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ABSTRACT

Conventional Reinforcement Learning (RL) algorithms assume the distribution of
the data to be uniform or mostly uniform. However, this is not the case with most
real-world applications like autonomous driving or in nature, where animals roam.
Some objects are encountered frequently, and most of the remaining experiences
occur rarely; the resulting distribution is called Zipfian. Taking inspiration from
the theory of complementary learning systems, an architecture for learning from
Zipfian distributions is proposed where long tail states are discovered in an unsu-
pervised manner and states along with their recurrent activation are kept longer
in episodic memory. The recurrent activations are then reinstated from episodic
memory using a similarity search, giving weighted importance. The proposed
architecture yields improved performance in a Zipfian task over conventional ar-
chitectures. Our method outperforms IMPALA by a significant margin of 20.3%
when maps/objects occur with a uniform distribution and by 50.2% on the rarest
20% of the distribution.

1 INTRODUCTION

Humans and animals roam around in environments that are unstructured in nature. However, existing
algorithms in reinforcement learning are built around the assumption that environments are mostly
uniform. Most of the time, a small subset of experiences frequently recur while many important
experiences occur only rarely (Zipf, 2013; Smith et al., 2018). For example, imagine a deer trying
to survive in an environment with predators. If it is drinking water from a source and it escapes from
a potential predator, the deer cannot afford to learn slowly from multiple such experiences to learn to
avoid dangerous places corresponding to water sources. It needs to learn that experience quickly and
generalize across similar instances. Similarly, in autonomous driving, experiences are not uniform,
and usually, the rare instances where there is an accident or unusual experiences are more critical
in real-world settings. This is the fundamental premise on which the theory of complementary
learning systems (McClelland et al., 1995; Kumaran et al., 2016) is proposed. In this framework, an
intelligent agent needs to have a fast learning system and a slow learning system operating together
to restructure the statistics of the environment for better survival internally and not be naive in
expecting uniform environments. In the brain, this is hypothesized through the interplay between the
hippocampus, a fast learning system, and the neocortex which is a slow learning system, and together
they manage to generalize and retain experiences crucial to the goals of the organism (Kumaran
et al., 2016). It is also true that to achieve their respective learning outcomes, both the systems
need each other (Botvinick et al., 2019). The hippocampus is able to achieve fast learning through
its reliance on the slow learning system of the cortex where high dimensional data coming from
the sensory systems are converted to low dimensional representations which can be operated on
by the hippocampus. Such top-down modulation from the cortex influences the processing in the
hippocampus (Kumaran & Maguire, 2007). Similarly, the slow structured learning of the cortex
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happens through interleaved learning by replaying experiences stored in the hippocampus (O’Neill
et al., 2010).

Here, we particularly look at this interplay between a fast learning and a slow learning system and
apply this to solve the long-tailed phenomena. The reinforcement learning algorithm (Sutton &
Barto, 2018b; Espeholt et al., 2018) uses the episodic buffer to generalize across experiences, and a
familiarity memory prioritizes long-tail data from the outputs generated by the RL algorithm. This
prioritization of samples happens through a contrastive learning-related momentum loss which en-
ables the unsupervised discovery of long-tailed data from the stream of experiences (Zhou et al.,
2022). These prioritized samples are kept longer in memory and then, the hidden activations corre-
sponding to these prioritized samples are reinstated in the recurrent layers of the RL network.

Our Main Contributions are:

• Proposing a first solution for the problem of navigating to objects occurring with a long tail
distribution using deep reinforcement learning.

• Application of contrastive momentum loss for unsupervised discovery of long tail states in
the context of reinforcement learning.

• Novel method to prioritize long-tail states in the buffer then reinstating hidden activations
in recurrent layers.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

Let’s assume an environment E which provides the agent with an observation St, the agent selects an
action At, and then the environment responds by providing the agent with the next state St+1. The
interactions between the agent and environment are formalized by MDPs which are reinforcement
learning tasks that satisfy Markov property (Sutton & Barto, 2018a). It is defined by the tuple
< S,A,R, T , γ > where, S represents the set of states, A is the set of actions, R : S × A → R
denotes the reward function. T : S × A → Dist(S) represents the transition function mapping
state-action pairs to a distribution over next states Dist(S) and γ ∈ [0, 1] is the discount factor.

2.2 IMPALA

Previous works on the actor-critic framework have been based on a single learner multiple actor
architectures where the communications are based on gradients with respect to policy parameters
(Mnih et al., 2016b). IMPALA is a distributed off-policy actor-critic framework (Espeholt et al.,
2018); here actors communicate a sequence of trajectories to the learners which give it a very high
throughput. We consider IMPALA as our base architecture and build on top of it.

2.3 MEMORY SYSTEMS IN RL

Memory systems in humans allow them to retrieve the relevant set of experiences for decision-
making in case of unseen circumstances. In neuroscience, some of the types of memories studied are
- Working Memory and Episodic Memory. Working memory is short-term temporary storage while
episodic memory is a non-parametric or semi-parametric long-term storage memory. Deep Rein-
forcement Learning agents with episodic memory, in particular a combination of non-parametric and
parametric networks have shown improved sample efficiency and are suitable for decision-making in
rare events. Blundell et al. (2016) used a non-parametric model to keep the best Q-values in tabular
memory. Pritzel et al. (2017) in Neural Episodic Control proposed a differentiable-neural-dictionary
to keep the representations and Q-values in a semi-tabular form. Hansen et al. (2018) took up a
trajectory-centric approach to model such systems. Our work looks up to Fortunato et al. (2019)’s
state-centric formulation of an Episodic Memory (MEM) which implements working memory using
a latent recurrent neural network and an episodic memory.
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2.4 SELF SUPERVISED LEARNING

Self Supervised Learning has been widely used in Reinforcement Learning to learn better represen-
tations for learning actions (Anand et al., 2019; Laskin et al., 2020). Here we look at the Contrastive
Learning framework (Chopra et al., 2005; Chen et al., 2020; He et al., 2019) which uses similarity
constraints to learn representations. The representation in pixel space is learned by bringing differ-
ent views of the same images together and vice-versa. Usually, Self-supervised long-tailed learning
methods have been developed mainly from a loss perspective or a model perspective. Focal loss
in hard-example mining (Lin et al., 2017; Liu et al., 2021) belongs to the former perspective of
loss re-weighting. These methods are however limited by long tail sample discovery because they
require labels to work. SSL from model perspective requires highly specific model design (Tian
et al., 2021; Jiang et al., 2021). However, Zhou et al. (2022) takes up a different approach to long tail
learning which is based on the data perspective. Zhang et al. (2021); Arpit et al. (2017); Feldman
(2019) has studied the memorization effect in deep networks, and it has been observed that easy
patterns are usually memorized before the hard patterns, and similar behavior can be observed in
long-tail learning. Zhou et al. (2022) extends this by distinguishing between the long tail and head
samples with respect to memorization in an unsupervised setting. They propose Boosted Contrastive
Learning method which works with a momentum loss that enables the unsupervised discovery of
long-tail data.

3 TASK

Our task is inspired by Zipf’s Gridworld task in Chan et al. (2022). The task involves navigating to
a target object in a partially observable gridworld environment. There are in total of 20 maps, and 20
objects in each of the maps are placed at random positions. The positions of these objects in these
maps do not change during trials. The trial starts with the agent placed in the center. Given a target
object, the agent has to find the object in the partially observable gridworld environment by taking
at most 100 steps. If the object selected at the end is the correct object, the trial ends, and the agent
gets a positive reward. If the object selected is incorrect or the number of steps exceeds the limit,
the agent gets no reward.

Due to the unavailability of code for the environment during the time of our experimentation, we
designed and implemented a similar Zipfian Gridworld environment with slight differences from the
original environment proposed in Chan et al. (2022) but maintaining the core principles. Instead of
embedding the target object in the top left corner of the view of the agent, we embed it in the top
center with a black background. Also, we have just four actions (up, down, left, right) which can
be used to navigate to any cell in the grid. It is ensured that all the objects in a map are distinct and
the agent is able to reach any object present on the map using the set of four moves. An example of
the agent’s partial view can be seen in Figure 1a. There are a total of 10 maps, and in each of these
maps, we have 10 objects. We chose the number 10 primarily because of the vast computational
resources required to process 20 grid maps with 20 objects each.

zp(k, n, e) =
1/ke∑n

i=1(1/i
e)

(1)

The probability of occurrence of the maps is governed by Zipf’s power law (Equation 1), where
n is the number of maps/objects, k is the map/object index (1 <= k <= n) and e is the Zipf’s
exponent. The same skew can be seen for target object selection in each map as shown in Figure 1b.
To solve the task, the agent not only needs to explore the environment intelligently but also needs to
memorize the path if the agent solves the trial correctly.

4 ARCHITECTURE

Given an image observation (im), IMPALA’s (Espeholt et al., 2018) feature extractor gives a pixel
input embedding (p) which is further passed to an LSTM network with the hidden state (h) to get the
new hidden state, policy, and value. As done in (Fortunato et al., 2019), we have a MEM module
(orange-red buffer in Figure 3) that is used to find the memory (m), which is then additionally fed
as input to the LSTM network along with the pixel input embedding p. We only keep rare states in
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Figure 1: Zipf’s Gridworld Task: Contains 10 maps, each with 10 objects placed at random loca-
tions. The location of these objects does not change during trials. The agent (white square) starts
at the center in each trial and has to navigate towards the target object shown in the center at the
top. The agent’s view is shown in the bottom image in (a). The target object to find, the agent’s
initial position, door, and object can be seen in the annotated image. The value ‘p’ below each map
shows the probability of occurrence of the map in a trial, highlighting the skew in the distribution.
A similar skew occurs for the distribution of objects in these maps. We can see this in the below part
(b), which shows the distribution of objects for the first map (most common). Adapted from Chan
et al. (2022)

(a) Input (b) Gaussian Noise (c) Random Cutout (d) Final Augmented
Image

Figure 2: Image augmentations for contrastive learning: (a) Shows downsampled input image
for a trial. (b) Input image after adding gaussian noise to it. (c) Input image after applying random
cutout augmentation. The black rectangle near the agent’s position is the area cutout. (d) Final
augmented image after adding gaussian noise and random cutout.
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the MEM by introducing an additional ’familiarity’ buffer (light cyan buffer in Figure 3) that uses
boosted contrastive learning to prioritize and filter rare states for storing in MEM.

4.1 STATE FAMILIARITY USING BOOSTED CONTRASTIVE LEARNING

A ‘familiarity’ buffer is a circular buffer that contains states over which we can get a prediction on
whether a state is rare or how rare the states are. To achieve this, we take inspiration from Zhou et al.
(2022), where they improve performance on a long-tailed self-supervised learning task by proposing
a momentum loss that can predict which samples among the dataset are long-tail samples.

Figure 3: Model Architecture: The figure shows our momentum-boosted episodic memory archi-
tecture pipeline. The IMPALA backbone consists of a CNN feature extractor followed by a Feed
Forward layer that gives the embedding. This embedding is concatenated with the one hot action
encoding, reward & memory to get pixel embedding pi and then given to the LSTM network for fur-
ther processing with working memory. The LSTM network additionally takes the past hidden state
ht−1 as input. During training, the input image, pixel embedding, LSTM hidden states, and keys
are stored in the familiarity buffer. The momentum loss tracked on this buffer during contrastive
learning is then used to prioritize long-tail states. The MEM is then periodically updated with top tf
states from the familiarity buffer. The memory (mt) is computed from the MEM using a weighted
sum (

⊕
) after fetching using a KNN similarity search on the keys present in the MEM (Equation

8).

Our ’familiarity’ buffer (light cyan buffer in Figure 3) contains the input image (im), key (k),
pixel input embedding (p) and LSTM hidden state (h). We will define these terms in the following
section. In each learning step of IMPALA (Espeholt et al., 2018), the batch of trajectories is sent to
this buffer. The entire trajectory isn’t sent to the buffer, but a subset of it (states at a hop of hp from
the start of the trajectory) is sent. For a trajectory Tr = (s1, s2, ..., sk) of size k consisting of states
si, the subset of trajectory is defined as

Trsubset =
(
s1, s(1+hp), ..., s(1+⌊ k−1

hp ⌋∗hp)

)
(2)

The same feature extractor of IMPALA is trained using an additional auxiliary contrastive loss
(Equation 6) on states present in the familiarity buffer. Once the circular buffer is full of states,
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the contrastive learning process starts to help the learning process. For each image sample imi in
the buffer, we find its pixel input embedding pi after IMPALA’s feature extractor. The same feature
extractor is used on the augmented image to get another embedding paugi . The image imi is aug-
mented using two augmentations, namely gaussian noise (Boyat & Joshi, 2015) and random cutout
(DeVries & Taylor, 2017). We use these two augmentations because they are simple and don’t af-
fect the task. For example, using something like random conv (Laskin et al., 2020) will change the
color of all objects in the observation, and this might result in the agent confusing it to be an image
(observation) from some other trial. For adding gaussian noise to the image, we first generate an
image of the same dimension as that of the original image that is filled with random numbers from a
normal distribution with mean 0 and variance 1. This image is then added to the original image after
amplifying by a factor of sigma. For random cutout, we take a random location in the image and
cut a rectangular area of random size. By cutting, we mean replacing the pixels in that rectangular
region with black pixels.

During the training process, we consider the embeddings pi and paugi as positive pairs for contrastive
learning. The NT-Xent loss ( Sohn (2016), Equation 6) is used to calculate the loss per sample. For
each sample i in the circular buffer, we track its momentum loss following Zhou et al. (2022). The
momentum loss assists in knowing which samples in the circular buffer are long-tail samples. For a
sample i, if for T consecutive epochs the contrastive losses are {ℓT1,i, ℓT2,i, ..., ℓTT,i}, then the moving
average momentum loss is defined as follows:

ℓmm
i,1 = ℓT1,i; ℓmm

i,t = βℓmm
i,t−1 + (1− β)ℓTt,i (3)

where β is a hyperparameter that controls the degree smoothed by the historical losses. The final
normalized momentum used to find the familiarity of states is defined as

Mi,t =
1

2

(
ℓmm

i,t − ¯ℓm
m
t

max{|ℓmm
j,t − ¯ℓm

m
t |}j=1,...,N

+ 1

)
(4)

where ¯ℓm
m
t is the average momentum loss of the dataset at the tth training step of the algorithm

and N is the number of samples. The higher the momentum value Mi,t, the higher is the rareness
of the sample in the circular buffer. The model is trained end to end by optimizing both IMPALA’s
loss and the auxiliary contrastive loss. Let the loss given by IMPALA be Limpala and that given by
the contrastive learning branch be Lcontrastive, then we define the final loss to be the one shown in
Equation 5 below.

L = Limpala + γ ∗ Lcontrastive (5)

where γ is a hyperparameter. The contrastive loss is given by:

Lcontrastive =
1

N

N∑
i=1

− log
exp

(
p⊤
i .paug

i

τ

)
∑

p′
i∈X′ exp

(
p⊤
i .p′

i

τ

) (6)

where N is the number of samples, X
′

represents X− ∪ {paugi }, (pi, paugi ) is the positive sample
sample pair, X− is the negative sample set of p and τ is the temperature.

4.2 COMBINING FAMILIARITY WITH EPISODIC MEMORY

The base architecture we use is IMPALA with MEM proposed in Fortunato et al. (2019). Note
that we do not use the one-step contrastive predictive coding (CPC) module they introduced. In the
paper, an Episodic Memory (MEM) is introduced on top of the IMPALA architecture, which is a
circular buffer that stores the pixel embedding (p), LSTM hidden state (h), and the key (k), which is
calculated using

k = W [p, h] + b (7)

where W and b are learnable parameters and [p, h] denotes the concatenation of p and h along the
dimension axis. When IMPALA+MEM comes across situations with a similar context, it uses a
method to learn how to save summaries of previous experiences and extract crucial data. The neu-
ral network (controller), which generates the model predictions, also receives extra inputs from the
readings from memory. Learning long-term dependencies, which can be challenging when depend-
ing solely on backpropagation in recurrent architectures, is made simpler by successfully enhancing
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the controller’s working memory capacity with experiences from various time scales received from
the MEM. In the original IMPALA+MEM algorithm, the pixel embeddings pi, LSTM hidden states
hi, and keys ki were computed after the feature extraction layer of IMPALA and then added to the
MEM buffer. But, we instead add this to the familiarity buffer, which computes the familiarity of
states based on the momentum loss and then periodically sends it to the MEM buffer to facilitate
learning during rare trials. The agent is able to perform well on frequent states even if the MEM
module is not used and only the simple IMPALA algorithm is used. Hence, we only maintain rela-
tively rare states in the MEM buffer to help learn on rare states that actually require the help of an
external episodic memory module. The MEM gets tk most rare states from the familiarity buffer
after every tf training epochs of contrastive learning, where tk and tf are hyperparameters.

The overall architecture can be seen in Figure 3. For a stimulus pt and previous hidden state ht−1,
the agent chooses the most pertinent events to give as input mt to the LSTM network using a type
of dot-product attention (Bahdanau et al., 2015) over its MEM. Using the key kt, formed by pt and
ht−1 using Equation 7, a K Nearest Neighbour (KNN) search is done over the keys in MEM to
find the most relevant K keys. The hidden states for these K relevant items are combined using the
below-weighted sum (Equation 8) to get additional input mt to be given to the LSTM network.

mt =

∑K
i=1 wihi∑K
i=1 wi

wi =
1

||kt −W [pi, hi]− b||22 + ϵ
(8)

where ϵ is a small constant and ||x||22 represents the squared L2 norm of x.

Algorithm 1 Pseudocode for our algorithm

1: Inputs:
fm, mem // Familiarity memory and MEM
tf // Transfer frequency
tk // Number of rare instances to transfer
T // Number of IMPALA training epochs
hp // Within trajectory hop
γ // Contrastive loss weight

2: Initialize:
fm.buffer ← {} // Clear FM buffer
mem.buffer ← {} // Clear MEM buffer

3: for t = 1 to T do
4: trajectories← get impala batch(t)
5: im, k, p, h, impala loss← impala train(trajectories, hp,mem)
6: fm.add(im, k, p, h) // subset added according to Equation 2
7: contrastive loss← fm.contrastive train() // loss calc. as shown in Equation 6
8: if t%tf == 0 then
9: momentum values← fm.calculate normalized momentum() // Equation 4

10: rare experiences← fm.get rare k(tk,momentum values)
11: mem.add(rare experiences)

12: final loss← impala loss+ γ ∗ contrastive loss // Equation 5
13: final loss.backward()

5 EXPERIMENTS AND RESULTS

We compare the results of our method with mainly four different types of architecture. The first
architecture that we compare is IMPALA (Espeholt et al., 2018), which is an off-policy actor-critic
framework and has shown substantial improvements over baselines like Clemente et al. (2017);
Mnih et al. (2016a). The second one is the IMPALA+MEM introduced in Fortunato et al. (2019).
The third experiment that we do is IMPALA with visual reconstruction. Chan et al. (2022) have
experimented with visual reconstruction (Hill et al., 2021), and it has been seen that it helps in
improving performance on rare trials by a small margin (see the second row of Table 1). In this, we
add an extra task for visual reconstruction on top of IMPALA with a CNN-based autoencoder. The
fourth one is where we included contrastive learning to learn good embeddings. It is to be noted that
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Figure 4: Performance plots: (a) Performance of IMPALA agent on each map and object. The
y-axis denotes the map axis, and the x-axis denotes the object axis. Value at (i, j) shows the per-
formance (0-1 scale) of the agent on the trial where the object with ID j is chosen at the map with
ID i. An increase in i and j means an increase in the rareness of the map and object respectively
according to the Zipf’s distribution (Equation 1). (b) Performance of IMPALA with MEM added.
We can see that are some medium-rare trials in which the agent has learned to navigate and learn
the task. (c) IMPALA with Visual Reconstruction using CNN-based autoencoder. (d) Performance
of IMPALA+MEM with contrastive learning. (e) Performance of our agent consisting of familiarity
buffer that highlights long tail samples for MEM using modified boosted contrastive learning.

Table 1: Evaluation Performance: We compare four different methods with our algorithm
namely IMPALA, IMPALA+Visual Reconstruction using a simple CNN-based autoencoder, IM-
PALA+MEM, and IMPALA+MEM with only contrastive learning. We report median results across
three runs (± absolute median deviation across runs) with distinct random seeds for models trained
for 4 × 107 steps. Our method (IMPALA+MEM+Contrastive Learning+Rare State Prioritization
using Familiarity Buffer) beats the remaining methods by a large margin on all three evaluation met-
rics.

Accuracy (%)

Method Zipfian Uniform
(All maps and objects)

Rare
(Rarest 20% objects
on rarest 20% maps)

IMPALA 95.0 ± 0.03 64.1 ± 0.02 0 ± 0.00

IMPALA + Vis recon 95.9 ± 0.02 68.0 ± 0.01 0 ± 0.00

IMPALA + MEM 97.2 ± 0.03 72.2 ± 0.04 25.1 ± 0.01

IMPALA + MEM + Contr. Learning 98.1 ± 0.02 73.1 ± 0.01 25.3 ± 0.02

Ours 99.9 ± 0.01 84.4 ± 0.01 50.2 ± 0.02

this approach (see the fourth row of Table 1) does not find the rare states in the familiarity buffer,
it samples k states uniformly randomly from the familiarity buffer. In contrast in the proposed ap-
proach, we pass the rare k states to MEM from the familiarity buffer (see the last row of results in
Table 1). From these experiments, we can see clearly that contrastive learning (feature representa-
tion learning) alone cannot give good performance and we also need to add a familiarity buffer to
prioritize rare states and pass them on to MEM. The training curves (Training/Zipfian Accuracy)
and different ablations can be seen in Section A.2. We can see that the Zipfian mean episode return
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for our method increases faster than all the other methods in the initial phase of training and also
converges later to have the highest accuracy (≈99.9%). The hyperparameters used for our model
are listed in Section A.3. The results on Deepmind Zipf’s Gridworld are shown in Section A.1.

Having a higher training accuracy is not what we are looking for; instead, we want to have good
accuracy when tested uniformly or in rare instances. Figures 4(a-e) show the performance of the five
architectures on all the maps and objects of our environment. For each (map, object) combination,
we plot the average performance across 50 trials. Figure 4a shows the performance of the IMPALA
agent. We can see that the agent is not able to learn the extreme rare trials and also some medium-rare
trials are not learned by the agent. Figures 4 (b) & (d) show the performance of IMPALA+MEM
with and without contrastive learning respectively. In the case of IMPALA+MEM with contrastive
learning, the familiarity buffer is sampled uniformly randomly to fetch states for the MEM. We see
that the performance is almost similar, but still, the medium-rare trials are not learned. Figure 4c
shows the performance of IMPALA with added visual reconstruction using CNN based autoencoder.
This performs slightly better than the baseline (IMPALA) but fails to match the performance of other
agents. Lastly, in Figure 4e we can see the performance of our agent with the familiarity module.
The medium-rare trials are being learned, and also some very rare trials are been done successfully
by our agent. Table 1 gives more insights into our agent’s performance. Our agent is able to beat
other compared agents by a large margin on all of the three evaluation metrics (Training/Zipfian
accuracy, Uniform accuracy, and Rare accuracy).

6 DISCUSSION

This paper deals with the problem of long-tailed distribution in reinforcement learning. Inspired
by the theory of complementary systems, which states that an intelligent agent requires a fast and
slow learning system acting complementary to each other. Here, the momentum loss of contrastive
learning provides a mechanism to detect long tail samples in an unsupervised manner. These samples
are then prioritized to be stored in a separate buffer that stores hidden activation associated with
such states. When a rare sample comes, a similarity search is done to find relevant keys, and the
corresponding hidden activations are merged to be reinstated in the recurrent layers.

This architecture relates to how the hippocampus which is a fast learning system acts in tandem with
the slow learning cortex of the organism to store relevant experiences and replay them to overcome
the statistics of the environment the organism is subjected to (O’Neill et al., 2010). The episodic
memory relies on the network to discover long tail data from the incoming data stream. The network
relies on the episodic memory for identifying the relevant memory of the long tail data in order to
reinstate it in the recurrent layers of the working memory system to execute the episodic sequence.
Similarly, the brain could reinstate episodic sequences from the hippocampus to the working mem-
ory when animals execute a task.

Furthermore, dopamine neurotransmitter has been found to detect novel states and relay them to
the hippocampus (Duszkiewicz et al., 2019). The firing of dopamine neurons is also related to
curiosity and learning progress which is analogous to momentum loss here (Ten et al., 2021; Gruber
& Ranganath, 2019). The neural network prioritizes its representations and persistence of memory
based on how informative the state is for executing the task. This architecture can also potentially
execute episodic generalization as proposed by Fortunato et al. (2019) but adapted for long-tailed
data. The resulting embedding could be different, but the underlying dynamics of executing the
task could be the same. Future work could look at how we could extend this to more realistic 3D
environments and include systematic generalization to compose temporally separated rare states to
solve tasks (Fodor & Pylyshyn, 1988).

7 CONCLUSION

This paper attempts to overcome the problem of long-tailed data for reinforcement learning which
conventional architectures do not address well owing to their underlying assumptions. An unsuper-
vised long-tail discovery method using self-supervised momentum loss is used to prioritize long-tail
data. Using this prioritization, an episodic storing of hidden activations is done to be later rein-
stated in the recurrent layers so that rare trajectories are executed. Both of these proposed features
are crucial in enabling the network to perform better than conventional architectures on a long-tail
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dataset. We hope that this work will encourage the development of new RL methods in such data
distributions and finally enable the development of agents capable of learning from a lifetime of
non-uniform experience.
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A APPENDIX

A.1 RESULTS ON DEEPMIND’S GRIDWORLD

We evaluate various baselines on Deepmind Zip’s Gridworld Environment (10 maps and 10 objects)
and report results in Table 2.

Table 2: Evaluation Performance: Deepmind Zipf’s Gridworld Environment.

Accuracy (%)

Method Zipfian Uniform
(All maps and objects)

Rare
(Rarest 20% objects
on rarest 20% maps)

IMPALA 88.3 ± 0.02 41.1 ± 0.01 0 ± 0.00

IMPALA + Vis recon 90.2 ± 0.02 45.9 ± 0.01 0 ± 0.00

IMPALA + MEM 92.9 ± 0.03 51.2 ± 0.02 25.0 ± 0.02

IMPALA + MEM + Contr. Learning 94.8 ± 0.02 52.3 ± 0.01 25.1 ± 0.02

Ours 98.5 ± 0.02 66.3 ± 0.01 25.2 ± 0.01
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A.2 SUPPLEMENTARY ANALYSES

The training curve for the main experiments can be seen in Figure 5.

Figure 5: Performance plots: Training curves for different experiments.

The effects of changing different hyperparameters of our architecture are explained here.

We look at the ’K’ value of K Nearest Neighbour, Trajectory Hop (hp), Rare State Transfer amount
(tk), and Rare State Transfer Frequency (tf ) for our ablation study. The effect on the training of
these hyperparameters can be seen in Figure 6.

Table 3: Effect of KNN ‘K’ value.

Accuracy (%)

K Value Zipfian Uniform
(All maps and objects)

Rare
(Rarest 20% objects
on rarest 20% maps)

2 99.4 79.0 0

8 98.5 67.6 0

16 99.9 84.4 49.9

32 97.3 74.9 24.9

13



Deep Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

(a) Effect of KNN ’K’ value (b) Effect of trajectory hop (hp)

(c) Effect of transfer amount (tk) (d) Effect of transfer frequency (tf )

Figure 6: Training Performance: Effect of changing different hyperparameters on training.

Table 4: Effect of trajectory hop (hp).

Accuracy (%)

(hp) Zipfian Uniform
(All maps and objects)

Rare
(Rarest 20% objects
on rarest 20% maps)

2 99.1 78.4 24.8

8 99.3 79.1 24.9

16 99.9 84.4 49.9

32 99.1 77.7 25.2

Table 5: Effect of transfer amount (tk).

Accuracy (%)

(tk) Zipfian Uniform
(All maps and objects)

Rare
(Rarest 20% objects
on rarest 20% maps)

8 99.2 81.1 24.9

16 99.9 84.4 49.8

32 99.2 76.0 0

64 98.9 77.9 0

128 98.7 69.8 0
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Table 6: Effect of transfer frequency (tf ).

Accuracy (%)

(tf ) Zipfian Uniform
(All maps and objects)

Rare
(Rarest 20% objects
on rarest 20% maps)

4 99.1 79.9 25.0

8 99.9 84.4 49.8

16 99.3 82.0 49.9

32 99.1 76.9 74.8

A.3 EXPERIMENT HYPERPARAMETERS

Zipf’s Gridworld
Image Width 84
Image Height 84
Action Repeats 1
Unroll Length 32
Discount (γ) 0.99
Baseline loss scaling 0.5
Entropy cost 0.01
Action Repeats 1
Optimizer RMSProp
Learning rate 3e− 4
Number of training steps 4e7
Maximum steps in a trial 100

Additional Parameters
Zipf’s Exponent (e) 2
Number of Actors 50
Trajectory Hop (hp) 16
Average Momentum Beta (β) 0.97
Loss Gamma (γ) 0.5
MEM Buffer capacity 1024
Familiarity Memory Buffer capacity 1024
Rare State Transfer Amount (tk) 512
Rare State Transfer Frequency (tf ) 8
KNN (K) 16
Epsilon (ϵ) 1e− 3
Sigma (sigma) 0.05

15


	Introduction
	Background
	Markov Decision Processes
	IMPALA
	Memory Systems in RL
	Self Supervised Learning

	Task
	Architecture
	State familiarity using Boosted Contrastive Learning
	Combining Familiarity with Episodic Memory

	Experiments and Results
	Discussion
	Conclusion
	Acknowledgement
	Appendix
	Results on Deepmind's Gridworld
	Supplementary Analyses
	Experiment Hyperparameters


