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Abstract

Transformer-based large language models
(LLMs) play a vital role in various NLP tasks,
but the internal neurons are rather functioning
in a black box style. In this work, we intro-
duce the Neuron Predictability Lens (NPL), an
analytical framework that focuses on the way
neurons work within feed-forward networks
(FFNs). NPL is useful in understanding and
analyzing transformer-based LLMs. Based on
this framework, we conduct experiments on
LLaMA-2 and GPT-J. Firstly, we show that
neuron activations are predictable and for the
first time we introduce the concept of Neu-
ron Predictability. Secondly, we apply NPL
to both global and local analysis. For global
analysis, we investigate how FFNs contribute to
model behaviors explicitly and implicitly with
the aid of NPL. For local analysis, we explore
the connection between neuron predictability
and neuron interpretability. We examine vari-
ous functional neurons under NPL and uncover
the existence of “background neurons.” With
the findings mentioned above, we demonstrate
the value of NPL as a novel analytical tool and
shed light on its future application on model
efficiency and/or effectiveness for improved
language modeling.

1 Introduction

Large Language Models (LLMs) exhibit human-
level proficiency in completing multiple natural lan-
guage tasks (Vaswani et al., 2017; OpenAl, 2022;
Touvron et al., 2023). However, these models are
often regarded as “black boxes” since how their
inner neuron function is mysterious (Bommasani
et al., 2021). Insufficient understanding of LLMs
hinders further optimization and responsible de-
ployment of such powerful tools. Thus, paving the
way towards a more transparent internal structure
of LLMs becomes increasingly important. Efforts
to understand and analyze LLMs range from global
examinations of model behaviors to local dissec-
tions of specific modules (Luo and Specia, 2024).

From a global view, researchers delve into compre-
hending the model’s output and decision-making
processes, e.g. detect how the activations in FFN
contribute to the logits (Geva et al., 2021). In con-
trast, the local analysis seeks to unravel the myster-
ies of specific modules. For example, neuron inter-
pretability research has dived into the relationship
between individual neurons and specific linguis-
tic tasks or functions (Dai et al., 2022a). Bridging
these two perspectives, our work introduces a novel
concept called Neuron Predictability Lens, which
potentially encapsulates both the broader granular-
ity and the finer granularity of LLM analysis with
the discovery of Neuron Predictability. Figure 1 is
an illustration of the concept.

Neuron Predictability Lens (NPL) is an analyt-
ical framework devised to provide a new perspec-
tive for understanding the behavior of transformer-
based LLMs. NPL is performed through linear
transformation, mapping FFN neurons across dif-
ferent layers. This method provides new insights,
and renews the interpretability of vast concepts for
transformer-based LLMs, such as logits contribu-
tion (i.e. the contribution of specific modules to the
final logits, same hereafter) and neuron activation.

To make it clearer, we use neuron activation to
denote the intermediate representation of the FFN
module. We establish mappings between different
layers and project activations in either a forward
or a backward direction. We need to answer a
natural research question (RQ1): can neuron acti-
vation be predicted? To answer this question, we
train the neuron mappings across possible layer
pairs on LLaMA-2 and GPT-J. Our experiments
demonstrate that neuron activations are indeed pre-
dictably interconnected; the predictability persists
even when transferring to data distribution away
from the training data.

With the feasibility of neuron predictability es-
tablished, we then raise the second research ques-
tion (RQ2): how to use NPL for model analysis?
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Figure 1: Neuron Predictability: The basis of NPL. The
predicted version of neurons in layer j (in orange) can
be extracted from the actual neurons in layer ¢ (in blue),
and vice versa.

We utilize NPL to analyze LLMs in both global
and local ways, unveiling findings in both branches:
(1) In the global analysis, we substitute the pre-
dicted neuron activations for the actual ones and
record the corresponding performance changes.
Through this analysis, explicit and implicit con-
tributions are investigated along with various sub-
stitution strategies. The main experiment reveals
that shallow layers contribute to the final logits
more implicitly while deep layers contribute more
explicitly. The follow-up experiment delves deeper
into the phenomenon and demonstrates that neu-
rons with higher predictability are more crucial to
the model performance. (2) Local analysis is con-
ducted where we explore the relationship between
neuron predictability and neuron interpretability.
Through the lens of neuron predictability, we ex-
amine a variety of “functional” neurons pinpointed
by prior research (Dai et al., 2022a), uncovering
common characteristics among these functionally
specialized neurons. From this analysis, we un-
cover “background neurons” — neurons that are
vital to model performance, easy to predict, but do
not exhibit explicit functional roles.

Overall, our contributions are as follows:

e The NPL framework: we propose and verify
the effectiveness of Neuron Predictability Lens to
analyze transformer-based LLMs;

¢ Findings from the global analysis with NPL:
we find that shallow layers have more implicit log-
its contributions while deep ones have more explicit
contributions; neurons with higher predictability

contribute more to the final logits;

¢ Findings from the local analysis with NPL:
our proposed method measures the predictability
of functional neurons, and uncovers the existence
of “background neurons.”

2 Neuron Predictability Lens

A major LLMs family is implemented based on
transformer-based auto-regressive language mod-
els, which is our primary focus in this paper. Mod-
els are comprised of layers, and each layer contains
two modules: a multi-head self-attention module
(MHSA), and a FFN module. We define the out-
puts of MHSA and FFN of ['” layer as a' and m!'
respectively. Then we have:

hH—l — hl + al + ml’ (1)

where h' denote the input vector of /! layer. Based
on this equation, we can derive the formulation of
the final representation:

L L
h/met =h! 3 al + > ml. 2)
=1 =1

In this work, we focus on the FFN module specif-
ically, which has been proven to bear vast informa-
tion (Suau et al., 2020; Geva et al., 2021, 2022; Dai
et al., 2022a; Wang et al., 2022; Luo and Specia,
2024; Gurnee et al., 2024). The inner structure of
FFN comprises two full-connection feed-forward
layers with the activation function sandwiched be-
tween them. Formally:

FEN (x) = W9 . ¢ (WI : x) , 3)

where o is the activation function, and W/ ¢
Rixdm and WO € R%*4 are learnable weight
matrices. d is the hidden size and dg, is the inter-
mediate dimension of FFN. For simplicity, the bias
terms of linear layers are ignored.

Neurons in FFN NPL is proposed based on the
Neurons in FEN. To elaborate the neurons, we
rewrite Equation 3 as:

dffn

FFN (x) = > [giW9,
=1

g=o0(W! x).

4)
Just like the previous studies (Dai et al., 2022a;
Wang et al., 2022; Zhang et al., 2023), neurons
are defined here as the column vectors WOZ We
denote g as the activation vector, indicating the



activation of neurons. The i*” element of g is the
activation of the i*" neuron.

The Neuron Predictability indicates a mapping
between neurons in different FFN modules. Given
two layers 7 and j, we establish projection M;_,; :
R%m — Rm which projects from the activa-
tion vector g; of layer ¢ to the activation vector
g’ of layer j. From this projection, we could get
g/ = M, ;(g’), where g’ is a predicted item of
real g/. NPL measures how well g7 fits g7. We use
two metrics to evaluate the prediction, the L2 dis-
tance and the Pearson Correlation (Pearson, 1895).
The prediction mapping is implemented by a lin-
ear transformation and is optimized by minimizing
the mean square error (MSE). Below are the corre-
sponding equations.

M;;(g") == Wy, - &' ®)

W

i—J

— argn%nEHW-gi —g/lls (6)

3 Preliminary analysis: predictability of
neuron activations

In this section, we implement NPL in real settings
to answer RQ1. The results prove the existence of
neuron predictability in tested models.

3.1 Experimental setup

We establish mapping M;_,; across every other
layer on LLaMA-2-7b (Touvron et al., 2023) and
GPT-J-6b (Wang and Komatsuzaki, 2021) (Vi, j €
{2k | 2k < L,k € N}; L is the number of layers).
Not all layers are utilized due to constraints by
computational resources. Here, i could be either
smaller than, larger than, or equal to j.

We use the training set of WikiText2 (Merity
et al., 2016) to train the mappings. Since a quick
and consistent convergence emerges while training,
we sample a subset (about 107 tokens) instead of
using the entire dataset in the real process. We
employ Adagrad optimizer (Duchi et al., 2011) and
set the initial learning rate as 0.01. A single epoch
has a batch size of 10* tokens. All experiments are
conducted on one A100.

3.2 Results and analysis

Figure 2 (a, b) is the visualization of NPL imple-
mentation. The figures illustrated the layer-wise
neuron predictability on LLaMA-2-7b and GPT-J-
6b. The predictability is measured by L2 distance.
In the results, the overall L2 distances are around
or less than 0.05, and the largest L2 distance is

(a) MSE on LLaMA-2-7b

(b) MSE on GPT-J-6b
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Figure 2: (a, b) Evaluation of learned neuron mappings
for LLaMA-2 and GPT-J using the MSE score. Ap-
pendix A.1 provides more interpretations of these MSE
results; (c, d) Averaged training curve on LLaMA-2.
M., _,; denotes mapping from any layer to layer j, and
M;_,, denotes mapping layer ¢ to any layer. The L2
distance of random activation is 0.0971 (with a std of
5.154e-6 over five runs) and the cosine similarity is 0.

no more than 0.07. This decent result shows that
neurons demonstrate a predicting relation between
layers, and the phenomenon exists in both mod-
els. Figure 2 (c,d) visualize the training process
of the NPL mappings. The MSE losses decrease
more than 10x when converge, which indicates the
effectiveness of the learned NPL mapping.

The predictability varies among layers. Shallow
layers tend to yield better predictability than deeper
ones regardless of the projecting direction. Simi-
lar results are shown in the averaged training loss
in Figure 2 (c, d), where shallow layers converge
quicker and better in both projecting directions.

Furthermore, we calculate the average L2 dis-
tance for three different cases: 0.037 for shallow-to-
deep prediction (¢ < j), 0.024 for deep-to-shallow
prediction (¢ > j), and 0.020 for self-prediction
(i = j). These results indicate that deep-to-shallow
prediction is more accurate than the reverse, with
self-prediction yielding the best performance. This
means deeper layer FFN activations encapsulate
information from shallower layers, which accounts
for the greater ease of predicting shallower layer
outputs from deeper FFN activations. (In addition
to L2 distance, we also calculate the cosine similar-
ity as the evaluation metric, which gives us similar
results. See in App. B.1)

We conduct a follow-up experiment on cross-



Table 1: Averaged performance of Chunks 1-4
on WikiText-2, Alpaca (Taori et al., 2023), and
XSum (Narayan et al., 2018).

Mapping Substitution WikiText-2 Alpaca XSum
Rand Complete > 200 >200 > 200
A0 Partial 5569 1349 1237
NPL Con.lplete 42.67 12.44  12.16
Partial 38.53 9.76 8.21
Original 33.35 8.63 6.23

domain generalization. Results in Table 1 show
that the NPL framework performs well in different
tasks. We provide more interpretations of the table
below in App.A.2. We also investigate the neu-
ron predictability of different models and context
lengths, which you can see in App. C.

4 Global analysis: analyzing the logits
contribution of predicted neurons

This is our first step to answer RQ2. Through NPL,
we evaluate how the predicted activations affect the
model performance, which both provides a global
LLM analysis and validates the effectiveness of
NPL. Specifically, we substitute the actual neuron
activations with those predicted by the NPL Map-
ping. Given a mapping M;_,; where the activation
of layer 7 serves as the stimulus for predicting the
response in layer j, we substitute the authentic ac-
tivations in layer j with the predicted ones.

4.1 Experimental setup

Recalling Equation 2, due to the existence of
residual connection, the final representation of the
model h/™? can be viewed as a summation of the
outputs from the FFN and MHSA modules of each
layer. This final representation is normalized and
projected to the “logits” over vocabulary via the lan-
guage modeling head. We refer to the FFN output
m’ as the explicit contribution from the F'F'N' to
the logits as m' is explicitly added to the final out-
put h/™@ There is also an implicit contribution
from FFN'!, as deeper layer representations are
computed based on the outputs of those shallower
layers. Therefore, m' also contributes to h/"%
implicitly by involving the computation of all its
subsequent layers.

In this section, we conduct substitution experi-
ments to study how the predicted neuron activations
affect the explicit and implicit contributions. Fig-
ure 3 is the visualization of the two settings. As

forward propagation proceeds from shallow layers
to deep ones, we only consider the mapping M;_, ;,
i.e. when ¢ < j (if not specified, we set? = j — 1
in the rest of the paper).

We split all layers into four chunks and enumer-
ate them from shallow to deep. In each trial, we
substitute neuron activations of one chunk of lay-
ers. For each setting, the following three types of
mappings are compared with NPL Mapping.

e Random Mapping substitutes actual activa-
tions with activations obtained through a random-
ized mapping. In the random mapping, we run the
evaluation 5 times and compute the average.

e Zero Mapping zero-outs actual activations.

e Identical Mapping substitutes actual activa-
tions with activations from its previous layer.

4.2 Results and analysis

Table 2 presents the results extracted in various
substitution settings in LLaMA-2 and GPT-J. The
NPL Mapping exerts the most negligible impact
on the logits, corroborating that neuron predictabil-
ity indeed captures information intrinsically linked
to the model’s capabilities. In contrast, the Ran-
dom Mapping and Zero Mapping either introduce
meaningless noise or remove the activations within
certain chunks, both resulting in a substantial per-
turbation of the logits.

There is a strong correlation between the depth
of substituted layers and the resultant effect. Sub-
stituting activations within the two middle chunks
causes a relatively minor impact on the final log-
its, whereas substitution at either the bottom or top
chunks introduces a more pronounced effect. Ad-
ditionally, our findings indicate that this correlative
relationship manifests differentially when assess-
ing explicit versus implicit contributions.

Here is a bulleted list of our findings:

* Only FFN in deep layers (Chunk 4) exhibit
a significant explicit contribution to the log-
its. Conversely, substituting the activations
in the shallow layers, particularly layers in
Chunk 1, demonstrate an almost negligible
explicit contribution to the logits regardless of
the substitution setting.

* The trend is reversed for implicit contribu-
tions. FFN in shallow layers (Chunk 1) con-
tribute more implicitly than those in deep
layers (Chunk 4). Since the shallow layers
play foundational roles and influence all the
subsequent computations, this phenomenon
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Figure 3: An illustration of the substitution settings in the global analysis: (a) Complete Substitution where both
explicit and implicit contributions are substituted, (b) Partial Substitution where only implicit contribution is

substituted.

Table 2: Perplexities of various settings. The perplexity of LLAMA-2 and GPT-J without substitution is 33.08 and
26.58, respectively. We calculate the sentence-level perplexity upon sentences with varied length. We also provide

full results on Alpaca and XSum in App. B.3.

Settings LLaMA-2 GPT-J

Mapping Substitution Chunk 1 Chunk2 Chunk3 Chunk4 Chunk1 Chunk2 Chunk3 Chunk4
Rond Complete > 1000 4754 5449 5582  >1000 403.02 4523  580.48
anaom - portial 33.98 3337 4252 11289 2509 2777  53.09  282.60
o Complete > 1000 4356 5007  55.14  >1000 38330 4388  557.31
ero Partial 3333 3340 4234 10947 2498 2738 4932  286.14
tdenicq COMPIEte  >1000 5896 6519 6235  >1000 9499 4120 24634
4% Partial 3483 3356 4359 11407 2421 2748 5872 231.28
NPL Complete 4723 3778 3851 4717 24776 5873 3492 46.82
Partial 3341 3354 3749 4966  23.64 2460 3201 5030

is explainable. Thus, if these layers are com-
promised, the ability of the model would be
severely impaired. On implicit contribution,
NPL Mapping shows an evident advantage
over other substitution strategies, again sug-
gesting that NPL captures anticipated mean-
ingful semantic information to some extent.

* Another intriguing finding is that in Chunk
4, complete substitution outperforms partial
substitution in all mappings for LLaMA-2 and
in NPL Mapping for GPT-J. This counterintu-
itive phenomenon suggests that in deep lay-
ers, the presence of a “fake” explicit contri-
bution appears to elicit a negative effect on
the actual implicit contribution.

4.3 Finer-grained neuron substitution

In this part, we further investigate the performance
of neurons with different predictability. This time,
for each layer in one chunk, more/less predictable
neurons are substituted by different strategies. Two
distinct metrics are utilized to guide our selection:
the L2 distance and the Pearson correlation. Fig-
ure 4 shows the results of the experiment.

Results Figure 4 shows both the effectiveness of
the prediction and the relationship between neuron

predictability and model performance. The substi-
tution of either more or less predictable neurons ex-
tracts a similar performance to the actual as shown
in (al) and (a2). Comparing (b1) with (b2), we
find that preserving the information of 50% more
predictable neurons is sufficient for maintaining
acceptable performance, even if the remaining neu-
rons are masked. Also, there is a strong relationship
between predictability and perplexity as shown in
(b) and (c). Neurons being easier to predict tend to
be more important to the model performance.

Insights The experiment leads to several findings:
(1) The predicted neuron activations are effective
in retaining model performances. (2) Neurons with
higher predictability are more important for the
model performance. (3) The correlation between
neuron predictability and the importance of the
neuron implies that NPL Mapping is not random
but rather related to neurons’ intrinsic properties.

4.4 Interim summary

With NPL, the above global analysis delves into
LLMs’ inner structures by detecting correspond-
ing contributions to the model’s logits. Apart from
the analysis itself, this section validates the effec-
tiveness of the NPL framework as the neuron pre-



perplexity

w B
o o
L

I (al) top 50% predicted; bottom 50% actual
(a2) top 50% actual; bottom 50% predicted
(b1) top 50% predicted; bottom 50% zero
(b2) top 50% zero; bottom 50% predicted

I (c1) top 50% actual; bottom 50% random
(c2) top 50% random; bottom 50% actual
(d1) top 50% random; bottom 50% zero

L2 Distance

Pearson Correlation

(d2) top 50% zero; bottom 50% random
—— 100% actual
--- 100% predicted

Figure 4: Comparison of perplexities for different neuron substitution strategies. We categorize all neurons into
two groups based on two metrics and then implement substitution strategies. For instance, (b1) top 50% predicted;
bottom 50% zero indicates that the 50% more predictable neurons under the chosen metric are replaced with
predicted activations, while the rest are set to zero. Here we report the averaged results of all chunks.

dictability indeed captures information relevant to
model capability instead of learning irrelevant fea-
tures.

5 Local analysis: analyzing the
predictability of functional neurons

This section demonstrates how the NPL framework
could adapt to the local LLMs analysis and steps
further to answer RQ2. We classify neurons accord-
ing to their specialties and detect the predictabil-
ity of functional neurons. Following the previous
works, we use the term “functional neuron” to de-
note neurons whose activation patterns correlate
to a specific function, such as token identification,
position encoding, knowledge storing, etc. (Gurnee
et al., 2024; Voita et al., 2023; Dai et al., 2022b).
We conduct further analysis on functional neurons
and examine their characteristics under NPL. To
this end, we first locate functional neurons, and
then evaluate their predictability. We follow the
procedure of Gurnee et al. (2024) to locate these
neurons. For a given neuron ¢ in layer [, we com-
pute:
(1= B)o* (8'LIP () + o (18': P (x))
o*([g'}:) ’
(O]
where P represents the property function that de-
termines whether the input token x exhibits the
specific functionality, and f is the proportion of
tokens that possess this functionality. The resulting
ué’; serves as the importance score of neuron 7 in
layer [ concerning functionality P. Neurons with
the functionality are those extracting higher ,ué’;’ .
Afterward, we compute the mean difficulty score
S%; of predicting those neurons:

1 .
Sp=rcr 2. 8 ®)

N iEN

. P
where Nb = {i|ul > 0p} is the subset of filtered
neurons and s is the difficulty score of predict-

ing neuron ¢ in layer [. This difficulty score is

1i
pp =1-—

measured by L2 distance. A lower 553 indicates
an easier prediction of neurons with property P,
which means they have higher predictability. For
comparison, we also compute the difficulty score
on all evaluation data and on a random subset of
tokens as shown in Fig. 5 (a). The series of exper-
iments shows the predictability of the functional
neurons. The presence of the specific functionality
is considered a sufficient condition for high activa-
tion. In each following section, we examine one
specific kind of functional neuron. All results in
this section are with complete substitution.

5.1 N-gram-sensitive neurons P, .o,

Some neurons are found to activate exclusively
when specified n-grams are present in the input,
as a result, they are named as “n-gram detecting”
neurons (Voita et al., 2023).

We examine n-grams with n ranging from 1 to
3, conduct a comprehensive analysis of all n-grams
presented within the test corpus, filter out meaning-
less ones, and select the 1,000 most frequent ones
for each n for further investigation. As shown in
Fig. 5 (b), there is a clear distinction between the
predictability of n-gram sensitive neurons and the
random baseline across most of the layers. Differ-
ent n extract similar difficulty scores. This means
n-gram sensitive neurons are difficult to predict
regardless of the choice of n. This result shows the
consistent feature of predictability of the n-gram
sensitive neurons.

5.2 Difficulty-sensitive neurons P,

Neuron prediction could be easily associated with
token prediction, which leads our investigation to-
ward difficulty-sensitive neurons. We found that
the activations of certain neurons are correlated
with the performance of the causal language mod-
eling objective. Tokens that are hard to predict,
manifesting in high cross-entropy loss (denoted as



hard tokens), tend to activate specific neurons. Sim-
ilarly, there are the easy tokens which are activated
in response to tokens that are easy to predict.

We filter the tokens based on their cross-entropy
loss, and then get the hard and easy tokens. As
depicted in Fig. 5 (c), difficulty-sensitive neurons
exhibit significantly higher scores than the random
baseline for all the conditions, which means they
are harder to predict. Furthermore, it is observ-
able that the neurons corresponding to hard tokens
exhibits greater difficulty when being predicted.

The identification of difficulty-sensitive neurons
is intriguing. These functional neurons are harder
to predict, and those responding to hard tokens are
even harder to predict. As hard tokens represent
greater challenges for the model, their informa-
tion flow within the model would be complicated,
making their prediction more difficult. We also
examined the hardest and easiest 10000 tokens in
the same experiment (See App. B.4).

5.3 Position-sensitive neurons P,

Another branch of neurons is those associated with
positional information, which activates in response
to the position rather than the token or its context.
Inspired by Voita et al. (2023), we hypothesize that
positional neurons can work in teams and collec-
tively respond to various positional patterns. Based
on this hypothesis, we explored two types of po-
sitional pattern: (1) the arbitrary pattern includes
a randomly-sampled subset of all positions; (2)
the successive pattern includes a fixed-length span
of consecutive positions. We clip the maximum
input length to 1024 and examine positions rang-
ing from 1 to 1024. As illustrated in Figure 5 (d),
only the scores of successive patterns exhibit sig-
nificant deviations from the random baseline. This
means there are neurons with the special function
of successive-position detection, and their activa-
tions are hard to predict. Results of another posi-
tional pattern are shown in Appendix B.5.

5.4 “Background” neurons

In the above examination, all neurons associated
with specific functionalities exhibit high difficulty
scores, indicating that they are hard to predict. Con-
versely, we are also interested in those more pre-
dictable neurons. To this end, we set the random
baseline as a threshold of the difficulty score and
get those neurons with higher predictability. As
depicted in Figure 5 (e), a substantial proportion
of neurons (ranging from 40% to 80%) fall into

this category. Appendix B.6 provides perplexities
after replacing the background neurons and the
layer-wise statistics of background neurons. This
suggests that a majority of the neurons within FFNs
are relatively easy to predict. The precise function
of these neurons is challenging to define, but their
critical importance is evident based on the results
after masking them out.

The masking experiment is conducted in the
same setting described in Section 4 and the results
are averaged over four chunks. The perplexity af-
ter masking those background neurons is 170.80.
Compared with the original perplexity of 33.08, the
performance decays significantly after masking the
background neurons. Masking the same amount
of random neurons causes less severe degradation
and extracts a perplexity of 55.53. The mysteri-
ous nature of background neurons shows that a
considerable proportion of neurons contribute to
model behavior while “working in the dark.” This
prompts us to rethink how we credit the success of
the model’s performance.

5.5 Interim summary

In this section, a variety of functional neurons are
examined through NPL. Functional neurons tend
to have a consistent feature of lower predictabil-
ity. Besides, a large number of neurons have high
predictability, and do not have defined functional
roles, but are vital for model performance. Thus,
we name them as the “background neurons.” We
also examined outlier neurons in Appendix B.7.

6 Discussions and implications

The above analysis reveals NPL as an effective
analytical tool for LLMs. Here, we discuss the
following applications and implications.

First, NPL would help inference acceleration
by short-cutting transformers. Previous research
has investigated inference acceleration by establish-
ing linear shortcuts across transformer blocks (Din
et al., 2023). NPL bears a resemblance to these
efforts by predicting the neuron activations in FFN
without significant performance drop, suggesting
the potential of NPL as a promising avenue for by-
passing the complicated computations of vanilla
transformers.

Second, NPL can uncover causal relationships
between neuron activations across different layers.
For instance, if a later-layer neuron’s activation is
precisely predictable from early-layer neuron ac-
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Figure 5: Results of functional neuron experiments in LLaMA-2. (a-d) shows the difficulty score for predicting the
neurons. All values pass the significant test with p < 0.001. Please note that the scale of the y-axis is logarithmic.
The numerical results are shown in App. B.2; (e) shows the percentage of background neurons across layers.

tivations, we can infer causal links between these
neurons. By integrating NPL with existing circuit
discovery techniques, we can enhance the mecha-
nism analysis of LLMs.

Third, NPL encourages us to rethink the role of
FFN. Some researchers posit FFN functions as key-
value memories (Geva et al., 2021), while others
suggest it projects hidden representations onto a
distribution over the output vocabulary, thus am-
plifying the predicted probability of some words
while diminishing that of others (Geva et al., 2022;
Belrose et al., 2023; Katz and Belinkov, 2023). Our
investigation reveals these arguments to be incom-
plete. FFNs at various depths play diverse roles,
and even within the same layer, individual neurons
exhibit varied behaviors.

7 Related work

Though the proposal of NPL is initial, its implemen-
tations are built on previous research. As analyzing
transformers has attracted much attention in recent
years, researchers have delved into this intricate
structure with multiple methods. Following Luo
and Specia (2024), we roughly categorize trans-
former analysis into two streams: local analysis,
which delves into the intricacies of individual trans-
former components, and global analysis, which
seeks a holistic understanding of the behaviors and
capabilities of the model.

Among local analysis, Dai et al. (2022a) shed
light on the storage of knowledge within model
parameters by identifying specific “knowledge neu-
rons.” Similarly, Voita et al. (2023) uncover a range
of functional neurons characterized by regular acti-
vation patterns. They target individual neurons and
experiment on their functionalities. Global analy-
sis encompasses a variety of approaches, including
probing techniques (Rogers et al., 2020; Petroni
et al., 2019; Li et al., 2023), mechanistic inter-
pretability (Elhage et al., 2021; Wang et al., 2023),
and more. Among these, the “Vocabulary lens,”

which projects weights and activations onto the vo-
cabulary space, is a trending analytical tool (Geva
et al., 2021). This lens allows researchers to ex-
plore how different modules and inputs contribute
to model performance(Belrose et al., 2023; Ram
et al., 2023; Geva et al., 2023). Another direc-
tion is to analyze transformers through simple map-
pings between modules. For example, Dar et al.
(2023) learn to project parameters into a shared
embedding space, while Din et al. (2023) explore
linear shortcuts between layers, which bears con-
ceptual relevance to our approach. Different from
previous studies, our introduction of the neuron
predictability lens encompasses both the local and
global facets of transformer analysis.

8 Conclusion

In this work, we discover the predictability of neu-
ron activations and present the Neuron Predictabil-
ity Lens (NPL) as a powerful analytical framework
for examining transformer-based LLMs.

Through extensive experiments, the predictabil-
ity of neuron activations has been demonstrated
and significant insights have been uncovered into
the contributions of different layers to the final log-
its. The global analysis highlights the distinct roles
of shallow and deep layers, while the local analy-
sis in this paper sheds light on the existence and
importance of “background neurons” in LLMs.

The contribution of our NPL framework in ana-
lyzing LLMs is unique. Moving beyond traditional
approaches, we offer a new perspective for this re-
search line. The NPL framework has the potential
to uncover the predictable relations within the LLM
models, providing a new lens for LLM studies.
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ing mean-squared error of all neurons in the
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Then we evaluate the effectiveness of the above
hypotheses. We calculate the neuron-wise Relative
Squared Error (RSE) for comparison.

We conduct substitution experiments to see how
these metrics fit the model performance. Specifi-
cally, we filter top/bottom neurons with metrics and
then substitute them with zero/predicted activation.
The perplexity scores are shown in Table 3.

From the experiment, we can infer that (a) hy-
pothesis A is correct because there exists a sig-
nificant difference between the performance of
high/low MSE/RSE neurons; (b) hypothesis B
is wrong because neuron-wise MSE aligns better
with the performance than RSE.

Then, why do magnitude-invariant metrics fail
to evaluate predictability?

Magnitude-invariant metrics normalize the dif-
ference between predicted values and the actual
ones so that large and small values can have a "fair"
comparison. For example, for two variables x , y
we have Z4ctua; = [100, 120] , Zpredict = [90, 125]
s Yactual = [0.1,0.12] , Ypredict = [0.09,0.125].
The two variables have the same RSE. Behind these
metrics, there lies a presupposed assumption: large
values can tolerate larger deviations while small
values bear less.

The predictability is not suitable to be mea-
sured with magnitude-invariant metrics because the
neuron activation does not follow the assumption.
There is no evident correlation between the mag-
nitude of neuron activation and robustness against
deviations. Thus, a small RSE does not guarantee a
better approximation in terms of performance. This
means our evaluation with MSE is effective when
detecting the predictability.

A.2 Cross-domain generalization of NPL

To demonstrate that NPL Mapping does not just
imitate the distribution of the training data, we eval-
uate its cross-domain generalization ability. The
experimental setting is the same as Section 4. As
shown in Table 1, while trained on Wikitext, NPL
Mapping successfully generalizes to other data dis-
tributions by outperforming Random Mapping and
closely approximating the performance of real ac-
tivations. These results suggest that NPL is not
limited to the specificities of the training data but
rather captures broader, more universal patterns
that are applicable even in contexts that diverge
from the original training domain or language.
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A.3 Limitations of our work

Since NPL is a newly proposed analytical frame-
work, more applications are to be explored. Our
work is an initial attempt to analyze transformers
with NPL, and even at this early stage, we have
already uncovered interesting insights. Due to
space limitations, some experimental results are not
fully elaborated. We include them in the appendix.
Moreover, we use linear mapping to implement the
NPL framework, while other kinds of mappings
could also be explored, though this would likely
incur additional computational overhead. Future
research may explore other mappings to further
leverage the potential of NPL.

B Additional results

B.1 Result of cosine distance as a metric

We add cosine distance as the additional metric,
which is consistent with L2 distance, indicating the
effectiveness of neuron predictability.

B.2 Numerical results on functional neurons

Table ?? includes the numerical results in different
experimental settings. Note that all values pass the
significance test with p < 0.001.

We calculate the following results: (a) the aver-
aged result of N-gram sensitive neurons, (b) the re-
sults on easy/hard tokens of the Difficulty Sensitive
neurons, (c) the results of the successive pattern for
the Position Sensitive neurons, and (d) the results
of the random setting.

B.3 Additional results of the substitution
experiment in Section 4

Full results for the substitution experiment on Al-
paca and XSum are shown in Table 5.

B.4 Additional details on difficulty-sensitive
neurons

We extract results from four settings in the experi-
ment. As shown in Figure 7 (a), neurons respond-
ing to: 1) the hardest 5000 tokens, 2) the easiest
5000 tokens, 3) the hardest 10000 tokens, and 4)
the easiest 10000 tokens are in detection. The first
two conditions are elaborated in Sec. 5.2. All dif-
ficulty scores are higher than the random baseline.
When we scale up target tokens, the difficulty score
fluctuates across layers. The predictability asso-
ciated with neurons corresponding to hard tokens
exhibits greater fluctuations. This suggests LLMs



Table 3: Perplexity scores of the substitution experiments for MSE interpretation.

Top 1000 Bottom 1000
Metrics Mean PPL. (Zero) PPL. (Predicted) Mean PPL.(Zero) PPL. (Predicted)
Tensor-Wise MSE — — — — — —
Neuron-Wise MSE  0.0073 171.7 33.88 0.0016 >1000 36.25
Neuron-Wise RSE  0.6719 >1000 41.36 1.1094 2104 35.28
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Figure 6: L2 distance, cosine similarity, and representational similarity analysis (RSA) of layer prediction in
LLaMA-2. For RSA analysis, we use Centered Kernel Alignment (CKA) for evaluation. The black dashed lines in
RSA plots represent the RSA distance of the random noise.

Table 4: Numerical results on functional neurons

N-gram (average)

Difficulty (easy)

Difficulty (hard) Position (successive) Random

Averaged Predictability 0.024

0.025

0.095 0.037 0.012

possess a form of self-awareness regarding the con-
fidence in predicting the next tokens. By probing
its internal representations, we can uncover such
“mental states” of LLMs without external signals.

B.5 Additional details on position-sensitive
neurons

In the real settings, we explored three types of po-
sitional patterns: (1) the arbitrary pattern includes
a randomly-sampled subset of all positions; (2)
the successive pattern includes a fixed-length span
of consecutive positions; (3) the oscillatory pat-
tern includes selected positions at regular intervals.
The oscillatory pattern shows a slight difference
from the random baseline, which means they do
not present a lower predictability in our experiment.
Results are shown in Fig. 7 (b).

To be mentioned, Voita et al. (2023) has uncov-
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ered the oscillatory positional neurons. However,
their definition of “FFN neurons” is different from
the “neurons” in our work. Thus, though there is no
difference between the predictability of oscillatory
positional neurons and the random baseline, this
could not demonstrate the predictability feature of
the former discovered neurons.

B.6 Additional details on background neurons

We replace the activation of background neurons
with zero/mean/noise. The conclusion is that all
three ablations hurt the performance badly. We
represent the results as follows:

From these results, we can conclude that back-
ground neurons are not just for adjusting norms.
There is rich information hiding behind them,
which requires further investigation.

Figure 8 shows that background neurons are eas-



Table 5: Full results for the substitution experiment on Alpaca and XSum.

Mapping Substitution Chunk 1 Chunk?2 Chunk3 Chunk4

Alpaca

Rand Complete > 1000 11.98 11.44 12.12

andom - partial 9.16 8.78 1038 25.62

NPL Complete 17.68 10.37 10.27 11.44
Partial 8.67 8.83 9.63 11.91

XSum

Random Complete > 1000 10.38 11.56 13.47
Partial 6.94 6.68 9.08 26.78

NPL Complete 19.57 8.45 9.57 11.06
Partial 6.63 6.67 8.30 11.25

(a) Difficulty-sensitive
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Figure 7: Full results on difficulty-sensitive neurons and position-sensitive neurons.

Random

153.34

Mean

145.21

Zero

170.80

Original
33.08

ier to predict (with lower L2 distance) and have a
large quantity (painted with yellow).

B.7 Additional details on outlier neurons

Outlier phenomenon has been observed across vari-
ous LLMs (Puccetti et al., 2022). This phenomenon
refers to the persistent emergence of extreme values
within the models’ activations and weights which,
though comprising less than 0.1% of the values, can
exceed the magnitude of other values by several
hundredfold and are thus termed “outliers”.

For LLaMA-2-7b, we find the 7890-th neuron of
layer 2 (shorted as L2.7890) to be an outlier. We
observe that the occurrence of outliers is associated
with meaningless tokens, such as <S0S>, <UNK>.
As for neuron predictability, outlier neurons are
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extremely hard to predict.

C Additional experiments

C.1 Cross-model neuron predictability

Neuron mapping can be established not only within
a single but also across different models. To vali-
date this, we conduct experiments applying NPL
between the LLaMA-2-7b and LLaMA-2-13b mod-
els. Figure 9 shows that the neuron mapping across
models is learnable. Our observations reveal a
strong correlation between the layers of the two
models, with the most effective mappings estab-
lishing when layers of similar depth are used to
predict each other. Additionally, based on the L2
distance metric, we have noted that shallower lay-
ers tend to be more predictable than their deeper
counterparts, a similar phenomenon observed in
single-model experiments.
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Figure 8: Statistics of background neurons in layer 2, 10, 18, 28 in LLaMA-2-7b.

C.2 Context length affects neuron
predictability

We investigate scenarios where tokens are exposed
only to a constrained segment of the preceding con-
text. To achieve this, we employ a context window,
denoted by w, to limit the range of context accessi-
ble to each token. Subsequently, we train multiple
NPL mappings for various w values and visualize
the differences. As shown in Figure 10, a larger
w extends the context scope and also results in in-
creased predictability for neurons in shallower lay-
ers, while simultaneously decreasing predictability
in deeper layers. We hypothesize that an extended
context provides the NPL with more comprehen-
sive information, aiding in the accurate prediction
of neuron activations in shallow layers. Contrast-
ingly, the semantics in deeper layers may become
too complex to be captured by the NPL.
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Figure 9: NPL between LLaMA-2-7b and LLaMA-2-13b.
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Figure 10: L2-distance difference of NPL mappings on LLaMA-2-7b under the settings of different window sizes w.
The window sizes selected for this analysis include w € {3,7, 15, 30, 60, 120}.
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