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ABSTRACT

Inverse protein folding, i.e., designing sequences that fold into a given three-
dimensional structure, is one of the fundamental design challenges in bio-
engineering and drug discovery. Traditionally, inverse folding mainly involves
learning from sequences that have an experimentally resolved structure. However,
the known structures cover only a tiny space of the protein sequences, imposing
limitations on the model learning. Recently proposed forward folding models,
e.g., AlphaFold, offer unprecedented opportunity for accurate estimation of the
structure given a protein sequence. Naturally, incorporating a forward folding
model as a component of an inverse folding approach offers the potential of sig-
nificantly improving the inverse folding, as the folding model can provide a feed-
back on any generated sequence in the form of the predicted protein structure or
a structural confidence metric. However, at present, these forward folding mod-
els are still prohibitively slow to be a part of the model optimization loop during
training. In this work, we propose to perform knowledge distillation on the fold-
ing model’s confidence metrics, e.g., pTM or pLDDT scores, to obtain a smaller,
faster and end-to-end differentiable distilled model, which then can be included as
part of the structure consistency regularized inverse folding model training. More-
over, our regularization technique is general enough and can be applied in other
design tasks, e.g., sequence-based protein infilling. Extensive experiments show
a clear benefit of our method over the non-regularized baselines. E.g., in inverse
folding design problems we observe up to 3% improvement in sequence recovery
and up to 45% improvement in protein diversity, while still preserving structural
consistency of the generated sequences.

1 INTRODUCTION

To date, 8 out of 10 top selling drugs are engineered proteins (Arnum, 2022). For functional protein
design, it is often a pre-requisite that the designed protein folds into a specific three-dimensional
structure.The fundamental task of designing novel amino acid sequences that will fold into the given
3D protein structure is named inverse protein folding. Inverse protein folding is therefore a central
challenge in bio-engineering and drug discovery.

Computationally, inverse protein folding can be formulated as exploring the protein sequence land-
scape for a given protein backbone to find a combination of amino acids that supports a property
(e.g. structural consistency). This task, computational protein design, has been traditionally handled
by learning to optimize amino acid sequences against a physics-based scoring function (Kuhlman
et al., 2003). In recent years, deep generative models have been proposed to solve this task, which
consist of learning a mapping from protein structure to sequences (Jing et al., 2020; Cao et al., 2021;
Wu et al., 2021; Karimi et al., 2020; Hsu et al., 2022; Fu & Sun, 2022). These approaches frequently
use high amino acid recovery with respect to the ground truth sequence (corresponding to the input
structure) as one success criterion. Other success criteria are high TM score (reflecting structural
consistency) and low perplexity (measuring likelihood to the training/natural sequence distribution).
However, such criteria solely ignore the practical purpose of inverse protein folding, i.e., to design
novel and diverse sequences that fold to the desired structure and thus exhibit novel functions.

In parallel to machine learning advances in inverse folding, notable progresses have been made re-
cently in protein representation learning (Rives et al., 2021; Zhang et al., 2022), protein structure
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Figure 1: Overview of the proposed system. The traditional inverse protein folding (designing
sequences that fold into a given 3D structures) is augmented by our proposed AFDistill model to
increase the diversity of generated sequences while maintaining consistency with the given structure.
One way of doing this (red line) would be to use forward protein folding models, e.g., AlphaFold,
estimate structure from generated sequence, compare it with the ground truth to compute metrics
such as TM or LDDT and, finally, regularize the original training loss (usually cross-entropy (CE)).
However, inference through folding models is slow (see Fig. 2), making them impractical to be a part
of the optimization loop. Alternatively, bypassing structure estimation, the folding model’s internal
confidence metrics, such as pTM or pLDDT can be used instead (blue line). This results in lower
fidelity solutions that are still slow. Instead, in this work, we propose to distill the confidence metrics
of AlphaFold into a smaller, faster, and differentiable model (referred as AFDistill). AFDistill is
trained to maintain the comparable accuracy of the AlphaFold-estimated pTM/pLDDT, which now
can be seamlessly used as part of the training loop (green line). The inference of the improved
inverse folding model remains unmodified and is shown on the right side of the figure.

prediction from sequences (Jumper et al., 2021; Baek et al., 2021b), as well as in conditional pro-
tein sequence generation (Das et al., 2021; Anishchenko et al., 2021). These lines of works have
largely benefited by learning from millions of available protein sequences (that may or may not have
a resolved structure) in a self/un-supervised pre-training paradigm. Such large-scale pre-training has
immensely improved the information content and task performance of the learned model. For exam-
ple, it has been observed that structural and functional aspects emerge from a representation learned
on broad protein sequence data (Rives et al., 2021). In contrast, inverse protein folding has mainly
focused on learning from sequences that do have an experimentally resolved structure. Those re-
ported structures cover only less than 0.1% of the known space of protein sequences, limiting the
learning of the inverse folding model. In this direction, a recent work has trained an inverse folding
model from scratch on millions of AlphaFold-predicted protein structures (in addition to tens of
thousands of experimentally resolved structures) and shown performance improvement in terms of
amino acid recovery (Hsu et al., 2022). However, such large-scale training from scratch is computa-
tionally expensive. A more efficient alternative would be to use the guidance of an already available
forward folding model pre-trained on large-scale data in training the inverse folding model.

In this work we construct a framework where the inverse folding model is trained using a loss ob-
jective that consists of regular sequence reconstruction loss, augmented with an additional structure
consistency loss (SC) (see Fig. 1 for the system overview). The straightforward way of implementing
this would be to use forward protein folding models, e.g., AlphaFold, to estimate the structure from
generated sequence, compare it with ground truth and compute TM score to regularize the training.
However, a challenge in using Alphafold (or similar) directly is the computational cost associated
with its inference(see Fig. 2), as well as the need of ground truth reference structure. Internal confi-
dence structure metrics from the forward folding model can be used instead. However, that approach
is still slow for the in-the-loop inverse folding model optimization. To address this, in our work we:
(i) Perform knowledge distillation on AlphaFold and include the resulting model, AFDistill (frozen),
as part of the regularized training of the inverse folding model (we term this loss structure consis-
tency (SC) loss). The main properties of AFDistill model are that it is fast, accurate and end-to-end
differentiable. (ii) Perform extensive evaluations, where the results on standard structure-guided se-
quence design benchmarks show that our proposed system outperforms existing baselines in terms
of lower perplexity and higher amino acid recovery, while maintaining closeness to original protein
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Figure 2: Average inference time for a protein sequence of length 500 by our AFDistill model ver-
sus the alternatives (left plot). Note that AFDistill fast performance holds for longer sequences:
sequence length 1024 - inference time 0.028s, sequence length 2048 - inference time 0.035s. The
timings for AlphaFold and OpenFold (Ahdritz et al., 2021) exclude the MSA searching time, which
can vary from a few minutes to a few hours. Note that the values for HelixFold (Fang et al., 2022),
OmegaFold (Wu et al., 2022) and ESMFold (Lin et al., 2022) are taken from their respective pub-
lished results. As can be seen, the inference time of the current alternatives is too slow, which makes
them impractical to be included as part of the model optimization loop. On the other hand, AFDistill
is fast, accurate and end-to-end differentiable. The middle plot shows true and AFDistill predicted
TM scores on TM distillation datasets (Pearson’s correlation is 0.77) (see Section 3 for details). The
right plot shows a similar scatter plot of the (averaged) true and the predicted pLDDT values on the
pLDDT distillation dataset (Pearson’s correlation is 0.76).

structure. More interestingly, we improve diversity in the designed sequences, one of the main goals
of protein design. As a result of a trade-off between sequence recovery vs structure recovery, our
regularized model yields better sequence diversity for a given structure, consistent with the fact that
even small (35-40 amino acid) protein fold holds a ‘sequence capacity’ exceeding 1023 (Tian & Best,
2017). Note that our regularization technique is not limited to the inverse folding design and, as we
show, can be applied to other applications, such as sequence-based protein infilling, where we also
observe performance improvement over the baseline. (iii) Finally, the estimated structure consis-
tency metric can either be used as part of the regularization of an inverse folding or infilling, during
any other protein optimization tasks (e.g., (Moffat et al., 2021)) which would benefit from structural
consistency estimation of the designed protein sequence, or as a cheap surrogate of AlphaFold that
provides scoring of a given protein, reflecting its structural content.

2 RELATED WORK

Forward Protein Folding. Several powerful computational approaches have recently been pro-
posed for the task of forward folding, namely predicting the structure of a protein given its sequence.
In particular, AlphaFold (Jumper et al., 2021) makes use of multiple sequence alignments (MSAs)
along with pairwise features. Building on similar ideas, RoseTTAFold (Baek et al., 2021a) is a three-
track network combining information at the sequence level, the 2D distance map level, and the 3D
coordinate level. On the implementation side, OpenFold (Ahdritz et al., 2021) is a PyTorch repro-
duction of Alphafold. However, MSAs of homologous proteins (e.g., antibodies, orphan proteins)
are not always available and the MSA search adds significant overhead in inference time. There-
fore, MSA-free approaches such as OmegaFold (Wu et al., 2022), HelixFold (Fang et al., 2022),
and ESMFold (Lin et al., 2022) have been subsequently proposed. These architectures make use of
large pretrained language models to produce predictions that are more accurate than AlphaFold and
RoseTTAFold given a single sequence as input, and on par when given full MSAs as input.

Inverse Protein Folding. Several algorithms have also been proposed recently for the inverse
protein folding problem, namely the task of identifying amino acid sequences that fold to a de-
sired structure. (Norn et al., 2020) proposed a deep learning approach that optimizes over the
entire folding landscape by backpropagating gradients through the trRosetta structure prediction
network (Yang et al., 2020). (Anand et al., 2022) introduced a deep neural network architecture
that explicitly models side-chain conformers in a structure-based context. Instead of making use of
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Figure 3: Distillation overview. Top diagram shows the training of AFDistill. The scores from
AlphaFold’s confidence estimation are denoted as pTM and pLDDT, while the scores which are
computed using ground truth and the AlphaFold’s predicted 3D structures are denoted as TM and
LDDT. These values are then discretized and treated as class labels during cross-entropy (CE) train-
ing. Note that the training based on TM/LDTT is limited since the number of known ground truth
structures is small. The bottom diagram shows the inference stage of AFDistill, where for each
protein sequence it estimates pTM and pLDDT scores.

trRosetta, (Jendrusch et al., 2021) presented a framework that incorporates the structure prediction
algorithm AlphaFold (Jumper et al., 2021) into an optimization loop to generate protein sequences.
However, as noted above, the inference of AlphaFold is expensive due to MSA search, hence em-
ploying AlphaFold in an optimization loop for protein sequence generation is very cumbersome.
Though faster, the inference of MSA-free approaches (e.g. OmegaFold, HelixFold and EMSFold)
is still too slow for their use in an optimization loop.

In this work, we propose knowledge distillation from the forward folding algorithm AlphaFold, and
build a student model that is small, practical and accurate enough. We show that the distilled model
can be efficiently used within the inverse folding model optimization loop and improve quality of
designed protein sequences.

3 ALPHAFOLD DISTILL

Knowledge distillation (Hinton et al., 2015) transfers knowledge from a large complex model, in
our case AlphaFold, to a smaller one, here this is the AFDistill model (see Fig. 3). Traditionally,
the distillation would be done using soft labels, which are probabilities from AlphaFold model, and
hard labels, the ground truth classes. However, in our case we do not use the probabilities as they
are harder to collect or unavailable, but rather the model’s predictions (pTM/pLDDT) and the hard
labels, TM/LDDT scores, computed based on AlphaFold’s predicted 3D structures.

3.1 SCORES TO DISTILL

TM-score (Template Modeling score) (Zhang & Skolnick, 2004), is the mean distance between struc-
turally aligned Cα atoms scaled by a length-dependent distance parameter. LDDT (Local Distance
Difference Test) (Mariani et al., 2013) is the average of four fractions computed using distances be-
tween all pairs of atoms based on four tolerance thresholds (0.5Å, 1Å, 2Å, 4Å) within 15Å inclusion
radius. The range of both metrics is (0,1), and the higher values represent more similar structures.

pTM and pLDDT are the AlphaFold-predicted metrics for a given input protein sequence, corre-
sponding to the reconstructed 3D protein structure, which represent model’s confidence of the es-
timated structure. pLDDT is a local per-residue score (pLDDT chain is another score that simply
averages per-residue pLDDTs across the chain), while pTM is a global confidence metric for assess-
ing the overall chain reconstruction. In this work we interpret these metrics as the quality or validity
of the sequence for the purpose of downstream applications (see Section 4).

3.2 DATA

Using Release 3 (January 2022) of AlphaFold Protein Structure Database (Varadi et al., 2021),
we collected a set of 907,578 predicted structures. Each of these predicted structures contains 3D
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Release 3 (January 2022) Release 4 (July 2022)

Name Size Name Size

Original 907,578 Original 214,687,406
TM 42K 42,605 pLDDT balanced 1M 1,000,000
TM augmented 86K 86,811 pLDDT balanced 10M 10,000,000
pTM synthetic 1M 1,244,788 pLDDT balanced 60M 66,736,124
LDDT 42K 42,605
pLDDT 1M 905,850

Table 1: Statistics from January 2022 (left side) and July 2022 (right size) releases of the AlphaFold
database. For the earlier release, we created multiple datasets for pTM and pLDDT estimation,
while for the later, larger release we curated datasets only for pLDDT estimation.

coordinates of all the residue atoms as well as the per-resiude pLDDT confidence scores. To avoid
any data leakage to the downstream aplications, we first filtered out the structures that are part of the
validation and test splits of CATH 4.2 dataset (discussed in Section 4). Then, using the remaining
structures, we created our pLDDT 1M dataset (see Table 1), where each protein sequence is paired
with the sequence of per-residue pLDDTs. We also truncated proteins up to length 500 to reduce
computational complexity of AFDistill training.

0.0 0.2 0.4 0.6 0.8 1.0
TM scores

0

2

4

6

8

10

De
ns

ity

TM 42K
TM augmented 86K
TM synthetic 1M

0.2 0.4 0.6 0.8 1.0
(p)LDDT scores

0.0

2.5

5.0

7.5

10.0

12.5
De

ns
ity

LDDT 42K
pLDDT 1M
pLDDT balanced 1M
pLDDT balanced 10M
pLDDT balanced 60M

Figure 4: Distribution of the (p)TM/(p)LDDT scores in various datasets used in AFDistill training.

We also created datasets which are based on the true TM and LDDT values using the predicted Al-
phaFold structures. Specifically, using the PDB-to-UniProt mapping, we selected a subset of sam-
ples with matching ground truth PDB sequences and 3D structures, resulting in 42,605 structures.
We denote these datasets as TM 42K and LDDT 42K (see Table 1). In Fig. 4 we show the score
density distribution of each dataset. As can be seen, the TM 42K and LDDT 42K are very skewed to
the upper range of the values. To mitigate this data imbalance, we curated two additional TM-based
datasets. TM augmented 86K was obtained by augmenting TM 42K with a set of perturbed original
protein sequences, estimating their structures with AlphaFold, computing corresponding TM-score,
and keeping the low and medium range TM values. pTM synthetic 1M was obtained by generating
random synthetic protein sequences and feeding them to AFDistill (pre-trained on TM 42K data),
to generate additional data samples and collect lower-range pTM values. The distribution of the
scores for these additional datasets is also shown in Fig. 4, where both TM augmented 86K and
pTM synthetic 1M datasets are less skewed, covering lower (p)TM values better.

Finally, using Release 4 (July 2022), containing over 214M predicted structures, we plotted its
distribution density of pLDDT values and observed similar high skewness towards upper range. To
fix this, we rebalanced the data by filtering out samples with upper-range mean-pLDDT values (also
called pLDDT chain). The resulting dataset contains 60M sequences, for which we additionally
created 10M and 1M versions, see Fig. 4 for their density.

3.3 MODEL

AFDistill model is based on ProtBert (Elnaggar et al., 2020), a Transformer BERT model (420M
parameters) pretrained on a large corpus of protein sequences using masked language modeling. For
our task we modify ProtBert head by setting the vocabulary size to 50, corresponding to discretizing
pTM/pLDDT in range (0,1). For pTM (scalar) the output corresponds to the first ⟨CLS⟩ token of the
output sequence, while for pLDDT (sequence) the predictions are made for each residue position.
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Training data Validation CE loss Training data Validation CE loss

TM 42K 1.10 LDDT 42K 3.39
TM augmented 86K 2.12 pLDDT 1M 3.24
pTM synthetic 1M 2.55 pLDDT balanced 1M 2.63

pLDDT balanced 10M 2.43
pLDDT balanced 60M 2.40

Table 2: Validation loss of AFDistill on datasets from Table 1 (For more details, see Tables 3 and 4.

PDB ID 2qe9, chain A PDB ID 1cw5, chain A PDB ID 1hn3, chain A

Figure 5: Examples of 3D protein structures from the dataset, corresponding to high, medium, and
low actual TM scores (top row in legend), as well as AFDistill predictions, trained on TM 42K
(middle row) and TM augmented 86K (bottom row).

3.4 DISTILLATION EXPERIMENTAL RESULTS

In this section we present evaluation results of the model after training it on the presented datasets.
We note that to further improve the data imbalance problem, during training we employed weighted
sampling in the minibatch generation as well as used Focal loss (Lin et al., 2017) in place of the
traditional cross-entropy loss. The results for (p)TM-based datasets are shown in Table 2. We
see that AFDistill trained on TM 42K dataset performed the best, followed by the dataset with the
augmentations, and the synthetic data. For the (p)LDDT-based datasets, we observe that increasing
the scale, coupled with the data balancing, improves the validation performance. In Fig. 2 we show
scatter plots of the true vs pTM scores and pLDDT values on the entire validation set. We see
a clear diagonal pattern in both plots, where the predicted and true values match. There are also
some number of incorrect predictions (reflected along the off-diagonal), where we see that for the
true scores in the upper range, the predicted scores are lower, indicating that AFDistill tends to
underestimate them. Finally, in Fig. 5 and 6, we show a few examples of the data samples together
with the corresponding AFDistill predictions. Fig. 2 and Fig. 12, 13 (in Appendix) also show plots
of SC (pTM or pLDDT) versus TM score, indicating that AFDistill is a viable tool for regularizing
protein representation to enforce structural consistency or structural scoring of protein sequences,
reflecting its overall composition and naturalness (in terms of plausible folded structure).
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Figure 6: Dataset examples of the per-residue predictions for two AFDistill models (blue and green
lines), build on pLDDT balanced 1M and 60M datasets, versus the AlphaFold predictions (red line).

4 INVERSE PROTEIN FOLDING DESIGN

In this section we demonstrate the benefit of applying AFDistill as a structure consistency (SC)
score for solving the task of inverse protein folding, as well as for the protein sequence infilling
as a means to novel antibody generation. The overall framework is presented in Fig. 1 (following
the green line in the diagram), where the traditional inverse folding model is regularized by our SC
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score. Specifically, during training, the generated protein is fed into AFDistill, for which it predicts
pTM or pLDDT score, and combined with the original CE training objective results in

L = LCE + αLSC, (1)

where LCE =
∑N

1 LCE(si, ŝi) is the CE loss, si is the ground truth and ŝi is the generated protein
sequence, LSC =

∑N
i=1(1 − SC(ŝi)) is the structure consistency loss, N is the number of training

sequences, and α is the weighting scalar for the SC loss, in our experiment it is set to 1.

4.1 METRICS

To measure the quality of the prediction designs, we compute the following set of sequence eval-
uation metrics. Recovery (range (0, 100) higher is better) is the average number of exact matches
between predicted and ground truth sequences, normalized by the length of the alignment. Diversity
(range (0, 100) higher is better) of a predicted protein set is the complement of the average recov-
ery computed for all pairwise comparisons in the set. While in general the recovery and diversity
tend to be inversely correlated, i.e., higher recovery leads to lower diversity, and vice versa, we are
interested in models that achieve high recovery rates and be able to maintain high protein sequence
diversity. Perplexity measures the likelihood of a given sequence, lower values mean better perfor-
mance. Finally, for structure evaluation, we use TM-score as well as the structure consistency (SC)
score, which is the AFDistill’s output (pTM/pLDDT) for a given input.

4.2 RESULTS

We present experimental results for several recently proposed deep generative models for protein
sequence design accounting for 3D structural constraints. For the inverse folding tasks we use
CATH 4.2 dataset, curated by (Ingraham et al., 2019). The training, validation, and test sets have
18204, 608, and 1120 structures, respectively. While for protein infilling we used SabDab (Dunbar
et al., 2013) dataset curated by (Jin et al., 2021) and focus on infilling CDR-H3 loop. The dataset
has 3896 training, 403 validation and 437 test sequences.

Figure 7: Evaluation results of GVP trained with SC regularization. The horizontal x-axis shows
various datasets for AFDistill pretraining, the left vertical y-axis shows sequence metrics (recovery
and diversity gains), while the right y-axis shows structure metrics (TM and SC scores). Blue and
orange solid bars show recovery and diversity gains (top number - percentage, bottom - actual value)
of SC-regularized GVP over the vanilla GVP baseline. Solid olive bar shows the predicted SC (pTM
or pLDDT, depending on AFDistill model), while the purple bar is the test set TM score (structures
predicted by AlphaFold). Overlaid dashed cyan bar is the TM score of the baseline GVP. We can
see that overall TM 42K and TM augmented 86K pretrained AFDistill achieve the best overall
performance, with high diversity and moderate improvement in sequence and structure recovery.

GVP Geometric Vector Perceptron GNNs (GVP) (Jing et al., 2020) is the inverse folding model,
that for a given target backbone structure, represented as a graph over the residues, replaces dense
layers in a GNN by simpler layers, called GVP layers, directly leveraging both scalar and geomet-
ric features. This allows for the embedding of geometric information at nodes and edges without
reducing such information to scalars that may not fully capture complex geometry. The results of
augmenting GVP training with SC score regularization are shown in Fig. 7 (see also Appendix, Ta-
ble 8 for additional results). Baseline GVP with no regularization achieves 38.6 in recovery, 15.1
in diversity and 0.79 in TM score on the test set. It can be seen that there is a consistent improve-
ment in sequence recovery gain (1-3%) over the original GVP and significant diversity gain (up to
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2 21 13 3 2 21 13 3

Figure 8: Comparison between baseline GVP (left) and SC regularized GVP (right), where AFDistill
was pre-trained on TM augmented 86K dataset. The tables display 15 generated protein sequences
from each model, top red row is the ground truth. Green cell with the * indicates amino acid
identity compared to ground truth (top red row), while blue cell shows novelty. The shade of blue
cell represents the frequency of the amino acid in that column (darker → more frequent, lighter →
rare). Therefore, the method with high recovery and diversity rates will have many green and light
blue cells. Bottom plots show AlphaFold estimated structures (green) and the ground truth (red).
SC-regularized GVP, while having high sequence diversity, still results in accurate reconstructions,
while GVP alone has more inconsistencies, marked with arrows.

45%) of the generated protein sequences, when we employ SC regularization. At the same time
the estimated structure (using AlphaFold) remains close to the original as measured by the high
TM score. We also observed that pTM-based SC scores had overall better influence on the model
performance as compared to pLDDT-based ones. It should be further noted, that the validation
performance of AFDistill on the distillation data is not always reflective of the performance on the
downstream applications, as AFDistill trained on TM augmented 86K overall performs better than
TM 42K, while having slightly worse validation CE loss (Table 2). This observation indicates that
the augmented models might be less biased by the teacher model, hence enables more generalized
representation learning of sequence–structure relationship and provides more performance boost to
the inverse folding model.

Figure 9: Evaluation results of Graph Transformer model trained with SC score regularization.

To further illustrate the effect of recovery and diversity, we show in Fig. 8 protein sequences and
AlphaFold-generated 3D structures of GVP and GVP+SC models, where the latter model achieves
higher diversity of the sequence while retaining accurate structure of the original protein. Here, the
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Figure 10: Evaluation results of protein infilling model trained with SC regularization.

recovery is 40.8 and diversity is 11.2 for GVP, while for GVP+SC it is 42.8 and 22.6, respectively,
confirming that GVP+SC achieves higher recovery and diversity. The bottom plots show AlphaFold
estimated structures (green) and the ground truth (red). It can be seen that for GVP+SC, the high
sequence diversity still results in very accurate reconstructions (for this example, average TM score
is 0.95), while GVP alone shows more inconsistencies, marked with blue arrows, (TM score 0.92).

Graph Transformer We evaluated the effect of SC score on Graph Transformer (Wu et al., 2021),
another inverse folding model, which seeks to improve standard GNNs to represent the protein
3D structure. Graph Transformer applies a permutation-invariant transformer module after GNN
module to better represent the long-range pair-wise interactions between the graph nodes. The
results of augmenting Graph Transformer training with SC score regularization are shown in Fig. 9
(see also Appendix, Table 9 for additional results). Baseline model with no regularization has 25.2
in recovery, 72.2 in diversity and 0.81 in TM score on the test set. As compared to GVP (Fig. 7),
we can see that for this model, the recovery and diversity gains upon SC regularization are smaller.
We also see that TM score of regularized model (TM 42K and TM augmented 86K pretraining) is
slightly higher as compared to pLDDT-based models.

Protein Infilling Our proposed structure consistency regularization is quite general and not lim-
ited to the inverse folding task. Here we show its application on protein infilling task. Recall,
that while the inverse folding task considers generating the entire protein sequence, conditioned
on a given structure, infilling focuses on filling specific regions of a protein conditioned on a se-
quence/structure template. The complementarity-determining regions (CDRs) of an antibody pro-
tein are of particular interest as they determine the antigen binding affinity and specificity. We follow
the framework of (Jin et al., 2021) which formulates the problem as generation of the CDRs con-
ditioned on a fixed framework region. We focus on CDR-H3 and use a baseline pretrained protein
model ProtBERT (Elnaggar et al., 2020) finetuned on the infilling dataset, and use ProtBERT+SC
as an alternative (finetuned with SC regularization). The CDR-H3 is masked and the objective is to
reconstruct it using the rest of the protein sequence as a template. The results are shown in Fig. 10
(see also Appendix, Table 10 for additional results). Baseline model achieves 41.5 in recovery, 14.5
in diversity, and 0.80 in TM score on the test set. Similar as for the other applications, we see an
improvement in the sequence recovery and even bigger gain in diversity, while using the AFDistill
pretrained on TM 42K and TM augmented 86K, together with the pLDDT balanced datasets. TM
score shows that the resulting 3D structure remains close to the original, confirming the benefit of
using SC for training regularization.

5 CONCLUSION

In this work we introduce AFDistill, a distillation model based on AlphaFold, which for a given
protein sequence estimates its structural consistency (SC: pTM or pLDDT) score. We provide ex-
perimental results to showcase the efficiency and efficacy of the AFDistill model in high-quality
protein sequence design, when used together with a graph neural net based inverse folding model
or large protein language model for sequence infilling. Our AFDistill model is small and accurate
enough so that it can be efficiently used for regularizing structural consistency in protein optimiza-
tion tasks, maintaining sequence and structural integrity, while introducing diversity and variability
in the generated proteins.

9
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REPRODUCIBILITY STATEMENT

For the sake of reproducibility, we use publicly available datasets and describe the data in detail in
Section 3.2. We provide training details in the Appendix. The code will be publicly released upon
acceptance.
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A BACKGROUND ON PROTEIN DESIGN

A protein is a linear chain of variable length made up of twenty amino acids, also called residues.
These are denoted by 20 characters (A-Alanine, G-Glycine, I-Isoleucine, L-Leucine, P-Proline,
V-Valine, F-Phenylalanine, W-Tryphtophan, Y-Tyrosine, D-Aspartic Acid, E-Glutamic Acid, R-
Arginine, H-Histidine, K-Lysine, S-Serine, T-Threonine, C-Cystene, M-Methionine, N-Asparagine,
Q-Glutamine). Each amino acid has the same core structure (backbone), consisting of alpha carbon
atom Cα, connected to an amino group NH2, carboxyl group COOH and hydrogen atom H . The
backbone is identical in all amino acids, while the variable group, called side chain, which is also
attached to alpha carbon Cα, is always different and determines the amino acid, including its chem-
ical and mechanical properties. Amino acids are attached to each other by a covalent bond, known
as peptide bond (carboxyl group COOH of one amino acid and the amino group NH2 of the other
amino acid combine, releasing water molecule H2O and create a peptide bond). In this work, as is
commonly done, we define protein 3D structure specified only by the Cα atoms of amino acids.

The protein inverse folding task is to draw a sequence from the true distribution of n-length se-
quences of amino acids Y ∈ {1, . . . , 20}, conditioned on a fixed protein structure, such that the
designed protein folds into that structure. The protein structure can be represented as an attributed
graph G = (V,E) with node features V = {v1, . . . , vN}, describing each residue and edge features
E = {eij}, capturing relationships between them. Thus, the final conditional distribution we are
interested in modeling is: P (Y |X) = p(yi, . . . , yn|X), which is known as computational protein
design task.

Protein structures are intrinsically dynamic and each structure thus possess high designability, i.e.
the total number of amino acid sequences that can fold to a target protein structure is high, without
losing stability of the structure. The highly designable structures always enjoy beneficial properties
such as higher thermodynamic stability, mutational stability, fast folding, functional robustness, etc.
Therefore, we need to learn a “soft” function that can model this high designability associated with
a protein structure, i.e. generating diverse sequences for a given protein structure.

B ALPHAFOLD MODEL OVERVIEW

A schematic overview of AlphaFold model is shown in Fig. 11, which it takes as input a protein
sequence and produces as output, among others, the predicted 3D structure, as well as the confidence
estimates of its prediction, pTM and pLDDT, which measure the estimated confidence of how well
the predicted and ground truth structures match.

13



Under review as a conference paper at ICLR 2023

Input Protein Sequence

MSA

Template

EvoFormer
Module

Structure
Module

pLDDT Head

pTM Head

3D Structure

Recycling

Figure 11: Overview of the inference stage in AlphaFold model. Given an input protein sequence,
first the search is performed in genetic database to find similar sequences and construct multiple
sequence alignments (MSA). Then a structure database search is done to find similar 3D structures
and construct templates. The MSA and templates are fed into EvoFormer module, whose output is
then sent to the Structure module, which is finally completed with the multiple output heads. The
3D structure head generates predicted 3D protein structure, while pLDDT and pTM heads estimate
the confidence of the computed structure. Optionally, the generated structure together with the
intermediate states are recycled and sent back to update/correct MSA and template representations
for further processing and improvement.

C AFDISTILL TRAINING

Tables 3, 4 show the validation performance of AFDistill trained on each of the (p)TM-based and
(p)LDDT-based datasets, respectively. Table 5 shows results on (p)LDDT chain-based datasets.
Note that (p)LDDT chain is the dataset, similar to (p)TM datasets, where for each sequence we
associate a single scalar, in this case the average of all the per-reside (p)LDDT values.
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Data Training Validation

Weighted sampling Focal loss (γ) CE loss

TM 42K

– – 1.33
+ – 1.37
+ 1.0 1.16
+ 3.0 1.10
+ 10.0 1.29

TM augmented 86K

– – 2.12
+ 1.0 2.15
+ 3.0 2.19
+ 10.0 2.25

pTM synthetic 1M

– – 2.90
+ 1.0 2.75
+ 3.0 2.55
+ 10.0 3.20

Table 3: Validation CE loss for the AFDistill model trained on each of the (p)TM-based datasets. To
address data imbalance during training, we employed weighted sampling for minibatch generation
to so that the TM-scores cover their range (0,1) close to uniform distribution. Moreover, we also
used Focal loss (Lin et al., 2017) in place of the standard cross-entropy (CE) loss (the evaluation
is still done using CE loss across all the training setups). Based on the validation loss, we see that
the AFDistill model trained on TM 42K dataset performed the best, followed by the dataset with
augmentations, and the synthetic performed the worst. We also see that weighted sampling and
focal loss do help in addressing the data imbalance problem, although for TM augmented 86K, the
balanced augmentation seemed to help better and the best performance was for the case when no
weighted sampling is applied and the traditional CE loss is used. As shown in Section 4, the valida-
tion performance on the distillation data may not always indicate the performance on the downstream
applications, where in particular we observed that the Distill model, trained on TM augmented 86K
dataset, overall performed better than TM 42K, while having slightly worse validation CE loss.

Data Training Validation

Weighted sampling Focal loss (γ) CE loss

LDDT 42K

- - 3.47
+ 1.0 3.44
+ 3.0 3.42
+ 10.0 3.39

pLDDT 1M

- - 3.27
+ 1.0 3.28
+ 3.0 3.25
+ 10.0 3.24

Table 4: Validation CE loss for AFDistill trained on each of the (p)LDDT-based datasets. We see
that weighted sampling coupled with Focal loss, performed the best.
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Data Training Validation

Weighted Sampling Focal loss (γ) CE loss

LDDT chain 42K

- - 3.69
+ 1.0 3.57
+ 3.0 3.63
+ 10.0 3.59

pLDDT chain 1M

- - 3.29
+ 1.0 3.36
+ 3.0 3.30
+ 10.0 3.31

pLDDT chain balanced 1M – – 2.45

pLDDT chain balanced 10M – – 2.24

pLDDT chain balanced 60M – – 2.21

Table 5: Validation CE loss for the AFDistill model trained on each of the (p)LDDT chain-based
datasets. (p)LDDT chain is the dataset, similar to (p)TM datasets, where for each sequence we
associate a single scalar, in this case the average of all the per-reside (p)LDDT values. Similar as
before, we see that the use of weighted sampling coupled with Focal loss helps in boosting the model
performance. We also see that increasing the scale of data (which is already balanced) improves the
performance even further.
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D GVP TRAINING DETAILS

An example of GVP training progress regularized by the structure consistency (SC) score computed
by the AFDistill model (pre-trained on various (p)TM-based datasets) is shown in Fig. 12. This
figure shows that although SC score may be less accurate on the absolute scale, on the relative
scale we can see it accurately detecting decays and improvements in the sequence quality as the
GVP trains. Similarly, in Fig. 13 we show scatter plots of estimated pTM versus true TM scorefor
GVP-generated protein sequences regularized by SC score.
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Figure 12: Example of the training progress (on CATH 4.2 dataset) of the GVP model regularized
by the structure consistency (SC) score computed by the AFDistill model pre-trained on different
datasets. Each plot shows the results for one of the Distill pre-training datasets, where the blue
line represents the SC score computed by the AFDistill model (in this case generating pTM value),
while the orange line shows the actual TM score computed between the ground truth structure and
the AlphaFold’s estimated 3D structures for a GVP-generated protein sequences. The last plot on
the right shows the original, unregularized GVP training, where SC score was computed but never
applied as part of the loss. It can be seen that SC correlates well with the TM score for TM 42K,
while for others (TM augmented 86K and pTM synthetic 1M datasets) it tends to underestimate true
TM score. Therefore, SC score may be less accurate on the absolute scale, while on the relative
scale we can see that it can accurately detect decays and improvements in the sequence quality as
the GVP trains. And the latter is of particular importance for SC to be a regularization loss during
training, since it can clearly identify the ill-generated protein sequences early in the training (lower
SC scores) and recognize well-defined sequences later during the training (higher SC scores).

D.1 EFFECT OF USING AFDISTILL TRAINED FROM SCRATCH

We also experimented with AFDistill models trained from scratch (as opposed to starting from
pre-trained ProtBert), but observed worse performance. As an example, we trained AFDistill from
scratch on TM42K dataset. The validation CE loss during distillation was 1.5 (versus 1.1 when
using pre-trained ProtBert model). Moreover, training of AFDistill model from scratch takes longer
(3 days vs 1 day). When regularizing GVP with AFDistill from scratch, we get similar recovery rate
(39.4 vs 39.6) but lower sequence diversity (15.9 vs 21.1), which confirms the benefit of common
practice of fine-tuning the pretrained models as opposed to starting from random models weights.

D.2 EFFECT OF STRUCTURE CONSISTENCY (SC) SCORE ON GVP PERFORMANCE

For protein design (e.g., using GVP as a base model) the objective is CE + SC (cross-entropy +
AFDistill structure consistency score). In Fig. 14 we present the effect of SC magnitude on the GVP
performance on the test set of CATH dataset. As can be seen, when only the CE term is present
(the blue left most bar in both panels, representing the original GVP), the model is encouraged
to recover the specific ground truth protein sequence for a given 3D structure, and this promotes
model accuracy, and high amino acid recovery rate, while also resulting in low diversity. On the
other hand, when only the SC term is present (the pink right most bar, reprenting CE+32*SC, i.e.,
when SC completely dominates and CE can be ignored), this results in poor and degenerated protein
sequences. This is expected, since AFDistill alone cannot guide GVP which sequence it should
generate to match the given input 3D structure. Recall, that AFDistill has no information about the
structure, and since many of the relevant protein sequences can have high pTM/pLDDT, all of them
could be good candidates, and this promotes high diversity and low recovery. Consequently, when
both CE and SC terms are present and when appropriate balance between them is found (in our case
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pTM versus TM for GVP+SC (AFDistill trained on TM 42K) across training epochs

pTM versus TM for GVP+SC (AFDistill trained on TM augmented 86K) across training epochs

Figure 13: Estimated pTM versus true TM score (based on AlphaFold structure prediction) for GVP-
generated protein sequences regularized by SC score. The top row shows results for SC computed by
AFDistill model trained on TM 42K, while the bottom row is for AFDistill trained on TM augmented
86K. The columns in each row correspond to the progress as GVP trains. Note that the top row
corresponds to the first left plot in Fig. 12, while the bottom row corresponds to the second plot in
Fig. 12. It can be observed that in the earlier stages of GVP training, the generated protein sequences
are of poor quality, reflected in pTM and TM scores that are spread across the (0,1) range. On the
other hand, as the training progresses, the generated sequences are getting better and the pTM/TM
score is concentrated more in the upper range. Another observation is that for AFDistill trained on
TM 42K dataset, the predicted and true TM score are better aligned across the diagonal (compare
with orange and blue lines on the left plot in Fig. 12), while for AFDistill trained on TM augmented
86K dataset, pTM tends to underestimate true TM score. These plots show that AFDistill is viable
sequence scoring tool, which fairly accurately measures the structural consistency of the generated
protein sequences. Combined with the fact that it is fast and end-to-end differentiable, shows its
potential for many of the protein optimization problems.
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Figure 14: The effect of Structure Consistency (SC) loss on the performance of GVP. Left panel
shows the amino acid recovery rate and the right panel shows the diveristy rate on the test set of
CATH dataset. The horizontal y-axis shows the different choices of objective function during train-
ing: CE is the cross-entropy loss, SC is the Structure Consistency score computed by AFDistill.

it is CE+SC, corresponding to the orange bar in both panels), we get a full benefit, i.e., the accurate
recovery and high diversity of the generated protein sequences.
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E ADDITIONAL PERFORMANCE COMPARISONS ON GVP

E.1 ESM-IF

In this Section we compare GVP performance under different training scenarios and present the
results in Table 6. The first row is the recovery rate of the original GVP model as reported in Jing
et al. (2020). The following three rows are the results presented in the work of Hsu et al. (2022)
(ESM-IF). Their evaluation showed that the vanilla GVP achieved a slightly higher recovery rate of
42.2. GVP+AlphaFold2 represents the GVP trained on augmented dataset (CATH + AlphaFold2-
generated structure/sequence pairs). Interestingly, this simple data augmentation baseline showed
worse performance as compared to the original GVP, and the authors had to significantly increase
GVP capacity (from 1M to 21M)to get any benefit from the data augmentation. Moreover, note
that such a data augmentation idea can also serve as the baseline for our approach of AFDistill
regularization, since AFDistill was trained on AlphaFold2-generated data and it can be thought of
as a compressed representation of that data.

The last two rows show our evaluation results of the vanilla GVP, achieving slightly lower base
recovery rate of 38.6, while this same GVP but trained with AFDistill regularization achieves a
small boost in recovery (39.6) and significant increase in the sequence diversity (as we showed in
Fig. 7).

Therefore, comparing data augmentation and model distillation for the task of protein design, we
see that for the original GVP model, AFDistill offers a clear advantage (compare third and last
rows in Table 6), providing a modest boost in recovery, while significantly increasing diversity of
the generated sequences. Moreover, the distillation overhead is amortized, as we train AFDistill
once and use it in many downstream applications. The data augmentation would require additional
computational cost in every downstream application.

On the other hand, our AFDistill regularization was able to improve the original GVP (with modest
recovery and significant diversity gains). Moreover, the distillation overhead is amortized - train
once use everywhere. We paid extra cost to train AFDistill but then applied it in many downstream
tasks with little overhead. Data augmentation would require additional significant cost in every
application. Finally, AFDistill offers unique advantage - it maintains recovery and structural consis-
tency of the original model while introducing diversity into the generated sequences.

E.2 PROTEINMPNN

In this section we present additional experimental results on ProteinMPNN model Dau-
paras et al. (2022). We used the publicly available code repository and data from
https://github.com/dauparas/ProteinMPNN. We compared the results of original unmodified train-
ing of ProteinMPNN to the training using SC regularization (AFDistill model trained on TM aug
86K dataset). We evaluated both training regimes on amino acid recovery, protein sequence diver-
sity and perplexity. We also varied ProteinMPNN internal parameter, which adds noise to the input
backbone protein structure. Table 7 presents the results. We can see that Structure Consistency (SC)
regularization maintains recovery and perplexity rates while improving the diversity of the gener-
ated protein sequences. Backbone noise, which is a part of ProteinMPNN model, can also be seen
as a form of regularization, however while the increase in noise leads to improved sequence diver-
sity it also leads to the decrease in amino acid recovery rate. SC regularization, on the other hand,
promotes diverse sequences and maintains similar recovery rate.

19



Under review as a conference paper at ICLR 2023

Model Recovery Change

GVP
Jing et al. (2020) 40.2 –

GVP
Hsu et al. (2022) 42.2 –

GVP + AlphaFold2 data
Hsu et al. (2022) 38.6 -3.6 (-8.5%)

GVP
(our experiment) 38.6 –

GVP + SC
(our experiment) 39.6 +1.0 (+2.6%)

Table 6: Comparison of amino acid recovery rate of protein sequences generated by GVP on the
test split of CATH dataset. The lighter and darker highlighted blocks represent the results from
three experiments: original results from GVP authors, the results from ESM authors, and the results
from our experiments. A small difference between the values in first, second and forth rows can
be attributed to some discrepancies in experimental settings as well as model initialization. We can
see that a simple data augmentation baseline results in 3.6 (or 8.5%) drop of recovery relative to the
unaugmented GVP. On the other hand, the use of SC regularization leads to 1.0 (or 2.6%) gain in
recovery, signaling the benefit of the proposed distillation approach.

Recovery Diversity Perplexity

ProteinMPNN ProteinMPNN
+SC ProteinMPNN ProteinMPNN

+SC ProteinMPNN ProteinMPNN
+SC

Backbone Noise 0.02 43.7 43.5 22.5 24.3 5.1 5.1
Backbone Noise 0.1 39.8 40.0 28.1 30.4 5.3 5.4
Backbone Noise 0.2 36.5 36.2 31.3 34.4 5.8 5.8
Backbone Noise 0.3 33.3 33.1 33.0 37.8 6.2 6.3

Table 7: Evaluation results of ProteinMPNN trained with and without SC regularization (AFDistill
trained on TM aug 86K dataset). Structure Consistency (SC) regularization maintains recovery and
perplexity rates while improving the diversity of the generated protein sequences. Backbone noise
is part of ProteinMPNN model and it can be seen that the increase in noise leads to less accurate
amino acid recovery, while it improves sequence diversity. SC regularization, on the other hand,
leads to more diverse sequences, while maintaining same recovery rates.
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F AFDISTILL EVALUATION ON DOWNSTREAM APPLICATIONS

Finally, in Tables 8 9, and 10 we show detailed results for GVP and Graph Transformer inverse fold-
ing task as well as protein infilling task. The table combines all the choices for AFDistill pretraining,
showing their validation accuracy, and presents the corresponding performance on the downstream
application without (top row in each table) and with SC regularization (all the following rows).
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Distill model GVP

Data Training Validation Recovery Diversity Perplexity pTM/
pLDDT

TM
scoreWeighted

sampling
Focal
loss CE loss

– – – – 38.6 15.1 6.1 0.80 0.79

TM
42K

. + – 1.37 36.8 22.2 6.3 0.78
+ 1.0 1.16 37.6 21.1 6.0 0.87
+ 3.0 1.10 39.6 21.1 5.9 0.84 0.84
+ 10.0 1.29 37.9 18.4 6.0 0.80

TM augmented
86K

– – 2.12 38.3 22.2 5.9 0.73
+ 1.0 2.15 39.8 22.1 5.8 0.78 0.85
+ 3.0 2.19 37.8 19.8 6.1 0.73
+ 10.0 2.25 38.5 21.2 5.9 0.72

TM synthetic
1M

– – 2.90 38.8 21.4 5.8 0.73
+ 1.0 2.55 39.1 22.5 5.9 0.77 0.81
+ 3.0 2.75 39.0 21.9 5.8 0.74
+ 10.0 3.20 39.0 22.0 5.9 0.69

LDDT
42K

– – 3.47 39.0 18.9 5.8 0.74 0.78
+ 1.0 3.44 38.7 22.5 5.8 0.73
+ 3.0 3.42 38.9 21.2 5.8 0.73
+ 10.0 3.39 38.5 22.3 5.9 0.72

PLDDT
1M

. – – 3.27 39.3 16.5 5.9 0.76 0.79
+ 1.0 3.28 38.8 15.5 5.9 0.72
+ 3.0 3.25 38.9 18.2 5.8 0.78
+ 10.0 3.24 38.4 16.2 6.0 0.73

LDDT chain
42K

– – 3.69 38.8 20.0 5.8 0.74
+ 1.0 3.57 39.3 16.3 5.8 0.79 0.78
+ 3.0 3.63 38.9 15.9 5.9 0.72
+ 10.0 3.59 37.9 23.2 6.0 0.73

pLDDT chain
1M

– – 3.29 39.4 17.4 5.8 0.78
+ 1.0 3.36 38.7 16.3 5.8 0.76
+ 3.0 3.30 39.6 18.3 5.7 0.79 0.77
+ 10.0 3.31 38.2 20.1 6.0 0.76

pLDDT
balanced 1M – – 2.63 39.1 17.1 5.8 0.75 0.82

pLDDT
balanced 10M – – 2.43 39.3 17.7 5.9 0.73

pLDDT
balanced 60M – – 2.40 39.8 17.5 5.9 0.74 0.81

pLDDT chain
balanced 1M – – 2.45 38.6 16.6 5.9 0.73

pLDDT chain
balanced 10M – – 2.24 39.1 17.8 5.8 0.73

pLDDT chain
balanced 60M – – 2.21 39.7 17.9 5.9 0.74 0.82

Table 8: Evaluation results of GVP inverse folding task, trained without (top row) and with SC
regularization (all other rows). The table combines all the choices for AFDistill pretraining and
showing their validation accuracy, as well as the corresponding performance on the downstream
application. We select the best performance for each experiment based on the highest recovery rate
(marked in bold).
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Distill model Graph Transformer

Data Training Validation Recovery Diversity Perplexity pTM/
pLDDT

TM
scoreWeighted

sampling
Focal
loss CE loss

– – – – 25.2 72.2 7.2 0.80 0.81

TM
42K

+ – 1.37 24.1 74.4 7.4 0.81
+ 1.0 1.16 25.2 73.2 7.2 0.86
+ 3.0 1.10 25.8 74.5 7.2 0.83 0.80
+ 10.0 1.29 24.9 73.9 7.3 0.81

TM augmented
86K

– – 2.12 25.0 73.3 7.1 0.78
+ 1.0 2.15 25.9 74.0 7.1 0.80 0.82
+ 3.0 2.19 24.9 73.4 7.3 0.76
+ 10.0 2.25 24.8 73.4 7.2 0.79

TM synthetic
1M

– – 2.90 25.3 73.2 7.1 0.72
+ 1.0 2.55 25.5 73.9 7.2 0.79 0.75
+ 3.0 2.75 25.2 73.5 7.2 0.77
+ 10.0 3.20 24.9 74.2 7.2 0.76

LDDT
42K

– – 3.47 25.4 73.2 7.1 0.75
+ 1.0 3.44 25.7 74.2 7.1 0.72 0.76
+ 3.0 3.42 25.5 74.4 7.2 0.73
+ 10.0 3.39 25.3 22.3 7.2 0.72

pLDDT
1M

– – 3.27 25.6 73.4 7.1 0.79
+ 1.0 3.28 25.4 74.1 7.2 0.78
+ 3.0 3.25 25.6 74.3 7.1 0.79 0.79
+ 10.0 3.24 25.4 74.0 7.1 0.77

LDDT chain
42K

– – 3.69 25.3 74.1 7.2 0.76
+ 1.0 3.57 25.8 74.3 7.1 0.75 0.80
+ 3.0 3.63 25.5 74.2 7.1 0.77
+ 10.0 3.59 25.6 74.1 7.2 0.76

pLDDT chain
1M

– – 3.29 25.3 74.3 7.1 0.78
+ 1.0 3.36 25.2 74.1 7.1 0.76
+ 3.0 3.30 25.6 74.4 7.2 0.79 0.81
+ 10.0 3.31 25.3 74.3 7.1 0.77

pLDDT
balanced 1M – – 2.63 25.8 74.2 7.1 0.70

pLDDT
balanced 10M – – 2.43 25.7 74.5 7.1 0.73

pLDDT
balanced 60M – – 2.40 26.0 74.2 7.2 0.74 0.78

pLDDT chain
balanced 1M – – 2.45 25.7 74.3 7.1 0.72

pLDDT chain
balanced 10M – – 2.24 25.9 74.4 7.1 0.74

pLDDT chain
balanced 60M – – 2.21 25.9 74.5 7.2 0.72 0.77

Table 9: Evaluation results of Graph Transformer inverse folding task, trained without (top row) and
with SC regularization (all other rows). The table combines all the choices for AFDistill pretraining
and showing their validation accuracy, as well as the corresponding performance on the downstream
application. We select the best performance for each experiment based on the highest recovery rate
(marked in bold).
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Distill model CDR Infill

Data Training Validation Recovery Diversity Perplexity pTM/
pLDDT

TM
scoreWeighted

sampling
Focal
loss CE loss

– – – – 41.5 14.5 6.8 0.80 0.85

TM
42K

+ – 1.37 41.9 15.7 6.5 0.81
+ 1.0 1.16 42.4 16.6 6.3 0.77 0.85
+ 3.0 1.10 41.7 14.6 6.7 0.78
+ 10.0 1.29 40.8 14.4 6.6 0.79

TM augmented
86K

– – 2.12 42.8 15.5 6.5 0.78 0.84
+ 1.0 2.15 41.6 14.8 6.6 0.74
+ 3.0 2.19 41.3 14.6 6.7 0.76
+ 10.0 2.25 40.9 15.4 6.8 0.79

TM synthetic
1M

– – 2.90 41.8 16.0 6.6 0.79
+ 1.0 2.55 41.9 15.9 6.7 0.79 0.84
+ 3.0 2.75 41.3 16.1 6.6 0.77
+ 10.0 3.20 40.9 16.2 6.7 0.78

LDDT
42K

– – 3.47 41.3 15.1 6.5 0.83
+ 1.0 3.44 40.3 15.5 6.7 0.84
+ 3.0 3.42 40.8 14.4 6.8 0.81
+ 10.0 3.39 41.9 14.9 6.6 0.79 0.84

pLDDT
1M

– – 3.27 41.8 15.4 6.3 0.85 0.83
+ 1.0 3.28 40.7 14.3 6.5 0.85
+ 3.0 3.25 41.7 17.2 6.5 0.84
+ 10.0 3.24 41.6 16.1 6.6 0.85

LDDT chain
42K

– – 3.69 40.8 15.1 6.7 0.77
+ 1.0 3.57 40.9 15.7 6.6 0.85
+ 3.0 3.63 41.7 15.2 6.9 0.84 0.85
+ 10.0 3.59 41.6 15.2 6.8 0.83

pLDDT chain
1M

– – 3.29 40.5 16.1 6.6 0.81
+ 1.0 3.36 40.8 17.1 6.5 0.88
+ 3.0 3.30 41.0 15.0 6.5 0.85
+ 10.0 3.31 41.8 15.4 6.3 0.87 0.85

pLDDT
balanced 1M – – 2.63 42.1 15.8 6.4 0.75 0.83

pLDDT
balanced 10M – – 2.43 42.0 14.9 7.0 0.76

pLDDT
balanced 60M – – 2.40 42.1 16.5 6.3 0.73

pLDDT chain
balanced 1M – – 2.45 41.1 18.0 6.1 0.75

pLDDT chain
balanced 10M – – 2.24 41.3 17.0 6.7 0.74

pLDDT chain
balanced 60M – – 2.21 41.9 17.5 6.3 0.73 0.83

Table 10: Evaluation results of Protein Infilling task, trained without (top row) and with SC regular-
ization (all other rows). The table combines all the choices for AFDistill pretraining and showing
their validation accuracy, as well as the corresponding performance on the downstream application.
We select the best performance for each experiment based on the highest recovery rate (marked in
bold).
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