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Abstract

The physical processes of stars are encoded in their periodic pulsations. Millions of
variable stars will be observed by the upcoming Vera Rubin Observatory’s Legacy
Survey of Space and Time. Here, we present a convolutional autoencoder-based
pipeline as an automatic approach to search for anomalous periodic variables within
The Zwicky Transient Facility Catalog of Periodic Variable Stars (ZTF CPVS). We
encode their light curves using a convolutional autoencoder, and we use an isolation
forest to sort each periodic variable star by an anomaly score with the latent space.
Our overall most anomalous events share some similarities: they are mostly highly
variable and irregular evolved stars. An exploration of multiwavelength data
suggests that they are most likely Red Giant or Asymptotic Giant Branch stars
concentrated in the disk of the Milky Way. Furthermore, we use the learned latent
feature for the classification of periodic variables through a hierarchical random
forest. This novel semi-supervised approach allows astronomers to identify the
most anomalous events within a given physical class, accelerating the potential for
scientific discovery.

1 Introduction

Anomaly detection is a vital aspect of making discoveries in astronomy. Examples include the
anomalies in the CMB temperature anisotropies 1], quasi-stellar objects [2] and dark energy [3]. As
deep-sky surveys via modern telescopes continue to exponentially increase our discovery rates of
galactic and extra-galactic transients, researchers are turning towards automated methods of anomaly
detection [4-6].
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Advanced techniques to search for anomalous astrophysical events are essential in the era of upcoming
observatories. In particular, the Legacy Survey of Space and Time (LSST) conducted by the Vera
Rubin Observatory is expected to commence operations in 2024 [7] and is anticipated to observe 40
billion objects within its 10 years of operation [8]]. It is reasonable to expect anomalous periodic
variables stars (PVSs) which defy expectations. Indeed, their discoveries have already been chal-
lenging our understanding of the Galactic metallicity [9], the physics of accretion and mass transfer
[LOL [11], etc. Despite the impact brought by these discoveries, studies on PVSs that utilize machine
learning have only been made on classifications [[12-14]], and deep generative modeling for parameter
estimation [[15]]. While Malanchev et al. [[16] searched for anomalous transient detected with The
Zwicky Transient Facility, they are not specifically aiming for PVSs. Here, we provide an anomaly
detection pipeline to effectively search for peculiar PVSs detected with The Zwicky Transient Facility.
The Zwicky Transient Facility contains numerous publicly available data which serve as a good
training set for big data problems in astronomy which will arise with LSST. We anticipate that our
pipeline can be applied once the observational data from the Vera Rubin Observatory (or other, new
facilities) are made available.

2 Method
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Figure 1: The anomaly detection pipeline: 1. Phase-folding the raw detection data. 2. Interpolation
using the MGPR. 3. Encoding to get latent vectors j and matrix elements o;;. 4. Append log;g7 and
My, to [i. 5. Run the isolation forest and rank the anomalies.

Here we describe our training set and methodology. Our training set consists of the ZTF CPVS
presented in Chen et al. [17]. The ZTF CPVS utilizes the Data Release 2 archive of The Zwicky Tran-
sient Facility [[18] to search for and classify new PVSs down to a r—band magnitude, a measurement
of brightness, of ~ 20.6. They find a total of 781, 602 PVSs, of which 621, 702 are newly discovered.
The data are given in two filters (¢g—band and »—band) which are observed asynchronously. The ZTF
CPVS provides periods, which we use to phase-fold the light curves. To phase-fold a light curve, we
cut the time series into multiple sub-series with a time duration equal to the period and stack these
sub-series on top of each other. Because the data are irregularly sampled by the telescope and taken
in both bands, we choose to interpolate the phase-folded light curves using the multivariate Gaussian
process [MGPR, |19, 5, 20]) with periodic boundary conditions. The MGPR has a mean function
1($, A) and a covariance function K. We set 1(¢, A\) = 0, where ¢ is the temporal phase and X is a
wavelength in scaled units. We choose the following covariance function:
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Here, i7" = (5, X) is a high dimensional position vector, while [, and [ measure the correlation along
the phase and wavelength direction respectively, C' is a constant, and § measures the white noise
level of the raw data. After fitting the kernel function, we generate 160 evenly spaced data points
along with the phase direction for both g— and r—bands. Following the approach of Villar et al.



[21] and Villar et al. [6], we stack both of them horizontally to form an ‘image’ of size 2 x 160.
The ‘images’ will be encoded through the convolutional variational autoencoder [C-VAE, [22] with a
LeNet structure[23]]. We select 730, 184 of data and split them into a train to validation to test ratio
of 7 : 2 : 1. The architecture of the encoder is described as follows:

1. Input layer of size 2 x 160

2. 3 Convolutional layers with the ReLu activation with Dropout
3. Dense layer with 256 neurons, Linear Activation

4. Latent space of size 2 x 10

The filter size of the convolutional layer increases from 32 — 64 — 128, and the dropout fraction is
set to 0.1. Given the variational nature of the autoencoder, the bottleneck latent space is described by
a mean vector /I and the diagonal covariance matrix o;;. Inspired by the work of Zhang and Bloom
[13], we apply periodic padding to the ‘images’ during the convolution to enforce periodic boundary
conditions. Our decoder is the symmetric counterpart of the encoder; however, no periodic padding
and no dropout are applied. We train with early stopping with an epoch of 895, which takes roughly
6 hours running on the NVIDIA RTX2080-Ti GPU.

Once trained, we next use an isolation forest to rank each periodic variable star by its anomaly score.
The isolation forest works by building an ensemble of binary trees, which work to isolate samples
of the population. The anomalies are identified as requiring few trees to isolate the event [24]. In
this work, we focus on events with the top 100 most anomalous scores. We use the latent vectors
i1, the log of period logig7, and the difference between the average g— and r—band magnitude
(mgr := (mg) — (m,)) as input features of the isolation forest [25]. We note that the period and
magnitudes are explicitly included because this information is lost in the pre-processing used to train
our autoencoder; however, we believe that they will be valuable in filtering out anomalies. We use
the isolation forest implemented in the scikit-learn package with based estimators of 100, 00
The use of the isolation forest is inspired by its simplicity and robustness. We noticed that there are
detection scores specialized for deep-generative networks, such as the Mahalanobis confidence score
[26529], which computes distances between data points to a distribution (assumed Gaussian). It is
not applicable in our case, because we have appended extra variables into our feature space in which
they are not necessary Gaussian. Furthermore, we are ultimately interested in the relative rankings
but not the absolute scores of the anomalies. A simple yet robust isolation forest should meet our
expectations. We remark that reconstruction scores are also widely used as indicators for anomalies
[30} 311, but our empirical findings suggest that they perform roughly similar to the isolation forest.
Finally, we encourage readers to refer to Figure[I]as a review of our pipeline.

We additionally use our learned latent space to classiny] the ZTF CPVS by their physical origin.
We note that the ZTF CPVS provides class labels for PVSs, but the classifications are based on
hand-engineered features only. Here we provide an alternative classification method that makes use
of a hierarchical random forest classifier. We extracted events labels from the SIMBAD catalog [32]
by cross-matching (using the python package Astroquery [33]) their sky-coordinates with those
listed in the ZTF CPVS. The SIMBAD catalog contains class labels obtained, typically, through
spectroscopic analysis, which is more reliable but often expensive. We found 31, 541 of successfully
cross-matched objects. We then construct 13 classes in 2 levels. The first level includes Active
Galactic Nuclei-like (AGNL), Cepheid (CEP), Eclipsing Binaries (EB), Long-Period Variables (LPV),
Mira variables (Mira), other Pulsating Variables (Pul.1,), RR Lyrae (RR), and Peculiar Variables
(Pec). The second level is further classifications of the Pec type, and it includes Carbon stars (C-
Type), Horizontal Branch stars (HB), Red Giant Branch stars (RGB), S-Type stars (S-Type), Young
Stellar Object-like (YSOL), and Other Variables (V). They will be serving as the data set of
our classification model. We split the data set into a training-to-test set ratio of 7 : 3 by using the
python package scikit-learn [34]. We note that our training set is highly imbalanced, with the
largest set containing 10, 745 events and the smallest containing just 41 events. We balanced the
training set using the python package imbalanced-learn [35] with default learning parameters,
which performs synthetic minority resampling [36} 35]. Finally, we train the hierarchical random
forest classifier provided by imbalanced-1learn, with no hyperparameter tuning performed.

"We found such value to be sufficient to yield converged scores.
*In addition to the latent space, we also append hand-engineered features, including the joint period, and the
amplitude and mean magnitudes of both the g- and r- band light curves.



3 Results and Discussion
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Figure 2: (a), (b), and (c) Examples of the latent distributions for different PVSs labeled by distinct
colors. Anomalies are marked as dark-crosses.
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Figure 3: (a) Distribution of the top 100 anomalous events on the Gaia HR diagram (a common
feature space in astronomy) against the main-sequence stars in black dots. Data are taken from
Lindegren et al. [37], Bailer-Jones et al. [38]], and Gaia Collaboration et al. [39], through the Vizier
Catalogue [40] by Astroquery [33]. (b) Same as (a), but for their distributions in the Milky Way
galactic coordinates.

We find that our latent space exhibit an annular structure, which inspires us to transform the latent
vector into an N-dimensional spherical coordinate. We run our isolation forest on both sets of
coordinates and compare results, selecting the top 100 most anomalous events in both cases. Our
anomaly detection algorithm is seemingly sensitive to the irregular oscillating which consists of
several dominant Fourier modes. In general, these anomalous events are both multi-modal and highly
irregular, with some examples exhibiting larger fluctuations that span over several magnitudes. Some
of the anomalies also show weak or even anti-correlation between the g— and r— band light curves,
suggesting significant temperature variations within the pulsations.

To better understand the nature of the selected anomalies, we extracted Gaia [39]] G-band absolute
magnitudes Mg, and the difference between the Gaia B-band and R-band absolute magnitudes
Gpp — Grp for the top 100 anomalies in both latent spaces. We plot their distribution in Figure
B (a). We note that this is a common diagnostic phase space, which roughly correlates with the
temperature and luminosity of the stars. The majority of the anomalies are cool, with Ggp — Grp > 4

0o

and luminous with 0 < Mg < 2.5. These properties correspond to evolved, luminous, and cold stars.

Furthermore, we show the distribution of the top anomalies in the Milky Way galactic coordinates in
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Figure 4: (a) Confusion matrix for the first level classification labels of the test set. We show in each
row the completeness of each class. (b) Same as (a), but for the second level classification labels.

Figure 3] (b). The majority of the anomalies concentrate in the Milky Way galactic disk, implying that
(1) there is significant interstellar reddening due to the dust for these events and (2) the progenitor
systems of these events are consistent with young and massive stars. Taken together, the observational
evidence points to highly anomalous, young, cool, and massive Red Giant or Asymptotic Giant
Branch stars. Spectroscopic follow-up observations and detailed light curve modeling is essential in
fully understanding the anomalies detected in our data-driven pipeline; however, we note that these
anomalies were discovered with limited survey observations. Similar techniques will be invaluable
for future missions.

Finally, we highlight the classification results from our hierarchical classifier in Figure 4] (a) and
(b). We classify for substantially more classes with our newly developed method. For example, we
find that 97.9% of the AGNL objects (objects associated with supermassive black holes in other
galaxies) are labeled as semi-regular galactic variable stars in previous studies. We hope that a closer
investigation of these labels can lead to improved purity in the ZTF CPVS. We note that we do not
use the same class labels as the original ZTF CPVS, making it difficult to directly use the ZTF CPVS
as a baseline model. A detailed comparison between classification methods will be left to the future.
Nonetheless, we find that the new classification model for the ZTF CPVS that uses our learned latent
space is reasonably accurate. Last but not least, we plot the latent distribution using our new labels in
Figure 2] to show the robustness of our autoencoder in differentiating objects that belongs to different
categories.

4 Conclusion

We present a convolutional autoencoder-based pipeline as an automatic yet robust approach to (1)
search for anomalous PVSs within a sea of data. (2) create a new classification model for PVS. Our
pipeline can be applied to PVS data obtained from deep-sky surveys in the future. Last but not least,
our pipeline generates a list of anomalous PVSs. Detailed spectroscopic follow-up is essential to
reveal their true identity and how they fit into our current understanding of late-stage stellar processes.

Astrophysical big data has become a rapidly growing field in recent years. We anticipate our
method can contribute to the community, such as detecting other kinds of anomalous periodic/non-
periodic transients or better classifying different categories of astronomical objects. Furthermore, our
unsupervised learning pipeline can make use of supervised object labels to look for categorical-wise
anomalies, which could potentially help better understand the diversities within classes and improve
the labeling and classifications of stellar objects. Techniques similar to those presented here can be
used in broader applications to identify anomalies in periodic/non-periodic, multi-variate time series.
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