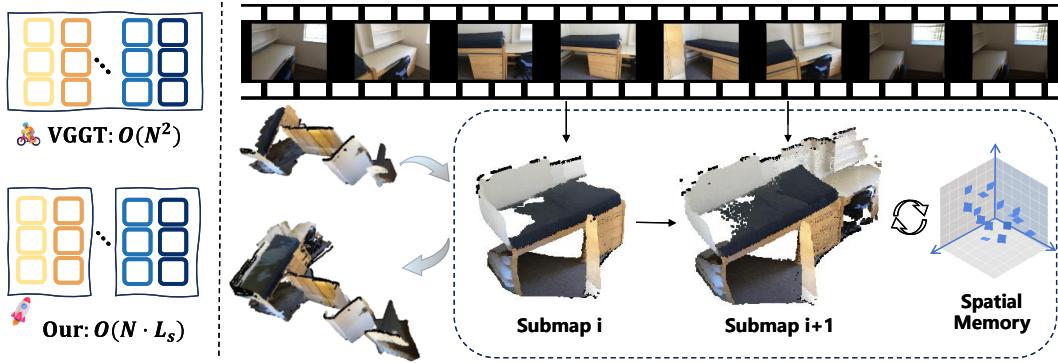


000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 ES-GGT: EFFICIENT SUBMAP-BASED VISUAL GEOMETRY GROUNDED TRANSFORMER WITH SPATIAL MEMORY ALIGNMENT

006 **Anonymous authors**

007 Paper under double-blind review



023 Figure 1: **Left:** The complexity of the algorithm is depicted, where L_s represents the number of
024 images per submaps and N denotes the total number of input images. **Right:** The algorithmic
025 diagram illustrates the process, where multiple submaps are first reconstructed in a streaming manner
026 into a group, and different groups are then sequentially merged to produce the final prediction.

027 ABSTRACT

030 Foundation models have recently emerged as powerful tools in 3D vision, greatly
031 advancing the field of 3D perception. However, improving computational effi-
032 ciency while maintaining consistency in long sequences remains a key challenge
033 in computer vision. We present ES-GGT, an efficient method for streaming scene
034 reconstruction built on VGGT, a state-of-the-art feed-forward visual geometry
035 model. We align submaps in a streaming manner using a hierarchical, local-to-
036 global strategy. At the local level, we perform fine-grained alignment of their
037 scales and coordinate systems by streaming low-level information, thereby reduc-
038 ing computational complexity while maintaining memory cost and performance
039 comparable to simultaneous input of all submaps. For global level, we integrate
040 high-level spatial memory with a tri-perspective view (TPV) representation that
041 extends the bird's-eye view (BEV) with two orthogonal planes. We then gener-
042 ate a 15-degrees-of-freedom homography transformation matrix to achieve global
043 alignment. We significantly improved inference speed and efficiently handled long
044 sequence inputs. Code available at: <https://anonymous.4open.science/r/ES-GGT-4386>.

045 1 INTRODUCTION

046 Dense 3D scene reconstruction from monocular RGB images is a fundamental problem in
047 computer vision, with wide applications in robotics, augmented reality, and autonomous navigation (Liu
048 et al. (2025); Raychaudhuri et al. (2024); Khazatsky et al. (2024)). Recent advances in feed-forward
049 neural reconstruction models have significantly improved the quality and efficiency of 3D percep-
050 tion. Notably, methods such as DUS3R (Wang et al. (2024)), MAST3R (Leroy et al. (2024)), and
051 VGGT (Wang et al. (2025)) have demonstrated the ability to predict dense geometry and camera

poses directly from images, bypassing traditional multi-stage pipelines like Structure-from-Motion (SfM) (Frahm et al. (2010); Liu et al. (2024a); Gu et al. (2020)) and Multi-View Stereo (MVS) (Fukukawa & Hernández (2015); Huang et al. (2018); Galliani et al. (2015); Wang et al. (2021)). These models leverage powerful architectures and large-scale training data to achieve impressive reconstruction quality.

Despite their success, extending these feed-forward methods to long video sequences remains a critical challenge. Most existing approaches are limited by GPU memory constraints and a computational complexity that scales quadratically ($\mathbf{O}(N^2)$) with the number of input frames. For instance, VGGT (Wang et al. (2025)), while capable of processing arbitrary numbers of views, suffers from a quadratic scaling of computational cost due to its global attention mechanism. This limits its applicability in streaming or large-scale reconstruction scenarios (Wang* et al. (2025)). To address this, recent works like VGGT-SLAM (Wang et al. (2025)) propose dividing the input into submaps or sliding windows and aligning them incrementally. While these methods improve scalability, they often rely on strong assumptions about camera calibration or scene structure, and may struggle with drift accumulation or misalignment in challenging environments.

In this paper, we present ES-GGT, an Efficient Submap-based Visual Geometry Grounded Transformer (Vaswani et al. (2017)) designed for scalable and consistent 3D reconstruction from long RGB sequences. As illustrated in Figure 1, our approach processes long image sequences in a streaming manner, dramatically reducing computational complexity from

Built upon the VGGT architecture, ES-GGT introduces a hierarchical alignment strategy that processes input images in streaming submaps, significantly reducing computational complexity from $\mathbf{O}(N^2)$ to $\mathbf{O}(N \cdot L_s)$, where N is the number of input images and L_s is the image number of each submap. At the local level, we enforce fine-grained consistency across overlapping frames within each group of submaps using a novel cross-submap alignment mechanism. At the global level, we maintain a spatial memory representation using a Tri-Perspective View (TPV) (Huang et al. (2023)) and estimate a 15-degree-of-freedom homography transformation (Hartley & Zisserman (2003)) to align submaps in a globally consistent coordinate system.

Unlike VGGT-SLAM, which aligns submaps using $SL(4)$ transformations and assumes projective ambiguity, ES-GGT avoids costly global optimization by integrating spatial memory directly into the feed-forward process. Compared to SLAM3R (Liu et al. (2024b)), which focuses on real-time registration without explicit camera estimation, our method retains the geometric interpretability of VGGT while improving efficiency and long-term consistency. Extensive experiments on 7-Scenes dataset (Schonberger & Frahm (2016)) demonstrate that ES-GGT achieves superior reconstruction accuracy and completeness.

Our contributions can be summarized as follows:

- Propose ES-GGT, a submap-based transformer architecture build on VGGT that enables efficient 3D reconstruction from monocular RGB images. And significantly reduce computational complexity.
- Introduce a hierarchical alignment strategy that integrates intra-group fine-grained consistency with inter-group global alignment, leveraging spatial memory and homography estimation.
- Demonstrate that ES-GGT surpasses existing methods in both reconstruction quality and computational efficiency. When processing more than 100 input frames, our method achieves over 3x speedup compared to VGGT. On the 7-Scenes dataset, our reconstruction results achieve state-of-the-art performance.

2 RELATED WORKS

2.1 FEED-FORWARD 3D SCENE RECONSTRUCTION

Feed-forward neural methods have recently achieved remarkable progress in dense 3D reconstruction (Duisterhof et al. (2025b); Murai et al. (2024); Zhang et al. (2024); Szymanowicz et al. (2025); Li et al. (2025b); Xiao et al. (2025); Li et al. (2025a)). Departing from traditional optimization-heavy pipelines such as Structure-from-Motion (SfM) and Multi-View Stereo (MVS) (Schönberger

108 & Frahm (2016); Schönberger et al. (2016); Agarwal et al. (2011); Nistér (2004); Hartley (1997);
 109 Liu et al. (2024a); Yao et al. (2018); Mouragnon et al. (2006); He et al. (2024); Gu et al. (2020);
 110 Ding et al. (2022); Schönberger et al. (2016)), feed-forward models now enable direct inference
 111 of 3D structure and camera poses from RGB inputs. Pioneering works such as DUSt3R (Wang
 112 et al. (2024)) demonstrated that a network can directly regress dense pointmaps from uncalibrated
 113 image pairs. This paradigm has inspired numerous follow-up works. To extend this capability
 114 to video sequences, methods like Spann3R (Wang & Agapito (2024)) and Cut3R (Wang* et al.
 115 (2025)) introduced recurrent mechanisms and persistent state tokens to process frames incremen-
 116 tally. SLAM3R (Liu et al. (2024b)) further developed this concept by using a sliding window to
 117 reconstruct local geometry and then registering these clips into a global scene representation. While
 118 these incremental methods improve efficiency, they are susceptible to cumulative drift over long se-
 119 quences. Other works like Pow3R (Jang et al. (2025)) focus on improving reconstruction quality by
 120 incorporating priors like known camera parameters or sparse depth maps at test time. The core ideas
 121 from these models have also been extended to other 3D representations, such as directly outputting
 122 Gaussian Splatting parameters (Smart et al. (2024); Sun et al. (2025)). Our work, in contrast, ad-
 123 dresses the scalability and drift challenges through a novel hierarchical alignment strategy that does
 124 not rely on additional priors.

2.2 TRANSFORMER ARCHITECTURES FOR MULTI-VIEW GEOMETRY

125 Recent advances in transformer-based architectures have significantly reshaped the landscape of
 126 multi-view 3D geometry estimation (Wang et al. (2025); Xiao et al. (2025); Zhang et al. (2025);
 127 Duisterhof et al. (2025a); Keetha et al. (2025); Wang et al. (2025); Khafizov et al. (2025)).
 128 VGGT (Wang et al. (2025)) introduces a unified transformer architecture that jointly estimates cam-
 129 era parameters, depth maps, and dense point clouds in a single forward pass. By alternating between
 130 frame-wise and global self-attention layers, VGGT captures long-range spatial dependencies across
 131 views. However, the global attention mechanism that underpins VGGT’s strong performance is also
 132 its primary limitation. The model’s computational and memory requirements scale quadratically
 133 with the number of input frames, rendering it impractical for long video sequences or real-time ap-
 134 plications. FastVGGT (Shen et al. (2025)) attempts to accelerate inference by merging redundant
 135 tokens. Fast3R (Yang et al. (2025)) designs global fusion transformers to process a larger num-
 136 ber of views simultaneously, but this still faces scalability challenges with very long contexts. Our
 137 work, ES-GGT, directly tackles this challenge by partitioning the input sequence into manageable
 138 submaps, thus breaking the quadratic dependency.

2.3 SUBMAP-BASED RECONSTRUCTION

140 To scale powerful feed-forward models like VGGT to arbitrary-length sequences, a "divide-and-
 141 merge" strategy has become the prevailing approach. This involves breaking the sequence into
 142 smaller, overlapping submaps, processing each independently, and then aligning them into a globally
 143 consistent model (Deng et al. (2025); Maggio et al. (2025)). Recent SLAM systems built on feed-
 144 forward backbones have adopted this strategy, but differ significantly in their alignment philoso-
 145 phies. VGGT-SLAM (Maggio et al. (2025)) extends VGGT by first generates submaps using VGGT
 146 and then addresses the 15-DoF projective ambiguity inherent in reconstructions from uncalibrated
 147 cameras. It formulates a factor graph optimization that operates directly on the $SL(4)$ manifold to
 148 estimate the projective transformations (homographies) between submaps. MAST3R-SLAM (Mu-
 149 rai et al. (2024)) builds upon the two-view MAST3R model and employs a backend with $Sim(3)$
 150 pose graph optimization to ensure global consistency. While effective, these methods bifurcate
 151 reconstruction and alignment into distinct, often computationally intensive, steps. SLAM3R (Liu
 152 et al. (2024b)) takes a different, fully end-to-end learning approach. It avoids explicit camera pose
 153 estimation by using a Local-to-World (L2W) network to directly register new pointmaps into a
 154 global frame. This is guided by a memory reservoir of previously observed scene frames. These
 155 approaches, however, leave two critical challenges unaddressed: (i) how to ensure fine-grained geo-
 156 metric consistency across multiple submaps within a local window in a purely feed-forward manner,
 157 and (ii) how to perform robust global alignment without resorting to a separate, costly optimiza-
 158 tion loop. ES-GGT bridges this gap. Our hierarchical alignment strategy integrates an intra-group
 159 feature propagation mechanism for local consistency with a learnable, TPV-based spatial memory
 160 for global alignment. This allows ES-GGT to achieve scalable, consistent reconstruction in a single
 161 forward pass while retaining the valuable geometric interpretability of the VGGT framework.

162 **3 REVIEW: VGGT**
 163

164 VGGT (Wang et al. (2025)) is a feed-forward transformer that processes a set of N RGB images,
 165 $\{I_i \in \mathbb{R}^{3 \times H \times W}\}_{i=1}^N$, and generates a complete 3D scene description for each frame in a single
 166 forward pass. For each input image I_i , the network estimates camera parameters g_i , consisting of
 167 a quaternion, translation vector, and field of view, along with a dense depth map D_i , a viewpoint-
 168 invariant point map P_i expressed in the coordinate frame of the first camera, and C -dimensional
 169 tracking features T_i (Karaev et al. (2024a;b)).
 170

$$171 \quad f_{\text{vggt}} : \mathcal{I} \rightarrow \mathcal{O}, \quad \mathcal{I} = \{I_i \in \mathbb{R}^{3 \times H \times W}\}_{i=1}^N \\ 172 \quad \mathcal{O} = \{(g_i, D_i, P_i, T_i)\}_{i=1}^N \\ 173$$

174 The backbone is a 24-layer Vision Transformer whose tokens are produced by a frozen DI-
 175 DINOv2 (Oquab et al. (2023)) patchifier. To reason efficiently across many views, the transformer
 176 alternates between two self-attention modes: a frame attention layer that updates tokens within each
 177 individual image, and a global attention layer that exchanges information across all frames. The
 178 output tokens are subsequently processed by a camera head to predict camera intrinsics and poses,
 179 or by Dense Prediction Transformer (DPT) heads (Ranftl et al. (2021)), which generate dense depth
 180 maps for each image, a dense point map, and per-pixel feature embeddings for point tracking. This
 181 architecture does not employ any cross-attention layers, only self-attention ones. Since the global
 182 attention layer in VGGT is designed to capture complex geometric relationships across all input
 183 frames, its computational complexity scales quadratically with the sequence length, which quickly
 184 emerges as a major performance bottleneck. To alleviate this issue, we partition the input into
 185 submaps, effectively reducing the computational overhead incurred by the global attention layer.
 186

187 **4 METHOD**

188 We aim to design a network that, given an input sequence of N images $I^{\text{input}} \in \mathbb{R}^{N \times H \times W \times 3}$,
 189 processes them in a submap manner, where each submap is represented as an image collection
 190 $I^s \in \mathbb{R}^{L_{\text{submap}} \times H \times W \times 3}$, and L_{submap} corresponds to the number of images per submap. Each
 191 submap starts with L_{overlap} overlapping frames inherited from its preceding submap, ensuring
 192 smooth temporal continuity. We treat L_{group} as the number of submaps in a group, denoted as
 193 $I^g \in \mathbb{R}^{L_{\text{group}} \times L_{\text{submap}} \times H \times W \times 3}$, and process them jointly. For clarity of exposition, we assume through-
 194 out that the total sequence length N is exactly divisible as $N = L_{\text{group}} \times L_{\text{submap}}$. Within each group,
 195 we stream low-level information across submaps to maintain high regional consistency in later inputs.
 196 Each group is processed to produce independent predictions that are subsequently aligned
 197 via a global spatial memory \mathcal{M} to maintain global consistency between groups. By enforcing fine-
 198 grained, low-level alignment intra-group and promoting high-level alignment inter-group, our ap-
 199 proach guarantees consistency among long-range submaps.

200 Overall, our alignment strategy proceeds in two stages: **intra-group alignment**, which refines the
 201 relative scales and coordinate frames among submaps within each group, and **inter-group align-
 202 ment**, which integrates the already aligned grouped-submaps into a globally consistent representa-
 203 tion.

204 **4.1 INTRA-GROUP ALIGNMENT**

205 Formally, the j -th group is constructed from a consecutive segment of the input submap as:

$$206 \quad I_j^g = \{I_i^s | i \in [(j-1) \cdot L_{\text{submap}} + 1, j \cdot L_{\text{submap}}]\}.$$

207 Each submap I^s serves as the atomic processing unit of the network. At each iteration, the network
 208 takes the i -th submap I_i^s as input. Each image $img \in I_i^s$ is first patchified into a set of K tokens
 209 using a DINO (Oquab et al. (2023)) encoder. The tokens from all frames within the submap are then
 210 concatenated and passed through the backbone, which alternates between frame attention and global
 211 attention layers.

212 We follow the original VGGT (Wang et al. (2025)) configuration and employ a backbone with
 213 24 alternating layers of global and frame-wise attention. For each input img in i -th submap, the

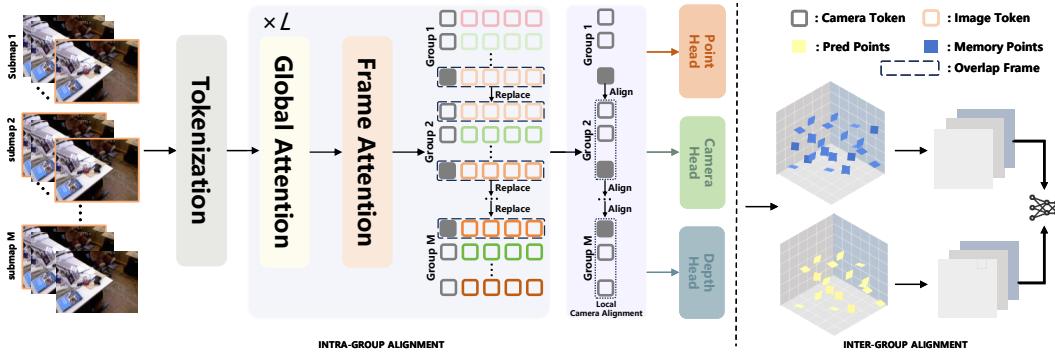


Figure 2: Overall pipeline of our method. Given an input sequence of N images, we first divide it into L_{group} groups, each group containing L_{submap} images. Within each group, **intra-group alignment** propagates overlap-frame features and refines camera tokens to ensure local consistency across submaps. Subsequently, **inter-group alignment** integrates group-level predictions into a globally consistent point cloud via the global spatial memory \mathcal{M} . This two-stage alignment strategy enables both fine-grained local coherence and long-range global consistency in reconstruction.

backbone produces a feature representation $t^{\text{img}} \in \mathbb{R}^{24 \times 2 \times K \times C}$, where K denotes the number of tokens and C is the feature dimension.

To maintain temporal coherence between submaps, we introduce overlap frames img_o that are shared between consecutive submaps. Simply re-encoding these frames, however, would limit the receptive field to the current submap. Instead, we propagate the feature representations t^{img_o} from the last submap and substitute them for the corresponding feature in the current submap I_i^s . Importantly, this substitution is performed only in the global attention layers, allowing overlap tokens to carry forward contextual information and anchor the global computation across submaps.

For each t^{img} , the 0-th token corresponds to the camera token c , which encodes information related to the camera. In particular, the camera token of the first frame I_0 specifies the coordinate system for each prediction.

Since the prediction of camera parameters for image img_i relies solely on its corresponding camera token c_i , we can interpret c_i as encoding the camera coordinate system information of the submap. For all submaps within the same group, we expect their camera tokens to encode a consistent coordinate system. In particular, the camera tokens of overlap frames should remain as consistent as possible across consecutive submaps.

To enforce this consistency, we introduce a cross-submap regularization mechanism. Specifically, for each overlap frame img_o shared between the $(i-1)$ -th and i -th submaps, we compute a residual embedding by passing the difference of their camera tokens through a lightweight MLP:

$$r_0^{(i)} = \text{MLP}(c_0^{(i)} - c_0^{(i-1)}), i \in [2, L_{\text{group}}],$$

where $c^{(i)}_o$ and $c^{(i-1)}_o$ denote the camera tokens of the same overlap frame in consecutive submaps I_i^s and I_{i-1}^s .

We then aggregate these residuals across all overlap frames via average pooling, and use the resulting feature to refine the camera tokens of the entire i -th submap:

$$\tilde{c}_j^{(i)} = c_j^{(i)} + \text{AvgPool}(\{r_o^{(i)}\}_{o=1}^{L_{\text{overlap}}}), i \in [2, L_{\text{group}}], j \in [1, L_{\text{submap}}],$$

where $\tilde{c}_j^{(i)}$ denotes the updated camera token for the j -th image in submap I_i^s . This update allows overlap frames to propagate consistent camera information across submaps, while simultaneously aligning all camera tokens within the group to a shared coordinate system.

For each group, we jointly predict the camera parameters, point maps, and depth maps, all expressed in the coordinate frame of the first camera in the group.

270
271

4.2 INTER-GROUP ALIGNMENT

272
273
274
275
276
277

To achieve global consistency across groups, we maintain the global spatial memory \mathcal{M} that stores high-level information from previously predicted points. Given a new group output \mathcal{O}_i^g , we employ the Sim(3) method to predict a rotation matrix, yielding an initially aligned point cloud. Subsequently, we query \mathcal{M} to retrieve points P_i^{memory} within the intersection of the predicted region P_i^{pred} and the stored memory, determined by the Intersection over Union (IoU) which defines the region used for refinement.

278
279

We encode these 3D points with the Tri-Perspective View (TPV) comprising three orthogonal Bird’s-Eye Views (BEVs). Formally, each BEV projection defines a point set

280
281

$$P^{\text{BEV}} = \{P_{u,v} \mid 1 \leq u \leq H_{\text{BEV}}, 1 \leq v \leq W_{\text{BEV}}\},$$

282

where $P_{u,v}$ denotes the set of projected points onto the u - v -th BEV plane.

283
284
285
286
287
288
289
290

After projection, we employ a Point-wise Feature Network (PFN) to extract local descriptors for each cell $P_{u,v}$, yielding a dense representation $\mathcal{F} \in \mathbb{R}^{3 \times H_{\text{BEV}} \times W_{\text{BEV}} \times C_{\text{BEV}}}$. We then fuse the memory feature $\mathcal{F}_i^{\text{memory}}$ and the predicted feature $\mathcal{F}_i^{\text{pred}}$ through a cross-attention module, producing an alignment representation $\mathcal{F}_i^{\text{align}}$. Finally, a lightweight regression head maps $\mathcal{F}_i^{\text{align}}$ to a 15-DoF correction matrix $\mathbf{T} \in \mathbb{R}^{4 \times 4}$ that enforces rigid alignment (with $\det(\mathbf{T}) = 1$), ensuring consistency between the predicted region and the spatial memory. The updated point set $\tilde{P}_i^{\text{pred}}$ is then merged into the global point cloud. To maintain memory efficiency, we apply voxel-grid downsampling.

291
292

4.3 TRAINING STRATEGY

293
294

Our full loss is the sum of three complementary terms:

295

$$\mathcal{L} = \mathcal{L}_{\text{cam}} + \mathcal{L}_{\text{depth}} + \mathcal{L}_{\text{pmap}}.$$

296
297
298
299
300
301

We parameterise a camera by a unit quaternion $q \in \mathbb{R}^4$, a translation vector $\text{trans} \in \mathbb{R}^3$, and a shared focal length $f \in \mathbb{R}$. The camera loss is a robust Huber metric, $\mathcal{L}_{\text{cam}} = \sum_{i=1}^n \|\hat{g}_i - g_i\|_\epsilon$, comparing the ground truth g_i and the predicted cameras \hat{g}_i . For every pixel u , the head outputs a depth estimate $\hat{D}_i(u)$ together with its positive uncertainty map (Kendall & Gal (2017); Novotny et al. (2017)). Hence, the depth loss is

302
303
304

$$L_{\text{depth}} = \sum_{i=1}^N \left\| \sum_i^D \bigcirc (\hat{D}_i - D_i) \right\| + \left\| \sum_i^D \bigcirc (\nabla \hat{D}_i - \nabla D_i) \right\| - \alpha \log \sum_i^D,$$

305
306
307

where \bigcirc is the channel-broadcast element-wise product. The point map loss is defined same but with the point-map uncertainty \sum_i^P :

308
309
310

$$L_{\text{pmap}} = \sum_{i=1}^N \left\| \sum_i^P \bigcirc (\hat{P}_i - P_i) \right\| + \left\| \sum_i^P \bigcirc (\nabla \hat{P}_i - \nabla P_i) \right\| - \alpha \log \sum_i^P.$$

311
312
313
314
315
316
317

During the first stage of training, we focus exclusively on establishing robust intra-group alignment. To stabilize optimization and prevent the network from overfitting to short-range dependencies, we adopt a curriculum-style incremental schedule on the submap length. Specifically, we initialize training with very short submaps ($L_{\text{submap}} = 2$), and gradually increase L_{submap} as training progresses. This progressive expansion encourages the model to adapt from local to increasingly long temporal horizons in a stable manner. During this training, we only open the weights of the final submap, facilitating a gradual training progression with larger increments.

318
319
320
321
322
323

In the second stage of training, we shift the optimization focus from intra-group refinement to inter-group alignment. To this end, the backbone parameters are frozen and only the TPV encoder and the cross-attention fusion modules are updated. To ensure stable convergence, we employ a zero-initialization strategy for the regression head, such that the initial transformation corresponds to an identity matrix. This design guarantees that the network starts from a well-posed alignment state, avoids introducing spurious distortions at the beginning of training, and facilitates stable optimization towards globally consistent reconstructions.

324

5 EXPERIMENTS

325

5.1 IMPLEMENTATION DETAILS

326 We use the weights of VGGT (Wang et al. (2025)) as pretrained weights. Our model is trained on
 327 two datasets: ScanNet (Dai et al. (2017)) and ScanNet++ (Yeshwanth et al. (2023)), which provide
 328 diverse 3D reconstructions of indoor environments, including RGB images and dense depth maps
 329 from various scenes. To validate our method, experiments are conducted on the 7-Scenes (Shotton
 330 et al. (2013)) and TUM RGB-D (Sturm et al. (2012)) datasets, both of which are real-world datasets
 331 consisting of partial scenes. The evaluation focuses on both dense mapping quality and camera pose
 332 estimation accuracy. Pose estimation accuracy is measured using Root Mean Square Error (RMSE)
 333 and Absolute Trajectory Error (ATE), while dense mapping performance is assessed through accuracy
 334 (the smallest Euclidean distance from the prediction to groundtruth) and completion (the smallest
 335 Euclidean distance from the ground truth to prediction) metrics (Grupp (2017)).

336 We configure the number of images per submap, L_{submap} , to 20 and define the number of submap
 337 per groups, L_{group} , 2. And number of overlap image L_{overlap} set to 1. Employ the pointmap branch
 338 to evaluate the dense reconstruction performance. We set the image resolution to 640×480.

341

5.2 7-SCENES EVALUATION

342 For the 7-scenes dataset (Schonberger & Frahm (2016)), we use reported numbers from SLAM3R
 343 for baseline. We select one image every 15 frames. Both VGGT-SLAM (Wang et al. (2025)) and our
 344 method use a conference threshold of 3.0, where points with confidence scores below this threshold
 345 are filtered out, which follow the SLAM3R.

346 For reconstruction, we compare with Dust3R (Wang et al. (2024)), Mast3R (Leroy et al. (2024)),
 347 and Spann3R (Wang & Agapito (2024)) reconstruction approaches. Due to the VGGT-SLAM is
 348 the submap-based approach, we also report the results of VGGT-SLAM. As demonstrated in Table
 349 1, our method achieves superior performance in both accuracy and completeness. Notably, the
 350 completeness of our approach significantly outperforms VGGT-SLAM. Our predictions, compared
 351 to projections, are better at capturing fine-grained details, thus effectively reducing errors.

352 Notably, on Office, RedKitchen, and Stairs, our method achieves the best completeness scores while
 353 maintaining competitive accuracy. These results highlight that our model is particularly effective
 354 at capturing fine-grained details and preserving scene structures, thereby reducing reconstruction
 355 errors arising from missing geometry.

356 The Root Mean Square Error (RMSE) of the Absolute Trajectory Error (ATE) on the 7-Scenes
 357 dataset is shown in Table 2. Add the SLAM-based approach NICER-SLAM (Zhu et al. (2024)) and
 358 DROID-SLAM (Teed & Deng (2021)). DROID-SLAM achieve the strongest overall performance. In
 359 certain scenarios, our method achieves better performance than VGGT-SLAM.

Method	Chess Acc. / Comp.	Fire Acc. / Comp.	Heads Acc. / Comp.	Office Acc. / Comp.	Pumpkin Acc. / Comp.	RedKitchen Acc. / Comp.	Stairs Acc. / Comp.	Avg. Acc. / Comp.
DUST3R	2.26 / 2.13	1.04 / 1.50	1.66 / 0.98	4.62 / 4.74	<u>1.73</u> / 2.43	1.95 / 2.36	3.37 / 10.75	2.19 / 3.24
MAS3R	2.08 / 2.12	1.54 / 1.43	1.06 / 1.04	3.23 / 3.19	5.68 / 3.07	3.50 / 3.37	2.36 / 13.16	3.04 / 3.90
Spann3R	2.23 / <u>1.68</u>	<u>0.88</u> / 0.92	2.67 / 0.98	5.86 / 3.51	2.25 / 1.85	2.68 / <u>1.80</u>	5.65 / 5.15	3.42 / 2.41
SLAM3R	1.63 / <u>1.31</u>	0.84 / <u>0.83</u>	2.95 / 1.22	2.32 / <u>2.26</u>	1.81 / 2.05	<u>1.84</u> / 1.94	4.19 / 6.91	2.13 / <u>2.34</u>
VGGT-SLAM	2.06 / 3.67	1.38 / 2.20	2.13 / 2.60	2.68 / 4.87	1.66 / 2.47	2.69 / 4.09	<u>1.91</u> / 2.23	2.07 / 3.16
Ours	2.21 / 4.78	2.00 / 1.62	<u>1.53</u> / 1.05	<u>2.68</u> / 1.68	2.39 / 1.93	<u>1.59</u> / 1.76	<u>1.61</u> / 1.86	2.00 / <u>2.10</u>

368 Table 1: Reconstruction results on 7 Scenes dataset(unit: cm). The **bolded** values represent the best
 369 results, and the underlined values represent the second-best. Lower Acc. and Comp. indicate better
 370 camera pose estimation

371

5.3 TUM RGB-D EVALUATION

372 We evaluate DROID-SLAM, MAST3R-SLAM in Tum RGB-D. Although our method does not
 373 achieve the highest average performance, it demonstrates superior accuracy in pose estimation in
 374 certain scenarios. As shown in Table 3, while our method exhibits a relatively low Root Mean
 375 Square Error (RMSE) in some scenes such as Room and XYZ. This result suggests that our method

Method	Scenes							Avg.
	Chess	Fire	Heads	office	Pumpkin	RedKitchen	Stairs	
DUS3R	0.050	0.048	0.025	<u>0.012</u>	0.010	0.010	0.010	0.080
MASt3R	0.043	0.029	0.014	<u>0.012</u>	<u>0.011</u>	0.079	0.030	0.062
NICER-SLAM	0.032	0.068	0.041	0.010	0.020	<u>0.039</u>	0.010	0.085
DROID-SLAM	<u>0.033</u>	0.024	0.014	0.091	0.016	0.049	0.018	0.056
Spann3R	0.091	0.066	0.071	0.215	0.128	0.140	0.140	0.117
SLAM3R	0.062	0.053	0.045	0.124	0.117	0.094	0.092	0.084
VGGT-SLAM	0.036	<u>0.028</u>	0.018	0.103	0.133	0.058	0.093	<u>0.067</u>
Our	0.061	0.073	0.020	0.093	0.110	0.077	0.087	0.076

Table 2: Root Mean Square Error (RMSE) of Absolute Trajectory Error (ATE) on 7-Scenes dataset (unit: m). The **bolded** values represent the best results, and the underlined values represent the second-best. Lower values indicate better camera pose estimation.

excels in specific environments, potentially due to its ability to capture finer scene details or handle particular geometric properties better.

Method	Scenes									Avg.
	360	Desk	Desk2	Floor	Plant	Room	RPY	Teddy	XYZ	
DROID-SLAM	0.202	0.032	0.091	<u>0.064</u>	0.045	0.918	0.056	0.045	0.012	0.158
MASt3R-SLAM	0.070	0.035	<u>0.055</u>	0.056	0.035	0.118	0.041	0.114	0.020	<u>0.060</u>
VGGT-SLAM	0.071	0.025	0.040	0.141	0.023	<u>0.102</u>	<u>0.030</u>	0.034	0.014	0.053
Our	0.124	<u>0.031</u>	0.089	0.102	<u>0.025</u>	0.100	0.040	0.042	0.012	0.062

Table 3: Root mean square error (RMSE) of absolute trajectory error (ATE) on TUM RGB-D dataset (unit: m). The **bolded** values represent the best results, and the underlined values represent the second-best. Lower values indicate better camera pose estimation.

5.4 ABLATIONS

We test the inference efficiency on an NVIDIA H100 GPU, with all L_{group} set to 2 and L_{submap} set to 21 (with an overlap frame). We compare the runtime with VGGT (Wang et al. (2025)), and our method.

We evaluate runtime performance by comparing VGGT with our method, with and without the spatial memory \mathcal{M} for inter-group alignment.

The results in Table 4 show that our method achieves a significant speedup over VGGT. Moreover, the spatial memory introduces only negligible overhead, indicating that our approach preserves efficiency while improving consistency. When processing 120 frames, our method reduces the runtime from 8.40s to 2.90s, corresponding to a $\sim 3\times$ improvement.

We further evaluate the effect of incorporating the spatial memory. As shown in Table 5, leveraging spatial memory improves both accuracy and completeness, while maintaining the performance of camera pose estimation.

5.5 QUALITATIVE ANALYSIS

We selected scenes from both the TUM RGB-D (Sturm et al. (2012)) and 7-Scenes (Schonberger & Frahm (2016)) datasets and used COLMAP (Schonberger & Frahm (2016)) to reconstruct them as ground truth.

Method	60	80	100	120
VGGT	3.56	3.73	5.87	8.40
Our(w/o \mathcal{M})	1.42	1.89	2.38	2.82
Our(W/ \mathcal{M})	1.69	1.96	2.4	2.90

Table 4: Ablation study on inference efficiency.

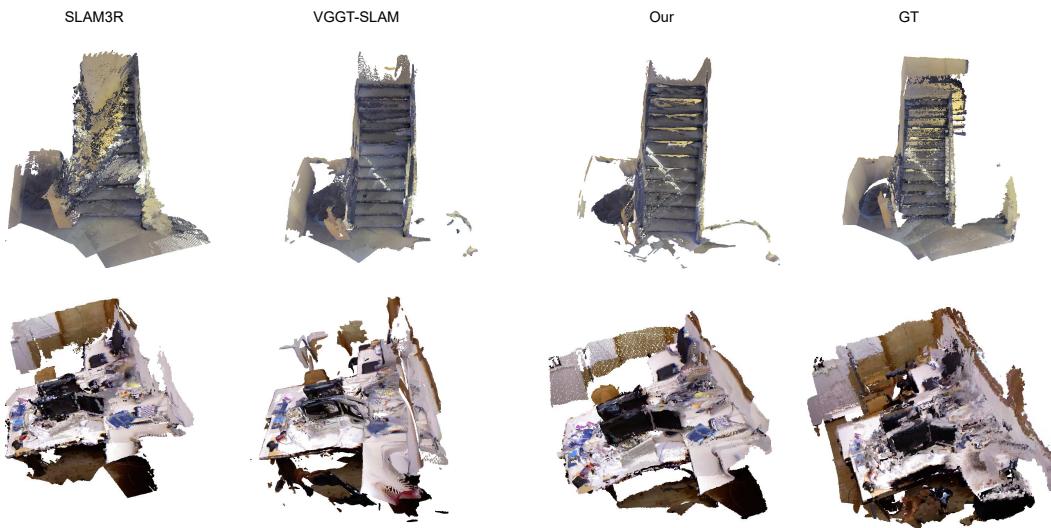
Method	Recon.		Camera.
	Acc.	Comp.	RMSE
Our(w/o \mathcal{M})	2.027	2.135	0.076
Our(W/ \mathcal{M})	2.007	2.101	0.076

Table 5: Ablation study of reconstruction results (cm) and Root Mean Square Error (RMSE) of Absolute Trajectory Error (ATE) (m) on the 7-Scenes dataset.

432 As shown in Figure 3, in the first scene, we successfully reconstructed the stair, whereas VGGT-
 433 SLAM (Wang et al. (2025)) exhibited misalignment, and SLAM3R failed to produce a valid recon-
 434 struction. Our method demonstrated a more accurate reconstruction the geometry of stair.

435 The second scene is a typical example of a small-scale, complex environment featuring multiple or-
 436 thogonal walls, a tabletop, and various cluttered items. VGGT-SLAM suffers from layering artifacts
 437 when there is a significant discrepancy in the predicted scales between consecutive frames. In con-
 438 trast, our model effectively mitigated the wall separation issue, achieving a consistent reconstruction
 439 across the entire plane. Accurate scale prediction is crucial for this scenario. Both SLAM3R and
 440 VGGT-SLAM failed to accurately reconstruct the walls, resulting in layer separations. . In contrast,
 441 our model effectively mitigated the wall separation issue.

442 These scenes highlight the capability of our network to effectively capture and learn the scale of
 443 spatial details.



463 Figure 3: Qualitative reconstruction results on two representative indoor scenes: the Stairs sequence
 464 from the 7-Scenes dataset and the Desk sequence from the TUM RGB-D dataset. Our method
 465 produces more faithful and complete reconstructions compared to existing baselines.

468 6 LIMITATIONS

471 Although ES-GGT delivers competitive trajectory ATE in most indoor scenes, its camera poses
 472 still lag behind some SLAM systems such as DROID-SLAM (Teed & Deng (2021)) and VGGT-
 473 SLAM (Maggio et al. (2025)) (Table2 & 3). The gap is most evident in rapid-rotation or texture-
 474 poor sequences the TPV memory provides only weak metric anchoring. To bridge the gap in pose
 475 accuracy, we need to devise a more effective alignment strategy, which leading to smaller inter-group
 476 errors.

478 7 CONCLUSION

480 We presented ES-GGT, an architecture build on VGGT (Wang et al. (2025)) that enables efficient 3D
 481 reconstruction from monocular RGB images. Our method achieves superior reconstruction accuracy
 482 and completeness on 7-scenes dataset, and a significant speedup over VGGT.

484 By combining local refinement with global spatial memory, ES-GGT achieves both accuracy and
 485 efficiency, paving the way for practical long-horizon 3D reconstruction. Experiments demonstrate
 the effectiveness of our local-to-global strategy.

486 8 ETHICS STATEMENT
487488 We employed large language models solely for language editing and translation of the manuscript.
489 No part of the method design, experiments, or analysis relied on LLM-generated content.
490491 9 REPRODUCIBILITY STATEMENT
492493 The source code to reproduce the main results will be released upon publication.
494495 REFERENCES
496497 Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M Seitz, and
498 Richard Szeliski. Building rome in a day. *Communications of the ACM*, 54(10):105–112, 2011.
499500 Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
501 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proc. Computer
502 Vision and Pattern Recognition (CVPR), IEEE*, 2017.503 Kai Deng, Zexin Ti, Jiawei Xu, Jian Yang, and Jin Xie. Vggt-long: Chunk it, loop it, align it–
504 pushing vggt’s limits on kilometer-scale long rgb sequences. *arXiv preprint arXiv:2507.16443*,
505 2025.506 Yikang Ding, Wentao Yuan, Qingtian Zhu, Haotian Zhang, Xiangyue Liu, Yuanjiang Wang, and
507 Xiao Liu. Transmvsnet: Global context-aware multi-view stereo network with transformers. In
508 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8585–
509 8594, 2022.
510511 Bardienus P Duisterhof, Jan Oberst, Bowen Wen, Stan Birchfield, Deva Ramanan, and Jeffrey Ich-
512 nowski. Rayst3r: Predicting novel depth maps for zero-shot object completion. *arXiv preprint
513 arXiv:2506.05285*, 2025a.514 Bardienus Pieter Duisterhof, Lojze Zust, Philippe Weinzaepfel, Vincent Leroy, Yohann Cabon, and
515 Jerome Revaud. Mast3r-sfm: a fully-integrated solution for unconstrained structure-from-motion.
516 In *2025 International Conference on 3D Vision (3DV)*, pp. 1–10. IEEE, 2025b.
517518 Jan-Michael Frahm, Pierre Fite-Georgel, David Gallup, Tim Johnson, Rahul Raguram, Changchang
519 Wu, Yi-Hung Jen, Enrique Dunn, Brian Clipp, Svetlana Lazebnik, et al. Building rome on a
520 cloudless day. In *European conference on computer vision*, pp. 368–381. Springer, 2010.521 Yasutaka Furukawa and Carlos Hernández. Multi-view stereo: A tutorial, foundations and trends®
522 in computer graphics and vision. *Hanover (MA): Now Publishers Inc*, 2015.
523524 Silvano Galliani, Katrin Lasinger, and Konrad Schindler. Massively parallel multiview stereopsis
525 by surface normal diffusion. In *Proceedings of the IEEE international conference on computer
526 vision*, pp. 873–881, 2015.527 Michael Grupp. evo: Python package for the evaluation of odometry and slam. <https://github.com/MichaelGrupp/evo>, 2017.
528529 Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan. Cascade cost vol-
530 ume for high-resolution multi-view stereo and stereo matching. In *Proceedings of the IEEE/CVF
531 conference on computer vision and pattern recognition*, pp. 2495–2504, 2020.
532533 Richard Hartley and Andrew Zisserman. *Multiple view geometry in computer vision*. Cambridge
534 university press, 2003.535 Richard I Hartley. In defense of the eight-point algorithm. *IEEE Transactions on pattern analysis
536 and machine intelligence*, 19(6):580–593, 1997.
537538 Xingyi He, Jiaming Sun, Yifan Wang, Sida Peng, Qixing Huang, Hujun Bao, and Xiaowei Zhou.
539 Detector-free structure from motion. In *Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition*, pp. 21594–21603, 2024.

540 Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra Ahuja, and Jia-Bin Huang. Deepmvs:
 541 Learning multi-view stereopsis. In *Proceedings of the IEEE conference on computer vision and*
 542 *pattern recognition*, pp. 2821–2830, 2018.

543 Yuanhui Huang, Wenzhao Zheng, Yunpeng Zhang, Jie Zhou, and Jiwen Lu. Tri-perspective view
 544 for vision-based 3d semantic occupancy prediction. *arXiv preprint arXiv:2302.07817*, 2023.

545 Wonbong Jang, Philippe Weinzaepfel, Vincent Leroy, Lourdes Agapito, and Jerome Revaud. Pow3r:
 546 Empowering unconstrained 3d reconstruction with camera and scene priors. In *Proceedings of*
 547 *the Computer Vision and Pattern Recognition Conference*, pp. 1071–1081, 2025.

548 Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian
 549 Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. In
 550 *Proc. arXiv:2410.11831*, 2024a.

551 Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
 552 Rupprecht. Cotracker: It is better to track together. In *Proc. ECCV*, 2024b.

553 Nikhil Keetha, Norman Müller, Johannes Schönberger, Lorenzo Porzi, Yuchen Zhang, Tobias Fischer,
 554 Arno Knapitsch, Duncan Zauss, Ethan Weber, Nelson Antunes, et al. Mapanything: Universal
 555 feed-forward metric 3d reconstruction. *arXiv preprint arXiv:2509.13414*, 2025.

556 Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
 557 vision? *Advances in neural information processing systems*, 30, 2017.

558 Ramil Khafizov, Artem Komarichev, Ruslan Rakhimov, Peter Wonka, and Evgeny Burnaev. G-
 559 cut3r: Guided 3d reconstruction with camera and depth prior integration. *arXiv preprint*
 560 *arXiv:2508.11379*, 2025.

561 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
 562 Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
 563 lis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. *arXiv preprint*
 564 *arXiv:2403.12945*, 2024.

565 Vincent Leroy, Yohann Cabon, and Jerome Revaud. Grounding image matching in 3d with mast3r,
 566 2024.

567 Samuel Li, Pujith Kachana, Prajwal Chidananda, Saurabh Nair, Yasutaka Furukawa, and Matthew
 568 Brown. Rig3r: Rig-aware conditioning for learned 3d reconstruction. *arXiv preprint*
 569 *arXiv:2506.02265*, 2025a.

570 Zhengqi Li, Richard Tucker, Forrester Cole, Qianqian Wang, Linyi Jin, Vickie Ye, Angjoo
 571 Kanazawa, Aleksander Holynski, and Noah Snavely. Megasam: Accurate, fast and robust struc-
 572 ture and motion from casual dynamic videos. In *Proceedings of the Computer Vision and Pattern*
 573 *Recognition Conference*, pp. 10486–10496, 2025b.

574 Shaohui Liu, Yidan Gao, Tianyi Zhang, Rémi Pautrat, Johannes L Schönberger, Viktor Larsson, and
 575 Marc Pollefeys. Robust incremental structure-from-motion with hybrid features. In *European*
 576 *Conference on Computer Vision*, pp. 249–269. Springer, 2024a.

577 Yuzheng Liu, Siyan Dong, Shuzhe Wang, Yingda Yin, Yanchao Yang, Qingnan Fan, and Baoquan
 578 Chen. Slam3r: Real-time dense scene reconstruction from monocular rgb videos. *arXiv preprint*
 579 *arXiv:2412.09401*, 2024b.

580 Zeyi Liu, Shuang Li, Eric Cousineau, Siyuan Feng, Benjamin Burchfiel, and Shuran Song.
 581 Geometry-aware 4d video generation for robot manipulation. *arXiv preprint arXiv:2507.01099*,
 582 2025.

583 Dominic Maggio, Hyungtae Lim, and Luca Carlone. Vggt-slam: Dense rgb slam optimized on the
 584 sl (4) manifold. *arXiv preprint arXiv:2505.12549*, 2025.

585 Etienne Mouragnon, Maxime Lhuillier, Michel Dhome, Fabien Dekeyser, and Patrick Sayd. 3d
 586 reconstruction of complex structures with bundle adjustment: an incremental approach. In *Pro-
 587 ceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.*,
 588 pp. 3055–3061. IEEE, 2006.

594 Riku Murai, Eric Dexheimer, and Andrew J. Davison. MAST3R-SLAM: Real-time dense SLAM
 595 with 3D reconstruction priors. *arXiv preprint*, 2024.

596

597 David Nistér. An efficient solution to the five-point relative pose problem. *IEEE transactions on*
 598 *pattern analysis and machine intelligence*, 26(6):756–770, 2004.

599

600 David Novotny, Diane Larlus, and Andrea Vedaldi. Learning 3d object categories by looking around
 601 them. In *Proceedings of the IEEE international conference on computer vision*, pp. 5218–5227,
 602 2017.

603

604 Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 605 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
 606 Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
 607 Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
 608 mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
 609 2023.

610

611 René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
 612 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 12179–12188,
 613 2021.

614

615 Sonia Raychaudhuri, Duy Ta, Katrina Ashton, Angel X Chang, Jiuguang Wang, and Bernadette
 616 Bucher. Zero-shot object-centric instruction following: Integrating foundation models with tradi-
 617 tional navigation. *arXiv preprint arXiv:2411.07848*, 2024.

618

619 Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In *Proceedings*
 620 *of the IEEE conference on computer vision and pattern recognition*, pp. 4104–4113, 2016.

621

622 Johannes L Schonberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. Pixelwise view
 623 selection for unstructured multi-view stereo. In *European conference on computer vision*, pp.
 624 501–518. Springer, 2016.

625

626 Johannes Lutz Schönbäcker and Jan-Michael Frahm. Structure-from-motion revisited. In *Confer-
 627 ence on Computer Vision and Pattern Recognition (CVPR)*, 2016.

628

629 You Shen, Zhipeng Zhang, Yansong Qu, and Liujuan Cao. Fastvggt: Training-free acceleration of
 630 visual geometry transformer. *arXiv preprint arXiv:2509.02560*, 2025.

631

632 Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and Andrew
 633 Fitzgibbon. Scene coordinate regression forests for camera relocalization in rgb-d images. In
 634 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2930–2937,
 635 2013.

636

637 Brandon Smart, Chuanxia Zheng, Iro Laina, and Victor Adrian Prisacariu. Splatt3r: Zero-shot
 638 gaussian splatting from uncalibrated image pairs. *arXiv preprint arXiv:2408.13912*, 2024.

639

640 Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. A bench-
 641 mark for the evaluation of rgb-d slam systems. In *2012 IEEE/RSJ international conference on*
 642 *intelligent robots and systems*, pp. 573–580. IEEE, 2012.

643

644 Xiangyu Sun, Haoyi Jiang, Liu Liu, Seungtae Nam, Gyeongjin Kang, Xinjie Wang, Wei Sui,
 645 Zhizhong Su, Wenyu Liu, Xinggang Wang, et al. Uni3r: Unified 3d reconstruction and seman-
 646 tic understanding via generalizable gaussian splatting from unposed multi-view images. *arXiv*
 647 *preprint arXiv:2508.03643*, 2025.

648

649 Stanislaw Szymanowicz, Eldar Insafutdinov, Chuanxia Zheng, Dylan Campbell, Joao F Henriques,
 650 Christian Rupprecht, and Andrea Vedaldi. Flash3d: Feed-forward generalisable 3d scene re-
 651 construction from a single image. In *2025 International Conference on 3D Vision (3DV)*, pp.
 652 670–681. IEEE, 2025.

648 Zachary Teed and Jia Deng. DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-
 649 D Cameras. *Advances in neural information processing systems*, 2021.
 650

651 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 652 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 653 tion processing systems*, 30, 2017.

654 Hengyi Wang and Lourdes Agapito. 3d reconstruction with spatial memory. *arXiv preprint
 655 arXiv:2408.16061*, 2024.
 656

657 Jianyuan Wang, Yiran Zhong, Yuchao Dai, Stan Birchfield, Kaihao Zhang, Nikolai Smolyanskiy,
 658 and Hongdong Li. Deep two-view structure-from-motion revisited. In *Proceedings of the
 659 IEEE/CVF conference on Computer Vision and Pattern Recognition*, pp. 8953–8962, 2021.

660 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 661 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the IEEE/CVF Con-
 662 ference on Computer Vision and Pattern Recognition*, 2025.

663 Qianqian Wang*, Yifei Zhang*, Aleksander Holynski, Alexei A. Efros, and Angjoo Kanazawa.
 664 Continuous 3d perception model with persistent state. In *CVPR*, 2025.
 665

666 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Ge-
 667 ometric 3d vision made easy. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 668 and Pattern Recognition*, pp. 20697–20709, 2024.

669 Yifan Wang, Jianjun Zhou, Haoyi Zhu, Wenzheng Chang, Yang Zhou, Zizun Li, Junyi Chen, Jiang-
 670 miao Pang, Chunhua Shen, and Tong He. π^3 : Scalable permutation-equivariant visual geometry
 671 learning, 2025. URL <https://arxiv.org/abs/2507.13347>.
 672

673 Yuxi Xiao, Jianyuan Wang, Nan Xue, Nikita Karaev, Yuri Makarov, Bingyi Kang, Xing Zhu, Hujun
 674 Bao, Yujun Shen, and Xiaowei Zhou. Spatialtrackerv2: 3d point tracking made easy. *arXiv
 675 preprint arXiv:2507.12462*, 2025.

676 Jianing Yang, Alexander Sax, Kevin J Liang, Mikael Henaff, Hao Tang, Ang Cao, Joyce Chai,
 677 Franziska Meier, and Matt Feiszli. Fast3r: Towards 3d reconstruction of 1000+ images in one
 678 forward pass. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 679 21924–21935, 2025.

680 Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mvsnet: Depth inference for unstruc-
 681 tured multi-view stereo. In *Proceedings of the European conference on computer vision (ECCV)*,
 682 pp. 767–783, 2018.
 683

684 Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-
 685 fidelity dataset of 3d indoor scenes. In *Proceedings of the IEEE/CVF International Conference
 686 on Computer Vision*, pp. 12–22, 2023.

687 Jiahui Zhang, Yuelei Li, Anpei Chen, Muyu Xu, Kunhao Liu, Jianyuan Wang, Xiao-Xiao Long,
 688 Hanxue Liang, Zexiang Xu, Hao Su, et al. Advances in feed-forward 3d reconstruction and view
 689 synthesis: A survey. *arXiv preprint arXiv:2507.14501*, 2025.
 690

691 Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, De-
 692 qing Sun, and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the
 693 presence of motion. *arXiv preprint arXiv:2410.03825*, 2024.

694 Zihan Zhu, Songyou Peng, Viktor Larsson, Zhaopeng Cui, Martin R Oswald, Andreas Geiger, and
 695 Marc Pollefeys. Nicer-slam: Neural implicit scene encoding for rgb slam. In *International Con-
 696 ference on 3D Vision (3DV)*, March 2024.
 697

698

699

700

701