."

(A)Fringilla coelebs gengleri
(B) Acridotheres tristis
(C)Passer domesticus
(D)Anthornis melanura
(E)Unable to decide

“Correct Answer": “C"

V]
Gemini: D

“Reasoning": "The coordinates 60.1805513699° N, 24.9494441843° E indicate Helsinki,
Finland. The image shows an urban environment. Passer domesticus (House Sparrow) is a
common bird species found in urban areas worldwide, including Europe. The other options
are less likely: Fringilla coelebs gengleri is a subspecies of Chaffinch found in the British
Isles, Acridotheres tristis (Indian Myna) is native to Asia, and Anthornis melanura (New
Zealand Bellbird) is native to New Zealand."

O:Q Domain-knowledge / Semantic Mis-match

Qwen:E

“"Reasoning": "The image shows a region with a mix of urban and green spaces, likely in a
temperate climate zone. The coordinates place this region in Helsinki, Finland. Fringilla
coelebs gengleri, a subspecies of the common chaffinch, is native to northern Europe and
well-adapted to such environments. Acridotheres tristis, the common myna, is native to
South Asia and not typically found in this region. Passer domesticus, the house sparrow,
is common in urban areas but is not specific to this location. Anthornis melanura
melanura, the tui, is native fo New Zealand and not found in Europe. Therefore, Fringilla
coelebs gengleri is the most likely species to live in this region."

Y

Internvi3:E

“"Reasoning”: "The image shows a densely populated urban area with water bodies, which
is characteristic of many cities in femperate regions. The latitude and longitude
provided suggest a location in the northern hemisphere, likely in a region with a
temperate climate. The species listed are birds, and among them, Passer domesticus,
commonly known as the house sparrow, is known to inhabit urban environments. The
other species listed are either not typically found in urban settings or are more specific
to different regions. Therefore, Passer domesticus is the most likely species to live in
the region shown in the image."

Figure 9: A sample case of Species Distribution Prediction subtask.
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~—|_Cross-sphere |

4
3

g

"Question": "This image shows the satellite view of a
bird hotspot, which is located at longitude
34.356469 and latitude -0.738459 in the state of
Nyanza, Kenya. ..Which of the following bird species
is most likely to occur in this hotspot?"

(A)Pitta angolensis

(B) Amadina fasciata

(C)Streptopelia semitorquata

(D)Spatula querquedula

(E)Unable to decide

“Correct Answer": "D"

\

“Reasoning": "The image shows a landscape with a mix of vegetation and some built-
up areas. The climate data indicates a relatively warm and wet environment.
Streptopelia semitorquata (Red-eyed Dove) is a common bird in African woodlands
and cultivated areas, which aligns with the habitat and climate suggested by the
image and data. The other options are less likely: Pitta angolensis prefers dense

forests, Spatula querquedula is a migratory duck and Amadina fasciata prefers
drier areas."

0:4 Over-cautious / Refusal

Qwen:B

“"Reasoning": "The satellite image shows a region with a mix of green vegetation and some
human settlements, indicating a semi-arid to sub-humid environment. The bioclimatic
variables suggest a warm climate with moderate precipitation, typical of savanna or
woodland habitats. Amadina fasciata, commonly known as the black-rumped shama, is
well-adapted to such environments. It prefers open woodlands and savannas, which align
with the visual cues from the image. The other options are less likely: Pitta angolensis
prefers dense forests, Streptopelia semitorquata is more common in arid regions,
Spatula querquedula is a waterfowl requiring wetlands, and selecting 'E' would be too
uncertain given the clear habitat match for Amadina fasciata."

0:4 Over-cautious / Refusal

Internvi3:A

“"Reasoning": "The satellite image shows a bird hotspot in Nyanza, Kenya, with specific
bioclimatic variables. Pitta angolensis, also known as the Angola Pitta, is known to inhabit
areas with dense vegetation and a range of tfemperatures and precipitation levels similar
to those described. The image shows a mix of agricultural fields and forested areas,
which aligns with the habitat preferences of the Angola Pitta. The other options, such as
Amadina fasciata, Streptopelia semitorquata, and Spatula querquedula, have different
habitat requirements and are less likely to be found in this type of environment."

Figure 10: A sample case of Most likely species to occur subtask.
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— Cross-sphere |

53
%

“Question": "As a pan-Arctic researcher, you are
given one sea ice concentration map (the first image)
and one plot for daily trend in sea ice thickness (the
second image). Considering the date of SIC map is
the following day of the end of SIT trend plot,
which choice would most likely to be the averaged
SIT of the given SIC map?"

(A)0.946
(B)1.775
(©)1.369
(D)1.052
(E)Unable to decide™

“Correct Answer": "D"

\/
Gemini: B

“Reasoning": "The SIC map is for the day after the SIT trend plot ends. The SIT trend
plot ends at a date index of approximately 250, where the SIT is around 1.05 meters.
Therefore, the most likely average SIT for the SIC map is 1.052."

}:Q Image-feature Misinterpretation

Qwen:C

“"Reasoning": "The SIT plot shows a clear downward trend, ending at approximately 1.1
meters. The SIC map indicates a significant amount of sea ice coverage, suggesting that
the SIT is not at its lowest point. Given the options, 1.369 meters is the most
reasonable choice as it is higher than the endpoint of the SIT plot but lower than the
peak, aligning with the expected SIT for the next day."

’:Q Image-feature Misinterpretation

Internvi3:A

“"Reasoning”: "The SIT trend plot shows a decreasing trend in sea ice thickness over time.
The date of the SIC map is the following day after the end of the SIT trend plot. By
examining the plot, the SIT value at the end of the trend (around day 250) is
approximately 1.1 meters. Given the decreasing trend, the SIT on the following day

would likely be lower than 1.1 meters. Among the provided choices, 0.946 is the only

value lower than 1.1 meters, making it the most likely averaged SIT for the given SIC
map."

Figure 11: A sample case of Global Flood Forecasting subtask.
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——_ Cryosphere |

“Question": "The first image is the GloFAS dis24
data, which represents the forecasted river
discharge in cubic meters per second (m”~3/s). The
second image is the ERAS temperature data at 2
meters above ground level, measured in Kelvin (K).
The third image is the volumetric soil water content
in the top layer of the soil, measured in cubic meters
per cubic meter (m"3/m~3). The fourth image is the
snow depth water equivalent, measured in meters (m).
The fifth image is the total precipitation sum,
measured in millimeters (mm). Whether flood occurs
in the region on the date shown in the images ?"

(A)Flooding occurs
(B)Flooding does not occur
(C)Unable to decide"

“Correct Answer": "B"

\/
Gemini: B

“Reasoning": "The river discharge (dis24) shows moderate levels in the rivers. The total
precipitation sum is very low, indicating no significant rainfall. The soil water content is
also not particularly high. The snow depth water equivalent is negligible. Therefore,
based on the available data, flooding is unlikely to occur."

’:Q Threshold / Severity Mis-estimation

Qwen:C

“Reasoning": "The GloFAS dis24 data shows relatively low river discharge values, with no
significant areas indicating high discharge that would typically suggest flooding. The
temperature data does not show any extreme conditions that would contribute o
flooding, such as rapid snowmelt. The soil water content is moderate, with no signs of
saturation that could lead to runoff. The snow depth water equivalent is very low,
indicating minimal snowmelt contribution. The total precipitation sum is also low, with no
heavy rainfall that could cause flooding. However, without additional context or data,
such as real-time river levels or local topography, it is not possible to definitively
conclude whether flooding occurs or not."

0:0 Domain-knowledge / Semantic Mis-match

Internvi3:A

“Reasoning”: "The first image shows high river discharge values, indicating potential
flooding. The volumetric soil water content is high, suggesting saturated soil conditions.
The snow depth water equivalent is also significant, which could contribute to runoff.
The temperature is relatively low, which might slow down evaporation, further increasing
the risk of flooding. These factors combined suggest that flooding is likely to occur in
the region on the date shown."

Figure 12: A sample case of SIC Estimate SIT subtask.
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—{__Cryosphere |

4
£

“Question": "As a geoscientist, you are given two sea
ice concentration maps, which one describes the sea
ice extent in Antarctic region?"

(A)The first sea ice concentration map
(B)The second sea ice concentration map
(C)Both sea ice concentration maps
(D)Neither

(E)Unable to decide

“Correct Answer": “A"

b:{ Spatio-temporal Frame Confusion
Gemini: B

“Reasoning": "The second image shows a significantly reduced sea ice extent compared
to the first image. During the melting season, sea ice extent decreases substantially due
to warmer temperatures. Therefore, the second image is more likely o represent sea
ice extent during the melting season."

’IQ Spatio-temporal Frame Confusion

Qwen:B

“Reasoning": "The second sea ice concentration map shows a sighificantly reduced area
of sea ice compared to the first map. This is indicative of the melting season, where sea
ice extent typically decreases. The first map displays a larger and more continuous ice
coverage, suggesting it represents a time of year with less melting, such as winter or
early spring. The second map's fragmented and reduced ice coverage aligns with the
characteristics of the melting season, where ice retreats and breaks up. Therefore, the
second map is more likely to represent the sea ice extent during the melting season."

\/

Internvi3:A

“"Reasoning”: "The first sea ice concentration map shows a large ice-covered area in the
southern hemisphere, which is characteristic of the Antarctic region. The second map
shows ice in the northern hemisphere, which is characteristic of the Arctic region.
Therefore, the first map describes the sea ice extent in the Antarctic region."

Figure 13: A sample case of Sea Ice Extent Estimation subtask.
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——{_Lithosphere |—;

La]

Ll

“Question": "As a seismic waveform analyst,
determine the exact onset of P-wave phases in

three-component ENZ seismic data (East, North, - -
Vertical: 0-6000 samples at 100Hz sampling rate). =
Prioritize vertical-component analysis validated by

transverse energy analysis, with supplementary

horizontal-component polarization verification. Output W“»’
a integer [x] relative to sample index O, rounded to "

nearest phase estimate.” ‘.. |

(A)322 ‘

(B)500 EETEEEE
(€)1317

(D)613

(E)Unable to decide"

“Correct Answer": “B"

DIQ Target Mis-location + Domain-knowledge / Semantic Mis-match
Gemini: C

"Reasoning": "The P and S wave arrivals appear to be nearly simultaneous, occurring
around sample 1400. With a sampling rate of 100 Hz, the P-S time difference is very
small, suggesting a very short epicentral distance. Of the choices provided, 10 km is the
only plausible distance for such a small time difference."

.:Q Target Mis-location + Domain-knowledge / Semantic Mis-match

Qwen:C

“"Reasoning": "The image lacks clear P and S wave arrivals, making it impossible to
determine the P-S time differential. Without this crucial information, calculating the
epicentral distance is not feasible. The waveforms do hot show distinct polarization
characteristics that could aid in validation. The data appears noisy, further complicating
analysis. Standard crustal velocity models cannot be applied effectively here. Therefore,
an accurate estimate cannot be made."

}:Q Target Mis-location + Domain-knowledge / Semantic Mis-match

Internvi3:A

“Reasoning”: "The waveform shows distinct P-wave arrivals in the East (E) and North (N)
components, with a noticeable delay between them. The vertical (Z) component shows a
clear P-wave arrival as well. By analyzing the time difference between the P-wave
arrivals in the E and N components, we can estimate the epicentral distance. Assuming
standard crustal velocities, the time difference corresponds to a distance of
approximately 28 kilometers. This is consistent with the choices provided, making option
(B) the best estimate."

Figure 14: A sample case of P-wave phase picking subtask.
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——| Oceansphere |

[

a

“Question": "The following figure is a chart of Pacific Ocean sea surface
temperature anomalies for DJF (December-January-February) season. Please judge
the El Nifio-Southern Oscillation (ENSO) event that occurred. If the Nifio3.4 index
is greater than 0.5 and less than 1.4, it is a weak/moderate El Nifio; greater than
1.5 is a strong El Nifio; greater than -1.4 and less than -0.5 is a weak/moderate

o~ W

La Nifia; less than -1.5 is a strong La Nifia.

60°N

(A)Not an obvious event
(B)Weak/Moderate El Nifio
(C)Strong El Nifio
(D)Weak/Moderate La Nifia
(E)Strong La Nifia
(F)Unable to decide

30°N

Latitude
<
SST anomaly [C]

g
7

60°S
100°E  130°E  160°E  170°W 140°W 110°W 80°W

“Correct Answer": “D" L
ongitude

OZQ Threshold / Severity Mis-estimation

Gemini: E

“"Reasoning": "The image shows sea surface temperature anomalies in the Pacific Ocean.
There is a clear area of strong negative anomalies (blue color, indicating cooler than
average temperatures) in the central and eastern equatorial Pacific. The color bar
indicates that the anomalies are less than -1.5°C. This indicates a strong La Nifia event."

OZQ Spatio-temporal Frame Confusion |

Qwen:C

"Reasoning": "The image shows a significant warming in the central and eastern Pacific,
particularly in the Nifio3.4 region, which is a key indicator of El Nifio. The color gradient
indicates temperatures well above the 0.5°C threshold, suggesting a strong event. The
Nifio3.4 index appears to exceed 1.5°C, which classifies it as a strong El Nifio. The
widespread warming across the Pacific further supports this conclusion. No cooling
patterns indicative of La Nifia are present. Therefore, the event depicted is a strong El

Nifio."
qu Spatio-temporal Frame Confusion
Internvi3:B

“Reasoning”: "The image shows sea surface temperature anomalies in the Pacific Ocean.
The Nifio3.4 region, typically located in the central Pacific, is indicated by the red and
orange areas. These regions show warmer than average temperatures, suggesting an El
Nifio event. The anomalies are not extreme enough to classify as a strong El Nifio, as
they do not exceed 1.5°C. Therefore, the event is best described as a weak/moderate El
Nifio."

Figure 15: A sample case of ENSO Identification subtask.
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———|_Oceansphere |

&
¥

“Question": "The following image is an RGB image
derived using the visible bands of satellite data.
Please determine whether there is marine fog in the
area shown in the image."

(A)Yes, there is marine fog
(B)No, there is no marine fog
(C)Unable to decide

“Correct Answer": “B"

OIQ Image-feature Misinterpretation

Gemini: A

“Reasoning": "The image shows extensive areas of low-lying, featureless white or greyish
features over the water. These features are consistent with marine fog or low stratus
clouds. The texture and spatial distribution suggest a widespread phenomenon, likely

fog."
}:Q Image-feature Misinterpretation
Qwen: A

“"Reasoning": "The image shows a large body of water with a significant area covered by a
uniform layer of white clouds, which is characteristic of marine fog. The fog appears to
be hugging the coastline and extending over the water, a typical pattern for marine fog.
The surrounding landmasses are visible with clear distinctions, indicating that the fog is
localized over the water. The texture of the cloud layer is smooth and consistent,
further suggesting the presence of marine fog. The absence of sharp cloud edges and
the gradual transition from the fog to clearer areas support this conclusion."

':‘ Image-feature Misinterpretation

Internvi3:A

"Reasoning”: "The image shows a satellite view with visible bands that highlight different
features. The presence of marine fog can be inferred from the areas where the water
appears lighter and more diffuse compared to the surrounding darker waters. This
lighter appearance is characteristic of fog, which scatters light and reduces visibility.
Additionally, the fog appears to be concentrated along the coastline, which is typical for
marine fog formation."

Figure 16: A sample case of Marine Fog Detection subtask.
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—|_Human-activities sphere |

L

“Question": "Recognize the category of objects from
satellite and aerial images given thebounding boxes
for referring objects. Bounding box in the format
(xmin, ymin,xmax, ymax), where the top left corner
is (x_min, y_min) and the bottom-right corner is
(x_max, y_max). The resolution of satellite image is
600 x 600. Bounding box:[<132><142><186><187>]"

(A)flat_roof
(B)gable_roof
(C)row roof shed
(D)Other

(E)Unable to decide

“Correct Answer": “D"

"‘ Image-feature Misinterpretation
&

Gemini: A

“"Reasoning": "The bounding box [132, 142, 186, 187] refers to a building with a flat roof.
The roof appears to be uniformly flat without any visible gables or other roof
structures."

0:4 Image-feature Misinterpretation

Qwen: A

“Reasoning": "The image shows a large industrial or commercial area with numerous
buildings. The roofs of these buildings are predominantly flat, which is a common
feature in industrial and commercial architecture. The flat roofs are visible as large,
smooth surfaces with no significant slope or gable structures. The presence of parking
lots and the layout of the buildings further suggest that these are likely warehouses or
factories, which typically have flat roofs for practical reasons such as ease of
construction and maintenance. Therefore, the category of objects in the bounding box is
best described as 'flat_roof'."

OIQ Image-feature Misinterpretation

Internvi3:A

“"Reasoning”: "The bounding box coordinates provided correspond to a flat-roofed
structure in the image. The area within the bounding box shows a rectangular shape with
a flat surface, typical of flat roofs commonly found in industrial or commercial buildings.
The lack of visible sloping edges or peaks further supports this classification."

Figure 17: A sample case of Fine-grained object type recognition subtask.
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B

Lithosphere |

“Question": "As a seismic waveform analyst,

inference the epicentral distance (in kilometers) ] s
between the seismic receiver and earthquake source - z

using three-component ENZ data (East, North,
Vertical: 0-6000 samples at 100Hz sampling rate).
Prioritize P-S arrival time differential analysis with
polarization validation, assuming standard crustal
velocity models. Output must be a single integer [x]
representing the closest whole-kilometer estimate."
(A)10

()28

(€)50 R
(0)-7 EE L EE
(E)Unable to decide"

“Correct Answer": "A"

V/

Gemini: A

“Reasoning": "The P and S wave arrivals appear to be nearly simultaneous, occurring
around sample 1400. With a sampling rate of 100 Hz, the P-S time difference is very
small, suggesting a very short epicentral distance. Of the choices provided, 10 km is the
only plausible distance for such a small time difference."

'ZQ Target Mis-location + Domain-knowledge / Semantic Mis-match

Qwen:E

“Reasoning": "The image lacks clear P and S wave arrivals, making it impossible to
determine the P-S time differential. Without this crucial information, calculating the
epicentral distance is not feasible. The waveforms do not show distinct polarization
characteristics that could aid in validation. The data appears noisy, further complicating
analysis. Standard crustal velocity models cannot be applied effectively here. Therefore,
an accurate estimate cannot be made."

D'Q Target Mis-location + Domain-knowledge / Semantic Mis-match
&

Internvi3:B

"Reasoning”: "The waveform shows distinct P-wave arrivals in the East (E) and North (N)
components, with a noticeable delay between them. The vertical (Z) component shows a
clear P-wave arrival as well. By analyzing the time difference between the P-wave
arrivals in the E and N components, we can estimate the epicentral distance. Assuming
standard crustal velocities, the time difference corresponds to a distance of
approximately 28 kilometers. This is consistent with the choices provided, making option
(B) the best estimate."

Figure 18: A sample case of earthquake source-receiver distance inference subtask.
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A.8 DATASHEETS

In this section, we document essential details about the proposed datasets and benchmarks following
the CVPR Dataset and Benchmark guidelines and the template provided by Gebru et al. Gehrmef all

A.8.1 MOTIVATION

The questions in this section are primarily intended to encourage dataset creators to clearly articulate
their reasons for creating the dataset and to promote transparency about funding interests. The latter
may be particularly relevant for datasets created for research purposes.

1. “For what purpose was the dataset created?”

A Existing benchmarks for Earth science multimodal learning exhibit critical limitations
in systematic coverage of geosystem components and cross-sphere interactions, often con-
strained to isolated subsystems (only in human-activity sphere or atmosphere) with limited
evaluation dimensions (< 16 tasks). To address these gaps, we introduce OmniEarth-
Bench, the first comprehensive multimodal benchmark spanning all six Earth science
spheres (atmosphere, lithosphere, Oceansphere, cryosphere, biosphere and human-activity
sphere) and cross-spheres with one hundred expert-curated evaluation dimensions.

2. “Who funded the creation of the dataset?”
A: The dataset creation was funded by the affiliations of the authors involved in this work.

A.8.2 COMPOSITION

Most of the questions in this section are intended to provide dataset consumers with the information
they need to make informed decisions about using the dataset for their chosen tasks. Some of the
questions are designed to elicit information about compliance with the EUs General Data Protection
Regulation (GDPR) or comparable regulations in other jurisdictions. Questions that apply only to
datasets that relate to people are grouped together at the end of the section. We recommend taking a
broad interpretation of whether a dataset relates to people. For example, any dataset containing text
that was written by people relates to people.

1. “What do the instances that comprise our datasets represent (e.g., documents, photos, peo-
ple, countries)?”
A: Our Benchmark comprises not only publicly available open-source datasets but also a
significant portion of data manually extracted by experts from satellite imagery and raw
observational sources. For example, Vegetation Monitoring uses satellite imagery from
MODIS and expert-curated data from the Global Land Surface Satellite (GLASS), includ-
ing Leaf Area Index, Fractional Vegetation Cover, and Peak Vegetation Coverage Area. All
datasets utilized in OmniEarth-Bench are publicly accessible and nonprofit.

2. “How many instances are there in total (of each type, if appropriate)?”

A: OmniEarth-Bench consists of seven spheres, with a total of 29,855 annotated data in-
stances.

3. “Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set?”
A: The images in OmniEarth-Bench are sourced from existing Victor ef-all (2024), [Teng
ef_all (20723), Eorfier_ef all (2024), Huang et al] (2073), Cao & Weng (2074), (Lief-all,
2027), Gupta et al] (201Y), Astmc ef all (2024)), Dian et all (20123), NVeifch-Michaelis ef all
(2074), Sastry et al] (2029), Liang et al] (2021)), Vermote (2015), Nurseifov ef all (20243),
Sanderson ef all (Z007), Zheng et Val. (20213), Meallefte_ef all (2020), Kitamofo et all (2023),
Hershach ef all (2072(]), Monsaviefall (201Y9), Kainkaryam et al] (2019), Kikakiefall (2024),
Huang et al] (Z017), Wang et al] (2024H), Meier ef all (2072T), Camisd (2073), Schweiget
stall (POIL1), Zhang & RothrocK (P0073), Helm ef all (Z014), Studinger (P014), Smifh ef al
(P0073) datasets, but all textual annotations were independently created by us.

4. “Is there a label or target associated with each instance?”
A: Yes, each instance has been annotated and quality-checked by specialized experts.
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10.

A.8.3

. “Is any information missing from individual instances?”

A: No, each individual instance is complete.

. “Are relationships between individual instances made explicit (e.g., users movie ratings,

social network links)?”
A: Yes, the relationship between individual instances is explicit.

. “Are there recommended data splits (e.g., training, development/validation, testing)?”

A: The dataset is designed to evaluate the performance of MLLMs across various Earth
spheres, so we recommend using it in its entirety as a test set.

. “Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,

websites, tweets, other datasets)?”’

A: OmniEarth-Bench is self-contained and will be open-sourced on platforms like Hugging
Face, integrated into evaluation tools such as LLMs-Eval Zhang et al] (2024a); Ci_ef al
(P074a) for easy use.

. “Does the dataset contain data that might be considered confidential (e.g., data that is pro-

tected by legal privilege or by doctorpatient confidentiality, data that includes the content
of individuals non-public communications)?”

A: No, all data are clearly licensed.

“Does the dataset contain data that, if viewed directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety?”

A: No, OmniEarth-Bench does not contain any data with negative information.

COLLECTION PROCESS

In addition to the goals outlined in the previous section, the questions in this section are designed to
elicit information that may help researchers and practitioners create alternative datasets with similar
characteristics. Again, questions that apply only to datasets that relate to people are grouped together
at the end of the section.

1.

2.

3.

“How was the data associated with each instance acquired?”

A: The images in OmniEarth-Bench are sourced from existing Vicfor ef-all (2074)), [Teng
ef—all (2023), Forfier_ef-all (2024), Huang et al] (2023), Cao & Weng (2024)), (Ci_ef-all,
D077, Gupta et al] (Z019), Asfricef all (2024), Qian et all (Z023), Neifch-Michaelis ef al

(20724), Sastry et al] (20239), Liang et al] (2021), Nermofe (PZ015), Nurseifov ef all (20243),
Sanderson ef all (Z007), Zheng et al] (Z021a), Neilleffe ef all (Z020), Kifamoto ef all (2023),
Hersbach efall (2020), MOIJS.?I;II efall (2019), Kainkaryam et al] (2019), Kikakiefall (2024),
Huang et al] (2001J), Wang et al] (2024h), Meier_ef all (2021]), Comisd (207273), Schweiget
st all (P011), Zhang & RothrocK (Z003), Helm ef all (?014), Studinger (?014), Smifh ef al’
(2023) datasets, all textual annotations were independently created by experts.

“What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses
or sensors, manual human curation, software programs, software APIs)?”

A: Our Benchmark comprises not only publicly available open-source datasets but also a
significant portion of data manually extracted by experts from satellite imagery and raw
observational sources. For example, Vegetation Monitoring uses satellite imagery from
MODIS and expert-curated data from the Global Land Surface Satellite (GLASS), includ-
ing Leaf Area Index, Fractional Vegetation Cover and Peak Vegetation Coverage Area.
Moreover, for the Eddy data in oceansphere, the chlorophyll (CHL) data used in this study
were obtained by applying the OCI empirical algorithm to Level-2 data acquired by the
Geostationary Ocean Color Imager I (GOCI) aboard the Oceanography and Meteorology
Satellite (COMS). After careful selection and integration, we compiled a comprehensive
dataset covering 33 different data sources across all Earth spheres. Tab.l is a summary of
the data sources used for each Earth sphere.

“If the dataset is a sample from a larger set, what was the sampling strategy (e.g., determin-
istic, probabilistic with specific sampling probabilities)?”
A Please refer to the details listed in the main text Section 3.1.
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A.8.4 PREPROCESSING, CLEANING, AND LABELING

The questions in this section are intended to provide dataset consumers with the information they
need to determine whether the raw data has been processed in ways that are compatible with their
chosen tasks. For example, text that has been converted into a “bag-of-words" is not suitable for
tasks involving word order.

1. “Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-

ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)?”
A: Yes. During image collection, we prioritized selecting valuable satellite images for
annotation. For linguistic annotation, three Level-3 subtasksRegional Land Use Classifica-
tion, Regional Counting, and Regional Counting with Change Detectionwere marked with
red circles. This method, mimicking human interaction, was essential for providing clear,
fine-grained region-level analysis on ultra-high-resolution images.

2. “Was the ‘raw’ data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)?”
A: Yes, raw data is accessible.

3. “Is the software that was used to preprocess/clean/label the data available?”
A Yes, the necessary software used to preprocess and clean the data is publicly available.

A.8.5 USES

The questions in this section are intended to encourage dataset creators to reflect on tasks for which
the dataset should and should not be used. By explicitly highlighting these tasks, dataset creators
can help dataset consumers make informed decisions, thereby avoiding potential risks or harms.

1. “Has the dataset been used for any tasks already?”
A: No.

2. “Is there a repository that links to any or all papers or systems that use the dataset?”
A: Yes, we will provide such links in the GitHub and the Huggingface repository.

3. “What (other) tasks could the dataset be used for?”

A: OmniEarth-Bench is suitable for various tasks across other Earth spheres. It covers 103
subtasks spanning six major Earth spheres plus Cross-sphere, and is capable of handling
various other tasks.

4. “Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses?”

A: No.
5. “Are there tasks for which the dataset should not be used?”
A: N/A.

A.8.6 DISTRIBUTION

Dataset creators should provide answers to these questions prior to distributing the dataset either
internally within the entity on behalf of which the dataset was created or externally to third parties.

1. “Will the dataset be distributed to third parties outside of the entity (e.g., company, institu-
tion, organization) on behalf of which the dataset was created?”

A: No. The datasets will be made publicly accessible to the research community.
2. “How will the dataset be distributed (e.g., tarball on website, API, GitHub)?”
A: We will provide OmniEarth-Bench in the GitHub and the Huggingface repository.

3. “When will the dataset be distributed?”

A: We will create a repository to release the data once the paper is officially published,
ensuring compliance with the anonymity principle.
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4. “Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?”

A: Yes, the dataset will be released under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

5. “Have any third parties imposed IP-based or other restrictions on the data associated with
the instances?”
A: No.

6. “Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances?”
A: No.

A.8.7 MAINTENANCE

As with the questions in the previous section, dataset creators should provide answers to these ques-
tions prior to distributing the dataset. The questions in this section are intended to encourage dataset
creators to plan for dataset maintenance and communicate this plan to dataset consumers.

1. “Who will be supporting/hosting/maintaining the dataset?”
A: The authors of this work serve to support, host, and maintain the datasets.

2. “How can the owner/curator/manager of the dataset be contacted (e.g., email address)?”
A: The curators can be contacted via the email addresses listed on our paper or webpage.

3. “Is there an erratum?”
A: There is no explicit erratum; updates and known errors will be specified in future ver-
sions.

4. “Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)?”
A Future updates (if any) will be posted on the dataset website.

5. “Will older versions of the dataset continue to be supported/hosted/maintained?”
A: Yes. This initial release will be updated in the future, with older versions replaced as
new updates are posted.

6. “If others want to extend/augment/build on/contribute to the dataset, is there a mechanism
for them to do so?”
A: Yes, we will provide detailed instructions for future extensions.

A.9 LIMITATION AND POTENTIAL SOCIETAL IMPACT

In this section, we discuss the limitations and potential societal impact of this work.

A.9.1 POTENTIAL LIMITATIONS

While OmniEarth-Bench provides a comprehensive benchmark for evaluating the perception and
reasoning capabilities of MLLMs, there are several limitations to consider:

* Scope of Sensors: Although our benchmark includes 29,855 annotations and 109 subtasks,
it may not cover all possible real-world scenarios. There could be additional sensor data,
like multispectral data that were not included in this study, potentially limiting the general-
izability of our findings.

* Model and Dataset Diversity: In this paper, we extensively evaluated general-purpose
MLLMs. As new models emerge, their evaluation results will be added to our open-source
leaderboard. Additionally, OmniEarth-Bench will also be expanded in dataset size and task
diversity.
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A.9.2 POTENTIAL NEGATIVE SOCIETAL IMPACT

o Safety Risks: OmniEarth-Bench is designed to evaluate the performance of vision-
language multimodal models in six spheres and cross-sphere scenarios. However, exces-
sive reliance on evaluation datasets may lead to overconfidence in autonomous systems,
such as multimodal large models. It is crucial to implement adequate safety measures and
human supervision when deploying these MLLMs to ensure public safety.

* Environmental Impact: Training MLLMs on large datasets and evaluating them using
OmniEarth-Bench requires a certain amount of computational resources. To facilitate fu-
ture research, we will maintain a leaderboard of MLLMs, removing the need for repeated
evaluations of existing models.

A.10 USAGE OF LLM

Writing Assistance LLMs were utilized as an auxiliary tool in the preparation and refinement of this
manuscript. This involved tasks such as proofreading for grammatical consistency, improving sen-
tence structure for better flow, and rephrasing complex technical descriptions to enhance clarity for
a broader audience. The authors conducted a thorough review and editing of all Al-suggested text to
ensure the scientific accuracy and integrity of the final content. The authors retain full responsibility
for all statements, claims, and conclusions presented in this work.

Code and Script Development During the development phase, LLMs were employed to acceler-
ate the creation of various scripts. This included generating boilerplate code for data processing
pipelines (e.g., remapping and cropping algorithms), developing utility functions for data handling,
and assisting in debugging evaluation protocols. All code generated or modified with the assistance
of LLMs was manually verified, tested, and optimized by the authors to ensure its correctness, effi-
ciency, and adherence to the project’s requirements.

Benchmark Content Generation and Evaluation Beyond supporting tasks, LLMs were integral
to the methodology for generating and evaluating parts of the OmniEarth-Bench dataset itself.

* Initial Caption Generation: For the image captioning task, a state-of-the-art LLM was
used to generate preliminary scientific captions by synthesizing information from multi-
spectral satellite imagery and corresponding textual disaster reports.

* Automated Evaluation: In the open-ended question format, an LLM served a critical
role as an automated judge to assess the semantic correctness of model-generated answers
against the ground-truth answers.

It is essential to note that all content generated by LLMs for the benchmark (i.e., captions) underwent
a meticulous review and validation process by domain experts to guarantee scientific accuracy and
factual consistency.
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