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ES-GGT: EFFICIENT SUBMAP-BASED VISUAL GE-
OMETRY GROUNDED TRANSFORMER WITH SPATIAL
MEMORY ALIGNMENT
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Figure 1: Left: The complexity of the algorithm is depicted, where Ls represents the number of
images per submaps and N denotes the total number of input images. Right: The algorithmic
diagram illustrates the process, where multiple submaps are first reconstructed in a streaming manner
into a group, and different groups are then sequentially merged to produce the final prediction.

ABSTRACT

Foundation models have recently emerged as powerful tools in 3D vision, greatly
advancing the field of 3D perception. However, improving computational effi-
ciency while maintaining consistency in long sequences remains a key challenge
in computer vision. We present ES-GGT, an efficient method for streaming scene
reconstruction built on VGGT, a state-of-the-art feed-forward visual geometry
model. We align submaps in a streaming manner using a hierarchical, local-to-
global strategy. At the local level, we perform fine-grained alignment of their
scales and coordinate systems by streaming low-level information, thereby reduc-
ing computational complexity while maintaining memory cost and performance
comparable to simultaneous input of all submaps. For global level, we integrate
high-level spatial memory with a tri-perspective view (TPV) representation that
extends the bird’s-eye view (BEV) with two orthogonal planes. We then gener-
ate a 15-degrees-of-freedom homography transformation matrix to achieve global
alignment. We significantly improved inference speed and efficiently handled long
sequence inputs. Code available at: https://anonymous.4open.science/r/ES-GGT-
4386.

1 INTRODUCTION

Dense 3D scene reconstruction from monocular RGB images is a fundamental problem in com-
puter vision, with wide applications in robotics, augmented reality, and autonomous navigation (Liu
et al. (2025); Raychaudhuri et al. (2024); Khazatsky et al. (2024)). Recent advances in feed-forward
neural reconstruction models have significantly improved the quality and efficiency of 3D percep-
tion. Notably, methods such as DUSt3R (Wang et al. (2024)), MASt3R (Leroy et al. (2024)), and
VGGT (Wang et al. (2025)) have demonstrated the ability to predict dense geometry and camera
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poses directly from images, bypassing traditional multi-stage pipelines like Structure-from-Motion
(SfM) (Frahm et al. (2010); Liu et al. (2024a); Gu et al. (2020)) and Multi-View Stereo (MVS) (Fu-
rukawa & Hernández (2015); Huang et al. (2018); Galliani et al. (2015); Wang et al. (2021) ). These
models leverage powerful architectures and large-scale training data to achieve impressive recon-
struction quality.

Dispite their success, extending these feed-forward methods to long video sequences remains a
critical challenge. Most existing approaches are limited by GPU memory constraints and a compu-
tational complexity that scales quadratically (O(N2)) with the number of input frames. For instance,
VGGT (Wang et al. (2025)), while capable of processing arbitrary numbers of views, suffers from
a quadratic scaling of computational cost due to its global attention mechanism. This limits its ap-
plicability in streaming or large-scale reconstruction scenarios (Wang* et al. (2025)). To address
this, recent works like VGGT-SLAM (Wang et al. (2025)) propose dividing the input into submaps
or sliding windows and aligning them incrementally. While these methods improve scalability, they
often rely on strong assumptions about camera calibration or scene structure, and may struggle with
drift accumulation or misalignment in challenging environments.

In this paper, we present ES-GGT, an Efficient Submap-based Visual Geometry Grounded Trans-
former (Vaswani et al. (2017)) designed for scalable and consistent 3D reconstruction from long
RGB sequences. As illustrated in Figure 1, our approach processes long image sequences in a
streaming manner, dramatically reducing computational complexity from

Built upon the VGGT architecture, ES-GGT introduces a hierarchical alignment strategy that pro-
cesses input images in streaming submaps, significantly reducing computational complexity from
O(N2) to O(N · LS), where N is the number of input images and Ls is the image unmber of each
submap. At the local level, we enforce fine-grained consistency across overlapping frames within
each group of submaps using a novel cross-submap alignment mechanism. At the global level, we
maintain a spatial memory representation using a Tri-Perspective View (TPV) (Huang et al. (2023))
and estimate a 15-degree-of-freedom homography transformation (Hartley & Zisserman (2003)) to
align submaps in a globally consistent coordinate system.

Unlike VGGT-SLAM , which aligns submaps using SL(4) transformations and assumes projective
ambiguity, ES-GGT avoids costly global optimization by integrating spatial memory directly into
the feed-forward process. Compared to SLAM3R (Liu et al. (2024b)), which focuses on real-time
registration without explicit camera estimation, our method retains the geometric interpretability of
VGGT while improving efficiency and long-term consistency. Extensive experiments on 7-Scenes
dataset (Schonberger & Frahm (2016)) demonstrate that ES-GGT achieves superior reconstruction
accuracy and completeness.

Our contributions can be summarized as follows:

• Propose ES-GGT, a submap-based transformer architecture build on VGGT that enables
efficient 3D reconstruction from monocular RGB images. And significantly reduce com-
putational complexity.

• Introduce a hierarchical alignment strategy that integrates intra-group fine-grained con-
sistency with inter-group global alignment, leveraging spatial memory and homography
estimation.

• Demonstrate that ES-GGT surpasses existing methods in both reconstruction quality and
computational efficiency. When processing more than 100 input frames, our method
achieves over 3× speedup compared to VGGT. On the 7-Scenes dataset, our reconstruc-
tion results achieve state-of-the-art performance.

2 RELATED WORKS

2.1 FEED-FORWARD 3D SCENE RECONSTRUCTION

Feed-forward neural methods have recently achieved remarkable progress in dense 3D reconstruc-
tion (Duisterhof et al. (2025b); Murai et al. (2024); Zhang et al. (2024); Szymanowicz et al. (2025);
Li et al. (2025b); Xiao et al. (2025); Li et al. (2025a)). Departing from traditional optimization-
heavy pipelines such as Structure-from-Motion (SfM) and Multi-View Stereo (MVS) (Schönberger
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& Frahm (2016); Schönberger et al. (2016); Agarwal et al. (2011); Nistér (2004); Hartley (1997);
Liu et al. (2024a); Yao et al. (2018); Mouragnon et al. (2006); He et al. (2024); Gu et al. (2020);
Ding et al. (2022); Schönberger et al. (2016)), feed-forward models now enable direct inference
of 3D structure and camera poses from RGB inputs. Pioneering works such as DUSt3R (Wang
et al. (2024)) demonstrated that a network can directly regress dense pointmaps from uncalibrated
image pairs. This paradigm has inspired numerous follow-up works. To extend this capability
to video sequences, methods like Spann3R (Wang & Agapito (2024)) and Cut3R (Wang* et al.
(2025)) introduced recurrent mechanisms and persistent state tokens to process frames incremen-
tally. SLAM3R (Liu et al. (2024b)) further developed this concept by using a sliding window to
reconstruct local geometry and then registering these clips into a global scene representation. While
these incremental methods improve efficiency, they are susceptible to cumulative drift over long se-
quences. Other works like Pow3R (Jang et al. (2025)) focus on improving reconstruction quality by
incorporating priors like known camera parameters or sparse depth maps at test time. The core ideas
from these models have also been extended to other 3D representations, such as directly outputting
Gaussian Splatting parameters (Smart et al. (2024); Sun et al. (2025)). Our work, in contrast, ad-
dresses the scalability and drift challenges through a novel hierarchical alignment strategy that does
not rely on additional priors.

2.2 TRANSFORMER ARCHITECTURES FOR MULTI-VIEW GEOMETRY

Recent advances in transformer-based architectures have significantly reshaped the landscape of
multi-view 3D geometry estimation (Wang et al. (2025); Xiao et al. (2025); Zhang et al. (2025);
Duisterhof et al. (2025a); Keetha et al. (2025); Wang et al. (2025); Khafizov et al. (2025)).
VGGT (Wang et al. (2025)) introduces a unified transformer architecture that jointly estimates cam-
era parameters, depth maps, and dense point clouds in a single forward pass. By alternating between
frame-wise and global self-attention layers, VGGT captures long-range spatial dependencies across
views. However, the global attention mechanism that underpins VGGT’s strong performance is also
its primary limitation. The model’s computational and memory requirements scale quadratically
with the number of input frames, rendering it impractical for long video sequences or real-time ap-
plications. FastVGGT (Shen et al. (2025)) attempts to accelerate inference by merging redundant
tokens. Fast3R (Yang et al. (2025)) designs global fusion transformers to process a larger num-
ber of views simultaneously, but this still faces scalability challenges with very long contexts. Our
work, ES-GGT, directly tackles this challenge by partitioning the input sequence into manageable
submaps, thus breaking the quadratic dependency.

2.3 SUBMAP-BASED RECONSTRUCTION

To scale powerful feed-forward models like VGGT to arbitrary-length sequences, a ”divide-and-
merge” strategy has become the prevailing approach. This involves breaking the sequence into
smaller, overlapping submaps, processing each independently, and then aligning them into a globally
consistent model (Deng et al. (2025); Maggio et al. (2025)). Recent SLAM systems built on feed-
forward backbones have adopted this strategy, but differ significantly in their alignment philoso-
phies. VGGT-SLAM (Maggio et al. (2025)) extends VGGT by first generates submaps using VGGT
and then addresses the 15-DoF projective ambiguity inherent in reconstructions from uncalibrated
cameras. It formulates a factor graph optimization that operates directly on the SL(4) manifold to
estimate the projective transformations (homographies) between submaps. MASt3R-SLAM (Mu-
rai et al. (2024)) builds upon the two-view MASt3R model and employs a backend with Sim(3)
pose graph optimization to ensure global consistency. While effective, these methods bifurcate
reconstruction and alignment into distinct, often computationally intensive, steps. SLAM3R (Liu
et al. (2024b)) takes a different, fully end-to-end learning approach. It avoids explicit camera pose
estimation by using a Local-to-World (L2W) network to directly register new pointmaps into a
global frame. This is guided by a memory reservoir of previously observed scene frames. These
approaches, however, leave two critical challenges unaddressed: (i) how to ensure fine-grained geo-
metric consistency across multiple submaps within a local window in a purely feed-forward manner,
and (ii) how to perform robust global alignment without resorting to a separate, costly optimiza-
tion loop. ES-GGT bridges this gap. Our hierarchical alignment strategy integrates an intra-group
feature propagation mechanism for local consistency with a learnable, TPV-based spatial memory
for global alignment. This allows ES-GGT to achieve scalable, consistent reconstruction in a single
forward pass while retaining the valuable geometric interpretability of the VGGT framework.
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3 REVIEW: VGGT

VGGT (Wang et al. (2025)) is a feed-forward transformer that processes a set of N RGB images,
{Ii ∈ R3×H×W }Ni=1, and generates a complete 3D scene description for each frame in a single
forward pass. For each input image Ii, the network estimates camera parameters gi, consisting of
a quaternion, translation vector, and field of view, along with a dense depth map Di, a viewpoint-
invariant point map Pi expressed in the coordinate frame of the first camera, and C-dimensional
tracking features Ti (Karaev et al. (2024a;b)).

fvggt : I → O, I = {Ii ∈ R3×H×W }Ni=1

O = {(gi, Di, Pi, Ti)}Ni=1

The backbone is a 24-layer Vision Transformer whose tokens are produced by a frozen DI-
NOv2 (Oquab et al. (2023)) patchifier. To reason efficiently across many views, the transformer
alternates between two self-attention modes: a frame attention layer that updates tokens within each
individual image, and a global attention layer that exchanges information across all frames. The
output tokens are subsequently processed by a camera head to predict camera intrinsics and poses,
or by Dense Prediction Transformer (DPT) heads (Ranftl et al. (2021)), which generate dense depth
maps for each image, a dense point map, and per-pixel feature embeddings for point tracking. This
architecture does not employ any cross-attention layers, only self-attention ones. Since the global
attention layer in VGGT is designed to capture complex geometric relationships across all input
frames, its computational complexity scales quadratically with the sequence length, which quickly
emerges as a major performance bottleneck. To alleviate this issue, we partition the input into
submaps, effectively reducing the computational overhead incurred by the global attention layer.

4 METHOD

We aim to design a network that, given an input sequence of N images I input ∈ RN×H×W×3,
processes them in a submap manner, where each submap is represented as an image collection
Is ∈ RLsubmap×H×W×3, and Lsubmap corresponds to the number of images per submap. Each
submap starts with Loverlap overlapping frames inherited from its preceding submap, ensuring
smooth temporal continuity. We treat Lgroup as the number of submaps in a group, denoted as
Ig ∈ RLgroup×Lsubmap×H×W×3, and process them jointly. For clarity of exposition, we assume through-
out that the total sequence length N is exactly divisible as N = Lgroup ×Lsubmap Within each group,
we stream low-level information across submaps to maintain high regional consistency in later in-
puts. Each group is processed to produce independent predictions that are subsequently aligned
via a global spatial memory M to maintain global consistency between groups. By enforcing fine-
grained, low-level alignment intra-group and promoting high-level alignment inter-group, our ap-
proach guarantees consistency among long-range submaps.

Overall, our alignment strategy proceeds in two stages: intra-group alignment, which refines the
relative scales and coordinate frames among submaps within each group, and inter-group align-
ment, which integrates the already aligned grouped-submaps into a globally consistent representa-
tion.

4.1 INTRA-GROUP ALIGNMENT

Formally, the j-th group is constructed from a consecutive segment of the input submap as:

Igj = {Isi |i ∈ [(j − 1) · Lsubmap + 1, j · Lsubmap]}.
Each submap Is serves as the atomic processing unit of the network. At each iteration, the network
takes the i-th submap Is

i as input. Each image img ∈ Is
i is first patchified into a set of K tokens

using a DINO (Oquab et al. (2023)) encoder. The tokens from all frames within the submap are then
concatenated and passed through the backbone, which alternates between frame attention and global
attention layers.

We follow the original VGGT (Wang et al. (2025)) configuration and employ a backbone with
24 alternating layers of global and frame-wise attention. For each input img in i-th submap, the
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Figure 2: Overall pipeline of our method. Given an input sequence of N images, we first divide it
into Lgroup groups, each group containing Lsubmap images. Within each group, intra-group align-
ment propagates overlap-frame features and refines camera tokens to ensure local consistency across
submaps. Subsequently, inter-group alignment integrates group-level predictions into a globally
consistent point cloud via the global spatial memory M. This two-stage alignment strategy enables
both fine-grained local coherence and long-range global consistency in reconstruction.

backbone produces a feature representation timg ∈ R24×2×K×C , where K denotes the number of
tokens and C is the feature dimension.

To maintain temporal coherence between submaps, we introduce overlap frames imgo that are
shared between consecutive submaps. Simply re-encoding these frames, however, would limit the
receptive field to the current submap. Instead, we propagate the feature representations timgo from
the last submap and substitute them for the corresponding feature in the current submap Isi . Impor-
tantly, this substitution is performed only in the global attention layers, allowing overlap tokens to
carry forward contextual information and anchor the global computation across submaps.

For each timg , the 0-th token corresponds to the camera token c, which encodes information related
to the camera. In particular, the camera token of the first frame I0 specifies the coordinate system
for each prediction.

Since the prediction of camera parameters for image imgi relies solely on its corresponding camera
token ci, we can interpret ci as encoding the camera coordinate system information of the submap.
For all submaps within the same group, we expect their camera tokens to encode a consistent co-
ordinate system. In particular, the camera tokens of overlap frames should remain as consistent as
possible across consecutive submaps.

To enforce this consistency, we introduce a cross-submap regularization mechanism. Specifically,
for each overlap frame imgo shared between the (i−1)-th and i-th submaps, we compute a residual
embedding by passing the difference of their camera tokens through a lightweight MLP:

r
(i)
0 = MLP (c

(i)
0 − c

(i−1)
0 ), i ∈ [2, Lgroup],

where c(i)o and c(i−1)o denote the camera tokens of the same overlap frame in consecutive submaps
Isi and Isi− 1.

We then aggregate these residuals across all overlap frames via average pooling, and use the resulting
feature to refine the camera tokens of the entire i-th submap:

c̃
(i)
j = c

(i)
j +AvgPool({r(i)o }

Loverlap

o=1 ), i ∈ [2, Lgroup], j ∈ [1, Lsubmap],

where c̃
(i)
j denotes the updated camera token for the j-th image in submap Isi . This update allows

overlap frames to propagate consistent camera information across submaps, while simultaneously
aligning all camera tokens within the group to a shared coordinate system.

For each group, we jointly predict the camera parameters, point maps, and depth maps, all expressed
in the coordinate frame of the first camera in the group.
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4.2 INTER-GROUP ALIGNMENT

To achieve global consistency across groups, we maintain the global spatial memory M that stores
high-level information from previously predicted points. Given a new group output Og

i , we employ
the Sim(3) method to predict a rotation matrix, yielding an initially aligned point cloud. Subse-
quently, we query M to retrieve points Pmemory

i within the intersection of the predicted region P pred
i

and the stored memory, determined by the Intersection over Union (IoU) which defines the region
used for refinement.

We encode these 3D points with the Tri-Perspective View (TPV) comprising three orthogonal Bird’s-
Eye Views (BEVs). Formally, each BEV projection defines a point set

PBEV = {Pu,v | 1 ≤ u ≤ HBEV, 1 ≤ v ≤ WBEV},

where Pu,v denotes the set of projected points onto the u-v-th BEV plane.

After projection, we employ a Point-wise Feature Network (PFN) to extract local descriptors for
each cell Pu,v , yielding a dense representation F ∈ R3×HBEV×WBEV×CBEV . We then fuse the memory
feature Fmemory

i and the predicted feature Fpred
i through a cross-attention module, producing an

alignment representation F align
i . Finally, a lightweight regression head maps F align

i to a 15-DoF
correction matrix T ∈ R4×4 that enforces rigid alignment (with det(T) = 1), ensuring consistency
between the predicted region and the spatial memory. The updated point set P̃ pred

i is then merged
into the global point cloud. To maintain memory efficiency, we apply voxel-grid downsampling.

4.3 TRAINING STRATEGY

Our full loss is the sum of three complementary terms:

L = Lcam + Ldepth + Lpmap.

We parameterise a camera by a unit quaternion q ∈ R4, a translation vector trans ∈ R3, and a
shared focal length f ∈ R.. The camera loss is a robust Huber metric, Lcam =

∑n
i=1 ||(ĝi − gi)||ϵ,

comparing the ground truth gi and the predicted cameras ĝi. For every pixel u, the head outputs a
depth estimate D̂i(u) together with its positive uncertainty map (Kendall & Gal (2017); Novotny
et al. (2017)). Hence, the depth loss is

Ldepth =

N∑
i=1

||
D∑
i

⊙
(D̂i −Di)||+ ||

D∑
i

⊙
(∇D̂i −∇Di)|| − αlog

D∑
i

,

where
⊙

is the channel-broadcast element-wise product. The point map loss is defined same but
with the point-map uncertainty

∑P
i :

Lpmap =

N∑
i=1

||
P∑
i

⊙
(P̂i − Pi)||+ ||

P∑
i

⊙
(∇P̂i −∇Pi)|| − αlog

P∑
i

.

During the first stage of training, we focus exclusively on establishing robust intra-group alignment.
To stabilize optimization and prevent the network from overfitting to short-range dependencies, we
adopt a curriculum-style incremental schedule on the submap length. Specifically, we initialize train-
ing with very short submaps (Lsubmap = 2), and gradually increase Lsubmap as training progresses.
This progressive expansion encourages the model to adapt from local to increasingly long temporal
horizons in a stable manner. During this training, we only open the weights of the final submap,
facilitating a gradual training progression with larger increments.

In the second stage of training, we shift the optimization focus from intra-group refinement to inter-
group alignment. To this end, the backbone parameters are frozen and only the TPV encoder and
the cross-attention fusion modules are updated. To ensure stable convergence, we employ a zero-
initialization strategy for the regression head, such that the initial transformation corresponds to an
identity matrix. This design guarantees that the network starts from a well-posed alignment state,
avoids introducing spurious distortions at the beginning of training, and facilitates stable optimiza-
tion towards globally consistent reconstructions.
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5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We use the weights of VGGT (Wang et al. (2025)) as pretrained weights. Our model is trained on
two datasets: ScanNet (Dai et al. (2017)) and ScanNet++ (Yeshwanth et al. (2023)), which provide
diverse 3D reconstructions of indoor environments, including RGB images and dense depth maps
from various scenes. To validate our method, experiments are conducted on the 7-Scenes (Shotton
et al. (2013)) and TUM RGB-D (Sturm et al. (2012)) datasets, both of which are real-world datasets
consisting of partial scenes. The evaluation focuses on both dense mapping quality and camera pose
estimation accuracy. Pose estimation accuracy is measured using Root Mean Square Error (RMSE)
and Absolute Trajectory Error (ATE), while dense mapping performance is assessed through accu-
racy(the smallest Euclidean distance from the prediction to groundtruth) and completion(the smallest
Euclidean distance from the ground truth to prediction) metrics (Grupp (2017)).

We configure the number of images per submap, Lsubmap, to 20 and define the number of submap
per groups, Lgroup, 2. And number of overlap image Loverlap set to 1. Employ the pointmap branch
to evaluate the dense reconstruction performance. We set the image resolution to 640×480.

5.2 7-SCENES EVALUATION

For the 7-scenes dataset (Schonberger & Frahm (2016)), we use reported numbers from SLAM3R
for baseline. We select one image every 15 frames. Both VGGT-SLAM (Wang et al. (2025)) and our
method use a conference threshold of 3.0, where points with confidence scores below this threshold
are filtered out, which follow the SLAM3R.

For reconstruction, we compare with Dust3R (Wang et al. (2024)), Mast3R (Leroy et al. (2024)),
and Spann3R (Wang & Agapito (2024)) reconstruction approaches. Due to the VGGT-SLAM is
the submap-based approch, we also report the results of VGGT-SLAM. As demonstrated in Table
1, our method achieves superior performance in both accuracy and completeness. Notably, the
completeness of our approach significantly outperforms VGGT-SLAM . Our predictions, compared
to projections, are better at capturing fine-grained details, thus effectively reducing errors.

Notably, on Office, RedKitchen, and Stairs, our method achieves the best completeness scores while
maintaining competitive accuracy. These results highlight that our model is particularly effective
at capturing fine-grained details and preserving scene structures, thereby reducing reconstruction
errors arising from missing geometry.

The Root Mean Square Error (RMSE) of the Absolute Trajectory Error (ATE) on the 7-Scenes
dataset is shown in Table 2. Add the SLAM-based approch NICER-SLAM (Zhu et al. (2024)) and
DROID-SLAMTeed & Deng (2021). DROID-SLAM achieve the strongest overall performance. In
certain scenarios, our method achieves better performance than VGGT-SLAM .

Method Chess Fire Heads Office Pumpkin RedKitchen Stairs Avg.
Acc. /Comp. Acc. /Comp. Acc. / Comp. Acc. / Comp. Acc. / Comp. Acc. / Comp. Acc. / Comp. Acc. / Comp.

DUSt3R 2.26 / 2.13 1.04 / 1.50 1.66 / 0.98 4.62 / 4.74 1.73 / 2.43 1.95 / 2.36 3.37 / 10.75 2.19 / 3.24
MASt3R 2.08 / 2.12 1.54 / 1.43 1.06 / 1.04 3.23 / 3.19 5.68 / 3.07 3.50 / 3.37 2.36 / 13.16 3.04 / 3.90
Spann3R 2.23 / 1.68 0.88 / 0.92 2.67 / 0.98 5.86 / 3.51 2.25 / 1.85 2.68 / 1.80 5.65 / 5.15 3.42 / 2.41
SLAM3R 1.63 / 1.31 0.84 / 0.83 2.95 / 1.22 2.32 / 2.26 1.81 / 2.05 1.84 / 1.94 4.19 / 6.91 2.13 / 2.34
VGGT-SLAM 2.06/ 3.67 1.38 / 2.20 2.13 / 2.60 2.68 / 4.87 1.66 / 2.47 2.69 / 4.09 1.91 / 2.23 2.07 / 3.16
Ours 2.21 / 4.78 2.00 / 1.62 1.53/ 1.05 2.68 / 1.68 2.39 / 1.93 1.59 / 1.76 1.61 / 1.86 2.00 / 2.10

Table 1: Reconstruction results on 7 Scenes dataset(unit: cm). The bolded values represent the best
results, and the underlined values represent the second-best. Lower Acc. and Comp. indicate better
camera pose estimation

5.3 TUM RGB-D EVALUATION

We evaluate DROID-SLAM, MASt3R-SLAM in Tum RGB-D. Although our method does not
achieve the highest average performance, it demonstrates superior accuracy in pose estimation in
certain scenarios. As shown in Table 3, while our method exhibits a relatively low Root Mean
Square Error (RMSE) in some scenes such as Room and XYZ. This result suggests that our method
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Method Scenes Avg.Chess Fire Heads office Pumpkin RedKitchen Stairs
DUSt3R 0.050 0.048 0.025 0.012 0.010 0.010 0.010 0.080
MASt3R 0.043 0.029 0.014 0.012 0.011 0.079 0.030 0.062
NICER-SLAM 0.032 0.068 0.041 0.010 0.020 0.039 0.010 0.085
DROID-SLAM 0.033 0.024 0.014 0.091 0.016 0.049 0.018 0.056
Spann3R 0.091 0.066 0.071 0.215 0.128 0.140 0.140 0.117
SLAM3R 0.062 0.053 0.045 0.124 0.117 0.094 0.092 0.084
VGGT-SLAM 0.036 0.028 0.018 0.103 0.133 0.058 0.093 0.067
Our 0.061 0.073 0.020 0.093 0.110 0.077 0.087 0.076

Table 2: Root Mean Square Error (RMSE) of Absolute Trajectory Error (ATE) on 7-Scenes dataset
(unit: m). The bolded values represent the best results, and the underlined values represent the
second-best. Lower values indicate better camera pose estimation.

excels in specific environments, potentially due to its ability to capture finer scene details or handle
particular geometric properties better.

Method Scenes Avg.360 Desk Desk2 Floor Plant Room RPY Teddy XYZ
DROID-SLAM 0.202 0.032 0.091 0.064 0.045 0.918 0.056 0.045 0.012 0.158
MASt3R-SLAM 0.070 0.035 0.055 0.056 0.035 0.118 0.041 0.114 0.020 0.060
VGGT-SLAM 0.071 0.025 0.040 0.141 0.023 0.102 0.030 0.034 0.014 0.053
Our 0.124 0.031 0.089 0.102 0.025 0.100 0.040 0.042 0.012 0.062

Table 3: Root mean square error (RMSE) of absolute trajectory error (ATE) on TUM RGB-D dataset
(unit: m). The bolded values represent the best results, and the underlined values represent the
second-best. Lower values indicate better camera pose estimation.

5.4 ABLATIONS

We test the inference efficiency on an NVIDIA H100 GPU, with all Lgroup set to 2 and Lsubmap set
to 21 (with an overlap frame).We compare the runtime with VGGT (Wang et al. (2025)), and our
method.

Method 60 80 100 120
VGGT 3.56 3.73 5.87 8.40
Our(w/o M) 1.42 1.89 2.38 2.82
Our(W/ M) 1.69 1.96 2.4 2.90

Table 4: Ablation study on inference efficiency.

Method Recon. Camera.

Acc. Comp. RMSE
Our(w/o M) 2.027 2.135 0.076
Our(W/ M) 2.007 2.101 0.076

Table 5: Ablation study of reconstruction results
(cm) and Root Mean Square Error (RMSE) of
Absolute Trajectory Error (ATE) (m) on the 7-
Scenes dataset.

We evaluate runtime performance by comparing
VGGT with our method, with and without the
spatial memory M for inter-group alignment.

The results in Table4 show that our method
achieves a significant speedup over VGGT. More-
over, the spatial memory introduces only negligi-
ble overhead, indicating that our approach pre-
serves efficiency while improving consistency.
When processing 120 frames, our method re-
duces the runtime from 8.40s to 2.90s, corre-
sponding to a ∼3× improvement.

We further evaluate the effect of incorporating the
spatial memory. As shown in Table 5, leveraging
spatial memory improves both accuracy and com-
pleteness, while maintaining the performance of
camera pose estimation.

5.5 QUALITATIVE ANALYSIS

We selected scenes from both the TUM RGB-D (Sturm et al. (2012)) and 7-Scenes (Schonberger &
Frahm (2016)) datasets and used COLMAP (Schonberger & Frahm (2016)) to reconstruct them as
ground truth.
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As shown in Figure 3, in the first scene, we successfully reconstructed the stair, whereas VGGT-
SLAM (Wang et al. (2025)) exhibited misalignment, and SLAM3R failed to produce a valid recon-
struction. Our method demonstrated a more accurate reconstruction the geometry of stair.

The second scene is a typical example of a small-scale, complex environment featuring multiple or-
thogonal walls, a tabletop, and various cluttered items. VGGT-SLAM suffers from layering artifacts
when there is a significant discrepancy in the predicted scales between consecutive frames. In con-
trast, our model effectively mitigated the wall separation issue, achieving a consistent reconstruction
across the entire plane. Accurate scale prediction is crucial for this scenario. Both SLAM3R and
VGGT-SLAM failed to accurately reconstruct the walls, resulting in layer separations. . In contrast,
our model effectively mitigated the wall separation issue.

These scenes highlight the capability of our network to effectively capture and learn the scale of
spatial details.

VGGT-SLAMSLAM3R Our GT

Figure 3: Qualitative reconstruction results on two representative indoor scenes: the Stairs sequence
from the 7-Scenes dataset and the Desk sequence from the TUM RGB-D dataset. Our method
produces more faithful and complete reconstructions compared to existing baselines.

6 LIMITATIONS

Although ES-GGT delivers competitive trajectory ATE in most indoor scenes, its camera poses
still lag behind some SLAM systems such as DROID-SLAM (Teed & Deng (2021)) and VGGT-
SLAM (Maggio et al. (2025)) (Table2 & 3). The gap is most evident in rapid-rotation or texture-
poor sequences the TPV memory provides only weak metric anchoring. To bridge the gap in pose
accuracy, we need to devise a more effective alignment strategy, which leading to smaller inter-group
errors.

7 CONCLUSION

We presented ES-GGT, an architecture build on VGGT (Wang et al. (2025)) that enables efficient 3D
reconstruction from monocular RGB images. Our method achieves superior reconstruction accuracy
and completeness on 7-scenes dataset, and a significant speedup over VGGT.

By combining local refinement with global spatial memory, ES-GGT achieves both accuracy and
efficiency, paving the way for practical long-horizon 3D reconstruction. Experiments demonstrate
the effectiveness of our local-to-global strategy.
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