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ABSTRACT

Recent advancements in large language and vision models have demonstrated ex-
traordinary capabilities, driving researchers to train increasingly larger models in
pursuit of even greater performance. However, smaller, easier-to-train models of-
ten exist prior to these larger models. In this paper, we explore how to effectively
leverage these smaller, weaker models to assist in training larger, stronger models.
Specifically, we investigate the concept of weak-to-strong knowledge distillation
within vision models, where a weaker model supervises a stronger one, aiming
to enhance the latter’s performance beyond the limitations of the former. To this
end, we introduce a novel, adaptively adjustable loss function that dynamically
calibrates the weaker model’s supervision based on the discrepancy between soft
labels and hard labels. This dynamic adjustment allows the weaker model to pro-
vide more effective guidance during training. Our comprehensive experiments
span various scenarios, including few-shot learning, transfer learning, noisy label
learning, and common knowledge distillation settings. The results are compelling:
our approach not only surpasses benchmarks set by strong-to-strong distillation
but also exceeds the performance of fine-tuning strong models on full datasets.
These findings highlight the significant potential of weak-to-strong distillation,
demonstrating its ability to substantially enhance vision model performance. Code
will be released.

1 INTRODUCTION

”Big things have small beginnings.” — Movie ”Prometheus”.

This adage aptly encapsulates the developmental journey of high-performance models in the fields
of computer vision and natural language processing. The remarkable models that currently drive
advancements in these areas did not appear out of nowhere; they evolved incrementally from simpler,
less powerful architectures.

In the realm of NLP, the journey began with models like RNN and LSTM networks. These early
models laid the foundation for more advanced architectures, gradually evolving into models like
GPT (Radford et al., 2019; Brown et al., 2020). With its 175 billion parameters, GPT-3 showcased
the transformative power of scaling up, ultimately paving the way for today’s state-of-the-art large
language models that excel in various tasks, from translation to creative writing. Similarly, the evo-
lution in vision began with the pioneering LeNet (LeCun et al., 1998) architecture, designed for digit
recognition. ResNet (He et al., 2016) then addressed the vanishing gradient problem, allowing for
much deeper networks. Today, large vision models like ViTs (Dosovitskiy et al., 2020) continue to
push the boundaries, achieving unprecedented performance surpassing human across various visual
tasks.

As demonstrated by empirical studies on scaling laws (Kaplan et al., 2020), model performance
typically scales with model size, dataset size, and the amount of compute used for training. This
suggests that training larger models with more data holds the greatest potential for improvement,
while other factors like training recipes or network architectures have relatively minimal impact
across a wide range. However, before training a new large model, there often exists a smaller,
weaker model. It’s natural to ask whether these existing weaker models can be leveraged to assist in
training larger ones. In this paper, we focus on addressing the challenge of how to efficiently utilize
these weaker models to optimize and guide the training of more powerful, larger models.
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Figure 1: Our proposed AdaptConf achieves the best performance on a
broad range of tasks compared with other knowledge distillation based
methods. The corresponding values are calculated by averaging re-
sults on each task, i.e., classification, transfer learning, few-shot learn-
ing, and learning with noisy labels. CLS-CIFAR-S (same model fam-
ily): Table 2, CLS-CIFAR-D (different model family): Table 4a, CLS-
ImageNet-S: Table 3, CLS-ImageNet-D: Table 3, TL-ImageNet: Ta-
ble 7a, TL-iNat: Table 7b, FSL-miniImageNet: Table 5, LNL-CIFAR:
Table 8.

Building on the notion of lever-
aging existing models, previous
work has introduced the con-
cept of ”superalignment” to ad-
dress the challenge of incorpo-
rating human expertise into the
supervision of superhuman AI
models. This approach seeks
to align powerful models with
human input to maximize their
learning potential. A particu-
larly relevant study in this con-
text is Weak-to-Strong Gener-
alization (Burns et al., 2023),
which explores the intriguing
possibility of using weaker mod-
els to supervise stronger ones.
The findings are compelling: de-
spite their inherent limitations,
weaker models can provide su-
pervision that enables stronger
models — already equipped with
superior generalization and rep-
resentational power — to surpass
their weaker counterparts. Re-
markably, even when the weaker
models offer incomplete or noisy
labels, the stronger models are
able to transcend these short-
comings, achieving higher per-
formance. This concept has shown its efficacy in fields such as natural language processing and
reinforcement learning, affirming the potential of Weak-to-Strong knowledge distillation as a viable
and effective strategy.

Model CIFAR-100 validation set Model ImageNet validation set
#Params Top-1 (%) ∆ (%) Win (%) #Params Top-1 (%) ∆ (%) Win (%)

MobileNet-V2 0.8M 66.9 - - ResNet-18 11.7M 69.8 - -
ResNet-56 0.9M 72.9 -6.0 8.4 ResNet-34 21.8M 73.5 -3.7 4.8
ResNet-110 1.7M 74.8 -7.9 7.4 ResNet-50 25.6M 76.2 -6.4 3.9

VGG-13 9.5M 75.3 -8.4 6.3 DeiT-S 22M 79.9 -10.1 3.4
ResNet32×4 7.4M 79.9 -13.0 4.9 DeiT-B 86M 81.8 -12.0 3.1

ViT-B↑224 86M 89.0 -22.1 2.5 DeiT-B↑384 86M 83.0 -13.2 2.8

Table 1: Comparison between models on CIFAR-100 and ImageNet. ∆ represents the performance gap
between the baseline MobileNet-V2 / ResNet-18 and other stronger models. ”Win” indicates the ratio of
samples correctly classified by MobileNet-V2 / ResNet-18 but incorrectly classified by the other stronger
models.

We delve into the benefits brought via “vision superalignment”, specifically investigating the appli-
cability of Weak-to-Strong enhancement (W2S) within the context of vision tasks. Take the image
classification task as an example, models typically develop from small to large, and the cost of train-
ing a small (weak) model is far less than that of training a large (strong) model. As shown in Table 1,
larger models generally perform better. However, even when a model is 100 times larger and the
top-1 accuracy is 22% higher, there are still many samples correctly identified by the weak model
but misclassified by the strong model. This indicates that there are always opportunities to boost
performance by leveraging the weak model. Therefore, when attempting to train a large, strong
model, a natural question arises: how can we leverage existing weak models to achieve further per-
formance gains? Our study meticulously designs and examines multiple scenarios in computer vi-
sion, including few-shot learning, transfer learning, noisy label learning, and traditional knowledge
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distillation settings. In these scenarios, stronger models are trained to learn from weaker models.
Through detailed validation and comparative experiments, we demonstrate the feasibility of W2S in
the visual domain. Furthermore, we introduce an improved and adaptive confidence scheme to en-
hance the efficacy of W2S. Our work validates the concept of weak-to-strong boosting in computer
vision, representing a significant advancement in understanding and optimizing the interaction be-
tween strong and weak models. This approach has the potential to pave the way for groundbreaking
advancements in achieving human-level expertise and even superhuman artificial intelligence.

2 RELATED WORKS

The pursuit of enhancing the performance of deep neural networks in computer vision has led to
the development of the teacher-student learning paradigm (Hinton et al., 2015; Roth et al., 2023).
This approach typically involves a stronger model (teacher) improving the performance of a weaker
model (student), with extensive research focusing on optimizing the capabilities of the weaker
model. Various strategies have been proposed to achieve this. For instance, (Romero et al., 2014)
suggests that in addition to the output logits, incorporating intermediate layer features for supervi-
sion can significantly boost the student’s learning. (Park et al., 2019) posits that the relationships
between samples can serve as valuable supervisory information.

In a further refinement of this approach, (Zhao et al., 2022) redefines classical knowledge distilla-
tion (KD) loss, segmenting it into target-class and non-target-class distillation to balance the transfer
of these two types of information more effectively. (Heo et al., 2019) delves into the details and
components of feature distillation, arriving at an improved method for the transfer of feature knowl-
edge. Meanwhile, (Chen et al., 2021a) explores cross-stage feature transfer as an alternative to the
conventional same-stage feature transfer. These methods have proven effective for strong-to-weak
generalization scenarios.

However, with the gradual increase in the size and complexity of vision foundation models, the focus
has shifted towards weak-to-strong boosting, i.e., how a weak model can improve a strong model.
In this context, (Furlanello et al., 2018) investigates knowledge distillation between teachers and
students of equal size, demonstrating the feasibility of distilling models of the same size. Building
upon this, (Xie et al., 2020) introduces the use of additional unlabeled data for knowledge distilla-
tion among models of equal size, further validating the effectiveness of strong-to-strong boosting,
especially in scenarios with abundant data availability. This body of research sets the stage for our
exploration into weak-to-strong boosting, a relatively uncharted yet promising domain in the field
of vision foundation models.

Part of our experimental settings are similar to weakly supervised learning (Durand et al., 2017;
Joulin et al., 2016), where there are no annotations (ground truth labels) in training machine learning
models. However, unlike weak supervision, which focuses on obtaining a large amount of annotated
data at a low cost, we are more interested in the weak-to-strong boosting process itself rather than
the availability of annotations.

3 WEAK-TO-STRONG ENHANCEMENT

To advance towards super-human AGI models, a weak-to-strong approach is critical. This means us-
ing human-level intelligence as a foundation to guide and refine the development of more advanced,
super-human systems. We begin by focusing on foundational tasks and models that can progres-
sively support the growth of stronger architectures. In the following, we examine the feasibility
of weak-to-strong enhancement, where simpler, weaker models provide useful supervision to more
complex models. This step-by-step approach ensures that as models evolve, they can benefit from
earlier stages, steadily improving in both capability and accuracy. One of the key challenges in this
weak-to-strong framework is dealing with the noisy or incomplete supervision signals provided by
weaker models. To mitigate this, we introduce a novel technique: adaptive confidence distillation.
This method leverages the insights from weaker models while dynamically adjusting the level of
trust placed in them. By modulating the influence of weak supervision based on its confidence, our
approach ensures that the stronger model can benefit from imperfect labels without being misled.
This adaptive mechanism allows stronger models to distill meaningful knowledge, even from less
accurate outputs.
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3.1 SELECTION OF VISION MODEL

In our exploration of weak-to-strong enhancement for vision models, it is essential to first define
which models are suitable for this foundational research. Several categories of models can serve
as strong candidates for vision foundation models, including text-vision models (Radford et al.,
2021), image generation models (Rombach et al., 2022; Chen et al., 2020), and general zero-shot
models (Bai et al., 2023; Kirillov et al., 2023). Each of these models brings unique strengths and
approaches to solving computer vision tasks. To identify the most appropriate models for weak-to-
strong boosting, we propose a definition that emphasizes both versatility and effectiveness. Vision
foundation models should be capable of addressing a wide range of visual tasks while consistently
delivering high-quality performance.

Based on these criteria, we propose that backbones pretrained on ImageNet are strong candidates for
vision foundation models. The rationale behind this choice is threefold. First, ImageNet-pretrained
backbones have consistently proven to be highly adaptable and effective across downstream vision
tasks such as classification, detection, segmentation, tracking, colorization, etc.. Fine-tuning these
backbones often results in state-of-the-art performance, underscoring their robustness and versatil-
ity. Second, there is a wealth of pretraining algorithms specifically developed for these models (He
et al., 2022a; Xie et al., 2022), positioning them as universal tools for a variety of vision tasks. Fur-
thermore, these models frequently serve as one branch in vision-language multimodal models (Du
et al., 2022), further validating their applicability in cross-modal tasks. Finally, compared to other
foundation models, such as CLIP (Radford et al., 2021) or Diffusion-based (Rombach et al., 2022)
models trained on massive web-scale datasets, ImageNet-trained backbones are far more accessi-
ble. Their moderate computational demands make them a practical choice for a broader range of
researchers with limited resources.

To validate the feasibility of weak-to-strong enhancement, we focus on these pretrained backbones
and use image classification as the fundamental task. By selecting this well-established task, we
create a controlled environment to rigorously test the effectiveness of our adaptive confidence dis-
tillation method. This will provide a solid baseline for expanding the weak-to-strong paradigm to
more complex vision tasks and models in future work.

3.2 ADAPTIVE CONFIDENCE DISTILLATION

In this section, we explore the methodology for implementing weak-to-strong boosting in vision
foundation models. The central question we address is how a weak vision foundation model can
supervise a stronger counterpart effectively. (Burns et al., 2023) proposes an augmented confidence
loss approach, which is formulated as:

Lconf(f) = (1− α)CE(f(x), fw(x)) + αCE(f(x), f̂(x)), (1)

where f represent the strong model that needs to be optimized, and fw denote the weak model,
f̂(x) refers to the hard label predicted by the strong model for an input image x. The loss function
incorporates the cross-entropy loss (CE) and is balanced by a hyperparameter α. In this formulation,
the first term of the loss function resembles the traditional knowledge distillation loss, signifying the
learning process of the strong model from the weak model. Given that the labels provided by the
weak model may not always be accurate, the second term of the loss function encourages the strong
model to leverage its superior generalization abilities and prior knowledge to refine its predictions.

The strength of this approach lies in its ability to balance direct learning from the weak model with
the strong model’s intrinsic capacity for understanding and interpreting the visual data. This method
paves the way for the strong model to surpass the limitations of the weak model, utilizing the latter’s
guidance while simultaneously enhancing its predictions through its advanced capabilities.

Addressing the limitations inherent in the supervision provided by weak models and the inaccuracies
of strong models’ self-generated hard labels, a more sophisticated approach is required beyond a
simple weighted combination of these labels. Given the challenge in directly discerning the accuracy
of each label, leveraging confidence as a metric for selecting the most probable correct label emerges
as a viable solution.

We propose to use the discrepancy between the soft label and the hard label as an indicator of the
model’s confidence. The underlying rationale is that when a model’s soft label closely aligns with
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Teacher ResNet20 ResNet32 ResNet8×4 WRN-16-2 WRN-40-1 VGG8
68.93 71.72 72.41 72.71 72.30 71.99

Student ResNet56 ResNet110 ResNet32×4 WRN-40-2 WRN-40-2 VGG13
72.94 74.80 79.90 77.20 77.20 75.26

KD (Hinton et al., 2015) 73.81 76.45 79.32 78.25 77.97 76.41
FitNet (Romero et al., 2014) 70.51 73.15 77.65 76.71 76.12 76.39

RKD (Park et al., 2019) 72.98 75.62 80.10 77.27 77.76 76.20
ReviewKD (Chen et al., 2021a) 70.15 72.30 77.22 75.86 75.78 74.22

DKD (Zhao et al., 2022) 73.90 76.57 79.52 78.18 77.95 76.62
AugConf (Burns et al., 2023) 73.86 76.72 80.34 78.34 78.15 76.55

AdaptConf (Ours) 74.17 76.86 80.64 78.58 78.40 76.84
∆ +1.23 +2.06 +0.74 +1.38 +1.20 +1.58

Table 2: Results on the CIFAR-100 validation set. Teachers and students are in the same architectures. And
∆ represents the performance improvement over the student model trained from scratch. All results are the
average over 3 trials.

its hard label, it suggests a higher confidence in its own judgment. To capitalize on this insight,
we introduce an adaptive confidence loss that dynamically adjusts based on the model’s confidence
level. The specific formulation of this loss is as follows:

LAC(f) = (1− β(x))CE(f(x), fw(x)) + β(x)CE(f(x), f̂(x)),

β(x) =
exp(CE(f(x), f̂(x)))

exp(CE(f(x), f̂(x))) + exp(CE(f(x), f̂w(x)))
.

(2)

In this formula, β(x) is a function of the input image x that calculates the confidence weight and
f̂w(x) is the hard label of x in the weak model. This weight determines the balance between learning
from the weak model and relying on the strong model’s own predictions. The cross-entropy loss
(CE) is used for both components, with the first term focusing on learning from the weak model and
the second term emphasizing the strong model’s self-supervision.

This adaptive confidence loss enables a more nuanced approach to weak-to-strong boosting. By
adjusting the weight based on confidence levels, it allows the strong model to discern when to
prioritize its own predictions over the guidance of the weak model and vice versa. This adaptability
is key to overcoming the inaccuracies and limitations of both models, leading to more effective
learning and enhanced performance in vision foundation models.

4 EXPERIMENT

In this section, we report our main empirical results on various tasks, including baselines and promis-
ing methods. All implementation details are attached in supplementary materials.

4.1 TASKS

Teacher ResNet18 MobileNet-V1
69.75 71.57

Student ResNet34 ResNet50
73.47 76.22

KD (Hinton et al., 2015) 73.68 76.52
FitNet (Romero et al., 2014) 70.93 73.61

RKD (Park et al., 2019) 73.65 76.45
ReviewKD (Chen et al., 2021a) 72.99 75.28

DKD (Zhao et al., 2022) 73.74 76.72
AugConf (Burns et al., 2023) 73.80 76.64

AdaptConf (Ours) 74.16 76.94
∆ +0.69 +0.72

Table 3: Top-1 results on the ImageNet validation set.
∆ represents the performance improvement over the student
model trained from scratch.

Image Classification. Our experiments
are primarily focused on two benchmark
datasets. CIFAR-100 (Krizhevsky et al.,
2009) is a widely recognized dataset for
image classification, comprising 32×32
pixel images across 100 categories, with
training and validation sets containing
50,000 and 10,000 images, respectively.
Conversely, ImageNet (Deng et al., 2009)
is a large-scale dataset for classification
tasks, encompassing 1.28 million train-
ing images and 50,000 validation images
across 1,000 classes. Additionally, we
explore scenarios where only soft labels
generated by a weak teacher model are
available for training.
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Teacher ShuffleNet-V1 ShuffleNet-V1 MobileNet-V2 MobileNet-V2 ShuffleNet-V2
72.40 72.40 66.85 66.85 74.44

Student ResNet32×4 WRN-40-2 VGG13 ResNet50 ResNet32×4
79.90 77.20 75.26 80.43 79.90

KD (Hinton et al., 2015) 80.19 78.02 75.39 78.64 80.31
FitNet (Romero et al., 2014) 77.61 75.15 72.36 75.92 78.05

RKD (Park et al., 2019) 80.30 77.23 76.21 79.89 80.39
ReviewKD (Chen et al., 2021a) 78.43 75.98 73.69 77.05 77.84

DKD (Zhao et al., 2022) 80.55 78.10 75.81 79.65 80.67
AugConf (Burns et al., 2023) 80.62 77.92 76.43 80.75 80.84

AdaptConf (Ours) 80.99 78.55 76.58 80.98 81.06
∆ +1.09 +1.35 +1.32 +0.55 +1.16

(a) Trained with teacher’s prediction and GT label. ∆ is the improvement over the student trained from scratch.

Teacher ShuffleNet-V1 ShuffleNet-V1 MobileNet-V2 MobileNet-V2 ShuffleNet-V2
72.40 72.40 66.85 66.85 74.44

Student ResNet32×4 WRN-40-2 VGG13 ResNet50 ResNet32×4
KD (Hinton et al., 2015) 77.92 76.45 72.13 73.32 78.27

FitNet (Romero et al., 2014) 75.74 74.03 70.57 71.45 76.42
RKD (Park et al., 2019) 76.59 75.70 70.28 72.06 77.84

AugConf (Burns et al., 2023) 78.25 76.37 72.51 74.48 78.81
AdaptConf (Ours) 78.48 76.66 72.93 74.67 79.04

∆ +6.08 +4.26 +6.08 +7.82 +4.37

(b) Trained with teacher’s prediction only. ∆ represents the performance improvement over the teacher model.

Table 4: Results on the CIFAR-100 validation set. Teachers and students are in the different architectures.
All results are the average over 3 trials.

Few-shot learning. We explore few-shot learning across the miniImageNet (Vinyals et al., 2016)
dataset which contains 100 classes sampled from ILSVRC-2012 (Russakovsky et al., 2015). We
randomly split the dataset into 64, 16, and 20 classes as training, validation, and testing sets, respec-
tively. And ensure that each class has 600 images of 84×84 image size. We utilize the ResNet36 to
explore the weak-to-strong boosting performance in few-shot task. To demonstrate weak-to-strong
boosting performance, we follow Meta-Baseline and conduct related experiments on classifier stage
and meta stage.

Transfer learning. We explore transfer learning across two benchmark datasets: ImageNet (Deng
et al., 2009), and iNaturalist 2018 (Van Horn et al., 2018), the latter comprising 437,513 training
images and 24,426 test images distributed across 8,142 species. We utilize the ViT-B (Dosovitskiy
et al., 2020) that has been pretrained on the ImageNet training set using the self-supervised MAE (He
et al., 2022b) approach, leveraging only image data without labels. Our results are reported for
the fine-tuning phase, which is conducted under the guidance of a weak teacher model on each
benchmark. Furthermore, we investigate scenarios where only soft labels produced by the weak
teacher model are used for training.

Teacher ResNet12 ResNet18
59.65 77.80 60.83 78.96

Student ResNet36 ResNet36
60.91 79.01 60.91 79.01
1-shot 5-shot 1-shot 5-shot

KD 60.94 79.14 61.57 79.79
RKD (Park et al., 2019) 59.74 78.30 60.80 78.82

AugConf (Burns et al., 2023) 61.38 79.33 61.66 79.46
AdaptConf (Ours) 61.50 79.52 62.29 79.96

∆ +2.59 +2.67 +3.38 +3.11

Table 5: Average 5-way accuracy (%) with 95% confidence
interval on the miniImageNet validation set in Classification
Training stage. ∆ represents the performance improvement
over the student model trained from scratch. All results are the
average over 3 trials.

Learning with noisy labels. We eval-
uate our approach using two datasets
with simulated label noise, specifically
CIFAR-10 (Krizhevsky et al., 2009)
and CIFAR-100 (Krizhevsky et al.,
2009). Consistent with prior re-
search (Li et al., 2020; Tanaka et al.,
2018), we introduce two distinct types
of simulated noisy labels: symmetric
and asymmetric. Symmetric noise is in-
troduced by randomly substituting the
labels of a certain proportion of the
training data with other possible la-
bels uniformly. In contrast, asymmet-
ric noise involves systematic mislabel-
ing to mimic real-world errors, such as
flipping the labels to closely related classes. For example, in CIFAR-10, truck is mislabeled as au-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Class-stage Meta-stage

Teacher ResNet12 ResNet18 ResNet12 ResNet18
59.20 60.63 65.26 66.51

Student ResNet36 ResNet36 ResNet36 ResNet36
65.08 65.08 65.08 65.08

KD (Hinton et al., 2015) 63.43 65.04 66.08 65.93
RKD (Park et al., 2019) 64.79 65.42 65.96 65.46

AugConf (Burns et al., 2023) 65.15 65.59 65.9 65.78
AdaptConf (Ours) 65.38 65.74 textbf66.08 65.95

∆ +0.30 +0.66 +1.00 +0.87

Table 6: Average 5-way accuracy on miniImageNet validation set at Meta-Learning stage. ∆ represents
the performance improvement over the student trained from scratch. All results are the average over 3 trials.

tomobile, bird as airplane, and cat is interchanged with dog. For CIFAR-100, similar mislabeling is
applied within each of the super-classes in a circular fashion.

Baseline methods. The predominant framework for implementing teacher-student training
paradigms is knowledge distillation (Hinton et al., 2015). This approach outlines a method where
a larger, more complex teacher network guides the training of a more compact student network.
Nonetheless, inspired by the findings of Burns et al. (Burns et al., 2023), our work pivots towards
a scenario where the student network surpasses the teacher in visual capabilities. Despite this in-
version of roles, there remains valuable dark knowledge in the teacher that can be transferred to
the student, either through logits or via intermediate representational features. To benchmark our
experiments, we employ a range of established (Hinton et al., 2015; Romero et al., 2014; Park et al.,
2019; Heo et al., 2019; Chen et al., 2021a; Hao et al., 2023a) and recently proposed (Zhao et al.,
2022; Burns et al., 2023) distillation techniques as baseline methods.

4.2 MAIN RESULTS

4.2.1 IMAGE CLASSIFICATION.

Teacher: ResNet50 (80.36) Teacher + GT Teacher
Student: ViT-B (MAE pretrain) 83.53 -

KD (Hinton et al., 2015) 83.62 82.32
FitNet (Romero et al., 2014) 82.48 81.02

RKD (Park et al., 2019) 82.19 80.98
DKD (Zhao et al., 2022) 83.68 -

AugConf (Burns et al., 2023) 83.70 82.38
AdaptConf (Ours) 83.86 82.51

∆ +0.33 +2.15
(a) Top-1 results on the ImageNet validation set.

Teacher: ResNet101 (67.42) Teacher + GT Teacher
Student: ViT-B (MAE pretrain) 75.28 -

KD (Hinton et al., 2015) 75.60 71.57
FitNet (Romero et al., 2014) 73.68 70.11

DKD (Zhao et al., 2022) 75.82 -
AugConf (Burns et al., 2023) 75.90 71.73

AdaptConf (Ours) 76.03 71.99
∆ +0.75 +4.57

(b) Top-1 results on the iNaturalist 2019 test set.

Table 7: Transfer learning results. The student model is a ViT-
B (Dosovitskiy et al., 2020) pretrained by the self-supervised
MAE framework (He et al., 2022b). ∆ denotes the performance
improvement over student/teacher in second/third columns.

CIFAR-100 image classification. We
commence our investigation with an
exploration of weak-to-strong boosting
(W2S) on the CIFAR-100 dataset. The
outcomes of this investigation are de-
lineated in Tables 2 and 4. Specifi-
cally, Table 2 presents the scenarios in
which both teacher and student models
share the same network architectures.
We examine a range of prevalent vi-
sion architectures such as ResNet (He
et al., 2016), WRN (Zagoruyko & Ko-
modakis, 2016), and VGG (Simonyan
& Zisserman, 2014). We employ var-
ious KD methods to assess the poten-
tial of larger-capacity students guided
by limited-capacity teachers. Remark-
ably, in nearly all cases employing KD-
based approaches, the student models
outperform those trained from scratch.

Furthermore, both AugConf (Burns
et al., 2023) and our proposed Adapt-
Conf method surpasses all previous dis-
tillation techniques across all teacher-student pairs. This highlights that simply emulating a weak
teacher does not yield the most favorable outcomes. Notably, AdaptConf consistently achieves su-
perior performance compared to AugConf (Burns et al., 2023), underscoring the advantage of our
dynamic adaptive confidence weighting. This approach provides a more refined mechanism for
facilitating weak-to-strong knowledge transfer.
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dataset CIFAR-10 CIFAR-100
noise type asymmetric symmetric asymmetric symmetric

Teacher PR18 PR18 PR18 PR18
92.98 99.56 95.80 99.80 73.20 92.67 76.16 92.90

Student PR34 PR34 PR34 PR34
93.69 99.61 96.13 99.77 74.80 92.94 78.20 93.77
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

KD (Hinton et al., 2015) 93.54 99.84 95.90 99.84 75.49 93.67 77.61 93.74
RKD (Park et al., 2019) 92.42 99.75 95.99 99.85 74.20 93.54 76.92 93.09

AugConf (Burns et al., 2023) 92.60 99.75 95.10 99.83 74.99 93.72 78.34 94.02
AdaptConf (Ours) 93.69 99.84 textbf96.13 99.87 75.61 93.78 78.64 94.03

∆ +0.00 +0.23 +0.00 +0.10 +0.81 +0.84 +0.44 +0.26

Table 8: Top-1 and top-5 results on the CIFAR-10/CIFAR-100 noise label validation set. ∆ represents the
performance improvement over the student model trained from scratch. All results are the average over 3 trials.

Table 4 shows the results of teacher-student pairs from different series, such as ShuffleNet (Zhang
et al., 2018) and MobileNet (Sandler et al., 2018). Additionally, take the MobileNetV2-ResNet50
pair as an example, the experimental results reveal that when the teacher model is significantly
weaker, i.e., a substantial performance gap exists between the weak teacher model and the strong
student model, none of the KD-based methods were able to effectively enhance the strong student’s
performance, except for AugConf and AdaptConf. The possible reason is that these methods include
the predictions of the strong student in the loss function. This proves that self-training methods, akin
to those described in (Lee et al., 2013), can mitigate the bias from a suboptimal teacher model. It
is important to note that FitNet (Romero et al., 2014) consistently underperforms when compared
to training from scratch. This could be attributed to its sole focus on intermediate features, which
may be more misleading for the strong student to learn from than soft predictions, as suggested by
(Hao et al., 2023b). Overall, our AdaptConf achieves an improvement of 0.5%-2% on all evaluated
teacher-student pairings, whether they are from the same or different series.

Furthermore, we investigate a scenario where only the teacher’s output is available, as shown in
Table 4b. In this context, it becomes evident that AugConf and AdaptConf yields more significant
improvements compared to other KD-based methods when ground truth is absent. This observation
underscores the suitability of our confidence distillation approach for more extreme W2S scenarios
where ground truth is not available.

ImageNet image classification. Table 3 presents the top-1 accuracy for image classification on
the ImageNet dataset. Our AdaptConf method achieves significant improvements across both W2S
scenarios, whether employing the same or different architectures.

4.2.2 FEW-SHOT LEARNING

For the few-shot learning task, we conduct distillation experiments separately in the classification
(Table 5) and meta-learning (Table 6) stages. We compare and evaluate the performances of student
when trained with teachers of different sizes. In the classification experiments, only RKD results in
a performance degradation of the student model, while the usage of other methods led to varying
degrees of improvement. Notably, our confidence-based method outperforms previous knowledge
distillation based ones. In the meta-learning stage, we employ weights from different training stages
of the same model as the teacher. Experimental results demonstrate significant advantages of our
proposed method. Even when using the Class-stage weight as the teacher, our approach achieves a
+0.66% improvement over the baseline set by a weaker ResNet18 (Class-stage) teacher model. Fur-
thermore, when using the same stage weight as the teacher, our confidence-based method surpasses
previous knowledge distillation results to a greater extent.

4.2.3 TRANSFER LEARNING

Table 7 examines the efficacy of transfer learning using the iNaturalist (Van Horn et al., 2018)
and ImageNet (Deng et al., 2009) datasets. When our method is trained with ground truth labels
on ImageNet, it demonstrates a notable enhancement, achieving an increase of +0.33% in top-1
accuracy on a model with a high precision of 83.5%. Even without ground truth labels, our approach
still secures a +2.15% improvement over the baseline set by a weaker ResNet50 teacher model. On
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Figure 2: Ablation study examining the impact of hyper-parameter variation on confidence distillation results.
The parameter α for AugConf is adjusted across a range from 0.1 to 0.9, while the temperature T for AdaptConf
is scaled from 0.1 to 8.
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Figure 3: Quantitative analysis about the value of β(x) in Eq. 2 on the CIFAR-100 dataset. The evaluation is
based on the ShuffleNetV1-ResNet32x4 teacher-student architecture pair.

the iNaturalist dataset, our confidence-based method also surpasses previous knowledge distillation
results by a considerable margin.

4.2.4 LEARNING WITH NOISY LABELS

In Table 8, we analyze the effectiveness of weak-to-strong using the CIFAR-10 and CIFAR-100
datasets under two simulated noisy label settings. When training the model on the sample dataset
(CIFAR-10), all methods except ours, negatively impact the model given its already high accuracy.
This underscores the robustness of our method, irrespective of the performance gap between the
teacher and student models. On the CIFAR-100 dataset, our method demonstrates a performance
improvement of 0.81% in top-1 accuracy under the asymmetric noise type setting.

4.3 ABLATION STUDY

Robustness of confidence distillation. In this study, we investigate the necessity of devising a
method that goes beyond a mere weighted combination of labels. As depicted in Eq. 1, despite
its straightforward approach of integrating direct learning from a weaker model with the intrinsic
capacity of a stronger model, AugConf (Burns et al., 2023) still requires manual tuning of a hyper-
parameter α to balance the ratio of two different objectives. The setting of different α values can
have varying impacts across different contexts. Similarly, although our proposed AdaptConf does
not require manual adjustment of α to balance the proportions of objectives, we can manipulate the
temperature T to control the degree of probability distribution in soft labels during the computa-
tion of the cross-entropy CE(·), following a conventional distillation method (Hinton et al., 2015).
Therefore, we explore the effects of these two methods under different hyper-parameter settings on
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the final outcome. Overall, the performance of KD, AugConf, and AdaptConf improves sequentially
across various architectural settings. Moreover, it can be observed that AugConf exhibits a larger
fluctuation in results compared to AdaptConf, indicating that the influence of α on AugConf is more
significant than the effect of T on AdaptConf, which suggests that our AdaptConf has superior ro-
bustness. Additionally, the average outcomes achieved by AdaptConf are consistently higher than
those of AugConf under different hyper-parameter settings.

Robustness of confidence distillation. In this section, we perform a quantitative analysis of the
confidence weight determined by our dynamic function β(x) as delineated in Eq. 2, with the findings
illustrated in Figure 3. We selected checkpoints from four distinct training phases and calculated
their specific β(x) values on the validation set. It can be observed that as training progresses, the
proportion of samples with β = 0.5 increases, indicating that the student model’s performance is
improving and being aligned with the weak teacher’s correct classifications. A higher temperature
setting T reduces the cross-entropy (CE) discrepancy between the teacher and student, promoting a
more uniform balance between the weak teacher’s guidance and the strong student’s own predictions.
Consequently, the number of samples where β = 0.5 also increases with training. These phenomena
collectively validate that our proposed AdaptConf can dynamically adjust the learning ratio between
the two components.

5 CONCLUSION

In this paper, we investigate weak-to-strong boosting for vision foundation models and unveil a
promising avenue for enhancing the capabilities of artificial intelligence in the visual domain. By
leveraging an innovative adaptive confidence loss mechanism, we demonstrate the feasibility and
effectiveness of using weaker models to supervise and improve stronger counterparts. Our findings
not only validate the potential of weak-to-strong enhancement but also set the stage for future re-
search endeavors aimed at unlocking further advancements in AI model performance. This work
contributes a significant step forward in the pursuit of more sophisticated, efficient, and capable
AI systems, emphasizing the importance of nuanced supervision mechanisms in achieving better
performance in vision tasks.
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A APPENDIX: IMPLEMENTATION DETAILS.

A.1 IMAGENET CLASSIFICATION

CIFAR-100. We adopt the vision architectures of the teacher and student models as outlined in
the traditional distillation papers (Hao et al., 2023b; Zhao et al., 2022). It should be noted that the
previous codebase (Zhao et al., 2022) conducted experiments on CIFAR-100 using only 1 GPU. To
expedite our experiments, we leverage the distributed Pytorch framework (Paszke et al., 2019) to
train and do inference on 8 GPUs. Consequently, some hyperparameter settings and results may not
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align exactly with the previous paper. Specifically, we employ the SGD optimizer with a momentum
of 0.9. The learning rate starts at 0.2 and decays with a minimum learning rate of 2e-3 using a cosine
annealing schedule. We train for 240 epochs with a batch size of 512 spread across 8 GPUs, and
apply a weight decay of 0.0005. Standard data augmentation techniques, including random resized
crop and horizontal flip are utilized.

ImageNet. we employ the SGD optimizer with a momentum of 0.9. The learning rate starts at 0.1
and decays with a rate of 0.1 every 30 epochs. We train for 100 epochs with a batch size of 512
spread across 8 GPUs, and apply a weight decay of 0.0001. Standard data augmentation techniques,
including random resized crop, horizontal flip and label smoothing are utilized.

A.2 TRANSFER LEARNING.

To fine-tune the self-supervised pretrained ViT-B on ImageNet and iNaturalist, we adopt the hy-
perparameter settings from MAE (He et al., 2022b). The adamw optimizer is employed for this
purpose. The learning rate begins at 2e-3 and gradually decays with a minimum learning rate of 1e-
6, utilizing a cosine annealing schedule. We conduct training for 100 epochs, utilizing a batch size
of 4096 across 8 GPUs. A weight decay of 0.05 is applied to mitigate overfitting. The fine-tuning
process incorporates robust data augmentation techniques, including auto-augment, mixup, cutmix,
and stochastic drop path.

A.3 FEW-SHOT LEAERNING

We use ResNet12 and follow the setting of (Chen et al., 2021b) on miniImageNet dataset, and
created ResNet18 and ResNet36 by increasing the number of layers in original ResNet12. For the
classification training stage, we use the SGD optimizer with momentum 0.9. The learning rate
starts from 0.1 and the decay factor is set to 0.1. On miniImageNet, we train 100 epochs with the
batch size of 128 on 4 GPUs, the learning rate decays at 90 epoch, and the weight decay is 0.0005.
Standard data augmentation strategies including random resized crop and horizontal flip are applied.
For meta-learning stage, we use the SGD optimizer with momentum 0.9. The learning rate is fixed
as 0.001. The batch size is set to 4, i.e., each training batch contains 4 few-shot tasks to compute
the average loss. The cosine scaling parameter τ is initialized as 10. For knowledge distillation, the
kd loss weight is set to 1, the temperature is set to 10. We use the threshold with 8 and 0.25 for
classifier stage and meta stage, respectively.

A.4 LEARNING WITH NOISY LABELS

For CIFAR-10/100 datasets, we follow (Li et al., 2022) use a PreAct ResNet18 network, and created
PreAct ResNet34 by increasing the number of layers in PreAct ResNet12. We train our models
using SGD with a momentum of 0.9, a weight decay of 1e4, and a batch size of 128. The network
is trained for 250 epochs and the warm-up epoch is set to 1 dufring training stage. We set the initial
learning rate as 0.1, and reduce it by a factor of 10 after 125 and 200 epochs. The fine-tuning stage of
Sel-CL+ has 70 epochs, where the learning rate is 0.001. We always set the Mixup hyperparameter
to 1, scalar temperature to 0.1, and loss weights to 1. We try two settings of simulated noisy labels:
symmetric and asymmetric. And the noise ratio is set to 0.2 and 0.4, respectively. For knowledge
distillation, we set the threshold to 0.5 and assign a weight of 1 to the knowledge distillation loss.
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