# GEOMETRIC CONSTRAINTS AS GENERAL INTERFACES FOR ROBOT MANIPULATION

**Anonymous authors** 

000

001

002003004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

031

033

034

037

038

040

041

042 043

044

046

047

048

051

052

Paper under double-blind review

#### **ABSTRACT**

We present GeoManip, a framework to enable generalist robots to leverage essential geometric constraints derived from object-part relations for robot manipulation. For example, cutting a carrot typically requires the knife's blade to be perpendicular to the carrot's medial axis. By capturing geometric constraints through symbolic language representations and translating them into low-level actions, GeoManip bridges the gap between natural language and robotic execution, boosting the generalizability across diverse, even unseen tasks, objects, and scenarios. Beyond vision-language-action models that require extensive training, GeoManip operates training-free by leveraging large foundational models: a constraint generator to predict stage-specific geometric constraints and a geometry parser to locate the involved object parts. A solver then optimizes trajectories for the inferred constraints from the task descriptions and scenes. Further, GeoManip learns in-context and provides five appealing human-robot interaction features: on-the-fly policy adaptation, learning from human demonstrations, learning from failure cases, long-horizon action planning, and efficient data collection for imitation learning. Extensive evaluations on both simulations and real-world scenarios demonstrate GeoManip's state-of-the-art performance, with superior out-ofdistribution generalization while avoiding costly model training. Project website:

https://sites.google.com/view/geomanip-anonymous

#### 1 Introduction

Recent research Tang et al. (2024); Xu et al. (2024); Ko et al. (2023); Du et al. (2024); Bharadhwaj et al. (2024); Yuan et al. (2024); Baker et al. (2022); Chen et al. (2021); Huang et al. (2024b); Liang et al. (2023b); Huang et al. (2023b); Duan et al. (2024a) on utilizing vision-language models (VLMs) to develop general robot manipulation policies has drawn much attention, leveraging their vision understanding Tang et al. (2024); Xu et al. (2024); Ko et al. (2023); Du et al. (2024); Bharadhwaj et al. (2024); Yuan et al. (2024); Baker et al. (2022); Chen et al. (2021) and language reasoning Huang et al. (2024b); Liang et al. (2023b); Huang et al. (2023b); Duan et al. (2024a) abilities. Such language-based methods offer benefits like providing rich contexts for generalizable and interpretable policies, enabling step-by-step reasoning, and allowing on-the-fly modifications for robotic control. However, language is conceptual, lacking inherent information on the 3D geometry, Hence, it is hard to generate precise low-level robot actions.

Vision-language-action models (VLAs) Kim et al. (2024); Liu et al. (2024b) have emerged as recent solutions that implicitly bridge perception, reasoning, and execution in an end-to-end manner, equipping robots with the ability to plan low-level actions to follow human instructions with contextual awareness. However, they rely on large-scale and task-specific data for training and often struggle to generalize to novel tasks or objects. Besides, the language-to-action conversion is a "black box" without interpretability. To solve these challenges, a natural solution is to explicitly model the environment and 3D geometry by developing an intermediate representation that can be articulated in a high-level language while accurately depicting low-level actions, effectively connecting natural language and robotic actions.

To this end, we propose to introduce object-centric geometric constraints as an interface to connect language instructions with precise robot actions. Leveraging the reasoning capabilities in vision-language models (VLMs), these constraints can be defined by natural language and then converted

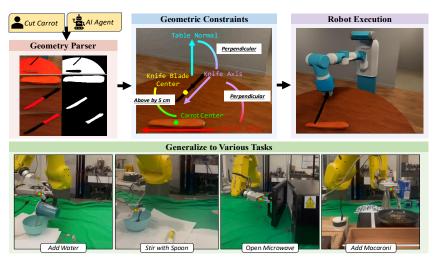


Figure 1: We propose to derive geometric constraints to bridge the gap between high-level language descriptions and low-level robot actions. Top: an example of the carrot cutting task. Down: as demonstrated experimentally, GeoManip is able to execute diverse tasks in general settings.

into symbolic forms to provide accurate spatial-aware guidance to producing low-level trajectories for the task. See Fig. 1 for an example, in the task "cut the carrot with the knife" to lift the knife above the carrot, the geometric constraints are: (i) the heading direction of the knife blade must be parallel to the table surface (perpendicular to the normal of the table surface); (ii) perpendicular to the carrot's axis; and (iii) the center of the knife should be positioned around 5 cm above the center of the carrot.

In this work, we present GeoManip, a framework for building generalist robots that can leverage geometric constraints as an interface to generate precise manipulation trajectories. Given a task described in natural language and the current scene observation, GeoManip decomposes the task into sub-tasks, ensuring satisfiable geometric constraints within each sub-task and consistent and smooth transitions between sub-tasks. Specifically, GeoManip comprises (i) a geometry parser that identifies object parts where geometric properties can be defined, via a proposed *select-process scheme*; (ii) a constraint generator that uses geometric knowledge to produce symbolic constraints and cost functions for each step; and (iii) a cost function-based trajectory solver that minimizes the overall costs, i.e., constraint violation, through optimization. Notably, code generation is integrated to process selected masks in the geometry parser and represent cost functions in the constraint generator.

With the careful design, GeoManip can naturally serve as a robot generalist capable of (i) on-the-fly policy adjustments based on human language feedback, (ii) learning from failure cases and adjusting the policy accordingly, (iii) learning from human demonstrations, (iv) performing long-horizon tasks via decomposition, and (v) efficient data collection for imitation learning. Experiments conducted in both virtual environments, such as MetaWorld Yu et al. (2020) and Omnigibson Li et al. (2023a), as well as real-world scenarios, demonstrate GeoManip's wide applicability, training-free, and out-of-distribution (OOD) generalizability across diverse object types, positions, and poses.

To summarize, our contributions are three-fold:

- We propose a novel generalist robotic framework GeoManip, using geometric constraints as an
  interface for robotic manipulation. It is simply driven by high-level language instructions with
  two key designs: a geometry parser with the select-process scheme and a constraint generator for
  cost-based planning.
- GeoManip is capable of reasoning about task constraints with five appealing benefits for robot learning, including learning from human demonstrations, on-the-fly policy adaptation, learning from failure cases, long-horizon planning, and efficient data collection for imitation learning.
- Extensive experiments in both simulations and the real world demonstrate GeoManip's effectiveness and generalizability, even to OOD scenarios with no training efforts needed.

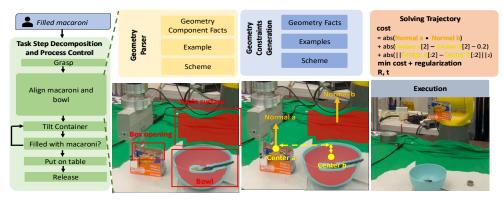


Figure 2: Given the user's task description, our method decomposes the task into multiple sub-tasks and forms the process control. For each stage, we first design a geometry parser to segment and obtain the point cloud for relative geometric components. Then, we develop a geometry constraint generation module to generate constraints among the geometric components that are necessary to complete the sub-task. Finally, we establish the cost functions to measure the fulfillment of the geometric constraints and solve the robotic trajectories via optimization.

# 2 RELATED WORK

Robot Manipulation with Large Models. There are three branches of work that manage to harness large models for robot manipulation. The first branch of work trains or fine-tunes vision-language-action model (VLA) with action-annotated data Brohan et al. (2022; 2023); Walke et al. (2023); Ebert et al. (2021); Huang et al. (2023a); Li et al. (2023b); Zhen et al. (2024); Driess et al. (2023); Chen et al. (2024); Kim et al. (2024), visual affordance data Li et al. (2024); Huang et al. (2024a); Yu et al. (2024) or motion tokens Chen et al. (2024) to achieve end-to-end action predictions given observations. The second branch of work Huang et al. (2023b); Duan et al. (2024b); Liu et al. (2024a); Huang et al. (2024b); Wang et al. (2024); Liang et al. (2023b); Ahn et al. (2022); Mu et al. (2024a); Song et al. (2023); Mu et al. (2024b); Zawalski et al. (2024) uses VLM as a high-level planner and divides each manipulation task into multiple sub-goals. The third branch of work Huang et al. (2023b; 2024b); Liang et al. (2023b) uses VLM to reason object relations or generates codes to derive low-level trajectory. However, most approaches, including the recent work ReKep Huang et al. (2024b), focus primarily on key-point relations. Our work lies in the third branch of work. Distinctively, we formulate geometric relationships for more precise robotic manipulation guidance.

Spatial Relation Constraints for Robot Manipulation. Spatial relations can be formulated as constraints for robot manipulation. Some recent works Kingston et al. (2018); Ratliff et al. (2009); Schulman et al. (2014); Sundaralingam et al. (2023); Marcucci et al. (2024); Ratliff et al. (2018) model the manipulation as an optimization problem and solve the constraints globally with various solvers to achieve the desired goal. Some other works Toussaint (2015); Toussaint & Lopes (2017); Toussaint et al. (2018); Xue et al. (2024) perform task decomposition and incorporate multi-stage spatial relationship. Recently, Huang et al. (2023b; 2024b) uses the VLM to reason object spatial relation automatically, given a task description. Some works Zhen et al. (2024); Zawalski et al. (2024) simply capture the spatial relationship among objects during the model finetuning or inference, thereby empowering the model with spatial awareness to improve its performance for action prediction.

Open-vocabulary Object Detection and Part Segmentation. Vision tasks in an open-vocabulary setting is challenging due to limited data. Despite their different model and training pipeline designs, most of the works Gu et al. (2021); Cheng et al. (2024); Du et al. (2022); Kuo et al. (2022); Wu et al. (2023); Zhong et al. (2022) address open-vocabulary object detection by aligning text embeddings and visual features of local regions. Open-vocabulary part segmentation is even more challenging for the countless part categories. Most methods either make use of the similarity of semantic and visual features Wei et al. (2024); Sun et al. (2023); Ding et al. (2023) or finetune the VLM model with part-level segmentation annotation data and harness its reasonability Lai et al. (2024); Zou et al. (2023); Wang & Ke (2024). However, they still cannot achieve satisfactory performance for OOD object-part segmentation.

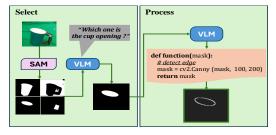


Figure 3: Existing methods (LISA Lai et al. (2024), OV-seg Liang et al. (2023a)) fail to segment the fine-grained geometric components, while our method succeeds.

Figure 4: Illustration of our select-process scheme. Our method first selects the most relevant mask for the target object part and then further processes and refines it.

#### 3 Methods

Given the current scene observation and a human language instruction, we propose the GeoManip framework, utilizing the geometric constraints among objects as an interface to generate manipulation trajectories to accomplish the task. Please refer to Fig. 2 for an illustration. The GeoManip framework consists of four steps. First, we decompose the task into multiple sub-tasks that are completed step-by-step and we create a process control for more complex tasks. Second, for each sub-task, we present a novel *select-process* solution to identify the relevant geometric components, which are fine-grained object-part structures that help define the spatial relationships among objects. Third, we generate the geometric constraints needed to accomplish the task based on the identified geometric components and some fundamental geometric principles that we provide. Last, we convert the geometric constraints into cost functions to guide trajectory planning in robotic manipulation through an optimization. Note that since the first and the third steps can be learned in an in-context fashion, they can be generated interactively, providing 5 important features.

In the following, we introduce the task decomposition and process control in Sec. 3.1, present the geometric parser in Sec. 5, and provide details on the constraint generation module in Sec. 3.3. In addition, we present the cost function and trajectory generation process in Sec. 3.4. Finally, we present the designs and examples to achieve the five generalist features separately in Sec. 5, after representing our experiment results in Sec. 4.

# 3.1 TASK DECOMPOSITION AND PROCESS CONTROL

Fig. 2 illustrates our process control. We leverage the VLM's capability for task composition to divide a task into multiple sub-tasks. For example, the task "Filled macaroni" can be decomposed into six sub-tasks. For many simple tasks, the sub-tasks are executed sequentially till the end of the task. However, complex tasks require loop or branch control. For example, to pour a certain amount of water from a cup into a container, we should repeatedly tilt the cup and check if the target container has enough water until the desired amount is reached. This motivates us to add process control in the task decomposition. To achieve this, we ask the VLM to decide the next sub-task to transit to upon finishing the current one. For example, to "check if the pan is filled with macaroni," we allow the VLM to capture previous RGB images to check if the conditions are met.

# 3.2 GEOMETRY PARSER

Using the language instruction and the current scene observation as input, we identify the fine-grained geometric components. A geometric component is a part of the object, on which a geometry can be clearly defined. For example, "cup opening" is a geometric component, where we can clearly define the plane across it, and "spoon tip" is another geometric component, where we can clearly define its center point. These geometric components are necessary for geometric constraint analysis.

However, all existing open-vocabulary image segmentation methods Lai et al. (2024); Liu et al. (2023); Wei et al. (2024) fail to identify geometric components. They may output the entire object or an incomplete object part, as illustrated in Fig. 3.

Observing that it is relatively easier to perform class-agnostic segmentation and that existing VLMs have an extraordinary ability to understand visual concepts, we combine these two to introduce a select-process scheme to tackle the geometry parsing task.

The select-process scheme consists of two steps, as shown in Fig. 4. First, we capture an image I of the scene and leverage the Segment-Anything Model (SAM) Kirillov et al. (2023) to obtain the classagnostic masks, i.e.,  $\{M\}_1^N = SAM(I)$ . We further query the VLM to select the most accurate mask. Specifically, we provide a language description of the geometric component and pair the image I with each mask to form  $\{(I,M)\}_1^N$  to aid the selection. However, even after selecting the best-matched mask, it may not accurately represent the geometric component. Hence, we further leverage the VLM to refine the selected mask to represent the geometric component. Let  $M^*$  be the selected mask, we use  $M^*$ , its corresponding image  $I^*$ , and the geometric part description to query the VLM to implement a code function  $g: \mathbb{R}^{H \times W} \to \mathbb{R}^{H \times W}$  to generate processed mask  $M' = g(M^*)$ . Please refer to Fig. 4 for an illustration of the processing procedure. The detailed prompt for querying VLM to select and implement code can be viewed in Appx. H.5 and Appx. H.6.

We observe that our method can generate more accurate segmentation results to represent the geometric components as illustrated in Fig. 3.

#### 3.3 Constraint Generator

The constraint generation module infers the geometric constraints among geometric components that are required to complete the current sub-task. The geometric constraints are defined on the geometric components and describe the spatial relationships among components, e.g., parallel, perpendicular, directly above, to the left by 10 cm, etc.

Given the set of geometric components "{GeoComp 1, GeoComp 2, ...}" involved in the sub-task and a language description of the constraint "ConsDesc", a geometric constraint can be formulated as a tuple ( {GeoComp 1, GeoComp2, ...}, ConsDesc). For example, for the stage to align a knife with a carrot ready to be cut, the geometric constraints are:

- ({"the knife blade", "the carrot"}, "the heading of the knife blade is perpendicular to the axis of carrot"")
- ({"the knife blade", "the table surface"}, "the plane of the knife blade is perpendicular to the plane of the table surface"")
- ({"the knife", "the carrot"}, "the center of the knife is directly above 'the center of the carrot by 10 cm"")

Following Huang et al. (2024b), we further specify if the constraint is a sub-goal constraint (needs to be satisfied only at the end of the trajectory), or a path constraint (needs to be satisfied throughout the entire trajectory).

We harness the strong language reasoning ability of VLM to generate geometric constraints automatically. To achieve this, we need three types of components in the prompt. The first is the geometry principles which include some basic geometry facts such as "To be perpendicular to a plane is to be parallel to its normal". The second is the output rules indicating how the geometric constraint should be formulated. Finally, we include some concrete examples for the VLM to follow. Details of the prompts for constraint generation are shown in Appx. H.1 and Appx. H.2.

#### 3.4 Cost Functions and Trajectory Generation

We develop cost functions to quantify the satisfaction of geometric constraints during robotic manipulation, which are used to guide the gripper pose to complete the sub-task. Therefore, we propose to use the VLM to generate codes that represent the cost functions based on the language format of the geometric constraints, leveraging the code generation ability of the VLMs.

More specifically, we ask the VLM to generate a code function  $f: \mathcal{P} \to \mathbb{R}^+$  for each cost constraint. The function f takes the set of geometric component's point clouds  $\mathcal{P} = \{\mathbf{p}_1, \mathbf{p}_2, \cdots\} (\mathbf{p}_i \in \mathbb{R}^{N_i \times 3})$  which is the point cloud of geometric components i as input and outputs a non-negative floating value representing the degree of violation with the geometric constraint (lower is better), and the minimum value of 0 is reached when the geometric constraint is perfectly satisfied.

For the VLM to generate the function correctly, we need to provide three components in the prompt as follows: 1. The rules and format for the output. 2. Examples of (geometric constraint, and cost function). 3. General basic geometric facts such as how to orbit or rotate points around an axis. The details of the prompt can be viewed in Appx. H.3 and Appx. H.4. We obtain a cost function for every geometric constraint, forming a set of path cost functions  $\mathcal{F}^p$  for the path constraints and a set of sub-goal path functions  $\mathcal{F}^s$  for the sub-goal constraints.

We leverage these cost functions to guide robotic motions by generating the manipulation trajectories to satisfy the geometric components. First, we identify which geometric component is manipulated by the robotic gripper by finding the ones belonging to the grasping object, we denote the set of point clouds of moving components as  $\mathcal{P}^m$ . We further denote the set of stationary geometric components' point clouds as  $\mathcal{P}^s$ . Since the gripper is rigidly attached to the moving component  $\mathcal{P}^m$ , they share the same transformation. Hence, solving the gripper's target 3D rotation matrix  $\mathbf{R} \in SE(3)$  and transformation vector  $\mathbf{t} \in \mathbb{R}^3$  for the sub-goal constraints is equivalent to solving the following optimization problem:

$$\min_{\mathbf{R}, \mathbf{t}} \frac{1}{K^s} \sum_{f \in \mathcal{F}^s} f(\mathcal{P}^s \cup (\mathbf{R}\mathbf{R}_0^{-1} \bigotimes (\mathcal{P}^m \bigoplus -\mathbf{t}_0) \bigoplus \mathbf{t})) 
+ \alpha \|\mathbf{t} - \mathbf{t}_0\|_2 + \beta \|euler(\mathbf{R}\mathbf{R}_0^{-1})\|_1,$$
(1)

where  $\mathbf{R}_0$  and  $\mathbf{t}_0$  are the gripper previous rotation matrix and translation vector respectively, while  $\mathbf{R}$  and  $\mathbf{t}$  denote the optimized rotation matrix and translation vector.  $euler(\cdot)$  is the operation to get the Euler angle in three rotation axes from the matrix.  $\bigoplus$  and  $\bigotimes$  are vector addition and matrix product for each element in the set  $\mathcal{P}^m$ .  $\alpha$  and  $\beta$  are two scalars to regularize in translation and rotation, respectively. After the target rotation  $\mathbf{R}$  and the translation  $\mathbf{t}$  of the gripper are obtained, we further extract the entire manipulation trajectory. We first interpolating between ( $\mathbf{R}_0$  and translation  $\mathbf{t}_0$ ) and ( $\mathbf{R}$  and translation  $\mathbf{t}$ ) and generating several "control points" between. For each "control points", we optimize it using  $\mathcal{F}^p$  in a similar way as Eq.1.

# 4 EXPERIMENTS

#### 4.1 IMPLEMENTATION DETAILS

**Technical Details for the VLM design.** We use GPT-4o OpenAI (2024) as the VLM for our implementation. We use the SLSQP algorithm Kraft (1988) for optimization solving. For optimization, we set  $\alpha=0.02$ , and  $\beta=0.075$  for regularization. We use Grounding-DINO Liu et al. (2023) to locate and crop the target object first before processing it with the geometry parser to prevent overwhelming mask candidates generated by SAM Kirillov et al. (2023).

**Virtual Benchmarks.** We perform experiments on two virtual environments: Meta-World Yu et al. (2020) and OmniGibson Li et al. (2023a), including 10 diverse tasks. The Meta-World environment is a simulated benchmark featuring numerous predefined tasks for reinforcement learning. We compare the performance of our method on six tasks, following the common settings Tang et al. (2024); Ko et al. (2023). The OmniGibson environment is another virtual environment. It features realistic physics simulation and rendering and enables user-defined tasks. We further develop 4 tasks on OmniGibson to test our method.

**Real-world Environment.** In addition to the experiments on the simulators, we design 4 more tasks to demonstrate the effectiveness of our method in real-world robotic settings. A table is set up with objects placed on top of it. A RealSense D435i camera is set up for visual sensing and a FANUC LR mate 200id robot arm is equipped to perform the task.

**Evaluation Metrics.** For all benchmarks, we assess the performance of all methods based on each task's success rate (number of success trials/number of total trials).

#### 4.2 RESULTS ON VIRTUAL BENCHMARKS

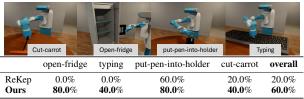
**Meta-World Environemnt.** We first evaluate the performance of the methods on six tasks in the Meta-World benchmark Yu et al. (2020). We follow the common settings Tang et al. (2024); Ko et al. (2023) and only consider gripper translation in this environment. For each task and each camera view, we evaluate our method 5 times, and at the start of each trial, we randomize the initial poses and positions of the object involved in the task. For objects that are too small to be identified by the VLM model, we use the ground-truth mask. We test each task for 3 camera positions and report the best result across different views. We report the success rates and provide an overall success rate across all tasks.

We compare our method with seven state-of-the-art methods, i.e., BC-Scratch Nair et al. (2022), BC-R3M Nair et al. (2022), UniPi Du et al. (2024), Diffusion Policy Chi et al. (2023), AVDC Ko et al.

Table 1: Visual Illustration of each Task and Results on the Meta-World Dataset.

|                  | basketball | shelf-place | btn-press | btn-press-top | handle-press | assembly | overall |
|------------------|------------|-------------|-----------|---------------|--------------|----------|---------|
| BC-Scratch       | 21.3%      | 36.0%       | 0.0%      | 0.0%          | 34.7%        | 0.0%     | 15.3%   |
| BC-R3M           | 0.0%       | 0.0%        | 36.0%     | 4.0%          | 18.7%        | 0.0%     | 9.8%    |
| UniPi            | 0.0%       | 0.0%        | 6.7%      | 0.0%          | 4.0%         | 0.0%     | 1.8%    |
| Diffusion Policy | 8.0%       | 0.0%        | 40.0%     | 18.7%         | 21.3%        | 1.3%     | 14.8%   |
| AVDC             | 37.3%      | 18.7%       | 60.0%     | 24.0%         | 81.3%        | 6.7%     | 38.0%   |
| SceneFlow        | 96.0%      | 29.3%       | 50.7%     | 96.0%         | 40.0%        | 46.7%    | 59.8%   |
| Pi0              | 0.0%       | 0.0%        | 20.0%     | 6.7%          | 20.0%        | 0.0%     | 7.8%    |
| Ours             | 73.3%      | 60.0%       | 80.0%     | 73.3%         | 100.0%       | 40.0%    | 71.1%   |

Table 2: Visual Illustration of each Task and Results on the Omnigibson.



(2023), SceneFlow Tang et al. (2024), and Pi0 Black et al. (2024). Note that all compared methods require an additional training stage to learn the robotic action following the training scheme referred to Ko et al. (2023), while our method is training-free.

We present visual illustrations of each task along with the results of our method and the comparison methods in Table 1. From the table, we can see that our method greatly outperforms BC-Scratch, BC-R3M, UniPi, AVDC, and SceneFlow by over 11% in terms of average accuracy. The results demonstrate the effectiveness of our method. Detailed input instructions visualizations for each task's complete execution can be found in Appendix A.

**OmniGibson Environment.** We evaluate our method on four tasks which require both translation and rotation of the gripper, further showing the effectiveness of our method. The detailed instructions of each task can be viewed in Appx. **B**.

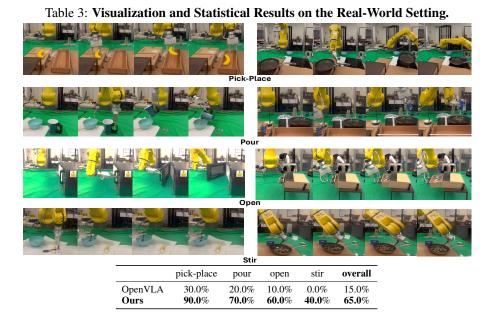
We conduct 5 trials for each task and report the success rates to evaluate the methods. We also compare our method with a very recent work evaluated on the OmniGibson environment, the ReKep Huang et al. (2024b). The ReKep proposes to plan robotic manipulation based on the spatial relations among the key points on objects.

The visual illustration of each task along with the experimental results of our method and the compared method are shown in Tab. 2. From the table, we can see that our method consistently outperforms ReKep in each task. It outperforms ReKep by at least 20% in each task and achieves a 40% higher overall success rate. This is because our method better models the relations between objects via geometric constraints, which is more detailed and precise compared with the object's key points.

#### 4.3 EXPERIMENTS ON REAL ENVIRONMENT

Furthermore, we test our method in real-world settings using four tasks: (i) picking and placing one object onto another object, (ii) pouring something from one container to another, (iii) opening/closing an object with rotation / prismatic movement, and (iv) stirring something in a container. In Appendix C, we outline the criteria for task success.

For each task, we report the success rate over 10 testing sequences with randomized object types and initial poses. We compare our method to the baseline OpenVLA Kim et al. (2024), a training-dependent behavior-cloning approach, using 30 training trials for its training. We visualize some of our demonstration sequences and provide statistical results in Tab. 3. From the results, we can see that since our method can understand the geometric constraint, it can successfully manipulate various tasks involving different object types. By using the geometric constraint as the abstract interface, our method achieves at least a 40% higher success rate than OpenVLA, leading to an overall success rate that is 50% greater, while it is training free.



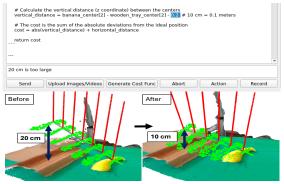


Figure 5: Example of our agent adjusting geometric constraints via human feedback. Red lines show the gripper's approach direction; green indicates the binormal. Initially, the agent plans to lift the banana 20 cm above the box (left), and it reduces the height to 10 cm after "the height is too large" feedback (right).

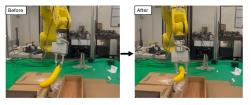


Figure 6: Example of our agent in learning from the failure case. Using the original constraints (blue in the black box below), the robot grasps the banana in an unsafe pose biased from the banana's center and the task fails with banana slipping from the gripper (bottom-left image). After prompting the embodied agent with the failure video, a new constraint is added (red in the black box below), enabling the robot to successfully grasp the banana at its center (bottom-right image).

#### 5 GENERALIST EMBODIED AGENT FOR ROBOTIC MANIPULATION

Since our method uses geometric constraints as the interface to bridge the high-level planning and the low-level action, it can further be used to develop a generalized embodied agent for robotic manipulation. The detailed design of the AI interface and its usage is included in the Appx. D. Our embodied agent facilitates open-ended conversations with the user while generating geometric constraints, enabling users to provide further instructions. Video inputs are also allowed so that the agent can learn geometric constraints or observe failures from them. These designs empower GeoManip with five features for robotic manipulation: On-the-fly policy adaptation, learning from failure cases, long-horizon manipulation, learning from human demonstration, and data collection for training models.

#### 5.1 On-the-fly Policy Adaptation

Since our embodied agent allows the user's open-ended conversation in generating the geometric constraints, the user can augment with further demands to adjust the geometric constraints. Specifically, the user can specify the distances or rotation angles when manipulating the object or input

```
Stagel: Grasp the banana

Original constraints

- <"grasp", "the body of the banana">

- <"sub-goal constraints": "heading direction of the gripper approach", "plane of table surface", "heading direction of the gripper approach parallel to normal of plane of table surface">

- <"sub-goal constraints": "heading direction of the gripper binormal", "banana", "heading direction of the gripper binormal perpendicular to banana axis">

- New Constraints:

- <"sub-goal constraints", "gripper center", "banana center", "gripper center is aligned with banana center">
```

high-level commands. Then, the embodied agent responds to the user's input and adjusts the geometric constraint. For example, by specifying the height above the wooden tray, the robot lifts the banana above the wooden tray with a height modified from 20 cm to 10 cm as illustrated in Fig. 5.

# 5.2 LEARN FROM FAILURE CASES

 Our method can learn from previous failure executions and improve the current manipulation policy. To achieve this, the user uploads recordings of the robot's failed execution to the embodied agent, accompanied by language commands like "Why did the robot fail to execute?" and "How can we adjust the geometric constraints to improve performance?". The embodied agent then refines the geometric constraints. We showcase an example in Fig. 6. The robot fails to place the banana into the wooden tray because of the unsafe grasp position. By asking the embodied agent "The robot fails and the banana slips", it refines the geometric constraint and adds an extra sub-goal constraint during the grasp stage to enforce the grasp position to be close to the center of the banana. After re-solving for the trajectory, the banana is safely grasped and transferred to the wooden tray successfully.

#### 5.3 Long-Horizon Tasks

Our embodied agent can also handle long-term tasks by first asking the agent to divide long-term tasks into multiple single tasks. We provide an example of a long-sequence demo for the task "Add the pan with macaroni and water. Add salt with the spoon and stir the pan." in Fig. 11. Please refer to the Appx. F for the complete video.

#### 5.4 LEARN FROM HUMAN DEMONSTRATIONS

Our embodied agent learns from human demonstrations by summarising the geometric constraints from the videos of human manipulation. As demonstrated in Fig. 12 in Appx. G, in the task of "open the box", the original policy treats the box as the drawer and tries to move the flap of the box away from the box's center. After viewing a human demonstration video, the agent correctly identifies the box as open by lifting the lid. It then refines the sub-goal to lift and rotate the flap around the box edge, successfully opening it.

# 5.5 DATA COLLECTION FOR REWARD MODEL

Since geometric constraints are consistent for the same manipulation task, we only need to generate them once, regardless of object positions and orientations. Also, segmentation is performed once for an object configuration, after which we use tracking models like CoTracker Karaev et al. (2023) for other poses. This allows GeoManip to efficiently generate trajectories for varied initial configurations, which can be used to train or fine-tune the VLA model or the reward model. Detailed settings and experiments are provided in Appendix E.1.

# 6 LIMITATIONS

Our methods fails mainly when it fails to generate geometric components or the geometric constraint. For the former, we fail when 1. The geometric component is not clearly shown in the camera. 2. The geometric component is not language-describable. For the latter, we fail when: 1. The VLM model misses the critical geometric constraints. 2. The action is not language-describable. We leave these issues to tackle in our future work.

#### REFERENCES

- Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.
- Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching unlabeled online videos. *Advances in Neural Information Processing Systems*, 35:24639–24654, 2022.
- Homanga Bharadhwaj, Roozbeh Mottaghi, Abhinav Gupta, and Shubham Tulsiani. Track2act: Predicting point tracks from internet videos enables diverse zero-shot robot manipulation. *arXiv* preprint arXiv:2405.01527, 2024.
- Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. \pi0: Avision language action flowmodel for general robot control. arXiv preprint arXiv:2410.24164, 2024.
- Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. *arXiv* preprint arXiv:2212.06817, 2022.
- Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. *arXiv* preprint arXiv:2307.15818, 2023.
- Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions from" in-the-wild" human videos. *arXiv preprint arXiv:2103.16817*, 2021.
- Yi Chen, Yuying Ge, Yizhuo Li, Yixiao Ge, Mingyu Ding, Ying Shan, and Xihui Liu. Moto: Latent motion token as the bridging language for robot manipulation. *arXiv preprint arXiv:2412.04445*, 2024.
- Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world: Real-time open-vocabulary object detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16901–16911, 2024.
- Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *arXiv preprint arXiv:2303.04137*, 2023.
- Mingyu Ding, Yikang Shen, Lijie Fan, Zhenfang Chen, Zitian Chen, Ping Luo, Joshua B Tenenbaum, and Chuang Gan. Visual dependency transformers: Dependency tree emerges from reversed attention. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14528–14539, 2023.
- Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal language model. *arXiv preprint arXiv:2303.03378*, 2023.
- Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and Pieter Abbeel. Learning universal policies via text-guided video generation. *Advances in Neural Information Processing Systems*, 36, 2024.
- Yu Du, Fangyun Wei, Zihe Zhang, Miaojing Shi, Yue Gao, and Guoqi Li. Learning to prompt for open-vocabulary object detection with vision-language model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14084–14093, 2022.
- Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi Ru Wang, Shulin Tian, Wentao Yuan, Ranjay Krishna, Dieter Fox, Ajay Mandlekar, and Yijie Guo. Aha: A vision-language-model for detecting and reasoning over failures in robotic manipulation. *arXiv preprint arXiv:2410.00371*, 2024a.

- Jiafei Duan, Wentao Yuan, Wilbert Pumacay, Yi Ru Wang, Kiana Ehsani, Dieter Fox, and Ranjay Krishna. Manipulate-anything: Automating real-world robots using vision-language models. *arXiv* preprint arXiv:2406.18915, 2024b.
- Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets. *arXiv preprint arXiv:2109.13396*, 2021.
  - Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision and language knowledge distillation. *arXiv* preprint arXiv:2104.13921, 2021.
- Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li, Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world. *arXiv* preprint arXiv:2311.12871, 2023a.
  - Siyuan Huang, Iaroslav Ponomarenko, Zhengkai Jiang, Xiaoqi Li, Xiaobin Hu, Peng Gao, Hongsheng Li, and Hao Dong. Manipvqa: Injecting robotic affordance and physically grounded information into multi-modal large language models. *arXiv preprint arXiv:2403.11289*, 2024a.
- Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable 3d value maps for robotic manipulation with language models. *arXiv preprint arXiv:2307.05973*, 2023b.
  - Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang, and Li Fei-Fei. Rekep: Spatio-temporal reasoning of relational keypoint constraints for robotic manipulation. *arXiv preprint arXiv:2409.01652*, 2024b.
  - Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian Rupprecht. Cotracker: It is better to track together. *arXiv preprint arXiv:2307.07635*, 2023.
  - Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Benjamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. Openvla: An open-source vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.
  - Zachary Kingston, Mark Moll, and Lydia E Kavraki. Sampling-based methods for motion planning with constraints. *Annual review of control, robotics, and autonomous systems*, 1(1):159–185, 2018.
  - Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4015–4026, 2023.
  - Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B Tenenbaum. Learning to act from actionless videos through dense correspondences. *arXiv preprint arXiv:2310.08576*, 2023.
  - Dieter Kraft. A software package for sequential quadratic programming. Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, 1988.
  - Weicheng Kuo, Yin Cui, Xiuye Gu, AJ Piergiovanni, and Anelia Angelova. F-vlm: Open-vocabulary object detection upon frozen vision and language models. *arXiv preprint arXiv:2209.15639*, 2022.
  - Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Reasoning segmentation via large language model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9579–9589, 2024.
- Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In *Conference on Robot Learning*, pp. 80–93. PMLR, 2023a.
- Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang, Jiaming
   Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for object-centric
   robotic manipulation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18061–18070, 2024.

598

601 602

603

604 605

606

607

608

609

610

611 612

613

614

615

616

617 618

619

620 621

622

623

624

625

626 627

628

629

630

631 632

633

634

635

636

- 594 Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang, Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot imitators. 596 arXiv preprint arXiv:2311.01378, 2023b.
- Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang, Peter Vajda, and Diana Marculescu. Open-vocabulary semantic segmentation with mask-adapted clip. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7061– 600 7070, 2023a.
  - Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023b.
  - Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. Moka: Open-vocabulary robotic manipulation through mark-based visual prompting. In First Workshop on Vision-Language Models for Navigation and Manipulation at ICRA 2024, 2024a.
  - Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499, 2023.
  - Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv preprint arXiv:2410.07864, 2024b.
  - Tobia Marcucci, Jack Umenberger, Pablo Parrilo, and Russ Tedrake. Shortest paths in graphs of convex sets. SIAM Journal on Optimization, 34(1):507–532, 2024.
  - Yao Mu, Junting Chen, Qinglong Zhang, Shoufa Chen, Qiaojun Yu, Chongjian Ge, Runjian Chen, Zhixuan Liang, Mengkang Hu, Chaofan Tao, et al. Robocodex: Multimodal code generation for robotic behavior synthesis. arXiv preprint arXiv:2402.16117, 2024a.
  - Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied chain of thought. Advances in Neural Information Processing Systems, 36, 2024b.
  - Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.
  - OpenAI. Chatgpt (gpt-4), language model, 2024. Available at https://openai.com.
  - Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa. Chomp: Gradient optimization techniques for efficient motion planning. In 2009 IEEE international conference on robotics and automation, pp. 489-494. IEEE, 2009.
  - Nathan D Ratliff, Jan Issac, Daniel Kappler, Stan Birchfield, and Dieter Fox. Riemannian motion policies. arXiv preprint arXiv:1801.02854, 2018.
  - John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning with sequential convex optimization and convex collision checking. The International Journal of Robotics Research, 33(9):1251–1270, 2014.
- 638 Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su. Llm-639 planner: Few-shot grounded planning for embodied agents with large language models. In *Proceed*-640 ings of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3009, 2023.
- 641 Peize Sun, Shoufa Chen, Chenchen Zhu, Fanyi Xiao, Ping Luo, Saining Xie, and Zhicheng Yan. Going 642 denser with open-vocabulary part segmentation. In Proceedings of the IEEE/CVF International 643 Conference on Computer Vision, pp. 15453–15465, 2023. 644
- Balakumar Sundaralingam, Siva Kumar Sastry Hari, Adam Fishman, Caelan Garrett, Karl Van Wyk, 645 Valts Blukis, Alexander Millane, Helen Oleynikova, Ankur Handa, Fabio Ramos, et al. Curobo: 646 Parallelized collision-free robot motion generation. In 2023 IEEE International Conference on 647 Robotics and Automation (ICRA), pp. 8112–8119. IEEE, 2023.

- Weiliang Tang, Jia-Hui Pan, Wei Zhan, Jianshu Zhou, Huaxiu Yao, Yun-Hui Liu, Masayoshi Tomizuka,
   Mingyu Ding, and Chi-Wing Fu. Embodiment-agnostic action planning via object-part scene flow.
   arXiv preprint arXiv:2409.10032, 2024.
- Marc Toussaint. Logic-geometric programming: An optimization-based approach to combined task and motion planning. In *IJCAI*, pp. 1930–1936, 2015.
- Marc Toussaint and Manuel Lopes. Multi-bound tree search for logic-geometric programming in cooperative manipulation domains. In *2017 IEEE International Conference on Robotics and Automation* (*ICRA*), pp. 4044–4051. IEEE, 2017.
  - Marc A Toussaint, Kelsey Rebecca Allen, Kevin A Smith, and Joshua B Tenenbaum. Differentiable physics and stable modes for tool-use and manipulation planning. 2018.
  - Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset for robot learning at scale. In *Conference on Robot Learning*, pp. 1723–1736. PMLR, 2023.
- Junchi Wang and Lei Ke. Llm-seg: Bridging image segmentation and large language model reasoning.

  In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1765–1774, 2024.
  - Yongdong Wang, Runze Xiao, Jun Younes Louhi Kasahara, Ryosuke Yajima, Keiji Nagatani, Atsushi Yamashita, and Hajime Asama. Dart-llm: Dependency-aware multi-robot task decomposition and execution using large language models. *arXiv* preprint arXiv:2411.09022, 2024.
  - Meng Wei, Xiaoyu Yue, Wenwei Zhang, Shu Kong, Xihui Liu, and Jiangmiao Pang. Ov-parts: Towards open-vocabulary part segmentation. *Advances in Neural Information Processing Systems*, 36, 2024.
  - Size Wu, Wenwei Zhang, Sheng Jin, Wentao Liu, and Chen Change Loy. Aligning bag of regions for open-vocabulary object detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15254–15264, 2023.
  - Mengda Xu, Zhenjia Xu, Yinghao Xu, Cheng Chi, Gordon Wetzstein, Manuela Veloso, and Shuran Song. Flow as the cross-domain manipulation interface. *arXiv preprint arXiv:2407.15208*, 2024.
  - Teng Xue, Amirreza Razmjoo, and Sylvain Calinon. D-lgp: Dynamic logic-geometric program for reactive task and motion planning. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 14888–14894. IEEE, 2024.
  - Qiaojun Yu, Siyuan Huang, Xibin Yuan, Zhengkai Jiang, Ce Hao, Xin Li, Haonan Chang, Junbo Wang, Liu Liu, Hongsheng Li, et al. Uniaff: A unified representation of affordances for tool usage and articulation with vision-language models. *arXiv preprint arXiv:2409.20551*, 2024.
  - Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In *Conference on robot learning*, pp. 1094–1100. PMLR, 2020.
  - Chengbo Yuan, Chuan Wen, Tong Zhang, and Yang Gao. General flow as foundation affordance for scalable robot learning. *arXiv* preprint arXiv:2401.11439, 2024.
  - Michał Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic control via embodied chain-of-thought reasoning. *arXiv preprint arXiv:2407.08693*, 2024.
  - Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan, Yilun Du, Yining Hong, and Chuang Gan. 3d-vla: A 3d vision-language-action generative world model. *arXiv preprint* arXiv:2403.09631, 2024.
- Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li, Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-image pretraining. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16793–16803, 2022.
  - Xueyan Zou, Zi-Yi Dou, Jianwei Yang, Zhe Gan, Linjie Li, Chunyuan Li, Xiyang Dai, Harkirat Behl, Jianfeng Wang, Lu Yuan, et al. Generalized decoding for pixel, image, and language. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15116–15127, 2023.

# A METAWORLD ENVIRONMENT

#### A.1 TASK DESCRIPTIONS

We design 6 tasks for the MetaWorld environment:

- Btn-press. Task description: press the red button from its side. Success condition: The red button is entirely pressed.
- Btn-press-top. Task description: Press the red button from top-down. Success condition: The red button is pressed entirely.
- Handle-press. Task description: Press the red handle. Success condition: The handle is entirely pressed.
- Shelf-place. Task description: Put the blue cube onto the middle stack of the shelf. Grasp the blue cube and lift it vertically before moving to the middle stack of the shelf. Success condition: The blue cube is on the middle stack of the shelf.
- Basketball. Task description: Put the basketball onto the hoop. Lift the ball vertically and move over above the hoop, Success condition: The basketball pass through the hoop.
- Assembly. Task description: Put the round ring into the red stick. Grasp the green handle of the round ring and put the hole into the red stick. Success condition: The red stick is inside the round ring.

# A.2 MANIPULATION VISUALIZATION

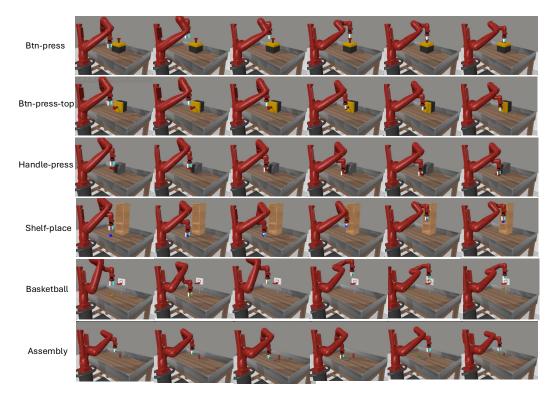


Figure 7: Visualization of execution for each task in MetaWorld environment.

# **B** OMNIGIBSON ENVIRONMENT

#### **B.1** TASK DESCRIPTIONS

For Omnigibson environment, we design 4 tasks:

- Cut-carrot. Task description: Cut the carrot with the knife. Success condition: The knife blade intersect with the carrot top-down with its normal perpendicular to the carrot's heading direction.
- Open-fridge. Task description: Open the fridge. Success condition: The fridge door is open by at least 45 degrees.
- Put-pen-into-holder. Task description: Put the pen perpendicularly into the black cup. Success condition: The pen is inside the pen holder.
- Typing. Task description: Type "hi" on the computer keyboard. Success condition: The "H" key and the "I" key on the computer keyboard are pressed sequentially.

#### **B.2** Manipulation Visualization

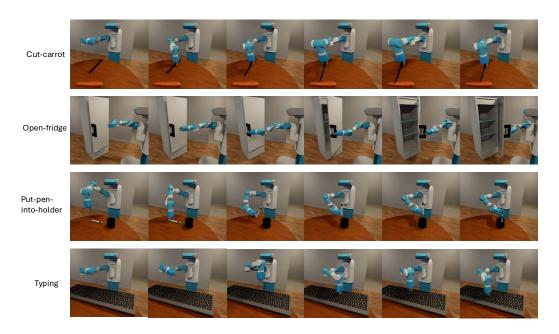


Figure 8: Visualization of execution for each task in Omnigibson environment.

#### C REAL WORLD ENVIRONMENT

#### C.1 TASK DESCRIPTIONS

We design 4 tasks for the real-world environment:

- Pick-place. Task description: Put <object A> into / onto <object B>. Success condition:
   <object A> is inside / on <object B>.
- Pour: Task description: Fill <object A> with <object B>. Success condition: <object B> is filled with some <object A>
- Open: Task description: open <object>. Success condition: <object> is open by at least 30 degrees / 5 cm.
- Stir. Task description: Stir <object A> with <object B>. Success condition: <object B> moves periodically inside <object A>.

# D DESIGN OF AI AGENT

See Fig. 9 for an illustration of our embodied agent interface, which consists of a user input block, a geometric constraint block, a cost function block, a geometric component visualizer, and a trajectory

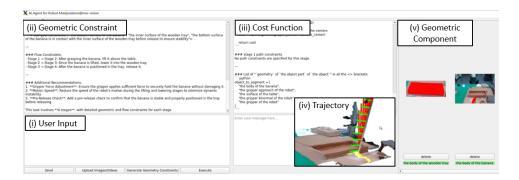


Figure 9: Our embodied agent comprises five components: (i) a user input block that accepts the current observation of the scene, the language command from user and uploaded videos of robotic to human manipulation of the sub-task; (ii) a geometric constraint block to display the generated geometric constraints for the sub-task allowing for modifications; (iii) a cost function block to present the developed cost function based on the geometric constraints; (iv) a geometric component visualizer to show the mask of the geometric component involved in the sub-task; (v) a trajectory visualizer that illustrates the planned trajectory in the scene.

visualizer. To accomplish a sub-task, the user uploads an image of the current observation of the scene, together with a language command. The generated geometric constraint generator generates geometric constraints and they are displayed in the geometric constraint block. The geometry parser identifies geometric components and they are displayed in the geometric component visualizer. The cost function generator generates cost functions according to the geometric constraints and they are displayed in the cost function block. The planned trajectory is generated by trajectory generator and it is displayed in the trajectory visualizer. What's more, the geometric constraints and cost functions can be generated interactively by providing descriptions, images, and videos in the user input block.

#### E DATA COLLECTION FOR TRAINING MODELS

In the following, we showcase how our method generates data for training robotic policies. Specifically, we show the performance of our training data collection scheme for the Vision-Language-Action (VLA) models and the reward models.

# E.1 DATA COLLECTION FOR VLA MODEL.

For the experiment, we apply this strategy to collect data for fine-tuning the OpenVLA model Kim et al. (2024) under two tasks: 1. Pick-stick: the robot needs to pick up the wooden stick and place it in the pan. The pan is large enough so that the task can be successfully achieved as long as the stick is above the pan. 2: Pick-banana: the robot needs to pick the banana and place it into a slim wooden box, which can only succeed if the banana axis is aligned with the long side of the wooden box. We collected 30 training data using our strategy, and we compared the performance of OpenVLA fine-tuning on our data and fine-tuning on manually collected ones. Note that our primary focus is on learning the manipulation trajectories, so we consistently use the ground-truth grasp pose in both settings to minimize interference from object grasping. We can see that the trajectories efficiently collected by our method (Ours) match a similar quality with the ones manually collected (Manual).

Table 4: Performance comparisons between Open-VLA trained with manually collected and data collected with our methods.

|        | Place-stick | Place-banana |
|--------|-------------|--------------|
| Manual | 3/5         | 5/5          |
| Ours   | 3/5         | 4/5          |

#### E.2 Data Collection for Reward Model.

Furthermore, the generated cost function can indicate how close the current robotic state is to the target state for the manipulation task, the cost function itself can be viewed as a reward function. As a result, we can readily derive the reward value from the cost function to train a reward model that takes the current RGB observation o as input. The model uses a simple ViT model as an encoder to encode the RGB image and uses a Multi-Layer Perceptron (MLP) to generate the reward score. During inference, we define a set of candidate actions: {Left, Right, Front, Back, Up, Down}, and each action moves the gripper positions along the corresponding direction by a small step. By denoting o' = step(o, a) as the RGB observation after applying action a on the previous scene with RGB observation o, we select the action a according to a = argmaxR(step(o, a)). We designed a

naive example in which the robot needs to pick up the wooden stick. This concept and process is illustrated in Fig. 10.

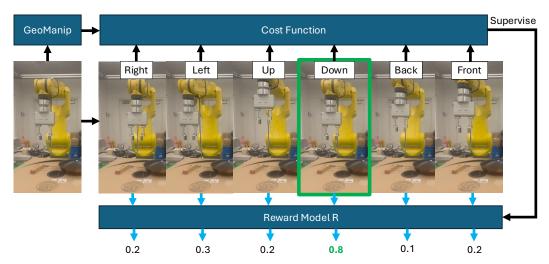


Figure 10: Example of using GeoManip to train the reward model R. The blue arrow is the data flow during inference. We select and execute the action that maximizes the reward (in this case, a = "Down").

## F LONG-HORIZON TASK VISUALIZATION

We demonstrate two long-horizon tasks:

- Instruction: "Add the pan with macaroni and water. Add salt with the spoon and stir the pan." Execution demonstration video link: link.
- Instruction: "Add water to the plate, and heat the plate with the microwave." Execution demonstration video link: link.

The first task sequence is also visualized in Fig.11

#### G LEARN FROM HUMAN DEMONSTRATION

Our embodied agent learns from human demonstrations by summarising the geometric constraints from the videos of human manipulation. As demonstrated in Fig. 12, in the task of "open the box", the original sub-goal constraint treats the box as the drawer and the policy tries to move the flap of the box away from the box center. After including a human demonstration, it correctly captures the box as open by lifting the lid. Therefore, it refines the sub-goal constraint to lift and rotate the flap around the box edge, resulting in successful box opening.

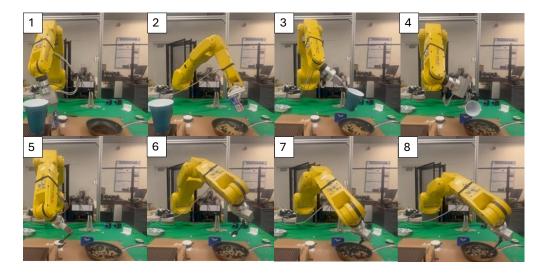
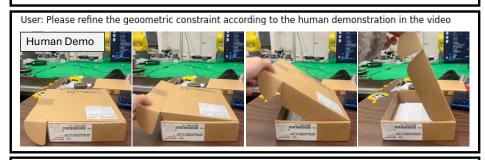


Figure 11: The embodied agent performing a long-sequence task.

### Stage 2: Pull the flap to open the box
- \*\*Sub-goal constraints\*\*:

- <"sub-goal constraints", "the edge of the flap of the box", "the edge of the body of the box" "the edge of the flap of the box moves away from the edge of the body of the box by around 10 centimeters">



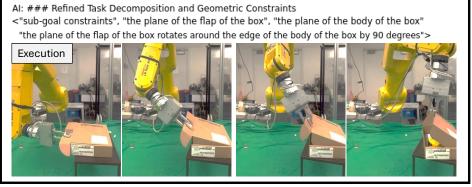


Figure 12: Example of the embodied agent learning from human demonstration for the task "open the box". Top: the original geometric constraint. Middle: the user requirement for learning from the video as well as the human demonstration video. Bottom: the refined geometric constraint after learning from a human demonstration, and the image sequence illustrates the execution process.

#### H PROMPTS

We design a scheme prompt and an example/knowledge prompt for each of the following modules:

1. task decomposition and process control.

2. geometry parser.

3. constraint generator and 4. cost function generation. The scheme prompt provides rules that the VLM model should follow to generate valid output that can be parsed. The example/knowledge prompts provide necessary

973

974 975

976

977

978

979

980 981

982

983 984

985

986 987

988

989

990

991

992

993

994

999

examples to follow or knowledge for in-context learning. For convenience in our implementation, we combine the prompts for module 1 and 2 into one, resulting in 6 prompts:

- Scheme prompt for task compositions and process control, and constraint generator.
- Example/knowledge prompt for task decompositions and process control, and constraint generator.
- Scheme prompt for cost function generation.
- Example/knowledge prompt for cost function generation.
- Scheme prompt for the geometry parser.
- Example/knowledge prompt for the geometry parser.

#### SCHEME PROMPT FOR TASK DECOMPOSITIONS AND PROCESS CONTROL, AND CONSTRAINT GENERATOR

```
## Query
                        Query Task: "{Task Description}"
                        ## Instructions
                       Suppose you are controlling a robot to perform manipulation tasks. The manipulation task is given as an 

→ image of the environment. For each given task, please perform the following steps:
                        1. Task decomposition and flow control:
Determine how many stages are involved in the task.
                        Grasping or releasing must be an independent stage.
                        Flow control controls the transition between stages
                        Some examples:
                                            nng tea from teapot":
tages: "grasp teapot", "align teapot with cup opening", "tilt teapot", "flow control: repeat '

→ tilting teapot' until the cup if filled", "place the teapot on the table", "release"
                               - 6 stages:
                       - "put red block on top of blue block":

- 3 stages: "grasp red block", "drop the red block on top of blue block"

- "reorientate bouquet and drop it upright into vase":

- 3 stages: "grasp bouquet", "reorient bouquet", and "keep upright and drop into vase"

2. Geometric constraint and flow constraint generation: For each stage except for the grasping and release

- stage, please write geometric constraints and flow constraints in lines. Each line represents a
                                    \hookrightarrow constraint that should be satisfied.
                       - Geometric constraint is a tuple of multiple elements: <"constraints type", "'geometry 1' of 'the object 

→ part' of 'the object', "'geometry 2' of 'the object part' of 'the object', ...(if any), "

→ constraints">, each element is explained in the follows:
1000
                           - constraints >, each element is explained in the follows:

- "geometry": Basic geometric primitive like the left edge, the center point, the plane, the normal, the 
ight area, heading direction, and etc..

- "the object part": the key object part on an object, like the tip, the opening, the handle, the hinge,

the slider, the gripper, etc.
1001
1002
                            - "the object": the complete object, like the black cup, the second door, the teapot, the robot, etc.
                                  "constraint"
1004
                               - 1. basic geometric relationship including parallel, perpendicular, vertical, intersect, and etc...
                           - 2. positional constraint like above, below, to the left / right, and etc..
- 3. Distance range like "by 10 centimeters", "around 10 centimeters", "more than 25 centimeters", "10

→ centimeters to 20 centimeters", "45 degress", etc..
- 4. Transformation like "rotate", "shift", etc.
- Specify the <'geometry' of 'the object part' of 'the object'> in the "constraint"
1005
1006
                                    constraints type"
                                      "sub-goal constraints": constraints among 'geometry 1', 'geometry 2', ... that must be satisfied **at

→ the end of the stage **. In other word, it specifies the constraints of the destination
1010
                                2. "path constraints": constraints among 'geometry 1', 'geometry 2', ... that must remain satisfied **

→ within the stage **. In other word, it specifies the constaints on the way to the destination
1011
                                            → position
                      → position.

- Flow constraint is a tuple of multiple element <"flow constraint", "condition"> (goto stage? if satisfied → ; goto stage? if not satisfied)

- For each stage, there can be ONLY one flow constraint. If there are multiple flow constraint, use → standalone stage to place these flow constraints

- Do not ignore "of". There must of at least two "of": "'geometry' of 'the object part' of 'the object'. If → you what to specify 'geometry' of the whole object, use 'geometry' of the body of 'the object'.

- For the grasping stage, sub-goal constraint 1 should be <"grasp", "the area of 'the object part' of 'the
1012
1013
1015
1016
                       - For grasping stage, you can also specify the sub-goal constraints of the heading direction of the gripper

→ approach of the robot or the heading direction of the gripper binormal of the robot:
1017
                           - approach: the direction of the robot gripper pointing at, usually perpendicular to some surface. You can

- approach: the direction of the robot gripper pointing at, usually perpendicular to some surface. You can

- get the gripper approach by calling get_point_cloud("the gripper approach of the robot", -1). To

- binormal: the direction of gripper opening / closing, usually perpendicular to some axis / heading

- direction or parallel to some normal. You can get the gripper binormal by calling get_point_cloud

- ("the gripper binormal of the robot", -1). To find its heading direction, find its eigenvector
1018
1019
1020
1021

→ with max eigenvalue

                       - To close the gripper only without grasping anything, output <"grasp",
1022
                       - If you want to use the gripper, only specify its center position, the heading direction (approach), or the
1023
                                       binormal.
                       - For the releasing stage, sub-goal constraint should be <"release">
1024
                            Avoid using the part that is invisible in the image like "bottom", "back part" and etc.

Please give as detailed constraint as possible.
To move something, you must grasp it first.
Each stage can only do a single action one time

1025
```

```
1026
                        - Don't omit stages for the repeating stages, expand and list them one by one.
1027
                       - Please answer according to the image we provided, which is the previous scene.
1028
1029
                     H.2 EXAMPLE/KNOWLEDGE PROMPT FOR TASK DECOMPOSITIONS AND PROCESS
1030
                                      CONTROL, AND CONSTRAINT GENERATOR
1031
1032
                        Examples for geometric constraint generation and flow constraint generation for each stage under the task:
                               "pouring liquid from teapot until the cup is filled":

- "grasp teapot" stage: (stage 1)

- "grasp", "the handle of the teapot">

- "sub-goal constraints", "the heading direction of the gripper approach of the robot", "the plane of the surface of the table", "the heading direction of the gripper approach of the robot is parallel to the plane of the surface of the table">

- "sub-goal constraints", "the heading direction of the gripper binormal of the robot", "the heading direction of the gripper binormal of the robot is perpendicular to the heading direction of the gripper binormal of the robot is perpendicular to the heading direction of the handle of the teapot">

- "align teapot with cup opening" stage: (stage 2)

- "sub-goal constraints", "the center of the teapot spout of the teapot", "the center of the cup opening of the cup", "the center of the teapot spout of the teapot is directly above the center of the cup opening of the cup around 20 centimeters">

- "tilt teapot until the cup is filled with water" stage: (stage 3)

- "sub-goal constraints", "the area of the handle of the teapot", "the normal of the handle of the teapot", "the area of the handle of the teapot rotates around the normal of the handle of the teapot by 30 degress">
                                  "pouring liquid from teapot until the cup is filled":
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
                                                         teapot by 30 degress">
                                     - <"flow constraints", "the cup is filled with water"> (go to stage 3 if satisfied; goto stage 4 if
1043
                                                 → not satisfied)
                                - "place the teapot on the table near the cup" stage: (stage 4)

- <"sub-goal constraints", "the surface of the table", "the center of the cup opening of the cup", "

- <"sub-goal constraints", "the teapot spout of the teapot is above the surface of the table by 10cm">

- <"sub-goal constraints", "the center of the body of the teapot", "the center of the body of the cup

- ", "the distance between the center of the body of the teapot and the center of the body of the cup is around 20cm">
1044
1045

→ the cup is around 20cm">
1047
                                     - <"sub-goal constraints", "the surface of the table", "the plane of the cup opening of the cup", "the</p>
surface of the table is parallel to the plane of the cup opening of the cup">
1048
1049
                            - "put red block on top of the blue block"
                                      "grasp red block" stage
                                     grasp red block stage:

- <"grasp", "the body of the red block">

- <"sub-goal constraints", "the heading direction of the gripper approach of the robot", "the plane of

the surface of the table", "the heading direction of the gripper approach of the robot is

parallel to the normal of the surface of the table">
1050
1051
1052

    "drop the red block on top of blue block" stage:
    - "sub-goal constraints", "the center of the red block", "the center of the blue block", "the center of the blue block around 20 centimeters">

1053
1054
                                 - "release the red block" stage:
                                       - <"release">
1055
                            - "open the door around the door hinge":
- "grasp the door handle" stage:
- <"grasp", "the handle of the door";
1056
                                     "grasp the door handle" stage:

- <"grasp", "the handle of the door">

- <"sub-goal constraints", "the heading direction of the gripper approach of the robot", "the plane of 

the door of the fridge", "the heading direction of the gripper approach of the robot is 

parallel to the normal of the door of the fridge">
1057
1058
                                     - <"sub-goal constraints", "the heading direction of the gripper binormal of the robot", "the heading direction of the handle of the fridge", "the heading direction of the gripper binormal of the
1059
1060
                                                 → robot is perpendicular to the heading direction of the handle of the fridge">
                                 - "rotate the door" stage:
- <"sub-goal constraints", "the plane of the surface of the door", "the axis of the hinge of the door
1061

    → ", "the plane of the surface of the door rotates around the axis of the hinge of the door → 90 degree">
    - <"path constaints", "the center of the handle of the door", "the axis of the hinge of the door"</li>

                                                             , "the plane of the surface of the door rotates around the axis of the hinge of the door by
1062
1063
                                                  → the distance between the center of the handle of the robot and the hinge of the body of the
1064

→ door remains unchanged">
                                 - "release the door" stage:
1065
                                     - <"release">
                             - "cut the cucumber with the kitchen knife":
1066
                                     'grasp the kitchen knife' stage:

- <"grasp", "the handle of the kitchen knife">

- <"sub-goal constraints", "the heading direction of the gripper approach of the robot", "the plane

the surface of the table", "the heading direction of the gripper approach of the robot is
                                                                                                                                                                                                                                           "the plane of

    → parallel to the normal of the surface of the table">
    - «"sub-goal constraints", "the heading direction of the gripper binormal of the robot", "the heading
    → direction of the handle of the kitchen knife", "the heading direction of the gripper binormal

1069
1070

    → direction of the handle of the kitchen knife", "the heading direction of the gripper binormal
    → of the robot is perpendicular to the heading direction of the handle of the kitchen knife">
    - "hang the knife above the cucumber"
    - <"sub-goal constaints", "the center of the blade of the kitchen knife", "the center of the body of the cucumber", "the center of the blade of the kitchen knife is directly above the center of the blody of the cucumber by 20 cm">
    - <"sub-goal constaints", "the axis of the cucumber", "the plane of the blade of the knife", "the axis to of the cucumber is perpendicular to the plane of the blade of the knife">
    - <"sub-goal constaints", "the heading direction of the blade of the knife", "the plane of the surface to the table", "the heading direction of the blade of the knife is parallel to the plane of the surface of the table">
    - "chop the cucumber" stage:

1071
1072
1073
1074
1075
1076
                                 1077
```

the surface of the table"> (remain from the previous constraints)

- <"path constaints", "the heading direction of the blade of the knife", "the plane of the surface of → the table", "the heading direction of the blade of the knife remains parallel to the plane of

1078

1079

→ previous constraints)

```
1080
                           - <"sub-goal constaints", "the center of the blade of the kitchen knife", "the center of the surface

→ of the table", "the area of the blade of the kitchen knife is above the area of the surface
...
                                                                     , "the center of the blade of the kitchen knife", "the center of the surface
1081
                                     → of the table by 1 cm">
1082
                        - "release the cucumber" stage:
1083
                           - <"release">
                        "open the drawer":
1084
                           "grasp the drawer handle" stage:

- <"grasp", "the handle of the drawer">

- <"sub-goal constraints", "the heading direction of the gripper of the robot", "the plane of the
1085
                                           front face of the drawer", "the heading direction of the gripper of the robot is parallel to
1086

    → the normal of the front door of the drawer">
    - «"sub-goal constraints", "the heading direction of the gripper binormal of the robot", "the heading
    → direction of the handle of the drawer", "the heading direction of the gripper binormal of the

1087
                        — unrection of the nangle of the drawer", "the heading direction of the gripper binormal of the probation of the perpendicular to the heading direction of the handle of the drawer">

- "pull the drawer" stage:

- <"sub-goal constraints", "the center of the handle of the drawer", "the center of the body the drawer", "the center of the handle of the drawer move backwards the center of the body of the drawer by around 30 cm">

- "release the drawer" stage:

- <"release"
1088
1089
1090
1091
                            - <"release">
1092
                     - "press the button"
                            "close the gripper" stage:
- <"grasp", "">
1093

    - \( \) grasp , \( \) = \( \) move to ready-to-press position" stage:
    - \( \) "sub-goal constaints", "the heading direction of the robot approach of the robot", "the center of \( \to \) the body of the button", "the heading direction of the gripper approach of the robot colinear \( \to \) with the center of the body of the button">
    - \( \)"path constaints", "the heading direction of the gripper of the robot", "the plane of the surface

1094
1095
                           → of the button", "the heading direction of the gripper of the robot", "the plane of the surface of the button", "the heading direction of the gripper of the robot remains parallel to the "pressing" stage:
1096
1097

    - <"sub-goal constaints", "the center of the gripper of the robot", "the center of body of the button</li>
    - <"path constaints", "the heading direction of the gripper of the robot", "the plane of the surface</li>
    of the button", "the heading direction of the gripper of the robot remains parallel to the

1099
1100
1101
                 → normal of the surface of the button">
Example for geometric constraint generation and flow constraint generation under a single stage
1102
                   - Orbiting: We can only orbit each time 30 degrees due to design limitation. If we want to orbit for a

    → circle, we need to repeatedly orbit 30 degrees by 12 times.
    - "orbit in one circle by x cm"
    - <"sub-goal constraints", "the center of A", "the center B", "the center of A orbit the center of B by</li>

1103
1104
                        → 30 degrees">
- <"path constraints", "the center of A", "the center of B", "the distance between the center of A and
1105

→ the center of B remains x cm">
    - <"flow constraints", "repeat this stage for 12 times (360 degrees in total)">
    Flow constraint can be composed together to create complex flow constraint. Like loop-in-a-loop. Since there

1106
1107
                          -- can be ONLY one flow constraint each stage, we need to have standalone stages to place the flow
1108
                           \hookrightarrow contraint like this:
                  Example:
1109
                              (stage 3)
                  ... (stage 3)

- "flow constraints", "condition"> (go to stage 3 if satisfied; goto stage 4 if not satisfied)

- "..." (stage 4)
1110
                     - <"flow constraints", "condition"> (go to stage 3 if satisfied; goto stage 5 if not satisfied)
1111
1112
1113
                H.3 SCHEME PROMPT FOR COST FUNCTION GENERATION
1114
                        Please translate all the above geometric constraints and flow constaints for each stage into the Python
1115
                                    cost function.
                  - We can obtain the point cloud by calling Python function "get-point-cloud ('the object part' of 'the object
1116
                                    ', 'timestamp')
1117
                         - we record the position of the 'geometry' since the grasping / contact stage, and record it into array.
```

```
- specify 'timestamp' to retrive 'geometry' mask at the given timestamp. For example, timestamp = -2 to

→ retrieve the previous mask at the time of grasping, timestamp = -1 to retrieve the current mask
1118
1119

    Example 1, if I want point cloud of "the axis of the body of the windmill" at its current timestamp, I can obtain the point cloud by "mask = get_point_cloud('the body of the windmill', -1)".
    Example 2, if I want point cloud of "the plane of the surface of the door" at its previous timestamp, if I can obtain the point cloud by "mask = get_point_cloud('the surface of the door', -2)".
    Please implement a Python cost function "stage_i.subgoal_constraints()", "stage_i.path_constraints()" for

1120
1122
                                       → all the constraints tuples in the ⋄ brackets one by one, except for the grasping and releasing

    ⇒ all the constraints tuples in the <> brackets one by one, except for the grasping and releasing
    ⇒ constraints. It returns the cost measuring to what extent the constraint is satisfied. The
    ⇒ constraint is satisfied when the cost goes down to 0.
    - Grasping, releasing should be a seperate sub-goal stage.
    - Implement "stage.i.flow.constraints()" for the flow constraint if needed, it returns the stage index to
    ⇒ transit. If the flow constraints are not specified, we enter the next stage after this stage
    ⇒ sequentially. Don't call undefined function in the flow constraint!
    - For sub-goal constraint 1 of grasping, directly return grasp('the object part' of 'the object').
    - You can specify multiple sub-goal constraints for grasping to specify the approach and binormal.
    - For releasing in the sub-goal function directly return release().

1123
1124
1125
1126
1127

    For releasing in the sub-goal function directly return release().
    Constraint codes of each stage are splitted by a line "### <stage constraints splitter> ###"

1128
                             The unit of length is meter.
1129
                         - The stage start from 1.
                         - Don't omit stages for the repeating stages, expand and list them one by one.
1130
                         - Don't call function of other stage and is not defined, copy the function if necessary, but don't just call
1131
                         - Left is -x axis, right is x axis, up is z axis, down is -z axis, front is y axis, back is -x axis.
1132
                         Here are some examples:
1133
                         ### <stage constraints splitter> ### (if any)
### stage ? sub-goal constraints
```

```
1134
             def stage=?.subgoal_constraint1():
    """ constraints: <"grasp", "the body of the banana"> """
    return grasp("the body of the banana")
1135
1136
1137
              ### < stage constraints splitter > ###
             ### stage ? sub-goal constraints def stage-?-subgoal-constraint1():
1138
1139
                      constraints: <"sub-goal constraints", "the axis of the body of the cucumber", "the plane of the blade"
                  → of the kitchen knife", "the axis of the body of the cucumber is perpendicular to the plane of 
→ the blade of the kitchen knife"> (for cutting cucumber)"""

pcl = get_point_cloud("the body of the cucumber", -1)
1140
1141
                   pc2 = get_point_cloud("the blade of the kitchen knife",
1142
                   # Calculate the axis of the the body of the cucumber (pc1)
1143
                  # Compute the covariance matrix of the points in the point cloud covariance_matrix_cucumber = np.cov(pc1.T)
1144
                   # Get the eigenvalues and eigenvectors of the covariance matrix
                  eigenvalues_cucumber, eigenvectors_cucumber = np.linalg.eig(covariance_matrix_cucumber)
# The eigenvector corresponding to the largest eigenvalue is the axis of the body of the cucumber
1146
                   cucumber_axis = eigenvectors_cucumber[:, np.argmax(eigenvalues_cucumber)]
                   if \;\; cucumber\_axis [np.argmax(np.abs(cucumber\_axis))] < \; 0; \\
1147
                     cucumber_axis = -cucumber_axis
1148
                   1149
                  # The eigenvector corresponding to the smallest eigenvalue is the normal vector of the surface knife_surface_normal = eigenvectors_knife[:, np.argmin(eigenvalues_knife)] if knife_surface_normal[np.argmax(np.abs(knife_surface_normal))] < 0:
1150
1151
1152
                     knife_surface_normal = -knife_surface_normal
1153
                   # Normalize both vectors
                   cucumber_axis = cucumber_axis / np.linalg.norm(cucumber_axis)
1154
                   knife_surface_normal = knife_surface_normal / np.linalg.norm(knife_surface_normal)
1155
                   # Compute the dot product between the cucumber axis and knife surface normal
1156
                   dot_product = np.dot(cucumber_axis, knife_surface_normal)
1157
                   # cucumber_axis perpendicular to knife surface is to be parallel to the knife surface normal
                   cost = (1 - abs(dot\_product)) * 5.
1158
1159
1160
              def stage_?_subgoal_constraint2():
                  1161
1162
1163
1164
                   # Compute the mean position of the body the cucumber and the body of the kitchen knife
1165
                   body_of_cucumber_center = np.mean(pc1, axis=0)
                   body_of_knife_center = np.mean(pc2, axis=0)
1166
                   # Calculate the horizontal distance (x, y coordinates) between the centers
1167
                   horizontal_distance = np.linalg.norm(body_of_cucumber_center[:2] - body_of_knife_center[:2])
1168
                   # Calculate the center of the body of the knife center should be 20 cm above the center of the body of
1169
                   vertical_distance = body_of_knife_center[2] - 0.1 - body_of_cucumber_center[2]
1170
                   cost = abs(vertical_distance) + horizontal_distance
1171
1172
                   return cost
1173
              def stage_?_subgoal_constraint3():
                  """ constraints: <"sub-goal constraints", "the heading direction of the blade of the knife", "the plane

of the surface of the table", "the heading direction of the blade of the knife is parallel to

the plane of the surface of the table"> (for cutting cucumber)"""

pc1 = get_point_cloud("the blade of the knife", -1)

pc2 = get_point_cloud("the surface of the table", -1)
1174
1175
1176
1177
                   # Calculate the heading direction vector of the plane of the blade of the knife (pc1)
                   covariance_matrix_knife = np.cov(pc2.T)
eigenvalues_knife, eigenvectors_knife = np.linalg.eig(covariance_matrix_knife)
# The eigenvector corresponding to the smallest eigenvalue is the normal vector of the surface
1178
1179
                   knife_surface_heading = eigenvectors_knife[:, np.argmin(eigenvalues_knife)] if knife_surface_heading[np.argmax(np.abs(knife
1180
                   _surface_heading))] < 0:
1181
                     knife_surface_heading = -knife_surface_heading
1182
                   # Calculate the normal vector of the plane of the surface of the table (pc2)
covariance_matrix_table = np.cov(pc2.T)
1183
                   eigenvalues_table, eigenvectors_table = np.linalg.eig(covariance_matrix_table)
1184
                  # The eigenvector corresponding to the smallest eigenvalue is the normal vector of the surface table_surface_normal = eigenvectors_table[:, np.argmin(eigenvalues_table)]
1185
                   if table_surface_normal[np.argmax(np.abs(table_surface_normal))] < 0:
                     table_surface_normal = -table_surface_normal
1186
1187
                   table_surface_normal = table_surface_normal / np.linalg.norm(table_surface_normal)
```

```
1188
                 knife_surface_heading = knife_surface_heading / np.linalg.norm(knife_surface_heading)
1189
                 # Compute the dot product between the table axis and knife surface normal
1190
                 dot_product = np.dot(table_surface_normal, knife_surface_heading)
1191
                 # knife surface heading parallel to the plane of the table surface is to be perpendicular to the table \hookrightarrow surface plane normal
1192
                 cost = abs(dot_product) * 5.
1193
                 return cost
1194
            def\ stage\_?\_subgoal\_constraint1\ (\,):
                1195
1196
1197
                 pc1_previous = get_point_cloud("the surface of the door", -2) pc2 = get_point_cloud("the hinge of the door", -2)
1198
                 # Step 1: Normalize the axis of the hinge of the door (from pc2)
covariance_matrix_door = np.cov(pc2.T)
1199
1200
                 eigenvalues_door, eigenvectors_door = np.linalg.eig(covariance_matrix_door)
                 door_axis = eigenvectors_door[:, np.argmax(eigenvalues_door)]
door_axis = door_axis / np.linalg.norm(door_axis) # Normalize the axis vector
1201
                 if door_axis[np.argmax(np.abs(door_axis))] < 0:
1202
                   door_axis = -door_axis
1203
                 # Step 2: Convert the angle from degrees to radians
1204
                 angle_radians = np.radians(angle_degrees)
1205
                 # Step 3: Compute the rotation matrix using Rodrigues' rotation formula
                K = np. array([[0, -door_axis[2], door_axis[1]], [door_axis[2], 0, -door_axis[0]],
1206
1207
                 [-door\_axis[1],\ door\_axis[0],\ 0]]) \ \ \# \ Skew-symmetric \ matrix \ for \ door\_axis \ I = np.eye(3) \ \ \# \ Identity \ matrix
1208
                 rotation_matrix = I + np.sin(angle_radians) * K + (1 - np.cos(angle_radians)) * np.dot(K, K)
1209
                 # Step 4: Rotate each point in pc1
1210
                 rotated_pc1 = np.dot(pc1_previous - pc2.mean(0), rotation_matrix.T) + pc2.mean(0) # Apply rotation

→ matrix to each point

1211
                 \# Step 5: compute the cost of how pc1 aligns with rotated_pc1.
1212
                 cost = np.linalg.norm(pc1 - rotated_pc1, axis=1).sum()
                 return cost
1213
1214
            ### <stage constraints splitter> ###
1215
            ### stage ? sub-goal constraints
1216
            def stage_?_subgoal_constraint1():
"""constraints: <"release"> ""
1217
                 release()
1218
1219
            ## Some geometry-related knowledge here:
1220
            ## End knowledge
1221
            Please write the codes below: ### <stage constraints splitter> ###
1222
            ### stage 1 sub-goal constraints (if any)
1223
            ## if it is a grasping constaints
def stage_1_subgoal_constraint1():
    """ constraints: <"grasp", "'geometry' of 'the object part' of 'the object'"> """
    return grasp("'the object part' of 'the object'")
1224
1225
1226
1227
            def stage_1_subgoal_constraint1():
                   ""constraints: <?, ?, ?,..., ?>"""
1228
                 mask1 = get_point_cloud(?)
mask2 = get_point_cloud(?)
1229
                 return cost
1230
            # Add more sub-goal constraints if needed
1231
1232
            ### stage 1 path constraints (if any)
            def stage_1_path_constraint1():
1233
                    constraints: <?, ?, ?.
                 mask1 = get_point_cloud(?)
1234
                 mask2 = get_point_cloud(?)
1235
                 return cost
1236
            # Add more path constraints if needed
1237
1238
            Finally, write a list of "'geometry' of 'the object part' of 'the object'" in all the Sobrackets:
1239
            object_to_segment = [?]
1240
```

```
1242
           H.4 Example/Knowledge Prompt for Cost Function Generation
1243
1244
            Here are some geometry-related and control-flow-related knowledge:
THE EXAMPLES ARE ONLY FOR YOUR REFERENCE. YOU NEED TO ADAPT TO THE CODE FLEXIBLY AND CREATIVELY ACCORDING TO
1245
                       DIFFERENT SCENARIOS !
1246
            # Chapter 1: normal, axis, heading direction, binormal:
1247
            - Notice: The largest axis component of the normal / axis / heading direction should always be positive !
            - To find the heading direction is the same of finding the axis
1248
            - Example:
1249
                 Finds the normal (normal vector) of a plate given its point cloud.
1250
                 Args:
1251
                     pc: numpy array of shape (N, 3), point cloud of the plate.
1252
                 Returns:
                 plate_normal: A normalized vector representing the normal vector of the plate.
1253
1254
                 # Compute the covariance matrix of the point cloud
                 covariance_matrix = np.cov(pc.T)
1255
                 # Perform eigen decomposition to get eigenvalues and eigenvectors
1256
                 eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)
1257
                 # The eigenvector corresponding to the smallest eigenvalue is the normal vector to the plate's surface
                 plate_normal = eigenvectors[:, np.argmin(eigenvalues)]
if plate_normal[np.argmax(np.abs(plate_normal))] < 0:
1258
1259
                      plate_normal = -plate_normal
1260
                 # Normalize the normal vector
plate_normal = plate_normal / np.linalg.norm(plate_normal, axis=-1)
1261
1262
                 return plate_normal
1263
            - Next example:
1264
                 Finds the axis of a cylinder given its point cloud.
1265
                 Args:
1266
                     pc: numpy array of shape (N, 3), point cloud of the cylinder.
1267
                 Returns
                 cylinder_axis: A normalized vector representing the axis of the cylinder.
1268
1269
                 # Compute the covariance matrix of the point cloud
                 covariance_matrix = np.cov(pc.T)
1270
                 # Perform eigen decomposition to get eigenvalues and eigenvectors
1271
                 eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)
1272
                 # The eigenvector corresponding to the largest eigenvalue represents the axis of the cylinder
1273
                  cylinder_axis = eigenvectors[:, np.argmax(eigenvalues)]
                 if cylinder_axis[np.argmax(np.abs(cylinder_axis))] < 0:
cylinder_axis = -cylinder_axis
1274
1275
                 # Normalize the axis vector
1276
                 cylinder\_axis = cylinder\_axis \ / \ np.linalg.norm(cylinder\_axis \ , \ axis = -1)
1277
                 return cylinder_axis
            - To find out the heading direction of long-shaped object, find the max PCA component.
1278
            - To find out the normal of a surface, find the min PCA component.
- To find out the axis of an object, there are two cases.
1279
                 - For long-shaped object like bolt, carrot, etc., its the max PCA component
- For fat-shaped object like bowl, nut, etc., its the min PCA component
1280
1281

    A axis / heading direction / normal that is perpendicular to a plane / surface is parallel to the normal.
    A binormal is the vector that is both perpendicular to the axis / heading direction and the normal
    parallel: cost = (1 - np.abs(dot_product)) * 5

1282
            # Chapter 2: relative position between two points
1284
             - Example 1:
1285
                 Measures the cost that point 2 is directly below point 1.
1286
1287
                     pc1: numpy array of shape (N, 3), point cloud of point 1.
                      pc2: numpy array of shape (M, 3), point cloud of point 2.
1288
1289
                 Returns:
                     cost: a non-negative float representing the extent to which point 2 is directly below point 1.

The lower the cost, the more point 2 is directly below point 1.
1290
1291
                 \# Compute the center of mass (mean position) for point 1 and point 2
1292
                 point1_center = np.mean(pc1, axis=0)
                 point2_center = np.mean(pc2, axis=0)
1293
                 # Calculate the horizontal distance (x, y coordinates) between the centers
1294
                 horizontal_distance = np.linalg.norm(point1_center[:2] - point2_center[:2])
1295
                 # Calculate the vertical distance (z coordinate) between the centers
vertical_distance = point1_center[2] - point2_center[2]
```

```
1296
1297
                    # If point 2 is not below point 1, add a large penalty to the cost
                    if vertical_distance < 0:
1298
                         cost = abs(vertical_distance) + horizontal_distance + 1000 # Large penalty for incorrect vertical
1299
                               → position
                    else:
1300
                         cost = horizontal_distance
1301
                    return cost
1302
              - Next example:
1303
                    Measures the cost that point 2 is directly to the left of point 1 by 10 cm.
1304
1305
                        pc1: numpy array of shape (N, 3), point cloud of point 1. pc2: numpy array of shape (M, 3), point cloud of point 2.
1306
1307
                    Returns:
                         cost: a non-negative float representing the extent to which point 2 is directly to the left of point
1308
                                The lower the cost, the closer point 2 is to being exactly 10 cm to the left of point 1.
1309
1310
                    \# Compute the center of mass (mean position) for point 1 and point 2
                   point1_center = np.mean(pc1, axis=0)
point2_center = np.mean(pc2, axis=0)
1311
1312
                    # Calculate the horizontal distance (x-axis) between point 1 and point 2
1313
                    x_distance = point2_center[0] - point1_center[0]
1314
                   # Calculate the y and z distances (vertical and depth positions)
y_distance = abs(point2_center[1] - point1_center[1])
z_distance = abs(point2_center[2] - point1_center[2])
1315
1316
                    # The ideal x distance should be -0.10 meters (to the left by 10 \text{ cm})
1317
                    cost = abs(x\_distance + 0.10) + y\_distance + z\_distance + \#Sum \ all \ deviations \ from \ ideal \ positioning
1318
                    return cost
1319
              # Chapter 3: control flow
              We use flow constraints for control flow, which specify transitions among different stages.

- Repetition control flow: Do <something> until some <condition>
1320
1321
                 For example:
              <"flow constraint", "Repeat this stage until the box reaches the table edge"> def stage_'i'_flow_constraint1():
1322
                 while True:
1323
                  while True:
    # query GPT-4O
query = "Is the box on the table edge? You only need to answer 'yes' or 'no'"
answer = query-GPT(query)
if answer.strip().lower() == "yes"
    return 'i+1' # go to next stage
1325
1326
                    else:
              return 'i' # repeat this stage to continue pushing the box ## Repeat until the cup is being filled, then go to stage 3 ## <"flow constraints", "the cup is filled with water">
1327
1328
              def stage_i_flow_constraint1():
    while True:
1329
                   # query GPT-40
query = "Is the water filled in the cup? You only need to answer 'yes' or 'no'"
answer = query_GPT(query)
1330
1331
                    if answer.strip().lower() == "yes"
return 'i+1'
1332
                    else:
1333
                      return 'i'
1334
              ## Repeat the stage N times
## <"flow constraints", "repeat this stage N times">
def stage_i_flow_constraint1():
1335
1336
                 \# CNT is a global counter variable with default value 0, don't initialize it again! if CNT < N:
1337
                   CNT += 1
1338
                    return 'i
                CNT = 0
1339
                 return 'i+1'
              - You can have multiple flow constraint if necessary. They can create complex flow control. Just think about
1340
                          what you do to write flow control in Python code.
              For a example:
1341
              ## <"flow constraints", "repeat this stage N times">
## <"flow constraints", "condition">
1342
              This is example of loop in a loop. The inner loop repeat the stage N times. The outer loop repeat the inner
1343
                     → loop until condition is satisfied
              Another example:
1344
              ## <"flow constraints", "repeat this stage N times">
## <"flow constraints", "condition">
1345
1346
              # Chapter 4: rotation and orbiting
              - To rotate, we use sub-goal constraint to first constraints its rotated position
1347
              ## rotate pc around axis by angle-degrees

def stage_?_subgoal_constraint1():
    pc_previous = get_point_cloud("pc", -2)
1348
1349
                    pc = get_point_cloud("pc", -1)
object = get_point_cloud("object", -2) # use -2 to specify the previous object
```

```
1350
                       covariance_matrix = np.cov(object.T)
1351
                       eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)
                       axis = eigenvectors[:, np.argmax(eigenvalues)]
1352
                       axis = axis / np.linalg.norm(axis, axis=-1) # Normalize the axis vector
1353
                       # Step 3: Convert the angle from degrees to radians
1354
                       angle_radians = np.radians(angle_degrees)
1355
                       # Step 4: Compute the rotation matrix using Rodrigues' rotation formula
                      K = np. array([[0, -axis[2], axis[1]],
1356
                                           [axis[2], 0, -axis[0]],
[-axis[1], axis[0], 0]])
1357
                       I = np.eye(3) # Identity matrix
1358
                       rotation_matrix = I + np.sin(angle_radians) * K + (1 - np.cos(angle_radians)) * np.dot(K, K)
1359
                       # Step 5: Rotate each point in pc1 around object's center
                       rotated_pc = np.dot(pc_previous - object.mean(0), rotation_matrix.T) + object.mean(0)
1360
1361
                       cost = np.linalg.norm(rotated.pc - pc, axis=-1).sum()
1362

    To orbit: The orientation of pc is unchanged during orbiting. To calculate the position after orbital

        → translation, we first calculate the position of the center of pc rotating around the axis of the

        → object. Next, we translate the whole pc to the rotated center.

1363
1364
                def stage_?_subgoal_constraint1():
    pc_previous = get_point_cloud("pc", -2)
1365
                       pc = get_point_cloud("pc", -1)
object = get_point_cloud("object", -2) # use -2 to specify the previous object
1366
                       covariance_matrix = np.cov(object.T)
1367
                       eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)
1368
                      axis = eigenvectors[:, np.argmax(eigenvalues)]
axis = axis / np.linalg.norm(axis, axis=-1) # Normalize the axis vector
# Step 3: Convert the angle from degrees to radians
# Step 4: Compute the rotation matrix using Rodrigues' rotation formula
1369
1370
                       # Step 5: Rotate each point in pc1 around object's center
1371
                        orbital\_pc\_center = np\_dot(pc\_previous.mean(0) - object.mean(0), rotation\_matrix.T) + object.mean(0) \\ orbital\_pc = orbital\_pc - pc\_previous.mean(0) + orbital\_pc\_center 
1372
                       cost = np.linalg.norm(rotated_pc - pc, axis=-1).sum()
                       return cost
1373

    For both rotation and orbiting, if the distance is not specified, we need a path constraint to specify the

        → distance between pc center and the object center remain unchanged (same as the distance of

        → pc-previous center and the object center)

1374
1375
                def stage-?-path-constraint1():
1376
                       pc_previous = get_point_cloud("pc", -2)
pc = get_point_cloud("pc", -1)
object = get_point_cloud("object", -2) # use -2 to specify the previous object
1377
                       distance = np.linalg.norm(pc.mean(0)) - object.mean(0))

distance = np.linalg.norm(pc.mean(0) - object.mean(0))
1378
1379
                       cost = abs(distance_previous - distance)
                       return cost
1380
                  · If certain distance 'x' is specified, we need path constraint to remain the specified distance:
                def stage_?_path_constraint1()
1381
                      # get pc, and object
distance = np.linalg.norm(pc.mean(0) - object.mean(0))
1382
                       cost = abs(distance - x)
1383
                       return cost

To turn something, rotate all its points around its axis by some angle.
To orbit in circle, using flow control to repeat this stage 12 times: <"flow constraints", "repeat this 
→ stage 12 times">. For sub-goal constraint, orbit by 30 angle_degrees.

1384
1385
                - To rotate / orbit clockwisely, the angle is negative; Otherwise, the angle is positive.
1386
1387
                # Chapter 4: Relationship between points and vector

- Colinear: point B colinear with object A's axis / normal / heading direction by distance x if:
1388
                       point B = point A's center + normalize(point A's axis / normal / heading direction)
                - move towards / backwards / against / away:

- We need to calculate the target point first and calculate the distance between previous point and the
1389
1390

    we need to carculate the target point first and carculate the distance
    points A move towards / to points B by distance:
    previous point A = get_point_cloud(A, -2)
    current point A = get_point_cloud(A, -1)
    moving direction = normalized(vector of previous point A to B)
    target position of point A = points A + moving direction * distance
    cost = np_link_name(target_position of point A = current position)

1392
1393
                       cost = np.linalg.norm(target position of point A - current position of point A) ## the cost is

→ calculated based on the distance between target point and current point !!

- points A move backward / against / away from points B by distance:
1394
1395
                             previous point A = get\_point\_cloud(A, -2)
current point A = get\_point\_cloud(A, -1)
1396
                             moving direction = normalized(vector of previous point A to B)
1397
                             target position of point A = points A + moving direction * distance cost = np.linalg.norm(target position of point A - current position of point A) ## the cost is
1398
                                     ← calculated based on the distance between target point and current point
1399
1400
               H.5 SCHEME PROMPT FOR GEOMETRY PARSER
1401
1402
                       There are totally {number of pair} pair of images.
                For each pair, the left image is the image of {object name} with different part highlighted in red. The

right image is the segmentation mask highlighted in white to represent different parts of {object
```

→ name}. These images are named as image i, ... (i=0, 1, 2, ...)

```
1404
                Please infer what is highlighted in red for the left image one by one, and then select one of the image for
1405
                \hookrightarrow {geometric part name}.

- Output: image {image_index}, 'geometry' (i=0,1,2... is the index number) at the end in a single line.
1406
                - Where 'geometry' is the geometry of object, like the edge, the center, the area, left point, right, point,
1407
                Write a Python function to find out the {geometric part name} given the segmentation of image {object name},
1408
                → {image_index}.

- the input 'mask' is a boolean numpy array of a segmentation mask in shapes (H, W)
1409
               - the input 'mask' is a boolean numpy array of a segmentation mask in shapes (H, - return the mask which is a numpy array.
- You can 'import numpy as np' and 'import cv2', but don't import other packages - mask_output should still be in the shape (H, W)
## code start here
1410
1411
1412
                def segment_object(mask):
1413
                     return mask_output
                Please directly output the code without explanations. Complete the comment in the code. Remove import lines
1414

→ since they will be manually imported later.

1415
1416
              H.6 KNOWLEDGE PROMPT FOR GEOMETRY PARSER
1417
               - To find hinge / axis, output the image of its door, and see which side to segment. For a rotating

→ object part, the hinge / axis and the handle are of the opposite position. For example, for

→ finding the hinge of the microwave, output the image of microwave door first. And if the handle

→ is on the left of the the door, the hinge should locate at the right edge of its door.

- For a sliding body, the slider should be parallel to the edge of the frame.

- sample code to find the complete edge. You need to adjust the code to choose the left / right / top /

→ bottom edge accordingly. For example, to fine the left edge, find the leftmost True value by

→ iterating over each row to find the leftmost True value
1418
1419
1420
1421
1422
1423
                def find_edges(mask):
1424
                      Find the edges of a binary mask using Canny edge detection.
1425
                      Parameters:
1426
                            mask (np.ndarray): Binary image (mask) with 1s representing the object and 0s representing the
1427
                                    → background.
1428
                      np.ndarray: Edge mask with 255 at the edges of the object and 0s elsewhere.
1429
                     # Convert mask to uint8 if not already
mask = (mask * 255).astype(np.uint8) if mask.max() == 1 else mask
1430
1431
                     # Apply Canny edge detection
edges = cv2.Canny(mask, 100, 200)
1432
1433
                      # shift the edge down a little bit !
1434
                     edges = np.roll(edges, 3, axis=0)
1435
                      # Set the top rows to zero to prevent wrap-around artifacts
                     edges[:3 : 1] = 0
1436
1437
1438
                - return the mask directly if the mask does not need to be processed
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
```