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Abstract

Mechanistic interpretability has been explored in
detail for large language models (LLMs). For
the first time, we provide a preliminary investi-
gation with similar interpretability methods for
medical imaging. Specifically, we analyze the
features from a ViT-Small encoder obtained from
a pathology Foundation Model via application
to two datasets: one dataset of pathology im-
ages, and one dataset of pathology images paired
with spatial transcriptomics. We discover an in-
terpretable representation of cell and tissue mor-
phology, along with gene expression within the
model embedding space. Our work paves the way
for further exploration around interpretable fea-
ture dimensions and their utility for medical and
clinical applications.

1. Introduction
1.1. Mechanistic Interpretability

Mechanisitic interpretability (MI) aims to study neural
networks by reverse-engineering them (Olah, 2022; Cam-
marata et al., 2020a; Elhage et al., 2021; Bereska & Gavves,
2024). Under this paradigm, “features” are defined as the
fundamental units of neural networks, and “circuits” are
formed by connecting features via weights (Cammarata
et al., 2020a). According to the Superposition Hypothesis
(Elhage et al., 2022; Olah et al., 2020), a neuron can be poly-
semantic, i.e., it can store multiple unrelated concepts. Con-
sequently, a neural network can encode more features than
its number of neurons. Bricken et al. (Bricken et al., 2023)
use Sparse Autoencoders - a form of dictionary learning to
decompose multilayer perceptron (MLP) activations into a
number of features greater than the number of neurons, with
the aim to associate features with individual neurons that
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represent disentangled concepts in these sparse networks.
Nanda et al. (Nanda et al., 2023b) provide evidence that
these features are linear combinations of neurons for Oth-
elloGPT, in line with the linear representation hypothesis
proposed by (Mikolov et al., 2013). In LLMs, MI has been
used to understand phenomenon such as in-context learning
(Olsson et al., 2022), grokking (Nanda et al., 2023a), uncov-
ering biases and deceptive behavior (Templeton et al., 2024).
While the Universality Hypothesis (Olah et al., 2020) states
that similar features and circuits are learned across different
models tasks, other studies (Chughtai et al., 2023) found
mixed evidence for this claim.

1.2. Interpretability in pathology

Histopathology (interchangeably used with pathology) is
the diagnosis and study of diseases, involving microscopic
examination of cells and tissues, and plays a critical role in
disease diagnosis and grading, treatment decision-making,
and drug development (Walk, 2009; Madabhushi & Lee,
2016). Digitized whole-slide images (WSIs) of pathology
samples can be gigapixel-sized, contain millions of areas
of interest and contain biologically relevant entities across
a wide range of characteristic length scales. ML has been
applied to pathology images for tasks such as segmentation
of biological entities, classification of these entities, and
end-to-end weakly supervised prediction at a WSI level
(Bulten et al., 2020; Campanella et al., 2019; Wang et al.,
2016). Work on interpretability in pathology has focused
on assigning spatial credit to WSI-level predictions (Javed
et al., 2022; Lu et al., 2020), computing human-interpretable
features from model output heatmaps (Diao et al., 2021) and
visualization of multi-head self attention values on image
patches (Chen et al., 2024).

Spatial gene expression provides rich information on how
cells behave and biological processes happen in their spatial
contexts. In cancer biology, they can be useful to study
tumor heterogeneity, reflect disease mechanisms, and derive
prognostic markers for cancer (Arora et al., 2023; Denisenko
et al., 2024). Studying interpretability in the context of
spatial gene expression can establish the connections be-
tween different biological modalities, (histopathology and
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transcriptomics in our case), and therefore increase our con-
fidence in the utility of a foundation model in multimodal
settings.

We believe that histopathology data is a promising area for
MI-based analysis, for the following reasons:

• Most current image datasets are object-centric, and
interpretability analysis is often restricted on these
datasets. In contrast, a single pathology image patch
can contain 106 regions of interest (i.e, cell nuclei).
The number of active concepts are bounded by the
underlying biological structures, and identifying ev-
ery concept can be critical depending on downstream
applications.

• A significant challenge in such datasets is “batch ef-
fects,” where models can latch on to spurious fea-
tures instead of learning relevant morphology-related
features. This problem can be particularly insidious
in pathology images due to reasons such as high-
frequency artifacts and systematic confounders from
image acquisition, etc. (Howard et al., 2020). While
previous attempts have been made to disentangle bi-
ological content from incidental attributes (Nguyen
et al., 2024), having a better understanding of which
circuits correspond to each of these categories can lead
to the design of more robust models for real-world
applications.

• Having a bottom-up understanding of which features
contribute to certain predictions for an image will en-
able us to model useful interventions at increasing lev-
els of complexity, going from activation-based meth-
ods (Vig et al., 2020; Chan et al., 2022) to text-based
interventions, e.g. “How will this image of a tissue
change if we administer a drug that has been shown to
demonstrate a particular biological effect?”

• Medicine is inherently multimodal (Topol, 2023). Re-
cent advances in the field of spatial biology, i.e. spa-
tially resolved technologies to extract molecular infor-
mation in native tissue locations, provide ample oppor-
tunities to draw connections and learn shared patterns
across modalities such as histopathology, genomics,
and transcriptomics. (Bressan et al., 2023).

1.3. Summary of contributions

In this work, we performed a preliminary interpretability
analysis on the embedding dimensions extracted from a vi-
sion foundation model trained on histopathology images.
We described for the first time the image characteristics
represented in specific embedding dimensions of a pathol-
ogy foundation model, and performed a linear regression
analysis of how biologically-relevant concepts such as cell

nuclear characteristics are represented in the embedding
space (for the purpose of this work, we use “embedding“ to
refer to the output vector of the foundation model, and inter-
pretable “features” are derived from these embeddings). We
finally demonstrated the utility of the interpretability anal-
ysis in analyzing morphological changes associated with
spatial gene expression.

The contributions of our work are as follows:

• We find that single dimensions in the embedding space
capture complex higher-order concepts involving poly-
semantic combination of atomic characteristics includ-
ing cell appearance and nuclear morphology.

• Linear combinations of these embedding dimensions
predict nuclear characteristics including size, shape,
color and orientation.

• Regression weights for predicting the nuclear color
and orientation are invariant across organs, supporting
zero-shot decoding in these characteristics in unseen
domains.

• Foundation model embeddings predict spatial gene ex-
pression, providing evidence for multimodal behavior.
The interpretation of these embeddings aligns with the
biological mechanisms reported in the literature.

• Training a sparse autoencoder allows further dissec-
tion of polysemantic embedding dimensions via sparse
dictionaries of interpretable features, with each fea-
ture representing characteristics such as cell and tissue
features, geometric structures and image artifacts.

2. Method
2.1. Datasets

We used three publicly available TCGA (The Cancer
Genome Atlas) (Weinstein et al., 2013) datasets consisting
of images from three organs: breast (TCGA-BRCA), lung
(TCGA-LUAD), and prostate (TCGA-PRAD). We selected
362, 130 and 324 WSIs from these datasets respectively
for the analysis. A machine-learning model, PathExplore
(PathExplore is for research use only. Not for use in diag-
nostic procedures.) (Markey et al., 2023; Abel et al., 2024),
was deployed on these images to detect and classify cell
types from the WSIs. On each slide, 100 cancer cells and
100 fibroblast cells were randomly sampled from the model
predictions, and image patches (224 x 224 pixels at a high
resolution, 0.25 microns per pixel) were created centered on
the selected cells. For the spatial gene expression analysis,
we used the public dataset from (Barkley et al., 2022).
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2.2. Foundation model and embedding extraction

Image patches were passed through a frozen ViT-Small
encoder taken from ‘PLUTO’ - a pathology pretrained foun-
dation model (Juyal et al., 2024). Each image patch outputs
a 384-dimensional embedding vector corresponding to the
average embedding of the four center 16x16 patch tokens.

We used an instance segmentation model (Abel et al., 2024)
to extract biological characteristics of the cell at the center
of each patch. Extracted characteristics include area, major
and minor axis lengths (characterizing shape), orientation
in degrees with respect to the horizontal axis, and nuclear
stain color measured by the saturation, grayscale, red/green,
blue/yellow channels in the LAB color space.

All samples in the spatial transcriptomics dataset contain
hundreds to thousands of spots locations with corresponding
gene expression information. For each of the spot locations
in the 3 samples used in this study, we extract the 384-
dimensional embedding vector corresponding to the average
embedding of all the patch tokens.

3. Identification of interpretable feature
dimensions in PLUTO embedding space

3.1. Embedding dimensions encode biologically-relevant
features

We first inspected each of the 384 dimensions of the PLUTO
embedding space to determine if they represent singular
features of the image. For each dimension, we randomly
sampled 3 patches that have the lowest 5% and the high-
est 5% activation values across the TCGA-BRCA dataset
(Figure 1).

Embedding dimensions tended to encode multiple image
characteristics. For example, dimension 27 was more active
for larger cells (than smaller cells), purple background (com-
pared to red background), and non-elongated cell shapes.
Dimension 118 tended to be active for mucinuous and round
structure and less activated for fibrous structures.

By visual inspection, most embedding dimensions simi-
larly encode a combination of these cellular, tissue and
background-stain related characteristics, suggesting a poly-
semantic representation of these atomic properties. Certain
combinations of the atomic properties correspond to com-
plex concepts that are relevant to pathology, such as the
distinction between cancer epithelium and stroma tissue
(captured in dimension 27 and 147), or the presence of red
blood cells (captured in dimension 239).

Figure 1. Visualization of features activating each embedding di-
mension. In each dimension, 3 example patches in the lowest
5% and highest 5% respectively of that dimension’s activation are
visualized. Inspection of each these patches reveals that multiple
atomic features vary within each embedding dimension, including
background stain color, cell size, shapes or morphologies. Some
dimensions correspond to complex concepts that are relevant to
pathology.

3.2. Identification of axes encoding quantitative cell
features

We investigated whether linear combinations of the embed-
ding dimensions might represent atomic characteristics of
the center nucleus of each patch. These features include nu-
clear size, shape, color and orientation, which are important
in differentiating high-grade from low-grade cancer.

We fit a linear regression model with L1 regularization
(α = 0.1) to the embedding dimensions to predict each
of these nuclear characteristics. L1 regularization was used
to determine if a sparse basis in the embedding space can
sufficiently represent these characteristics (Bricken et al.,
2023). On the test set (20% of the patches), these models
achieved Pearson correlation of 0.51 to 0.91 with actual
features of the cells (Table 1), with nuclear color having the
highest performance, followed by size/shape and orientation.
The sparsity level under the hyperparameter configuration
is characterized in the Supplementary section.

4. Generalizability of encoding dimensions
It is hypothesized that invariance of image representations
across domains in the foundation model embedding space
supports cross-domain generalization. To test this hypothe-
sis using our linear regression approach, we determined if
the same axes (embedding weights) encode the nuclear size,
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Category Characteristic BRCA LUAD PRAD
Size Area 0.68 0.69 0.59

Shape Major axis 0.57 0.56 0.51
Shape Minor axis 0.73 0.70 0.66
Color Saturation 0.88 0.91 0.84
Color Grayscale 0.88 0.89 0.81
Color Green/Red 0.82 0.75 0.82
Color Blue/Yellow 0.77 0.74 0.81

Orientation Cos-orientation 0.62 0.59 0.60
Orientation Sin-orientation 0.62 0.60 0.62

Table 1. Performance of linear regression models (L1-regularized)
in predicting cell nuclear characteristics related to size, shape, color
and orientation based on the 384 embedding activations. The table
reports the Pearson correlation between the actual and predicted
values of the features.

shape, orientation and color characteristics across different
datasets.

Category Characteristic BRCA→PRAD
Size Area 0.62

Shape Major axis 0.50
Shape Minor axis 0.68
Color Saturation 0.84
Color Grayscale 0.83
Color Green/Red 0.83
Color Blue/Yellow 0.79

Orientation Cos-orientation 0.59
Orientation Sin-orientation 0.61

Table 2. Out-of-domain performance of linear regression model.
L1-regularized linear regression model was fit on the embedding di-
mensions to predict each of the 9 nuclear characteristics in BRCA.
The model was evaluated on the PRAD dataset, using the Pearson
correlation between the predicted and actual characteristics.

For each of the 9 nuclear characteristics, we fit an L1-
regularized regression model (α = 0.1) to predict the
characteristic from the embedding in one dataset (for e.g.
BRCA), and tested the performance of that model on an-
other dataset (for e.g., PRAD), quantified by the Pearson
correlation between the actual and predicted characteristic.
Performance of the model is equivalent to the in-domain
PRAD model (Table 2), demonstrating cross-domain gener-
alization.

5. Embedding dimensions capture
morphological changes associated with gene
expression

We fit linear regression models (L1-regularized) using
PLUTO embeddings to predict spatial expression of the
most variable genes shared across samples. To facilitate the
interpretation of the embeddings, we focused on two genes
with known and different spatial gene patterns in the litera-
ture - COL1A2, which encodes for collagen and is usually

expressed in stromal cells (Retief et al., 1985), and WFDC2,
a malignancy marker expressed in ovarian and endometrial
tumor cells (Schummer et al., 1999; Barkley et al., 2022).
For COL1A2, we trained the models on a breast cancer
sample (BRCA) and predicted on an ovarian cancer sample
(OVCA). For WFDC2, we trained the models on the OVCA
sample and predicted on a uterine corpus endometrial cancer
sample (UCEC). Models achieved a predictive accuracy for
of Pearson r = 0.831 for COL1A2 and Pearson r = 0.528 for
WFDC2, Fig. 3 in Supplementary section, suggesting that
these embeddings are generalizable across different samples
and cancer types.

Model-predicted patches with high COL1A2 expression
have visible differences in morphological features (pink
background with elongated cell shapes) compared to patches
with low COL1A2 expression (red background). On the
other hand, model-predicted patches with high WFDC2 ex-
pression show purple background with round cells, which
are indicative of tumor cells. These observations align with
prior literature that COL1A2 is highly expressed in stromal
cells (Retief et al., 1985) and WFDC2 is expressed in ma-
lignant cancer cells (Schummer et al., 1999; Barkley et al.,
2022). Noticeably, one of the embedding dimensions (em-
bedding dim 147), with high linear coefficient in predicting
WFDC2 expression, contributes negatively to the prediction
of COL1A2. When visually examining this embedding di-
mension in the TCGA dataset (section 3.1), we found that
it encodes morphological features that distinguish cancer
cells and stromal cells, confirming the generalizability of
the embeddings across different datasets and modalities.

6. Training a sparse autoencoder on PLUTO
embeddings reveals interpretable features

Sparse autoencoders (SAEs) have been used in NLP
(Bricken et al., 2023; Cunningham et al., 2023) to achieve a
more monosemantic unit of analysis compared to the model
neurons. In vision datasets, SAEs trained on layers of con-
volutional neural nets have uncovered interpretable features
such as curve detectors (Gorton, 2024; Cammarata et al.,
2020b). Inspired by previous work, we investigate training
SAEs on top of PLUTO’s embeddings and analyzing the
sparse features for interpretable dimensions.

A sparse autoencoder was fit to the CLS token embedding.
The SAE uses an expansion factor of 8 and with loss func-
tion given by 1

|X|
∑|X|

i=1 ||xi−x̂i||2+ λ
|X|

∑|X|
i=1 ||fi||1, where

|X| is the batch size, xi and x̂i are the raw and reconstructed
embeddings, and fi are the learned features of image i
(Bricken et al., 2023). In order to better capture the di-
versity of pathology images, we trained the SAE using an
expanded dataset consisting of 665,090 images from the
three TCGA organs, but consisting of diverse cell types in-
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Figure 2. Feature visualization of SAE hidden dimensions reveals interpretable dictionary of pathology features. For each SAE hidden
dimension, 4 out of the top 16 images that activated that dimension are visualized. Manual examination revealed highly interpretable
features represented by these dimensions. These include cell and tissue features (top row: poorly differentiated carcinoma with distinct
cell separation, red blood cells, dense lymphoid cells, mucin); geometric features (middle row: edge of tissue, clefting between cancer and
stroma, vertical fibers, diagonal fibers); staining and artifact features (bottom row: blur, sectioning artifact, red stain, surgical ink).

cluding cancer cells, lymphocytes, macrophages, fibroblasts,
as well as indication-specific cell types. The supplementary
section contains more details about the change in training
behavior with variation in the sparsity penalty. The fraction
of dead neurons remains lower than 4% for different values
of hyperparameters.

We visualized the images that have the highest activation
value for a given SAE dimension. This revealed highly inter-
pretable features, as shown in Figure 2. These include cell
and tissue features such as poorly differentiated carcinoma,
geometric structures such as vertical fibers, and staining and
artifact features.

7. Conclusion and Future Work
We performed a preliminary investigation of the features rep-
resented in the embedding space of a pathology foundation
model. Single embedding dimensions were found to rep-
resent higher-order pathology-related concepts composed
of atomic characteristics of cellular and tissue properties.
Future work can be done to further decompose these con-
cepts into their atomic properties and understand their joint
representation in the embedding space.

We demonstrated the existence of axes encoding inter-
pretable nuclear characteristics (size, shape, color and ori-
entation) in the embedding space of a pathology foundation
model. These axes generalize across datasets involving
three different organs (lung, breast and prostate), potentially
supporting zero-shot decoding of feature values on unseen
data.

The investigation of embeddings revealed association of
morphological properties and gene expression in a sepa-
rate spatial transcriptomics dataset. Training a sparse au-
toencoder enables the extraction of relatively interpretable
features corresponding to distinct biological characteristics,
geometric features and image acquisition artifacts. Inves-
tigation of these interpretable axes motivates further work
in discovering explainable, multimodal features of large
pathology foundation models.
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A. Interpretability in medical imaging
Interpretability is crucial for Machine Learning (ML) in medical imaging; it builds decision-makers’ trust, enables model
developers to debug silent failure modes and shortcut-learning, and reduces the chances of catastrophic model failures in
real-world deployments (Castro et al., 2020; Varoquaux & Cheplygina, 2022; Caruana et al., 2020). Existing interpretability
methods on medical imaging datasets include gradient-based methods (Selvaraju et al., 2019; Simonyan et al., 2014),
model-agnostic (Rozemberczki et al., 2022; Lundberg & Lee, 2017; Ribeiro et al., 2016) and intrinsically interpretable
techniques (Ilse et al., 2018; Javed et al., 2022). In comparison, mechanistic interpretability methods have been relatively
underexplored.

B. Results of model-fitting using L2-regularization

Nuclear Characteristics Breast Lung Prostate
Area 0.78 0.77 0.71

Major axis length 0.67 0.65 0.63
Minor axis length 0.82 0.78 0.76

Saturation 0.94 0.95 0.90
Grayscale 0.94 0.94 0.88
Green/Red 0.92 0.90 0.91

Blue/Yellow 0.90 0.86 0.89
Cos-orientation 0.69 0.65 0.65
Sin-orientation 0.68 0.65 0.66

Table 3. Performance of linear regression models (L2-regularized) in predicting cell nuclear characteristics related to size, shape, color
and orientation based on the 384 embedding activations. The table reports the Pearson correlation between the actual and predicted values
of the features.

C. Sparsity of L1 regression model

Nuclear Characteristics Breast Lung Prostate
Area 42 45 23

Major axis length 28 29 25
Minor axis length 33 34 30

Saturation 21 19 16
Grayscale 18 19 19
Green/Red 16 15 16

Blue/Yellow 10 12 14
Cos-orientation 9 9 10
Sin-orientation 15 12 17

Table 4. Sparsity in the embedding regression of nuclear characteristics. The table shows the number of non-zero regression weights (out
of 384) in the L1-regularized regression model for each nuclear feature.
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D. Generalization performance of L1-regularized linear regression models

Category Characteristic PRAD→LUAD LUAD→BRCA
Size Area 0.64 0.68

Shape Major axis 0.51 0.52
Shape Minor axis 0.68 0.73
Color Saturation 0.85 0.82
Color Grayscale 0.85 0.83
Color Green/Red 0.78 0.78
Color Blue/Yellow 0.80 0.79

Orientation Cos-orientation 0.58 0.61
Orientation Sin-orientation 0.60 0.62

Table 5. Out-of-domain performance of linear regression model on PRAD→LUAD and LUAD→BRCA generalization experiments.
L1-regularized linear regression model was fit on the embedding dimensions to predict each of the 9 nuclear characteristics in one dataset,
and tested on the out-of-domain dataset. Values reported are the Pearson correlations between the predicted and actual characteristics.

E. Embedding interpretability in the context of spatial gene expression

Figure 3. Embedding interpretability in the context of spatial gene expression. PLUTO embeddings can predict spatial gene expression
with good accuracy. One of the embedding dimensions (embedding dim 147) that contributes the most to both gene expressions shows
morphological features that distinguish cancer cells from stromal cells. The observations align with known biology of the genes. Similar
morphological features corresponding to embedding dimension 147 are also observed in the TCGA dataset.
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F. Sparse autoencoder training behavior

Figure 4. SAE training behavior. As the regularization parameter (lambda) increases, explained variance decreases (A) and average
sparsity increases (B). The fraction of dead neurons (C) remained less than 4%, showing that most neurons in the hidden layer were
activated by at least one input image and demonstrating that the network is utilized at almost full capacity. Dashed line represents the
chosen parameter (λ = 0.5) for feature visualization.
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