© ©® N O O A~ W N =

20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36

Disentangling and Re-evaluating The Effectiveness of
Graph Structure Learning For GNNs

Anonymous Author(s)
Affiliation
Address

email

Abstract

Graph Structure Learning (GSL) has been widely adopted in the design of Graph
Neural Networks (GNNs), with similarity-based graph learning emerging as the
most popular approach for node classification. However, which component of
GSL really enhances GNN performance remains underexplored. In this paper,
we disentangle its effects and present a comprehensive analysis. Specifically,
we propose a novel framework that can decompose GSL into three steps: (1)
GSL bases (i.e., processed node embeddings for construction) generation, (2) new
graph construction, and (3) view fusion. Through empirical studies and theoretical
analysis, we demonstrate that applying graph convolution to the newly constructed
graphs does not increase the Mutual Information (MI) between node embeddings
and labels. Our findings reveal that model performance is primarily driven by the
quality of GSL bases rather than the graph construction methods. To validate them,
we conduct extensive experiments with 450 GSL variants and benchmark them
against GNN baselines within the same search space for GSL bases. Results show
that similarity-based graph construction has negligible or even adverse impacts on
GNN performance, while pre-trained GSL bases provide significant performance
gains. These findings verify and confirm our analysis, underscoring the critical role
of GSL bases and highlighting the need to simplify the other two GSL steps.

1 Introduction

Graph Neural Networks (GNNs) [17]] are effective in capturing structural information from non-
Euclidean data, which can be used in many applications such as recommendation [50} 49], telecom-
munication [29], bio-informatics [54, 12, [13]], and social networks [34, 24]]. However, conventional
GNNs suffer from issues including heterophily [30} 131]], over-squashing [5]], adversarial attacks
[15}122], and missing or noisy structures [21} 28]]. To address these issues, Graph Structure Learning
(GSL), especially the similarity-based method that reconstructs or refines the original graph structures,
has been widely used in enhancing GNN performance and robustness [60]. Even though GSL is
believed to improve GNN performance, it introduces more hyperparameters and adds plenty of
computational cost in both the construction process and the learning process. In addition, recent
studies [39| 36]] have shown that GSL methods cannot consistently outperform baseline GNNs with
the same hyperparameter tuning strategy. Therefore, an in-depth analysis of the effectiveness and
necessity of GSL is highly needed.

To have a detailed understanding of each component in GSL, we propose a new framework that
can break down GSL into 3 steps: (1) GSL Bases Generation. GSL bases are the processed node
embeddings that serve as inputs for the structure construction of new graphs. They are built by either
graph-aware or graph-agnostic models with fixed or learnable parameters. (2) Graph Structure
Construction. Based on the GSL bases, new structures are constructed with similarity-based [14} 38]],

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62

63
64
65

66
67

68
69
70

71
72

73
74
75
76

77

78
79
80
81
82
83
84
85
86
87
88
89

structural-based [55} 27]], or optimization-based approaches [[15] B followed by graph refinements.
(3) View Fusion. To incorporate the original graph or combine multiple GSL-generated graphs,
various view fusion strategies are applied, e.g., late fusion [45]], early fusion [22], or separation [28]].
Compared with existing categorizations of GSL [40, |60, 61} 18] that mainly focus on step (2), our
proposed framework is more comprehensive, and is able to disentangle the effect of each component
in GSL.

More specifically, for step (1), we argue that a fair comparison between GSL-enhanced GNNs
and traditional GNNs should be made using the same GSL bases. Previous GSL studies often
enhance node inputs with additional information before graph construction, such as pre-trained node
embeddings [6} 51] or structural embeddings [38}|57]. However, these enhancements are typically
absent for the inputs of GNN baselines, leading to potentially biased and invalid evaluations. For
step (2), we examine the effectiveness of graph convolution operations with the similarity-based
graphs. Our empirical and theoretical findings indicate that the Mutual Information (MI) between
convolved node representations and labels does not increase after graph convolution. This suggests
that the performance improvements observed in previous similarity-based GSL methods result from
the processed GSL bases (i.e.,, enhanced node inputs) in step (1) rather than new graph construction
in step (2)f}

We conducted extensive experiments to validate our hypothesis. To thoroughly evaluate the perfor-
mance of GSL-enhanced GNNs, we implemented these methods using six GNN backbones, five GSL
bases, three GSL graph construction approaches, three view fusion methods, and two types of fusion
strategies, resulting in 450 different GSL variants. The results demonstrate that, within the same
search space of GSL bases, there are no significant performance differences between GSL-enhanced
GNNss and the corresponding baseline GNNs on node classification tasks. In addition, the results
show that the pre-trained GSL bases is the component which significantly enhance GNN performance
on certain datasets. This aligns with our analysis and validate our claim. In summary, our main
contributions are as follows:

* Comprehensive GSL Framework: In Section[3] we propose a novel framework that decom-
poses the GSL process into three steps. This decomposition provides a more comprehensive
perspective than existing categorizations, offering valuable insights into the workings of

GSL.
» Empirical and Theoretical Analysis: In Section[d] we present both empirical evidence

and theoretical analysis demonstrating that the Mutual Information (MI) between node
representations and labels does not increase after applying graph convolution on similarity-
based GSL graphs. This finding suggests that similarity-based GSL methods may be

unnecessary.
¢ Fair Re-Evaluation of GSL: In Section 5] we conduct a fair reassessment of GSL’s

impact on GNN performance. Our results highlight that GSL bases play a crucial role in
improving GNN performance, while similarity-based graph construction has a negligible
effect. Besides, we identify the key components for effective GSL, including pretrained
GSL bases, parameter separation, and early fusion strategies.

2 Preliminary

Graphs. Suppose we have an undirected graph G = A}V, &} with node set V and edge set £. Let
Y € RVXC denote the node labels and X € RV represent the node features, where N is
the number of nodes, C is the number of classes, and M is the number of features. The graph
structure is represented by an adjacency matrix A, where A,, , = A, ,, = 1 indicates the existence
of an edge €y, em € & between nodes uw and v. The normahzed adjacency matrix is given by

A=D2AD 2 where D=D+1I,and A= A+1, represent the degree matrix and adjacency
matrix with added self-loops. The neighbors of node v is denoted as NV,, = {v|ey, € £}. Graph
Structure Learning (GSL) generates a new graph topology A’, where the new neighbors of node u
are denoted as V. Graph-aware models MY, such as Graph Convolutional Networks (GCN) [17],
are powerful in extracting structural information in graphs by message aggregation or graph filters
[35]]. In contrast, graph-agnostic models M ™9, such as Multilayer Perceptrons (MLP), only use X
without considering G. For example, the updating process of node embeddings in GCN and MLP

'Note that most of the construction methods are similarity-based, which is the main focus of our paper.
2As step (3) fuses the results from step (2), if step (2) is ineffective, then step (3) will also be ineffective.

90
91
92

93
94
95
9%
97

98

99
100

101
102

103

104
105
106
107
108

109

110
111
112
113
114
115
116
117
118

119

120
121
122
123
124
125
126
127
128

129

130
131
132
133

can be represented as H! = o (AH'"1W'~1) and H' = o(H'~'W!=1), respectively. Here, H'
and W' are the node embeddings and weight matrix at the [-th layer, respectively, and o(-) is an
activation function.

Graph Homophily. The concept of homophily originates from social network analysis and is
defined as the tendency of individuals to connect with others who have similar characteristics [[16]. A
higher level of graph homophily makes the topological information of each node more informative,
thereby improving the performance of graph-aware models M9 [32, 33| 56]. Commonly used
homophily metrics include edge homophily [2,159] and node homophily [38]]:

uv wv € S;Yu = Yv
hedge(g,Y) = |{e | ¢ }| (1)

€]
1 U UENMYu:KJ
hna(§.) = gy 32 LS = @

veV

Mutual Information. Mutual Information quantifies the amount of information obtained about one
random variable given another variable [1]. The mutual information between variable X and Y can

be expressed as:
p(z,y)
I(X;Y) = ,y) 1 3
(X:;Y) yEEymEGXp(x y) log o@p(y) ©)

where p(z, y) is joint probability, and p(x) and p(y) are marginal probability.

Mutual information could be used to analyze the quality of input features by measuring how much
information the inputs X retain about the outputs Y. However, in graphs under the task of node
classification, the mutual information between a discrete variable Y and a continuous variable X
cannot be directly measured by Eq. (3). Therefore, in this paper, we measure the mutual information
I(X;Y) based on entropy estimation from k-nearest neighbors distances following [19} 20} [41]].

3 Graph Structure Learning

Existing studies and evaluations of GSL mainly focus on the structure construction method. However,
through extensive literature review, we find that it only constitutes one step of GSL [40, 60, 61]. To
comprehensively understand and disentangle GSL for GNN learning, we propose a new framework.
As shown in Figure [I] our framework includes three steps: GSL bases generation, new structure
construction, and view fusion. Then, the whole pipeline of GSL is: First, GSL bases B is constructed
based on node features X (and input graphs G); Then, new graph structures G’ are constructed with
the GSL bases; At last, the information from G’ (sometimes with multiple views) and original graph
G are combined with different view fusion strategies for GNN training. We will introduce each
component in the following subsections[]

3.1 GSL Bases

The GSL bases B is defined as the pre-processed node embeddings used for new structure con-
struction. The quality of the GSL bases plays a crucial role for the graph construction step. For
node classification tasks, an effective GSL bases B should exhibit consistency among intra-class
nodes, as shown in Figure [2] (left). The construction of B can be categorized into non-parametric
approaches [18, 138} 163]], which generate fixed B, and parametric approaches [[15} 6l 53], where B
is learnable during training. The construction of B can also be categorized into graph-agnostic
[8L151163]] and graph-aware approaches [38 53} 145]], based on whether the original graph information
will be contained in B. Combining these two perspectives, in Figure[I] we show the diagrams of four
types of bases: B = X, B = (A)*X, B = MLP(X), and B = GNN(X, A).

3.2 New Structure Construction

The construction of the new structure G’, based on B, is a key element of GSL. Based on relation
extraction methods, the construction of G’ can be categorized into similarity-based [14} 38} 23],
structure-based [155, 127, 163]], and parametric optimization-based [15} 28| [25] approaches. Similarity-
based method is the most prevalent one, and the choice of similarity measurement, such as k-Nearest

3Please refer to Appendix@for a more detailed discussion of the representative GSL methods within our
proposed GSL framework.

134

136
137
138

140
141
142
143
144
145
146
147
148

149

150
151
152
153
154
155
156
157
158

159

160
161
162

Construction Refinement

miEEEE O O O 5
Z
> 3
= 0O)-- = GNNi(H,G*) »
; £ 0,050 2 -
= = F
& =——— £ O Post-process =
.E X 7 © o0 (+Top-K)
e} Cosine Similarity (+Sampling)
; Sos oy | mmto | | = 2 [Ao oo
S O k-Nearest Neighbors (+Normalize) 2 x Y :
Node Features X Minkowski Distance = /\ X
H M e .
=1 (1 Regularization = HH HH "¢
LT ° o (+Low Rank) ~ X
Arx g d o OOO (+Sparisity)
+Si thness =
£ oGodo 070" 1 famemmm | | € @ -n m
Encoding Tree § X
7 é 7‘ / A Param Optimization
717 ,lf x
) New Structure G’ View Fusion
FOMLPOY | oo oo |
Old Structure G' : V V ﬂ V V I I
‘ Joint & & Model ‘
ihan |] ‘
| |
N | rsure ZE 4) A) & ‘
I I
Input GSL Base Training Mode

Figure 1: Our proposed GSL framework consists of three steps: GSL base generation, new structure
construction, and view fusion.

Neighbors [8]], cosine similarity [6]], or Minkowski distance [28], plays a critical role in the quality of
the reconstructed graphs. However, the initial G’ produced by these methods often results in a coarse
graph structure, which may not be optimal for GNN training. Thus, further refinements are often
necessary, such as sampling [53} 22, 28], symmetrization [53}[7, 28], normalization [14} 55, 28], or
applying graph regularization [14} 15} 25]].

3.3 View Fusion

For GSL methods which have already implicitly fused the information from the original graph
structure G into the reconstructed structure G’ [14}[7,[63]], further view fusion is unnecessary. However,
for other approaches, the fusion of information from G and G’ is crucial. Based on the fusion stage,
methods can be classified as early fusion [22} 21} 27], 1ate fusion [45} 28} 57, and separation [28]].
Early fusion, often seen as "graph editing", modifies G by adding or removing edges with G’ before
training. Late fusion keeps both views as input, fusing node embeddings either at each layer or in the
final layer. Separation methods, typically paired with contrastive learning, maintain multiple views
without embedding fusion during GNN training. Additionally, view fusion methods can be further
distinguished by whether they involve parameter sharing across layers during training.

3.4 Training Mode

In addition to the previous three steps, the training mode of G’ plays a crucial role in GSL and can be
categorized into static, joint, and 2-stage approaches. Most methods [15, 25, 51] use joint training
where G’ and model parameters are optimized simultaneously. In contrast, some methods [8] 43 27]
follow a 2-stage mode, iteratively updating G’ and model parameters. While dynamic updates
offer better flexibility for learning complex structures through parameter optimization, they also
significantly increase computational complexity, especially during the bases and graph construction
steps. To address this, other methods [43] 23] [57]] opt for a static G’ during training. Although
this fixed structure may limit performance, it avoids the time-consuming process of frequent graph
updates.

4 Effectiveness of Graph Structure Learning

Based on the framework built in the previous section, in this section, we question the necessity of
similarity-based graph construction methods with theoretical analysis and extensive experiments. We
introduce the motivation with an example in Section 4.1} We then explore the impact of GSL on

163
164

165

166
167
168
169
170
171
172
173

174
175
176
177
178
179

180

181
182

183
184
185

Fo oot “Fogo

Successful GSL Unsuccessful GSL

Figure 2: Examples of GSL that use the similarity of neighbor distribution as GSL bases for graph
construction. The color of nodes indicates their labels. Left: new edges successfully connect intra-
class (red) nodes, which share similar GSL bases (neighborhood pattern with 3 green nodes and 1
blue node). Right: new edges connect inter-class nodes, resulting in an unsuccessful GSL.

GNN performance through empirical observations in Section |4.2|and theoretical analysis in Section
@3] Finally, the time complexity of GSL is discussed in Section

4.1 Motivation

We revisit the effectiveness of GSL by the examples shown in Figure 2] where we use neighborhood
distributions as GSL bases. Suppose a successful new edge is the one that connect intra-class
nodes (Figure |Z| (Left)), i.e., homophilic connection [31]]; and an unsuccessful edge connects inter-
class nodes (Figure 2] (Right)), i.e., heterophilic edge. We can see that successful and unsuccessful
connections both follow node similarity principle to build edges. In other words, the same construction
method can lead to totally different outcomes. Instead, the main difference comes from the GSL bases:
the left example has high-quality bases, where intra-class nodes share consistent representations;
however, the right example has low-quality bases, where inter-class nodes have similar embeddings.

On the other hand, this example also points out an awkward situation for GSL: when we have
low-quality bases, GSL cannot work well; when we have high-quality bases, it means that the bases
themselves can already provide sufficiently informative and distinguishable node embeddings for
classification, and therefore, new graph construction may still be unnecessary. To further explore
the effectiveness of the new graph construction step in GSL, we conduct empirical and theoretical
analyses in the following subsections.

4.2 Empirical Observations on Synthetic Graphs

In this section, we investigate how GSL bases and the graph reconstruction methods influence GNN
performance through experiments on synthetic graphs. The graph generation process is as follows.

1.0 0.8 1.0
— I(B;Y) —— Acc(B)Y) — I(B;Y) —— Acc(B)Y)
c I(H;Y) Acc(H,Y) c I(H;Y) Acc(H,Y)
2037 — www 0.8 — Acc(H'Y) 2 0.69 — iHy) 0.8 — Acc(HY)
£ o £ o
© ©
Eoz« 5061 \EO4< 506
—_ O —_)
g < g <
= 0.1 0.4 5 0.2 0.4
= =
007 . . . 0.2 . . . 0.0 . . . 0.2 . . .
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Homophily Homophily Homophily Homophily
(@B=X b)B=AX

Figure 3: Mutual information and accuracy of node classification for GSL bases I3, convoluted bases
, new graph convoluted bases HH’ = A’ B, across various homophily degrees. B is set to

node features X in (a) and aggregated features AX in (b). Note that in (a), A’ only depends on B
and does not change with homophily.

Settings Based on CSBM-H [33]] (see details in Appendix [B]), we generate synthetic graphs with
10 random seeds for each homophily degree h € {0,0.1,...,1.0} to mitigate randomness effects.
Each graph G contains 1000 nodes, with each node characterized by 10 features, 5 balanced classes,

186
187

189
190

191
192
193
194
195
196

197

198
199
200
201
202

203
204
205
206
207

208

210
211
212

213
214
215
216
217
218

219
220
221
222
223
224
225

226

227
228
229
230
231

232
233
234

236
237

and a degree sampled from the range [2, 10]. Then, we apply k-Nearest-Neighbors (kNN) on GSL
bases B with k = 5 to generate new graphs, i.e., G’ = kKNN(B).

The experiments are designed to answer two questions: Q1: Is the reconstructed graph necessary for
GNN? Q2: How much does the reconstructed graph enhance GNN performance compared to the
original graph structure?

Let us denote the original node representations (i.e., original GSL bases) as B, the original graph
convoluted representations as H, and the reconstructed graph convoluted embeddings as H'. These
bases will be separately fed into MLP, GCN, and GCN+GSL to compare model performance
(prediction accuracy). We measure the quality of the bases using both the non-parametric metric
mutual information I(-) and the parametric metric Acc(-). We test two different settings of GSL bases
(1) graph-unaware GSL bases B = X in Figure where H’ does not rely on graph homophily; (2)

and graph-aware GSL bases B = AX in Figure [3b, where H' depends on graph homophily.

To answer Q1, we can compare [(B;Y) vs. I(H’;Y) and Acc(B:;Y') vs. Acc(H’;Y). They
compare the models which have and do not have graph reconstruction step, under the same GSL
bases. To answer Q2, we can compare vs. I(H';Y') and vs. Acc(H";Y),
which compare the performance of GCN and GSL-enhanced GCN. Through extensive experiments,
we have the following observations.

Observation 1. Mutual information is an effective non-parametric measure of model perfor-
mance. As shown in Figure [3a)and [3b} the shape of mutual information I(-) curves (left) are highly
similar to the curves for model accuracy ACC(-) (right). This shows that mutual information can
effectively measure the quality of the embeddings. We will use it for theoretical analysis in the next
section.

Observation 2. Graph construction does not make significant difference. In Figure [3| the
mutual information /(B;Y") and classification accuracy ACC(B,Y") are close to I(H’;Y) and
ACC(H',Y), respectively, across both graph-agnostic and graph-aware GSL bases. This suggests
that the model performance does not improve significantly after applying graph convolution on the
reconstructed graph G’, which aligns with our analysis in the previous section.

Observation 3. GSL-enhanced GCN only outperforms GCN in heterophilous graphs under
graph-agnostic bases. With graph-agnostic bases in Figure and increase
as homophily increases, while /(H’;Y) and ACC(H’,Y) remain constants across homophily
degrees. As the reconstructed graph does not depend on homophily, the harmful connections in
graphs with low homophily will not cause negative impact on H'. Thus, GSL-enhanced GCN can
outperform GCN. However, this effect is observed only when B = X.

Note that when B = AX in Figure even when GCN+GSL outperforms GCN, its performance
still remains close to MLP under the same GSL bases. This means that GSL-enhanced GNN
cannot outperform the simple baselines significantly. Recent studies [36, |39] also indicate that
under consistent hyperparameter tuning, GSL does not always consistently outperform classic GNN
baselines. This leads us to reconsider the necessity of GSL. In addition to the above empirical
observations, we proceed with a theoretical analysis on the effectiveness of GSL in the following
section.

4.3 Theoretical Analysis

To explain the above empirical observations, in this section, we first prove that the mutual information
I(Y; H) between label Y and aggregated features H can serve as a non-parametric measurement of
the effect of graph convolution. Following this, we compare the mutual information between the node
labels Y and either the original GSL bases B or the aggregated GSL bases H’ (on G), to reveal the
impact of GSL on model performance.

Theorem 4.1. Given a graph G = {V, £} with node labels Y and node features X, the accuracy of
graph convolution on node classification P4 is upper bounded by the mutual information of node
label Y and aggregated node features H = AX:

Py < I(Y;H) +1log2
log(C)
Proposition 4.2. Consider a graph G = {V, £} characterized by node labels Y and n-dimensional

node bases B = (B, Ba, . .., By) with C classes. Each base B; is independent and follows a class-
dependent Gaussian distribution, i.e., B; ~ N (uy,oy). A new graph G' = {V, &'} is generated

“

238
239

240

241
242
243

244
245
246
247

248
249

251
252
253
254
255

257

258
259
260
261
262
263
264
265
266

267

268
269

270
271

272

273
274
275
276
277

278
279
280
281
282
283
284
285

286

287
288
289

using a non-parametric method based on the bases B. For the aggregated bases B’ on G, we have
inf [(Y; B’) <inf I(Y; B).

where the proofs are shown in Appendix [C|

Theorem shows that the mutual information I(Y'; H) provides an upper bound on the accuracy
of graph convolution for node classification, which justifies why mutual information serves as an
effective measure of model performance, as demonstrated in Observation 1.

Based on the conclusion of mutual information in Theorem[4.1] we analyze the effectiveness of GSL.
Proposition shows that the graph convolution on new graphs generated by GSL does not increase
the lower bound of mutual information. This explains why MLP performs similarly to, or slightly
better than, GCN+GSL in Observation 2 and the dilemma of GSL in Figure

To further explain Observation 3 in Section d.2] we refer again to Proposition 4.2} In conjunction
with previous studies on graph homophily [38} 132,56, we know that the performance of GCN could
be inferior to MLP on heterophilous graphs. Since GCN+GSL is upper bounded by the MLP on
the same GSL bases, when MLP outperforms GCN, GCN+GSL may also outperform GCN, as seen
in Figure However, even when GCN+GSL surpasses GCN in some cases, it still lags behind
MLP, a much simpler model, on the same GSL bases. Therefore, we hypothesize that previous GSL
improvements stem from the construction of the GSL bases or the introduction of additional model
parameters. A fair comparison of GSL with other GNNs or MLP baselines should be conducted using
the same GSL bases, as demonstrated in our experiments.

4.4 Complexity Analysis

After investigating the difference in the performance of GCN+GSL and GCN, we then analyze the
time complexity of some representative methods of GSL, such as IDGL [6], GRCN [53]], GAug [53],
and HOG-GCN [46], as shown in Table E} Assume the dimension of node representation is F' for all
the layers, the additional time complexity introduced by GSL generally includes: 1. Construction
of GSL bases: O(|&| F + |V| F?) for graph-aware bases or O(|V| F'?) for graph-agnostic bases, 2.
Graph construction: O(|V|? F), 3. Graph refinement: O(|V|*), and 4: View Fusion O(|V|?). Apart
from the complexity of the new graph construction in GSL, during the graph convolution, compared
with GNNs without using GSL, the additional complexity is further introduced by single view GSL
O(|€'| F) or multiple view GSL O((Ng — 1)(|€] F + |V| F?)), where |£] is the additional edges
introduced in GSL and Ng is the number of views in GSL. Consider the fact that |V|* > ||, we
have the total additional complexity of GSL by summing up all these terms: O(|V|* F + |V| F?2).
Compared with the complexity in normal GCN O(|€| F + |V| F'2) [4], this additional complexity
O((JV|* — |€|)F) adds tremendous training time and grows exponentially with the number of nodes
in graphs, which is shown in our experiments.

5 Experiments

In this section, we examine the effectiveness of Graph Structure Learning (GSL) through extensive
experiments. To explore GSL’s impact on Graph Neural Networks (GNNs), we compare the perfor-
mance of 450 GSL variants integrated with various GNN backbones in Section @ Furthermore,
we analyze the influence of different components on GSL through an ablation study of each GSL
component in Section[5.2]

Settings. Our experiments include six popular GNNs as backbones: GCN [17]], SGC [47]], GraphSage
[LO], and GAT [44], Mixhop [2]], and ACMGNN [32]. The datasets used in our experiments
include heterophilous graphs: Squirrel, Chameleon, Actor, Texas, Cornell, Wisconsin, Roman-empire,
and Amazon-ratings (38}, 142, 39], and homophilous graphs: Cora, PubMed, and Citeseer [52]],
Minesweeper, Tolokers, and Questions [39]. We show more dataset details in Appendix [D] The model
performance is measured by accuracy for multi-class datasets or AUC-ROC for binary-class datasets
on node classification tasks. We use 50%/25%/25% random splits for training/validation/test sets.
For each experiment, we report the mean and standard deviation across 10 splits.

5.1 Performance Comparison

We investigate the impact of GSL on GNNs by the comparison of GNNs and the corresponding
GSL-enhanced GNNs (GNN+GSL). As GSL introduces significant variations in three key aspects,
we aim to comprehensively evaluate all possible GSL configurations through a combination of

290
291
292
293
294
295
296
297

299
300
301
302
303
304
305
306

308

309
310
311
312
313
314
315
316
317

318

319
320
321

Table 1: Performance Comparison of MLP, GNNs and the corresponding GSL-enhanced GNNs. For
each GNN backbone, the best-performing method is highlighted in red, while the second-best method
is highlighted in blue.

Model _Construct__Fusion _Param Sharing ___ Mines Roman Amazon, Tolokers Questions _ Squirrel __ Chameleon _ Actor Texas Comell __ Wisconsin Cora CiteScer _ PubMed _ Rank
MLP 79554123 6545£0.99 46.65£0.83 75941138 7492139 39294222 43574418 35401138 B0.46L6.44 73781734 8588LTT8 8797180 87.39+2.18 393
GCN 90074579 81.46+1.25 SO89+116 84614099 7768110 41264247 43244386 3434117 73084868 67.03+1054 78244832 8797151 767 89.47+0.64 136
GCN - 77914525 67.4041.02 46724151 76114152 72.56+1.14 38, 5 39874487 3347+1.61 6306+985 65.68£7.76 72754570 85214139 75S52+114 89.03£042 671
GON 6y=0, 52534645 62574081 41294161 74224179 69634152 37624174 30784400 32744092 5788875 66494912 73144592 64684161 67324189 86434076 932
GCN cos-graph 6 #6, 8870086 69904238 47354083 82854005 75204138 38844287 40304431 3 9 6547+848 62971089 75294654 8551+187 7523114 8874059 479

GCN cos-node - 85.57+6.63 68244249 47.56+132 7726144 74162180 38144240 4016313 34045166 61132819 61085816 71IS+6.98 86.06+£1.95 7576+1.39 8892050 593
GON cos-node 0, =0, 52534645 6257081 41294161 74224179 69.63+1.52 37624174 39.78+400 3274+092 ST88E8T5 66.49+9.12 73144592 64.68+1.61 67324189 8643076 9.36
GON cos-node

6 # 62 89.17+£0.68 7263145 48314096 82914097 7556105 38414232 39945449 34105153 GA.68+885 63244947 73924751 85694173 75494142 8872+071 429

GCN 8289+£6.66 68441083 47.13£100 78924179 7390173 38.15£202 4022382 3394=124 63.03£853 61355928 72164741 8608162 75564142 88594058 593
GON kNN 0y =0, 52534645 6257081 41294161 74224179 69.63+£152 37.62+41.74 39.78+400 3274£092 S7.88+875 66.49+9.12 73144592 64684161 67324189 8643076 939
GON kNN 00 # 0, 8896073 72444161 47.06:083 83.10£0.80 75.6141.19 37.631193 40.18+476 3384194 63872968 62.1649.77 75494729 85824155 75.50+1.30 88544055 5.00
MLP None - - 79554123 65454099 46.65+083 7594+138 74924139 39294222 43574418 35404138 80.46=644 7378734 85884778 87.97+1.80 8739+2.18 371
SGC None - - 83452447 78042069 SI3BL0.68 SARBLLI3 77394123 4LISE2T3 42355410 34055141 73632694 70274991 BOS945.13 8810£189 775 89394062 157

SGC cos-graph 7376446 67.17+081 47.15:088 76284163 73931266 38.66+253 40074439 3387+145 67.57£9.19 77654608 8695£2.01 76.1 9 89.10£043 579

5253489 6297078 42424157 7429+£179 70.56+127 37.56+225 39.33+3.60 0 53664951037 7157h446 64825211 67554180 86585072 9.50

B0.78+1.08 64.59+1.93 47484099 83.17+143 76804109 36.53+2.06 40.17+4.24 69.26+6.77 6595+8.87 76084592 87384149 76.02+1.22 88774045 579

79554123 65455099 46.65£083 7594138 7492139 39294222 43574418 35405138 80465644 7378734 8588778 87974180 7668210 8739:218 414

90.66-0.88 85.02£0.97 52.93+0.83 8331112 75954141 40.43£2.64 42954537 3483120 80.17+690 T5.68+7.52 8627+6.67 88.13+177 7665200 89.18+0.65 171
53136

6= 6,
0

SGC cosgraph {G.G'} Oy=0, 52534489 62974078 42424157 74294179 T0.56+£127 37564225 3933+3.60 32855090 S 3664951037 71574446 64.8242.11 86.58+0.72 9.6
SGC cosgraph {G.G'} 6y #6 79704121 62024206 47241093 83224152 77194099 38324180 4085L461 64.86£9.01 75294682 8747170 £128 88.65:049 614
SGC cosnode {G'} - 7903376 6784187 47934094 7809184 75464143 38615220 40504.10 3 68115923 7745463 8747186 89.37:041 454
SGC cosnode {G,G'} 0y =f 52534489 62974078 4242157 74294179 7056127 37564225 39331360 3285 53 6649£10.37 71574446 64824211 8658072 957
SGC cosmode {G.G'} 01 # 6 80.1241.36 66.90£1.66 48044097 83.534143 77114109 38524229 40.2044.66 64.5949.74 75294605 87.54+1.63 88.68£043 511
9} - T5.53E498 67941070 ATO84084 79455206 74224247 37324210 39.92+391 34 5 70005798 77844602 87.82+177 4 89.19£0.42 464

6.9}

9.9}

0,40

{g - 8039+4.66 70.13£1.05 4755117 76774128 7286118 39.03£2.69 40.84+542 34755139 T091=858 70.00£7.56 78244687 83644203 75531 89.18£0.35 607

6.6} 6, =06, 53.02£649 5998173 39.99+229 7157£228 66.01£3.58 35.05:241 38.49+368 31325104 60305705 67575459 76474592 6458+174 67.77+131 8553051 993

{6.6'} 0y # 02 90.6740.66 79.024121 52104084 82174089 75384096 39.36+2.14 40.64£606 35.14:108 76.08£630 70274662 79414571 8360+1.78 74394135 8888050 386

cosnode {G'} - 8526:44.64 71254176 4896087 78394175 T3O0ILLIL 38684275 40814451 35104126 71474947 68114787 75494632 84884190 75.58+1.04 89174035 564
cosnode {G,G'} 6, =0, 53.02£649 S998+1.73 39.99+229 71.59+228 66.01£3.58 35.05+241 3849368 60.30£7.05 6757459 76474592 64.58+1.74 67.77+131 8553051 979
E cosnode {G,G'} 00 # 02 90.64£0.65 78.60+098 5208090 8202088 75314112 39.184254 40.8646.17 74714565 69.73£743 80.00+5.68 83964165 7463126 8893064 393
NN {9} - 82864314 7074080 48404101 78124217 7270+115 38934284 39.68+540 3 4 70912905 68924688 75.6046.73 84.40+175 T75.68+1.43 888 650
KN (GG} 6, =06, 53024649 S998+173 39.99+4229 71594228 66.0143.58 35054241 38.49+3.68 60.30£7.05 67574459 76474592 6458174 67774131 8553051 986
KNN _ {G.¢'} 0y # 03 90614063 79.16+1.15 51.56+1.07 81.66+087 75224097 39204239 40.44+582 3 74.17£631 70, 32 7961+£661 84054163 7459125 88.67+055 4.57
None - - 79554123 65455099 46.65-083 7594138 7492+139 39294222 4357418 3 8 8046644 73 4 85884778 87971180 T6.68£210 8§7.39£218 386
None - - 90414134 8451+0.84 52004284 8437096 77.78+1.27 41.67£251 4383366 3 75.28+8.12 4 77844741 88.02+192 76775202 8921+067 204

- 8078824 67.68+£1.25 45794110 7484184 72344149 3874254 40214353
6, =6, 53.16+7.93 63.67£1.08 44831204 7346107 68.92+1.53 37.04+£213 39.85+287 3
0, # 6, 89.97£0.80 76.08£1.70 49.61£0.73 8275£090 77.13£1.20 39214281 40.40£330 3 70.66=7.77 6676723 78824676 86.60+1.75 87855072 471

- 87.64+8.40 68.8042.39 46374106 77774186 73.65+147 38.65+246 40.33£325 3 64.6429.00 65414848 75.10+6.13 87.081.66 88594049 582
6, =6, 53.06+7.93 63.67£1.08 44831204 7346107 68924153 37.04+213 39.85+287 3206=112 S7.03:870 6730£4.67 75104585 64844145 67.82+0.62 8647+0.66 946
61 # 62 90.03£0.78 77.56+£2.75 50.36+£0.70 8272+1.16 7683116 38974312 40.56£377 3349£135 70.39+734 65955677 78.63+6.59 86.64+178 7532+1.04 87.87+0.61 421

- 84274525 68.73+1.47 46.05£090 7757175 TIS8E162 38824233 40.12+3.60 33BALL0T 6L68=8T1 6297743 T490+586 86774190 75.64+1.45 88294048 650

GAT cos-graph
GAT cos-graph
GAT cos-graph
GAT cos-node
GAT cos-node
GAT cos-node

5.
6273£9.06 67574703 T7.06+7.29 86.03+1.85 75.46+1.49 88.63+0.59 629
2 5703870 67.30+4.67 75104585 64.84145 062 8647+0.66 9.46

6, =06, 53164793 63.67+1.08 44834204 7346+1.07 68.92+153 37.04+213 39.854287 3206112 S7.03+870 6730+4.67 75104585 64844145 67.82+0.62 8647066 946
6, # 6, 89.96:£0.79 77231163 49.79+0.72 8278+£095 76.67+113 39.65+276 41.11£392 33541136 70382722 6595+6.52 77844723 86974175 7520£1.55 8797051 418

various GSL components, which include (1) five GSL bases: original features X, aggregated
features AX, MLP-pretrained features MLP(X), GCN-pretrained features GCN(X, A), GCL
(Graph Contrastive Learning)-pretrained features [62]] GCL(X, A); (2) three similarity-based graph
construction methods: graphs are constructed via cosine similarity of GSL bases with threshold from
the graph level (cos-graph) and node level (cos-node), and k-nearest neighbors (kNN); and (3) three
view fusion methods: early fusion {G'}, late fusion {G, G’} with parameter sharing ; = 65 or not
0, # 6-. To ensure a fair comparison of the performance between GNN+GSL, GNN, and MLP, we
consider all five GSL bases as input choices and train all models on each GSL bases. The details of
all these modules can be found in Appendix [E|

Table |I| reports the performance of MLP, GNN baselines, and GNN+GSL across eight datasets
under the best of five GSL bases. Notably, under fair comparison conditions, all six baseline GNNs
outperform their GNN+GSL counterpartﬂ This suggests that the incorporation of GSL does not
consistently yield performance improvements of GNNs, and in some situations, it even lead
to worse results. Besides, under the same search space of GSL bases, MLP outperforms most
GNN+GSL in average rank. This result verifies the dilemma in Section that high-quality GSL
bases already provide informative node representations without newly constructed graphs. Since
GSL-based methods may require specific training procedures or more complex model designs, we
further examine the performance of state-of-the-art (SOTA) GSL approaches to evaluate the potential
of GSL in Appendix [F.3] where the results also indicate GSL makes no significant improvement.

As previously mentioned, besides boosting model performance, GSL is often used to enhance the
robustness of GNNs [[15]]. Therefore, under our proposed framework, we conduct fair experiments to
study the robuseness of GSL-enhanced GNNs with the same GSL search space. Figure[d]demonstrates
the performance of GNNs alongside their GSL-enhanced counterparts on perturbed graphs, incorpo-
rating feature noise, edge addition, and edge removal, as suggested by (author?) [26]. The curves
for GSL-enhanced GNNs (dotted lines) is close to those of the original GNNs (solid lines) across
three types of perturbations and four GNN backbones, indicating that the baseline GNNs perform
comparably to their GSL-enhanced versions. Therefore, the similarity-based graph construction
may not be indispensable for enhancing model robustness. See Appendix for more details.

5.2 Ablation Study on Each GSL Component

Since the performance of GNN and GNN+GSL models is comparable under the same bases, we
further investigate how different components of GSL influence GNNS in Figure [5] where each result
is the averaged performance of four GNN backbones, including GCN, GAT, SGC, and GraphSAGE.

“Due to page limitation, results of the other two heterophily-oriented GNNs are shown in Appendix
where we can derive the same conclusion as in Tablem

322
323
324
325
326
327

329
330
331
332
333

335
336

Cora, Feature Noises Cora, Add Edges Cora, Delete Edges

— Gen sGc SAGE — Gar — Gon sGc SAGE — Gar — aon sGc SAGE — Gar
-~ GON4GSL SGC+GSL SAGE+GSL - GAT+GSL

-~ GEN4+GSL SGCHGSL SAGE+GSL - GAT+GSL -~ GON+GSL SGCHGSL SAGE+GSL - GAT+GSL

00 001 002 005 01 02 05 10 20 50 100 00 01 02 03 04 05 06 07 08 09 00 01 02 03 04 05 065 07 08 09

Actor, Feature Noises Actor, Add Edges Actor, Delete Edges

Gen sGc SAGE GaT — aon sec SAGE GaT — oo sec SAGE GAT
0361 -~ GCN+GSL SGC+GSL SAGE+GSL === GAT+GSL 0.361 —-- GCN+GSL SGC+GSL. SAGE+GSL === GAT+GSL 0367 ——- GeN+GSL SGC+GSL. SAGE+GSL =~ GAT+GSL

Accuracy / AUC-ROC
Aceuracy / AUC-ROC

00 001 002 005 01 02 05 10 20 50 100 00 01 02 03 04 05 06 07 08 09 00 01 02 03 04 05 06 07 08 09

Figure 4: Response to feature noise, edge additions, and edge removals in GNN baselines and their
GSL-enhanced counterparts.

The results indicate that: (1) Pretrained node representations, such as MLP(X) and GCN(X, A),
significantly enhance GNN performance EI, (2) GSL graph generation has minimal impact on model
performance, (3) two view fusion with parameter separation improves GNN performance, and (4)
early fusion generally outperforms late fusion. Especially, GSL bases influence model performance
most among all the GSL components, verifying our analysis in Section [] that the quality of GSL
bases greatly influences GNN performance, while graph construction has little impact.

GSL Basis Construction B GSL Graph Generation B iew Fusion B Fusion State
ix MR GoNA G cosgan connote o © Goro e orese cary

e s

&

Figure 5: The influences of different GSL components on GNN+GSL.

6 Conclusion

In this paper, we disentangle the impact of GSL in GNN performance through our proposed GSL
framework. Motivated by the dilemma associated with GSL, we show that it is the pretrained node
features that really improve GNN performance instead of the similarity-based graph construction
methods. Our research contributes to a deeper understanding of GSL and provides insights for
re-evaluating essential components in future GNN designs. Although this paper primarily focuses
on the impact of GSL on model performance in node classification tasks, future research could
expand this analysis to other graph-related tasks and different types of graphs, as well as theoretically
examine the effects of GSL under broader assumptions.

>See more discussion of GSL bases in Appendix

337

338

339
340
341
342

343
344

345
346

347

349
350
351

353
354

355
356

357

358
359

360
361

362
363

364
365
366

367
368
369

371
372
373

374
375

376
377

378
379

380
381

References
[1] Aug 2024.

[2] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyunyan,
G. Ver Steeg, and A. Galstyan. Mixhop: Higher-order graph convolutional architectures

via sparsified neighborhood mixing. In international conference on machine learning, pages
21-29. PMLR, 2019.

[3] N.J. Beaudry and R. Renner. An intuitive proof of the data processing inequality. Quantum
Info. Comput., 12(5-6):432—-441, May 2012.

[4] D. Blakely, J. Lanchantin, and Y. Qi. Time and space complexity of graph convolutional
networks. Accessed on: Dec, 31:2021, 2021.

[5] S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks? In International
Conference on Learning Representations, 2021.

[6] Y. Chen, L. Wu, and M. Zaki. Iterative Deep Graph Learning for Graph Neural Networks:
Better and Robust Node Embeddings. In Advances in Neural Information Processing Systems,
volume 33, pages 19314-19326. Curran Associates, Inc., 2020.

[7] B. Fatemi, L. El Asri, and S. M. Kazemi. SLAPS: Self-Supervision Improves Structure Learning
for Graph Neural Networks. In Advances in Neural Information Processing Systems, volume 34,
pages 22667-22681. Curran Associates, Inc., 2021.

[8] L. Franceschi, M. Niepert, M. Pontil, and X. He. Learning Discrete Structures for Graph Neural
Networks, June 2020. arXiv:1903.11960 [cs, stat].

[9] S. Gerchinovitz, P. Ménard, and G. Stoltz. Fano’s inequality for random variables. 2020.

[10] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

[11] D. He, C. Liang, H. Liu, M. Wen, P. Jiao, and Z. Feng. Block Modeling-Guided Graph
Convolutional Neural Networks, Dec. 2021. arXiv:2112.13507 [cs].

[12] C. Hua, S. Luan, M. Xu, Z. Ying, J. Fu, S. Ermon, and D. Precup. Mudiff: Unified diffusion for
complete molecule generation. In Learning on Graphs Conference, pages 33—1. PMLR, 2024.

[13] C. Hua, B. Zhong, S. Luan, L. Hong, G. Wolf, D. Precup, and S. Zheng. Reactzyme: A bench-
mark for enzyme-reaction prediction. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024.

[14] B. Jiang, Z. Zhang, D. Lin, J. Tang, and B. Luo. Semi-Supervised Learning With Graph
Learning-Convolutional Networks. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11305-11312, June 2019. ISSN: 2575-7075.

[15] W.Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang. Graph structure learning for robust
graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’20, page 66—74, New York, NY, USA, 2020.
Association for Computing Machinery.

[16] K.Z. Khanam, G. Srivastava, and V. Mago. The homophily principle in social network analysis:
A survey. Multimedia Tools and Applications, 82(6):8811-8854, 2023.

[17] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[18] L. Kolbeck, S. Vilgertshofer, J. Abualdenien, and A. Borrmann. Graph rewriting techniques in
engineering design. Frontiers in built environment, 7:815153, 2022.

[19] L. F. Kozachenko and N. N. Leonenko. Sample estimate of the entropy of a random vector.
Problemy Peredachi Informatsii, 23(2):9-16, 1987.

10

382
383

384
385
386
387

388
389
390
391

392
393
394

395
396

397
398
399

400
401
402
403
404

405
406

407

409
410
411

412
413

414
415
416

417
418
419

420
421
422

423
424

425
426
427

428
429

[20] A. Kraskov, H. Stogbauer, and P. Grassberger. Estimating mutual information. Physical Review
E—Statistical, Nonlinear, and Soft Matter Physics, 69(6):066138, 2004.

[21] D. Lao, X. Yang, Q. Wu, and J. Yan. Variational Inference for Training Graph Neural Networks
in Low-Data Regime through Joint Structure-Label Estimation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, pages 824-834,
New York, NY, USA, Aug. 2022. Association for Computing Machinery.

[22] K. Li, Y. Liu, X. Ao, J. Chi, J. Feng, H. Yang, and Q. He. Reliable Representations Make A
Stronger Defender: Unsupervised Structure Refinement for Robust GNN. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 925-935,
Washington DC USA, Aug. 2022. ACM.

[23] S. Li, D. Kim, and Q. Wang. Restructuring graph for higher homophily via adaptive spectral
clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages
8622-8630, 2023.

[24] X.Li, L. Sun, M. Ling, and Y. Peng. A survey of graph neural network based recommendation
in social networks. Neurocomputing, 549:126441, 2023.

[25] X.Li, R. Zhu, Y. Cheng, C. Shan, S. Luo, D. Li, and W. Qian. Finding global homophily in
graph neural networks when meeting heterophily. In International Conference on Machine
Learning, pages 13242—-13256. PMLR, 2022.

[26] Z.Li, X. Sun, Y. Luo, Y. Zhu, D. Chen, Y. Luo, X. Zhou, Q. Liu, S. Wu, L. Wang, and J. X.
Yu. GSLB: the graph structure learning benchmark. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing

Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurlPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

[27] N. Liu, X. Wang, L. Wu, Y. Chen, X. Guo, and C. Shi. Compact Graph Structure Learning via
Mutual Information Compression, Jan. 2022. arXiv:2201.05540 [cs].

[28] Y. Liu, Y. Zheng, D. Zhang, H. Chen, H. Peng, and S. Pan. Towards Unsupervised Deep Graph
Structure Learning, Jan. 2022. arXiv:2201.06367 [cs].

[29] Q. Lu, S. Luan, and X.-W. Chang. Gcepnet: Graph convolution-enhanced expectation prop-
agation for massive mimo detection. In IEEE GLOBECOM 2024 Conference Proceedings,
2024.

[30] Q.Lu,J.Zhu, S. Luan, and X.-W. Chang. Flexible diffusion scopes with parameterized laplacian
for heterophilic graph learning. In The Third Learning on Graphs Conference, 2024.

[31] S. Luan, C. Hua, Q. Lu, L. Ma, L. Wu, X. Wang, M. Xu, X.-W. Chang, D. Precup, R. Ying,
et al. The heterophilic graph learning handbook: Benchmarks, models, theoretical analysis,
applications and challenges. arXiv preprint arXiv:2407.09618, 2024.

[32] S. Luan, C. Hua, Q. Lu, J. Zhu, M. Zhao, S. Zhang, X.-W. Chang, and D. Precup. Revisiting
heterophily for graph neural networks. Advances in neural information processing systems,
35:1362-1375, 2022.

[33] S. Luan, C. Hua, M. Xu, Q. Lu, J. Zhu, X.-W. Chang, J. Fu, J. Leskovec, and D. Precup. When
do graph neural networks help with node classification? investigating the homophily principle
on node distinguishability. Advances in Neural Information Processing Systems, 36, 2024.

[34] S. Luan, M. Zhao, X.-W. Chang, and D. Precup. Break the ceiling: Stronger multi-scale deep
graph convolutional networks. Advances in neural information processing systems, 32, 2019.

[35] S.Luan, M. Zhao, C. Hua, X.-W. Chang, and D. Precup. Complete the missing half: Augmenting
aggregation filtering with diversification for graph convolutional networks. In NeurIPS 2022
Workshop: New Frontiers in Graph Learning, 2022.

[36] Y. Luo, L. Shi, and X.-M. Wu. Classic gnns are strong baselines: Reassessing gnns for node
classification. arXiv preprint arXiv:2406.08993, 2024.

11

430
431

432
433

434
435
436

437
438

439
440

441
442

443
444
445

446
447

448
449
450

451
452
453

454
455

456
457

458
459

460
461
462

463
464

466
467

469

470
471

472
473

474
475

[37] Y. Ma, X. Liu, N. Shah, and J. Tang. Is homophily a necessity for graph neural networks? arXiv
preprint arXiv:2106.06134, 2021.

[38] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric graph convolutional
networks. arXiv preprint arXiv:2002.05287, 2020.

[39] O. Platonov, D. Kuznedelev, M. Diskin, A. Babenko, and L. Prokhorenkova. A critical look
at the evaluation of gnns under heterophily: Are we really making progress? arXiv preprint
arXiv:2302.11640, 2023.

[40] L. Qiao, L. Zhang, S. Chen, and D. Shen. Data-driven graph construction and graph learning: A
review. Neurocomputing, 312:336-351, 2018.

[41] B. C. Ross. Mutual information between discrete and continuous data sets. PloS one,
9(2):e87357, 2014.

[42] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node embedding. Journal of
Complex Networks, 9(2):cnab014, 2021.

[43] S. Suresh, V. Budde, J. Neville, P. Li, and J. Ma. Breaking the limit of graph neural networks by
improving the assortativity of graphs with local mixing patterns. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 1541-1551, 2021.

[44] P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017.

[45] R. Wang, S. Mou, X. Wang, W. Xiao, Q. Ju, C. Shi, and X. Xie. Graph Structure Estimation
Neural Networks. In Proceedings of the Web Conference 2021, pages 342-353, Ljubljana
Slovenia, Apr. 2021. ACM.

[46] T. Wang, D. Jin, R. Wang, D. He, and Y. Huang. Powerful graph convolutional networks with
adaptive propagation mechanism for homophily and heterophily. In Proceedings of the AAAI
conference on artificial intelligence, volume 36, pages 4210-4218, 2022.

[47] E. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. Simplifying graph convolutional
networks. In International conference on machine learning, pages 6861-6871. PMLR, 2019.

[48] Q. Wu, W. Zhao, Z. Li, D. Wipf, and J. Yan. NodeFormer: A Scalable Graph Structure Learning
Transformer for Node Classification, June 2023. arXiv:2306.08385 [cs].

[49] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui. Graph neural networks in recommender systems:
a survey. ACM Computing Surveys, 55(5):1-37, 2022.

[50] S.Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan. Session-based recommendation with graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pages 346-353, 2019.

[51] Y. Yan, M. Hashemi, K. Swersky, Y. Yang, and D. Koutra. Two sides of the same coin: Het-
erophily and oversmoothing in graph convolutional neural networks. In 2022 IEEE International
Conference on Data Mining (ICDM), pages 1287-1292. IEEE, 2022.

[52] Z. Yang, W. Cohen, and R. Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In International conference on machine learning, pages 40-48. PMLR, 2016.

[53] D. Yu, R. Zhang, Z. Jiang, Y. Wu, and Y. Yang. Graph-Revised Convolutional Network, Dec.
2020. arXiv:1911.07123 [cs, stat].

[54] X.-M. Zhang, L. Liang, L. Liu, and M.-J. Tang. Graph neural networks and their current
applications in bioinformatics. Frontiers in genetics, 12:690049, 2021.

[55] T. Zhao, Y. Liu, L. Neves, O. Woodford, M. Jiang, and N. Shah. Data Augmentation for Graph
Neural Networks, Dec. 2020. arXiv:2006.06830 [cs, stat].

[56] Y. Zheng, S. Luan, and L. Chen. What is missing in homophily? disentangling graph homophily
for graph neural networks. arXiv preprint arXiv:2406.18854, 2024.

12

476
477

478
479
480

481
482
483

484
485

487

488
489

490
491
492
493

[57] Y. Zheng, J. Xu, and L. Chen. Learn from heterophily: Heterophilous information-enhanced
graph neural network. arXiv preprint arXiv:2403.17351, 2024.

[58] Z.Zhiyao, S. Zhou, B. Mao, X. Zhou, J. Chen, Q. Tan, D. Zha, Y. Feng, C. Chen, and C. Wang.
Opengsl: A comprehensive benchmark for graph structure learning. Advances in Neural
Information Processing Systems, 36, 2024.

[59] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Beyond homophily in graph
neural networks: Current limitations and effective designs. Advances in Neural Information
Processing Systems, 33, 2020.

[60] Y. Zhu, W. Xu, J. Zhang, Y. Du, J. Zhang, Q. Liu, C. Yang, and S. Wu. A survey on graph
structure learning: Progress and opportunities. arXiv preprint arXiv:2103.03036, 2021.

[61] Y. Zhu, W. Xu, J. Zhang, Q. Liu, S. Wu, and L. Wang. Deep graph structure learning for robust
representations: A survey. arXiv preprint arXiv:2103.03036, 14:1-1, 2021.

[62] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang. Deep graph contrastive representation
learning. arXiv preprint arXiv:2006.04131, 2020.

[63] D.Zou, H. Peng, X. Huang, R. Yang, J. Li, J. Wu, C. Liu, and P. S. Yu. SE-GSL: A General and
Effective Graph Structure Learning Framework through Structural Entropy Optimization. In
Proceedings of the ACM Web Conference 2023, pages 499-510, Apr. 2023. arXiv:2303.09778
[cs].

13

494

495
496
497
498
499

500
501

502

503
504

505

506

508
509

510
511
512
513
514
515
516
517
518

519

520

521

522

523

524
525

527

528

530

531
532
533

534
535

536
537

538

539

540

541

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification:
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification:

14

542 Guidelines:

543 * The answer NA means that the paper has no limitation while the answer No means that
544 the paper has limitations, but those are not discussed in the paper.

545 * The authors are encouraged to create a separate "Limitations" section in their paper.
546 * The paper should point out any strong assumptions and how robust the results are to
547 violations of these assumptions (e.g., independence assumptions, noiseless settings,
548 model well-specification, asymptotic approximations only holding locally). The authors
549 should reflect on how these assumptions might be violated in practice and what the
550 implications would be.

551 * The authors should reflect on the scope of the claims made, e.g., if the approach was
552 only tested on a few datasets or with a few runs. In general, empirical results often
553 depend on implicit assumptions, which should be articulated.

554 * The authors should reflect on the factors that influence the performance of the approach.
555 For example, a facial recognition algorithm may perform poorly when image resolution
556 is low or images are taken in low lighting. Or a speech-to-text system might not be
557 used reliably to provide closed captions for online lectures because it fails to handle
558 technical jargon.

559 * The authors should discuss the computational efficiency of the proposed algorithms
560 and how they scale with dataset size.

561 * If applicable, the authors should discuss possible limitations of their approach to
562 address problems of privacy and fairness.

563 * While the authors might fear that complete honesty about limitations might be used by
564 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
565 limitations that aren’t acknowledged in the paper. The authors should use their best
566 judgment and recognize that individual actions in favor of transparency play an impor-
567 tant role in developing norms that preserve the integrity of the community. Reviewers
568 will be specifically instructed to not penalize honesty concerning limitations.

569 3. Theory assumptions and proofs

570 Question: For each theoretical result, does the paper provide the full set of assumptions and
571 a complete (and correct) proof?

572 Answer: [Yes]

573 Justification:

574 Guidelines:

575 » The answer NA means that the paper does not include theoretical results.

576 * All the theorems, formulas, and proofs in the paper should be numbered and cross-
577 referenced.

578 * All assumptions should be clearly stated or referenced in the statement of any theorems.
579 * The proofs can either appear in the main paper or the supplemental material, but if
580 they appear in the supplemental material, the authors are encouraged to provide a short
581 proof sketch to provide intuition.

582 * Inversely, any informal proof provided in the core of the paper should be complemented
583 by formal proofs provided in appendix or supplemental material.

584 * Theorems and Lemmas that the proof relies upon should be properly referenced.

585 4. Experimental result reproducibility

586 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
587 perimental results of the paper to the extent that it affects the main claims and/or conclusions
588 of the paper (regardless of whether the code and data are provided or not)?

589 Answer: [Yes]

590 Justification:

591 Guidelines:

592 » The answer NA means that the paper does not include experiments.

15

593
594
595

596
597

598
599
600
601
602
603
604
605
606

607
608
609

610
611
612
613
614
615
616
617
618
619
620
621
622

623

624
625
626

627

628

629

630

631
632

633
634
635
636

637
638
639
640
641
642
643
644
645
646

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

647
648

649

650

652

653

654

656

657
658

659
660
661

662
663

664

665

666

667

668
669
670

671
672
673

674
675

676

677
678

679
680
681

682
683
684

685
686

687

688
689
690

691

692

693

694

695
696

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We put it in the main paper
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

17

697
698
699
700
701

702

703
704

705

706

707

709
710
71
712

713

714
715

716

717
718

719

720

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

742

743
744
745

746

747

748

9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We have carefully reevaluated our project and we do not have such negative
impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We have carefully reevaluated our project and we do not have such risk.

Guidelines:

18

https://neurips.cc/public/EthicsGuidelines

749

750
751
752
753

754

756
757
758

759

760
761
762

763

764

765

766
767

768

770

771
772

773
774
775
776

777
778

779
780

781

782
783

784

785

786

787

788
789

791
792

793
794

795

796
797
798

799

12.

13.

14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

19

paperswithcode.com/datasets

800
801
802
803

804
805
806

807
808
809

810
811

812
813
814
815

816

817

818

819

821
822
823

824
825
826

827
828

829

830

832
833

835

836

837
838
839
840

15.

16.

Justification: We do not have such problem
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: We have carefully reevaluated our project and we do not have such risk.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM only for grammar check.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

841

A Taxonomy of Graph Structure Learning Methods

ss2 We present several representative GSL-based GNNs within our proposed GSL framework in Table [2]
Below, we provide a detailed description of each method.

843

Table 2: Representative GSL methods under our proposed GSL framework

Method

Bases

Construct

Refinement

View Fusion

Training Mode

LDS [8 X {&" = kNN(B)} +Opt. Bernoulli(£”) Late Fusion, {G{,G),...,G.,}, 01 = 02 2-stage
Isomap/Poincare/ . .
Geom-GCN |38’ Slruczli/ec(X. A) {&'le}; = |Bi — By} threshold(&’) Late Fusion, {G,G'}, 01 # 0, Static
ProGNN (I3 € {&" = Opt(e)} Low Eg)r;}(;islamty No Fusion, {G'} Joint
IDGL [6 MLP(X) {&'|e}; = cos(Bi,Bj)} topk(£”) Early Fusion, {G + G’} Joint
GRCN [33 GCN(X,A) {€'le}; = o(B:B])} topk(£), sym(E’) Early Fusion, {G + G’} Joint
GAug-M 53 GCNP(X,A) {€'le}; = o(B;BT)} ggﬁ::bm’;si E);> Early Fusion, {G + G/, — G} Joint
GAug-O 55 X {&'e}; = pleij|GAE(B, A))} “Gumbel(€') Early Fusion, {G + G’} Joint
SLAPS [MLP(X) {&' = kNN(B)} norm(€’),sym(E’) No Fusion, {G'} Joint
GCN(X, {A,kNN(X), . ST /
CoGSL 27 PPR()((),S{ubgraph((X))}) {&le}; = p(ei;[MLP(B, A))} Early Fusion, {G*| min Lc.(G,G')}, 61 # 02 2-stage
GEN [43 GCN(X, A) ' = kENN(B)} - Late Fusion, {G],G5,...,G.,} .01 # 02 2-stage
{€'|e}; = cos(B;,By) G'. = topk(&’), . - , / .
STABLE (22 GCL(X.A) or éos(B“B])} G’ = threshod(£") Early Fusion, {G + G, —G" } Joint
SEGSL 63 X {&'| min s, No Fusi g Joi
[e}; € EncTree(kNN(B))} o Fusion, {G'} Joint
. &' = Opt(e)} or 1 , o . - .
SUBLIME [28 GCN(X, A) {g,‘eb :{cos/Mislfov)liki(B,,Bl)} topk(E”),sym(E’),norm(E’) Separation, {G,G'}, 61 = 0 Joint
’ Y = MLP(X), . T , . o .
BM-GCN (11 min Lop(V. ¥) {& = BQB"} norm(&’) Early Fusion, {G ® G’} Joint
WSGNN [21 MLP(X) {&'|e}; = cos(Bi, Bj)} - Early Fusion, {G + G} Joint
norm(&’), Original . - .
GLCN [14 X {&'le}; = o(1Bi — By|)} +Sparsi(ly+)Smoolhness No Fusion, {G'} Joint
ASC 23 SpectralCluster(X) E'lel, =||B; — B topk(&”) No Fusion, {G’ Static
i J
WRGAT [43 GCN(X, A) {&']ei; - Opt(B)} Sparsity + MultiHop Early Fusion {G + G’} Static
HOG-GCN [46 GCN(X, A) {⪙ = U(B,‘B].T)} Sparsity + Smoothness No Fusion {G'} Joint
GGCN [51 MLP(X) {&'|e}; = cos(Bjy, Bj)} Low Rank + Sparsity Early Fusion, {G + G’} Joint
GloGNN [25 _ MLP(X) {&" = Oopt(B)} Sparsity+MultiHop No Fusion, {G'} Joint
HiGNN (57 ¥ =GCN(X, A), {&'= eij = cos(B;, Bj))} topk(E”), sym(E’) Late Fusion, {G,G'}, 01 # 0> Static

min Lop(Y,Y)

s44 LDS [8]. The GSL bases in LDS is constructed as node features X and the GSL graph G’ is initialized
a5 using a k-Nearest-Neighbors algorithm based on B. Then, G’ is updated with a loss function of node
sas classification. Then multiple graphs are sampled based on G’ with a Bernoulli function and used to
g7 update the model parameters. The G’ construction and model parameters are updated as a 2-stage
g4 mode.

s49 Geom-GCN [38]. Geom-GCN constructs the GSL bases from several graph-aware node embedding
gs0 strategies using both of the X and A: Isomap [], Poincare [], and struc2vec []. Then, new graphs
e51 are constructed by filtering node pairs with a higher similarity measured by Euclidean distance
sz {&'le}; = |B; — Bj| < &} where d is a threshold. Finally, both of the aggregated message from G
853 and G’ are fused after applying graph convolution layers with no parameter sharing. The G’ is not
gs4 updated through the training process.

855 ProGNN [13]]. The G’ in ProGNN is purely learned by optimization without GSL bases. It optimizes
86 the G’ using low rank, sparsity, and similarity with the original graphs G. It outputs a single graph G’
ss7 without fusion and updates the G’ together with model parameters.

g8 IDGL [6]. The GSL bases in LDS is constructed by linear transformation of node features MLP(X).
ss9 Then, a GSL graph G’ is constructed using cosine similarity with topk threshold refinement. The
se0 early fusion is applied by fusing GSL graph G’ with original graph G before training. The GSL graph
gt G’ is trained with model parameters jointly.

ss2 GRCN [33]. GRCN constructs GSL bases by node embeddings of graph convolution GCN(X, A).
ss3 Then, the GSL graph G’ is constructed by a kernel function with topk and symmetrization refinement
ssa {E'le}; = o(B;B;) > 0}. The final graph is obtained by early fusion and the GSL graph G is
ges updated together with model parameters.

gss GAug-M and GAug-O [55]. GAug-M constructs GSL bases using a 2-layer graph convolution
867 GCN(2)(X ,A). Then, the GSL graph G’ is constructed by a kernel function. The final graph is
ges obtained by adding some edges with highest probabilities and removing some edges with lowest
gss probabilities on G. GAug-O selects node features as GSL bases X, then trains a Graph Auto-Encoder
870 to predict edges as G’. Then, after gumbel sampling, the GSL graph G’ is fused with original graph
871 G before training. The G’ in both of the GAug-M and GAug-O is updated together with model
872 parameters.

21

873
874
875
876
877
878
879

880
881
882
883
884
885
886
887
888
889

890
891
892
893

894

895
896
897

898
899
900
901
902
903
904

905
906
907
908
909
910

911
912
913
914
915
916
917
918
919

920
921
922
923
924
925
926

SLAPS [[7]]. SLAPS constructs the GSL bases by applying MLP(X) followed by a k-nearest neighbors
(kNN) algorithm based on node feature similarities. The GSL graph G is then processed by an adja-
cency processor that symmetrizes and normalizes the adjacency matrix to ensure non-negativity and
symmetry. The final graph is obtained of the generated graph G’ with the node features without fusion.
Additionally, a self-supervised denoising autoencoder Lpag = L(X;, GNNDAE(Xi; OGNNpAr))
is introduced to address the supervision starvation problem, updating G’ together with the model
parameters.

CoGSL [27]. CoGSL constructs GSL bases using two views, one of them is the Origin graph. Another
is selected from the Adjacency matrix A, Diffusion matrix PPR(X), the KNN graph K NN (X)
and the Subgraph of the Origin. GCNs are applied to these views to obtain node embeddings. The
GSL graph is constructed by applying a linear transformation to the node embeddings of each node
pair to estimate the connection probability between them. This connection probability is then added
to the original view to finalize the graph. The refinement £’|e}; = p(e;;[MLP(B, A)) step involves
maximizing the mutual information between the two selected views and the newly constructed graph.
InfoNCE loss is used to optimize the connection probability, where the same node serves as a positive
sample, and different nodes serve as negative samples. The final graph G’ is obtained via early fusion
of the selected views, and the GSL graph is updated with model parameters.

GEN [45]. GEN constructs the GSL bases by generating kNN graphs though several GCN layer,
utilizing node representations from different layers. These kNN graphs are then combined us-
ing a Stochastic Block Model (SBM) to create a new graph G’. The GSL graph G’ is refined

iteratively through Bayesian inference to maximize posterior probabilities P(G, a, 5|0, Z,Y;) =

P(O|G.a.p I)DI(D(()GZ'XYZB))P(O’Z’Y’) , considering both the original graph and node embeddings. The final

graph is obtained by feeding the graph () back into the GCN for further optimization. The iterative
process updates both the GSL graph and GCN parameters as a 2-stage mode, providing mutual
reinforcement between the graph estimation and model learning.

STABLE [22]]. STABLE constructs the GSL bases by generating augmentations based on node
similarity through kNN graph and perturbing edges to simulate adversarial attacks. The GSL graph G’
is constructed by refining the structure using contrastive learning between positive samples (slightly
perturbed graphs) and negative samples (undesirable views generated by feature shuffling). The
refinement step applies a top-k filtering strategy on the node similarity matrix to retain helpful edges
while removing adversarial ones. The final graph is obtained through early fusion, and the GSL graph
G’ is updated together with model parameters during joint training

SE-GSL [63]. SE-GSL constructs the GSL bases using a kNN graph fused with the original graph.
The GSL graph G’ is constructed through a structural entropy minimization process that extracts
hierarchical community structures in the form of an encoding tree. The final graph is optimized
by sampling node pairs from the encoding tree and generating new edges based on the minimized
entropy structure. The refined graph is then used for downstream tasks, and the GSL graph G’ is
updated jointly with model parameters during training.

SUBLIME [28]]. SUBLIME constructs the GSL bases using both an anchor view (original graph)
and a learner view (new graph). The new graph is initialized through kNN and further optimized
either by parameter-based methods (using models like MLP, GCN, or GAT) or by non-parameter-
based approaches (using cosine similarity or Minkowski distance). After obtaining the new graph,
post-processing operations such as top-k filtering, symmetrization, and degree-based regularization
are applied to ensure the graph’s sparsity and structure. The GSL graph G’ is refined by applying
contrastive learning between the anchor and learner views, incorporating edge drop and feature
masking to generate node embeddings. The final graph is used in downstream tasks, and both views
are updated together with model parameters in a joint training process.

BM-GCN [11]]. BM-GCN constructs the GSL bases by introducing soft labels for nodes enbedding
B = softmax(o(MLP(X))) via a multilayer perceptron Larp = >, o, f(Bi,Y;). These soft
labels are then used to compute a block matrix (H) , which models the connection probabilities
between different node classes. The GSL graph G’ is constructed by creating a block similarity matrix
Q = HHT from the block matrix Y, = Y;, B;|Vv; € Ty, Vv; ¢ T,,, H = (YT AY,) o (YTAE),
reflecting similarities between classes. The new graph is optimized using BQB” and further fused
with the original graph A + 31 for downstream tasks. The final graph is obtained by optimizing G’

22

927
928

929
930
931
932
933
934
935
936
937
938

939
940
941
942
943
944
945

946
947
948

950
951

952

953
954
955
956
957
958
959
960

961

962

963
964

965
966
967
968
969

970
971
972
973
974
975
976
977

978
979
980

through degree-based regularization and top-k filtering. The GSL graph G’ is updated together with
model parameters during joint training.

WSGNN [21]]. WSGNN introduces a two-branch graph structure learning method, where each branch
operates on different aspects of the graph: Branch AZ learns node labels from the new graph structure,
while Branch ZA learns the new graph structure from the labels. The GSL bases is constructed using
the observed graph A,ps and node features X . The new graph A’ is inferred via cosine similarity
between node embeddings. After constructing two separate views from each branch, the final graph
is obtained by averaging the graphs from both branches. The refinement process ensures sparsity
through cosine-based edge calculation &’|e;; = cos(B;, B;). Finally, both views undergo early
fusion, with graph structure and node labels optimized jointly using a composite loss function that
includes ELBO for structure prediction and cross-entropy loss for label prediction. The final GSL
graph G’ is updated during joint training.

GLCN [14]. GLCN constructs the GSL bases by computing pairwise distances between node
features and passing them through an MLP to obtain a block similarity score. This score is then
processed with a softmax function to generate an n X n probability matrix that serves as the learned
graph structure. The graph is refined using regularization techniques to ensure sparsity and feature
smoothness Lz, = Y iy ||z — #1138 + 7|S]|% + B[S — Al|%. The learned graph is then
used for downstream graph tasks, where the task loss and the graph regularization loss are jointly
optimized during joint training

ASC [23]. ASC constructs the GSL bases is formed by using pseudo-eigenvectors from spectral

clustering. They divide the Laplacian spectrum into slices, with each slice corresponding to an

embedding matrix. The GSL graph G’ is constructed by adaptive spectral clustering, where pseudo-

eigenvectors are weighted based on alignment with node labels Where fZ. For refinement, they

apply top-K edge selection by minimizing node embedding distance and maximizing homophily

argmin y ; 5y, (d(fZ, ij)» 1(yi, y;)). This final restructured graph is training without fusion. Fi-
Z

nally, the GSL graph is updated together with the model parameters.

WRGAT [43]]. WRGAT constructs the GSL bases using the node features and a weighted relational
GNN (WRGNN) framework that fuses structural and proximity information. A multi-relational graph
is built by assigning different types of edges based on the structural equivalence of nodes at various
neighborhood levels. This framework adapts to both assortative and disassortative mixing patterns,
which helps improve node classification tasks. The GSL graph G’ is refined through attention-based
message passing across these relational edges, and early fusion of proximity and structural features
is used. The GSL graph G’ is trained jointly with the model parameters to optimize the node
classification task.

HOG-GCN [46]. HOG-GCN constructs the GSL bases by incorporating both topological information

and node attributes to estimate a homophily degree matrix S = BBT | B = softmax(Z,,), Zﬁ,? =

_Hw®
a(Z,(,lL DWo). The GSL graph G’ is constructed using a homophily-guided propagation mechanism,

which adapts the feature propagation weights between neighborhoods based on the homophily degree
matrix ZW) = a(uZ(l_l)Wél) +¢DEVAL O HZ(l_l)W,(Ll)). For refinement, the graph incorpo-
rates both k-order structures and class-aware information to model the homophily and heterophily
relationships between nodes. The final graph is obtained through joint fusion of topological and
attribute-based homophily degrees, and both graph structure and model parameters are updated during
joint training.

GGCOCN [51]]. GGCN constructs the GSL bases using node features and structural properties such as
node-level homophily h; and relative degree ;. It incorporates structure-based edge correction by
learning new edge weights derived from structural properties like node degree, and feature-based edge
correction by learning signed edge weights from node features, allowing for positive and negative
influences between neighbors. The GSL graph G’ is constructed by combining signed and unsigned
edge information, aiming to capture both homophily and heterophily. The refinement process uses
edge correction and decaying aggregation to mitigate oversmoothing and heterophily problems. The
final graph is updated with early fusion, and the GSL graph G’ is optimized during joint training

GloGNN [25]. GloGNN constructs its GSL bases using node embeddings derived from MLP,
combining both low-pass and high-pass convolutional filters. A coefficient matrix Z) is used to
characterize the relationship between nodes and is optimized to capture both feature and structural

23

981
982
983
984

985
986

987

988
989
990
991

993

994

995
996
997
998
999
1000
1001
1002

1003

1004
1005
1006

1007
1008

1009
1010

1011
1012

1013
1014

1015

1016

similarities Hg)) =(1- a)Hgg) +aH 1(40). Refinement is achieved via top-k selection based on the
multi-hop adjacency matrix, and the matrix is symmetrized. The final graph is obtained through
global aggregation of nodes, capturing both local and distant homophilous nodes. This graph is then
used in downstream tasks, where the GSL graph G’ is jointly optimized with the model parameters.

HiGNN [57]]. HiGNN constructs its GSL bases by utilizing heterophilous information as node
neighbor distributions, which represent the likelihood of neighboring nodes belonging to different

classes H,, = [p1,Dp2, .-, De), where p; = Wj\\/,i“f“:’l A new graph structure G’ is constructed

by linking nodes with similar heterophilous distributions using cosine similarity. The refinement
involves selecting top-k edges based on the similarity score and applying symmetrization. The final
graph is fused with the original adjacency matrix A and the newly constructed adjacency matrix
A’ via late fusion during message passing, where the node embeddings from both A and A’ are
combined with a balance parameter . The graph G’ and node embeddings are updated during static
training.

B Contextual Stochastic Block Models with Homophily

To study the behavior of GNNs, CSBM-H [33][37]] have been proposed to create synthetic graphs
with a controlled homophily degree. Specifically, in CSBM-H, for a node u with label y, its features
X, € RM are sampled from a class-wised Gaussian distribution X,, ~ Ny, (uy,, Sy,) with
py, € RF and By, € RF*F, where each dimension of X, is independent from each other,
i.e., Xy, = diag(R%,). Then, to generate graph structure G with given homophily degree h with the
range of [0, 1], the node u has the probability h to connect intra-class nodes and the probability (17;_};
to connect inter-class nodes. After applying neighbor sampling, both of the node homophily A4
and edge homophily h.q4 in G are approximately equal to h.

C Proof of Theorem

Theorem 4.1 Given a graph G = {V, £} with node labels Y and node features X, the accuracy of
graph convolution in node classification is upper bounded by the mutual information between the
node label Y and the aggregated node features H :

I(Y;H) +1log 2
Py<—1———=° 5
A= log(C) ©)
Proof. For an arbitrary node u, the aggregated node features can be derived as H,, = ﬁ > ve N, Xov
following the graph convolution operation. For a classifier predicting labels based on H,,, we have
Y., = cls(H,). Consequently, the Markov chain Y — H — Y holds. By applying Fano’s inequality

[9], we obtain
H(Y|H) < Hy(Pg) + Pglog(C —1) (6)

where P represents the error rate and Hp(-) is the binary entropy function. Rearranging this
inequality gives us a lower bound on Pg:
H(Y|H) — Hy(Pg)

P
L log(C' —1)

Y

(N

Since HY|H)=H(Y) - I(Y;H) =log(C) — I(Y; H) and Hy(Pg) < log2, we can substitute
these terms into the equation:
I(Y;H) +log2

Prp>1- 8
= og(C) ®
Finally, by expressing the accuracy rate P4, we find:
I(Y;H) +log2
Py=1—-Pg< w 9)

log(C)

This concludes the proof of Theorem 4. 1

24

1017
1018
1019
1020
1021

1022
1023

1024
1025
1026

1027

1028
1029

1030

1031

1032

1033

1034

1035
1036
1037
1038

1039
1040

Proposition 4.2 Consider a graph G = {V, £} characterized by node labels Y and n-dimensional
node bases B = {B1, Ba, ..., B, } with C classes. Each base B; is independent and follows a class-
dependent Gaussian distribution, i.e., B; ~ N (uy,oy). A new graph G' = {V, &'} is generated
using a non-parametric method based on the bases B. For the aggregated bases B’ on G, we have

inf I(Y; B’) <inf I(Y; B).

Proof. Let’s first consider the mutual information for i-th node base B;. For a non-parametric GSL
method, we have the probability that class k£ connects with class j as:

g(BF, B])
C
Eq:1 g(sza Bf)

where ¢(-) is a non-parametric measurement of the probability of new connections, such as cosine
similarity or Minkowski Distance. Then, we can get aggregated bases from the new graph by the
operation of graph convolution 37} 33]:

Pk,j = (10)

C
Bl = "pryBf (11)
qg=1

Therefore, the Markow chain Y — B; — B! holds. From data processing inequality [3]], we have
I(Y; B)) < I(Y, By) (12)

To extend this conclusion to multi-dimensional variables, we apply the chain rule of mutual informa-
tion

I(V;B)=I(Y;{By,...,B,}) = EH:I(Y;BZ- | {By,...,Bi_1})

- (13)
LY;B) = 1(Y{Bi.....B}) = Y I(YV: B[{Bi..... B ,})
i=1
Due to the property that conditioning reduces entropy, we have
!/ !/ !/ /! (14)
I(Y;B; | {By,...,Bi_1}) 2 I(Y; B))
Thus, we have
inf 7(Y;B) = > I(Y;B;)and inf I(Y;B') =Y _I(Y;B)) (15)
i=1 i=1
where inf represents infimum. Since I(Y; B]) < I(Y, B;) holds for each i, we have
inf I(Y; B’") <inf I[(Y; B) (16)

This concludes the proof of Proposition .2}

D Dataset Details

The datasets used in our experiments include heterophilous graphs: Squirrel, Chameleon, Actor,
Texas, Cornell, and Wisconsin [38} 42]], homophilous graphs: Cora, PubMed, and Citeseer [52], and
Minesweeper, Roman-empire, Amazon-ratings, Tolokers, and Questions [39]. The dataset statistics
are shown in[3] The descriptions of all the datasets are given below:

Cora, Citeseer, and Pubmed datasets are widely used citation networks in graph structure learning
research. In each dataset, nodes represent academic papers, while edges capture citation relationships

25

1041
1042
1043

1044
1045
1046
1047
1048
1049

1050
1051
1052
1053

1054
1055
1056
1057

1058
1059
1060
1061

1062
1063
1064
1065
1066

1067
1068
1069
1070

1071
1072
1073
1074

Table 3: Dataset Statistics

Dataset #Nodes #Edges #Classes #Features Edge Homophily
Cora 2,708 5,278 7 1,433 0.81
Pubmed 19,717 44,324 3 500 0.80
Citeseer 3,327 4,552 6 3,703 0.74
Roman-empire 22,662 32,927 18 300 0.05
Amazon-ratings 24,492 93,050 5 300 0.38
Minesweeper 10,000 39,402 2 7 0.68
Tolokers 11,758 529,000 2 10 0.59
Questions 48,921 153,540 2 301 0.84
Cornell 183 295 5 1,703 0.30
Chameleon 2,277 36,101 5 2,325 0.23
Wisconsin 251 466 5 1,703 0.21
Texas 183 309 5 1,703 0.11
Squirrel 5,201 216,933 5 2,089 0.22
Actor 7,600 33,544 5 931 0.22

between them. The node features are bag-of-words vectors derived from the paper’s content, and
each node is assigned a label based on its research topic. These datasets offer a structured framework
to evaluate GNN models on classification tasks within citation networks.

Roman-Empire is constructed from the Roman Empire Wikipedia article, with nodes representing
words and edges formed by either word adjacency or dependency relations. It contains 22.7K nodes
and 32.9K edges. The task is to classify words by their syntactic roles, and node features are fastText
embeddings. The graph is chain-like, with an average degree of 2.9 and a large diameter of 6824.
Adjusted homophily is low (hgq; = -0.05), making it useful for GNN evaluation under low homophily
and sparse connectivity.

Amazon-Ratings is based on Amazon’s product co-purchasing network, this dataset includes nodes
as products (books, CDs, DVDs, etc.) and edges linking frequently co-purchased items. It consists of
the largest connected component of the graph’s 5-core. The goal is to predict product ratings grouped
into five classes.

Minesweeper is a synthetic dataset resembling the Minesweeper game, nodes in a 100x100 grid
represent cells, with edges connecting adjacent cells. The task is to identify mines (20% of nodes).
Node features indicate neighboring mine counts, with 50% of features missing. The average degree
is 7.88, and the graph has near-zero homophily due to random mine placement.

Tolokers is derived from the Toloka crowdsourcing platform, where nodes represent workers con-
nected by shared tasks. The graph has 11.8K nodes and an average degree of 88.28. The task is to
predict which workers have been banned, using profile and task performance features. The graph is
much denser than others in the benchmark.

Questions is based on user interactions from Yandex Q, this dataset focuses on users interested in
medicine. Nodes are users, and edges represent questions answered between users. It contains 48.9K
nodes with an average degree of 6.28. The task is to predict user activity at the end of a one-year
period, with fastText embeddings from user descriptions as features. The graph is highly imbalanced
(97% active users).

Texas, Wisconsin, Cornell are part of the WebKB project, representing web pages from university
computer science departments. Nodes correspond to web pages, and edges represent hyperlinks
between them. The node features are bag-of-words vectors from the web page content, and the labels
classify each page into one of five categories: student, project, course, staff, and faculty.

Chameleon, Squirrel are page-page networks based on specific topics from Wikipedia. Nodes
represent web pages, and edges correspond to mutual links between them. Node features are derived
from the page content, and the classification task is based on average monthly traffic. These datasets
are characterized by high heterophily, making them challenging for traditional GNN models.

26

1075
1076
1077

1078

1079
1080

1081
1082
1083

1084
1085
1086
1087
1088

1089
1090
1091

1092
1093
1094
1095

1096
1097
1098
1099
1100

1101
1102
1103
1104
1105

1106

1107

1108
1109

1110
1111
1112
1113
1114

1115
1116

1117
1118
1119
1120

1121

1122
1128
1124

Actor is an induced subgraph from a film-director-actor-writer network. Nodes represent actors, and
edges are created when two actors co-occur on the same Wikipedia page. The task is to classify
actors into five categories based on the keywords associated with their Wikipedia pages.

E Implementation Details

We implement GSL on 6 baseline GNNs with a variety of GSL approaches from the perspective of
GSL bases, GSL graph construction, and view fusion. The baseline GNNSs include:

* GCN [17] performs layer-wise propagation of node features and aggregates information
from neighboring nodes to capture local graph structures. Each layer applies a convolution
operation to update node embeddings, combining the node’s features with its neighbors.

* GAT [44] employs self-attention to learn dynamic attention coefficients between nodes
and their neighbors. These coefficients are normalized using softmax, and the final node
representation is computed as a weighted sum of the neighbor features. Multi-head attention
is used to enhance stability and expressiveness, with the number of attention heads set to 8
by default in our experiments.

* SAGE [10] uses an inductive framework to aggregate features from a node’s local neighbor-
hood, allowing it to generalize to unseen nodes. The aggregation function, set to mean in
our experiments, efficiently combines neighbor information at each layer.

* SGC [47] simplifies the GCN model by removing non-linear activations and collapsing
multiple layers into a single linear transformation. This reduction in complexity accelerates
training. Node features are propagated using precomputed matrices, making the model faster
and more efficient. In our experiments, the number of k-hops in SGC is set to 2 by default.

* MixHop [2] extends traditional GNNs by allowing nodes to aggregate information from
neighbors at multiple distances within a single layer. Instead of only considering immediate
neighbors, MixHop raises the adjacency matrix to different powers, capturing diverse
topological signals. In our experiments, we follow the original paper’s setup by using three
propagation levels.

* ACMGCN [32] introduces an adaptive channel mixing mechanism to dynamically learn
and combine information from different channels of node features. By leveraging attention-
based feature transformation, ACMGCN enhances representation learning for graphs with
diverse structural properties. In our experiments, we use the default channel mixing setup as
described in the original paper.

The GSL bases B includes the following options:

* B = X: The original node features are used as the GSL bases.

« B=AX: Aggregated node features from 1-hop neighbors, normalized by node degree,
are used as the GSL bases.

* B = MLP(X): Pretrained MLP embeddings are used as the GSL bases. A 2-layer MLP is
trained using node features and labels on the training set for 1000 epochs per run. The hidden
layer size is set to 128, the learning rate to 1le~2, the dropout rate to 0.5, and the weight
decay to 5e~*. All parameters are optimized with Adam. After training, node embeddings
are extracted from the last hidden layer, with a dimension of 128, prior to classifier input.

* B = GCN(X, A): Pretrained node embeddings are obtained from a 2-layer GCN model,
following the same training procedure as for the MLP embeddings.

* B = GCL(X, A): Pretrained node embeddings are derived from a Graph Contrastive
Learning (GCL) model without supervision, following the same training process as the MLP
embeddings. GRACE [62] is used as the GCL model, with 2 views and 2 layers. The edge
and feature dropout rates in each view are set to 0.2.

The approaches for the construction of GSL graph G’ includes:
* Cos-graph: G’ = {e;j|cos(B;, Bj) > ¢, € V, j € V}. This method calculates the cosine

similarity between all node pairs in the original graph G. Node pairs with a similarity higher
than the threshold § are selected as the edge set for the GSL graph G'.

27

1125
1126
1127
1128

1129
1130

1131

1132
1133

1134
1135

1136
1137

1138

1139
1140

1141
1142

1143
1144
1145
1146
1147
1148
1149

1150
1151
1152
1153

1154

1155

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

1168

1169

1170
171

* Cos-node: G = [, {{eij}|cos(B;, Bj) > 6;,j € N;}. Unlike Cos-graph, which
operates at the graph level, Cos-node constructs G’ at the node level. To prevent nodes from
being left without neighbors (which may occur in Cos-graph), Cos-node selects neighbors
based on node-level cosine similarity, ensuring each node has sufficient connections.

* kNN: G’ = kNN(B). This method constructs a kNN graph using the k-Nearest Neighbors
algorithm based on the GSL bases B.

The view fusion in GSL includes:

» {G'}: This approach uses only the GSL graph G’ for subsequent GNN training, completely
ignoring the original graph G.

* {G,G'},0; = 65. Both the GSL graph G’ and the original graph G are used for GNN
training, with parameter sharing across each layer of the GNN.

* {G,G'},01 # 02. Both the GSL graph G’ and the original graph G are used for GNN
training, but with separate model parameters for each graph.

Especially, for graphs with two views, the fusion stage in GSL includes:

* Early Fusion: G + G’.Combine the two graphs, G and G’, into a single new graph prior to
GNN training.

e Late Fusion: H + H’. After training the GNN on the original graph G and the GSL graph
G’, merge the node embeddings, H and H', before passing them to the classifiers.

In addition to the original models based on 4 baseline GNNs, we implement GNN+GSL (GSL-
augmented GNNs) by combining the aforementioned GSL modules, resulting in multiple variants for
each type of GNN. For all models, we explore hyperparameters including hidden dimensions from the
set {64, 128,256}, learning rates from {le-2, le-3, le-4}, weight decay values from {0, le-5, le-3},
the number of layers from {2, 3}, and dropout rates from {0.2, 0.4, 0.6, 0.8}. All the experiments are
conducted on a Linux server(Operation system: Ubuntu 16.04.7 LTS) with one NVIDIA Tesla V100
card.

For GSL graph generation, we also search for additional hyperparameters to ensure the performance
quality of the GSL-augmented GNN. Specifically, for Cos-graph and Cos-node, we control the
parameter ¢ to vary the ratio of the number of edges in G’ to the number of edges in G across the set
{0.1,0.5,1, 5}. For kNN, we investigate the number of neighbors from the set {2, 3,5, 10}.

F Additional Experiment Results

F.1 TImpact of GSL Bases on GNN baselines

In Figure[6] we illustrate the influence of 5 GSL bases on the performance of 4 GNNs across both
homophilous and heterophilous graphs. The results indicate that MLP-pretrained features, denoted as
MLP(X), significantly enhance GNN performance compared to raw features X across 6 out of 9
datasets. These improvements stem from the self-training process applied to node inputs, suggesting
that various self-training strategies could be employed with different graph datasets to further enhance
GNN performance. Many GSL-enhanced GNNs leverage trained GSL bases to improve model
performance, whereas GNN baselines utilize raw node features as GSL bases for comparison. This
raises concerns about the fairness of previous comparisons between GNNs using original node
features and those employing GNN+GSL, underscoring the importance of high-quality GSL bases.
Additionally, we observe that GCN and GCL-pretrained features tend to degrade GNN performance
on heterophilous datasets. This degradation is attributed to the increased noise within heterophilous
datasets, leading to lower-quality GSL bases that can negatively impact GNN performance.

F.2 TImpact of each GSI component on GNN+GSL
F.2.1 GSL Bases

In addition to the analysis of the impact of GSL bases shown in Figure[5] Figure [7] presents further
results on the performance of various GSL bases (X, AX, MLP(X), GCN(X,A), GCL(X,A))

28

1172
1173
1174
1175
1176
1177
1178

1179

1180
1181
1182
1183
1184

1185

1186
1187
1188
1189
1190
1191
1192
1193

GCN GAT

1.0 1.0

X AX MLP(X) GCN(X,A) GCL(X,A) X AX MLP(X) GCN(X,A) GCL(X,A)
0.9 0.9
0.8 0.8

o
EY
o
EY

o
@

Accuracy / AUC-ROC
)
[

Accuracy / AUC-ROC

o
IS
o
IS

=3
w
=3
w

o
N}
o
N}

@ & > & o & > S @ & > & o & > S
s &£ & &L & F R & o & & &L & F R <
N > (70 & (&) . L)(/ & N (70 & (&) %
& < & & @ < 3 &
< &
GraphSAGE SGC
10 - 1.0 -
X AX MLP(X) GCN(X,A) GCL(X,A) X AX MLP(X) GCN(X,A) GCL(X,A)
0.9 0.9
0.8 0.8
8 8
& 0.7 & 0.7
0 0
2 2
=061 =061
> >
8 8
305 305
S S
< <
0.4 0.4
0.3 0.3
0.2 T T 0.2 T
< > o 5 < \\ >3 > o . < D
X & S & & X & S & &
I & ‘o\\@' & ee," & «F & < I & ‘o\\@' & & © & &F & <
NS & 2 & S & & & I & S &
& N ® N

Figure 6: Influences of different GSL bases to GNNs.

across GAT, SGC, and GraphSAGE. The results are consistent with those observed in GCN and MLP,
where the original node features do not always yield the best input. Some pretrained features, such
as M LP(X) on the Texas, Cornell, and Wisconsin datasets, demonstrate significant improvement
compared to the original features X, highlighting the necessity of self-training. Since many GSL
methods [57, 43] utilize self-training during the training process, a fair comparison of these GSL
methods and baseline GNNs should be conducted in the context of self-training, such as by using
pretrained node features as input, as shown in Table[T}

F.2.2 GSL Graph Generation

Figure [§]compares the Cos-graph, Cos-node, and kNN methods for GSL graph generation. Across
most datasets, the performance differences among these methods are minimal. In certain datasets,
such as Roman-empire and Pubmed, the models exhibit comparable performance regardless of the
graph generation technique employed. This suggests that variations in graph generation have a limited
effect on overall performance.

F.2.3 View Fusion

Figure [)illustrates the impact of different view fusion approaches, comparing the use of only the
GSL graph G, the combination of the original graph G with G’ using shared parameters 6; = 6o,
and the use of separate parameters 6; # 63. Notably, using only the GSL graph G’ underperforms
compared to employing both graph views with separate model parameters. This indicates that incor-
porating information from the original graph G is beneficial for maximizing GNN+GSL performance.
Furthermore, for the two graph views, parameter sharing significantly underperforms parameter
separation. We speculate that the messages aggregated under G and G’ differ considerably, suggesting
that different graphs should be treated with distinct model parameters.

29

1194

1195
1196
1197
1198
1199
1200

1201

1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212

1213
1214

1215
1216

1217
1218

F.2.4 Fusion Stage

Figure [0 compares early fusion and late fusion for GNN+GSL with multiple graph views. The
performance difference between the two fusion states is often minimal. While early fusion tends to
perform slightly better on complex datasets like Actor and Pubmed, the overall impact of switching
between early and late fusion is limited across most datasets. For simpler datasets like Minesweeper
and Amazon, both fusion methods yield nearly identical performance, indicating that the choice of
fusion state does not drastically alter the model’s outcome in most cases.

1.0 1.0
X Ax MLP(X) GCN(X,A) GCL(X,A) X Ax MLP(X) GCN(X,A) GCL(X,A)
0.9 0.9
0.8 0.8
Q Q
o o
& 0.7 & 0.7
o o
=} =}
<< <<
~ 0.6 < 0.6
> >
3 3
1 1
305 305
g g
< <
0.4 0.4
0.3 0.3
0.2 0.2

P & CHEP < s o~ & & & Qo CHEP < S L
& e T O FE L S & e T B FE L S
SRR GRS @ & N AP @ &
SGC GraphSAGE
1.0 - 10 >
X AX MLP(X) GCN(X.A) GCL(X,A) X AX MLP(X) GCN(X.A) GCL(X,A)
0.9 0.9
0.8 0.8

o
EY
o
EY

o
n

Accuracy / AUC-ROC
1)
[

Accuracy / AUC-ROC

o
'S
=)
'S

=3
w
=3
w

o
N}
o
N}

LS 2 S R I SO O~ S A ORI S
I3 N Qo& [S4 @,"Z & é\\(\e e@b & \6@ &° 0\')\6 O <" (/o@ Qo& [S4 @(’z 5
& > SRR Gl 659 & & ¥

Figure 7: Influences of different GSL bases to more GNNGs.

F.3 Removing GSL in SOTA GNNs

Settings To fairly reassess the impact of GSL in state-of-the-art (SOTA) methods, we compare the
performance of SOTA models with their SOTA-GSL counterparts within the same hyperparameter
search space. These GSL-based SOTA models include GAug [S5], GEN [45], GRCN [53], IDGL [6],
NodeFormer [48]], GIoGNN [25]], WRGAT [43]], and WRGCN [43]]. Corresponding to the analysis
of GCN and MLP in Section the SOTA-GSL methods include two variants: (1) SOTA, G’ = G,
which replaces the GSL graph G’ with the original graph G; and (2) SOTA, G’ = MLP, which
substitutes the graph convolution layers of GSL G’ with MLP layers. We train each model for 1000
epochs and search the hidden dimensions from the set {16, 32, 64, 128, 256, 512}, learning rate from
{1e-1, le-2, le-3, le-4, le-5}, weight decay values from {5e-4, 5e-5, 5e-6, Se-7, 0}, the number of
layers from {1, 2, 3}, and dropout rates from {0.2, 0.4, 0.6, 0.8}. The hyperparameters of the above
methods are shown in Table[5] The model-specific hyperparameters are shown as follows:

In GRCN, the hyperparameter K determines the number of nearest neighbors used to create a sparse
graph from a dense similarity graph which helps balance efficiency and accuracy.We set the k as 5.

In GAug, the alpha is a hyperparameter that regulates the influence of the edge predictor on the
original graph. We set the alpha as 0.1.

In IDGL, The parameter graph_learn_num_pers defines the number of perspectives for evaluating
node similarities in the graph learning process. The parameter num_anchors specifies the number of

30

1219
1220
1221
1222
1228
1224

1225
1226
1227
1228
1229
1230
1231
1232

1233
1234
1235
1236
1237

1238
1239
1240
1241
1242

1243
1244
1245

GCN GAT

cos-graph cos-node knn cos-graph cos-node knn

o
S

Accuracy / AUC-ROC
o
o

Accuracy / AUC-ROC

o
o
o
o

0.44

I
IS

0.3

o
w

R RN S > L« & & o S S F @ S D S« & &
&€ L S I F L & L S I F LS
R I ¢ [l R I S ¢ [l
SGC GraphSAGE
1.0 1.0
cos-graph cos-node knn cos-graph cos-node knn
0.9 0.9
0.8 0.8
Q Q
] <]
% %
So07 So07
< <
oy oy
306 306
S S
3 3
v] g
< <
0.5 0.5
0.44 0.44
0.3 T T T T T T T T T T T T T T 0.3 T T T T T T T T T
o S o & I o N N X > o s o & I o N N oy >
& T S I L L & T S I FE L
<€ < &S & QS ES < &S & S
oy C“b & (S o O\q, &F (S

Figure 8: Influences of the approaches of GSL generation to GNN+GSL.

anchor points used to reduce computational complexity and improve scalability in graph structure
learning. The graph_skip_conn parameter controls the proportion of skip connections, preserving
information from the original graph during new graph structure learning. The update_adj_ratio
parameter determines the proportion of the adjacency matrix updated at each iteration, influencing
the dynamic adjustment of the graph structure. We set the graph_learn_num_pers as 6, num_anchors
as 500, graph_skip_conn as 0.7, and update_adj_ratio as 0.3.

In NodeFormer, The parameter k determines the number of neighbors considered for each node
in constructing the local graph structure, influencing the strength of node connections and the
propagation of features. The parameter tolerance controls the degree of error tolerance during
optimization. A larger tolerance allows more flexibility in the search space near local optima, while
a smaller one results in stricter convergence. The number of attention heads in a graph attention
network (GAT). Multi-head attention enables the model to focus on different subspace representations
simultaneously, enhancing the diversity and stability of the representations. We set the k as 10,
lambda as 0.01, and n_heads as 4.

In GEN,the parameter K in KNN refers to the number of nearest neighbors used to construct the
graph structure, determining how many adjacent nodes are selected. The parameter tolerance defines
the acceptable range of error during optimization, controlling the convergence criteria of the model.
The parameter threshold determines the edge weight threshold in the graph, deciding which edges to
retain in the graph structure.We set the k as 10, tolerance as 0.01, and threshold as 0.5.

In GloGNN, we set the Delta as 0.9, Gamma as 0.8, alpha as 0.5, beta as 2000, and orders as 5. Delta
adjusts the balance between local and global node embeddings. Gamma controls the significance of
global aggregation versus local information. Alpha balances the contributions of node features and
graph structure. Beta regularizes the model, preventing overfitting. Order defines how many layers of
neighbors are considered.

In WRGAT, we set the number of attention heads as 2 and the negative slope as 0.2. The number of
attention heads determines how many attention mechanisms are used. The negative slope modifies
the LeakyReLU activation.

31

1246
1247
1248
1249
1250
1251
1252

GCN

GAT

1.0 1.0
{¢'} {¢.¢}.6,.=62 {6.¢}, 6. =62 {¢'} {6.¢'},6.=62 {6,¢'}, 6, =62
0.94 0.94
0.8 0.8
Q Q
o o
< <
S 0.74 S 0.74
< <
oy oy
2 0.6 2 0.6
5 5
3 3
g g
< <
0.5 0.5
0.4 0.4
03 — — === 8 8 &£ & & 03 —-= = = & & 5 5 = 8 5
P & S B
@& P
& S F W«
SR P
SGC GraphSAGE
1.0 1.0
{¢'} {¢.¢}.6,:=62 {6.¢},6.=62 {¢'} {6.¢'}.6.=62 {6,¢'}, 6, =62
0.94 0.94
0.8 0.8
Q Q
o o
< <
S 0.74 S 0.74
<< <<
oy oy
2 0.6 2 0.6
5 5
3 3
g g
< <
0.5 0.5
0.4 0.4
03

Figure 9: Influences of the approaches of view fusion in GSL to GNN+GSL.

Results. The results are presented in Table[d] where "OOM" denotes out-of-memory. It is evident
that removing GSL does not diminish model performance; in fact, it is often comparable to or even
exceeds the original results. Furthermore, GSL-based SOTA methods require significantly more GPU
memory and longer running times compared to their non-GSL counterparts. Based on these findings,
we conclude that GSL not only fails to enhance performance across most datasets but also increases
model complexity. In conjunction with the results in Table [T} we assert that GSL may be unnecessary
for effective GNN design in most cases.

Table 4: Model Performance and training time per epoch of SOTA methods and SOTA-GSL. The
results for methods marked with “*" are reported in (author?) [58].

Questions i R pi " Tolokers Cora Pubmed Citeseer

Model AUC Time AUC Time A Time Acc Time AUC Time A Time Acc Time Acc Time
GAug® 0OM T 793064 - ooM T a0 - 0oM T S39066 75 78734077 205 7279+086 105
GAug,G' =G OOM - 80.56+0.36 11s OOM - 48.45+0.37 12s OOM - 81.73+0.38 1s 79.38-+0.46 6s 72.34+0.18 2s
GAug, G’ = MLP 0OM - 64314140 48 OOM © 48054066 375 OOM © 78904000 325 77404000 81s 72914032 9
GEN® 0OM T 7956109 260s OOM T w7068 - 00M T BI662091 2045 78494308 1384 73215062 470
GEN,G'=§G OOM - 80.81+0.23 75s OOM - 50.084+0.30 130s OOM - 82.16+0.37 39s 80.49+0.13 114s 71.52+0.34 25s
GEN, ¢’ = MLP 0OM - 71812098 125 OOM - 29294065 495 OOM © 80204000 1405 66804000 15925 73.50-0.00 310s
GRCN® 74500084 - 60s 44415041 1805 5006038 220s 71272042 375 846l 3s 79304034 175 7234+034 20
GRCN,G' =G 75.69+C 8s 10s 45.84+0.52 8s 46.07+1.02 10s 71.73+0.42 10s 81.66: 2s 79.35+0.26 3s 69.55+1.28 2s
GRCN, G’ = MLP 63594235 395 25 45594083 755 48774060 S.ds 70455139 85 79404000 13s 78004000 55 71.40£000 42
IDGL* 0OM - 1575 47104065 186s 45874058 - 50005000 2795 S419-061 1235 S$275+044 146s 73265053 332
IDGL, ¢’ = G 0OM - Sls 41244086 425 OOM . 00 S35 82434045 13 T3504185 23 73132049 36s
IDGL, ¢’ = MLP OOM - 13.7s 50.35+0.36 35s 39.93+0.88 15s 1.08 11s 83.20+0.00 6.6 79.204+0.00 13s 72.60+0.00 13.9s
NodeFormer* 0OM - T ses4373 - AlBElas - T 78SIEI21 2035 78384194 - 70395204 219
NodeFormer, ' = 0OM - 28 68374195 236 OOM - o 7701199 15 OOM - 70824003 139
NodeFormer, G’ = MLP OOM - 80.04+1.42 21s 53.084237 7.2s 71.55+1.08 26s - 78.824+0.00 8s 76.30-+£0.00 72.80+0.00 15s
GloGNN 68.67+1.07 66.6s 52.45+0.30 13.0s 66.21+0.17 26.1s 50.724+0.88 31.Is 79.814+0.20 474s 78.07+1.66 6.6s 87.8840.26 71.95+£1.90 21.8s
GIoGNN, @' = G 68324123 4945 52304021 365 66.03+0.14 1535 S023£083 2175 §002-016 25.0s 73494201 S.ls 87.62+020 72275208 2125
GloGNN, G’ = MLP 69.69+0.22 25.7s 52.30+0.20 2.1s 66.49+0.16 124s 49.56+0.73 123s 74.85+0.12 2.8s 93+1.81 32s 87.64+0.27 72.09+1.81 13.8s
‘WRGAT OOM - 90.22+0.64 168.0s OOM - OOM - 78.69+1.21 153.0s 84.2841.52 19.5s 88.8240.50 73.50+1.41 22.1s
WRGAT, ¢’ = G 74.67+0.95 1865 OOM © 50414053 4995 7S81£089 4705 8348148 345 §8.92+043 73204190 475
WRGAT, G’ = MLP 68.07+2.62 16.2s 0OOM - 41384146 244s 7641+125 37.7s 76.99+1.10 29s 80.27+6.23 65.28+2.11 4.5s
WRGCN 74.70+1.71 90.63+0.64 40.9s OOM - 52764095 508.4s 82.68+0.82 523s 88.30+1.46 23.7s OOM - 73.74+1.60 5425
WRGCN, ¢’ = G 7591+130 9065:049 555 OOM © 52544056 S0.0s 82654086 1565 §5324079 395 §926+4045 1945 7445+151 10,5
WRGCN. G/ = MLP 6459148 7066<137 775 OOM © 37054046 805 69105091 1225 70004359 225 67294249 995 7084+136 4.l

32

1253

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266

1267

1268
1269
1270
1271
1272

1273

1274
1275
1276

1.0 1.0
Late Early Late Early
0.9 0.9
0.8 0.8
Q Q
g g
So07 So07
< <
oy oy
3 0.6 306
5 5
3 3
S S
< <
0.5 0.5
0.4 0.4
0.3 T T T T T T 0.3 T T T
o & & L & S P ESIR & & T S N I S EIRS & &
& 2 9 2 . & & O 2 & 2 9 2 o & O 2
& F 3 T8 S & & & ¢ & S S & &
< @0 49" & ,5§ & S <€ gQ S @S 5? e
SGC GraphSAGE
1.0 1.0
Late Early Late Early
0.9 0.9
0.8 0.8
Q Q
g g
So07 So07
< <
oy oy
3 0.6 306
5 5
3 3
S S
< <
0.5 0.5
0.4 0.4
0.3 T T T T T T T T T T T T T T 0.3 T T T T T
R S R R RPN S ESIR & & T S S I S EIRS & &
& 2 o @ . &S IS & & 2 o @ . <8 o & P:
& F 3 S ¢ O L & F 3 S ¢ O L
€ & P S R PR e ¥
< o < @

Figure 10: Influences of the states of view fusion in GSL to GNN+GSL.

F.4 Quality of GSL Graphs

Previous studies [25157] suggest that GSL constructs graphs with properties that improve intra-class
node connectivity, which can be measured by homophily. This improvement can be visualized by
inspecting graph structures with nodes sorted by their class labels. A graph that appears closer to a
block diagonal matrix indicates stronger intra-class connectivity. However, this enhancement may not
always be essential and can be achieved through non-GSL methods as well. In Figure[TT] we visualize
the original and reconstructed structures of a heterophilous graph from the Wisconsin dataset. The
GSL graphs are constructed using various bases: X, AX, MLP(X), GCN(X, A), and GCL(X, A).
We also include reconstructed graphs using a simple method that samples edges between nodes
of the same class based on label predictions, i.e., Y = GCN(X, A) or Y = MLP(X, A). Figure
[TT) demonstrates that, although GSL improves intra-class connectivity, the improvement is not as
substantial as that achieved by non-GSL methods, as seen in the last two subfigures. Thus, the
improvement in homophily within GSL graphs is unnecessary, as it can be easily achieved through
simple methods.

F.5 Heterophily-oriented GNN with GSL

We also include heterophily-oriented GNNGs, specifically ACMGNN [32] and MixHop [2], in our
experiments that incorporate GSL into GNN baselines. These experiments follow the same setup
as described in Table E} The results, presented in Table @, demonstrate that, under fair comparison
conditions, both ACMGNN and MixHop outperform their GNN+GFS counterparts. This suggests
that adding GSL to these heterophily-oriented GNNs may be unnecessary.

F.6 Trainable GSL
In Table [/ we present the results of applying trainable GSL to baseline GNNs. Specifically, we

select the best-performing GSL variants, as shown in Tables[T|and [6] for each backbone GNN. The
best-performing method is highlighted in bold, while the runner-up is indicated with an underline.

33

1277
1278
1279
1280

1281

1282
1283
1284
1285
1286

Table 5: Hyperparameters for GSL-enhanced SOTA methods and their counterparts by replacing or
removing new graphs.

Dataset Model Leaning Rate Weight Decay Dropout _Hidden Dim Num of Layers Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers
GAug le-d 08 512 2 GAug le-2 Se-d 05 128 2
GAug,G' =G le-4 0.8 512 2 GAug,G' =G le-2 Se-4 0.5 128 2
GAug, G’ = MLP le-d 08 512 2 G, le-2 Se-d 05 128 2

EN le2 05 16 2 le-3 Se-d 02 32 2
GEN,¢'=¢ le2 05 16 2 le-3 Se-d 02 32 2
GEN, G le2 05 16 2 le-3 Se-4 02 32 2
GRCN le3 05 256 2 le-3 Se-3 05 32 2
GRCN,G' =G le3 05 256 2 GRCN, G =G le-3 5e-3 05 32 2
GRCN. G’ = MLP le3 05 256 2 GRCN, G = MLP le-3 Se-3 05 32 2
IDGL le2 05 512 2 IDGL le-2 Se-d 05 16 2
IDGL, G’ = G le2 05 512 2 IDGL.G' = G le2 Se-4 05 16 2

Cora IDGL. ¢’ = MLP le-2 0.5 512 2 PubMed PGL. G =MLP le-2 Se-4 0.5 16 2

- NodeFormer le2 02 64 2 NodeFormer le3 Se-4 02 64 2
NodeFormer, §' = G le-2 02 64 2 NodeFormer, §' = G le-3 Se-4 02 64 2
NodeFormer, G’ = MLP le2 02 64 2 NodeFormer, §' = MLP le-3 Se-4 02 32 2
le2 05 64 1 GloGNN le-3 5e-5 07 64 3

le2 05 64 1 GIoGNN, ¢’ = G le3 Se-5 07 64 3

le-2 05 64 1 GIoGNN, §' = MLP le-3 Se-5 07 64 3

WRGAT le2 05 128 2 WRGAT le2 S5e-5 05 64 2
WRGAT, ¢’ = G le-2 0.5 128 2 WRGAT, ¢’ = G le-2 le-5 0.5 64 2
WRGAT, G’ = MLP le2 05 128 2 WRGAT, G’ = MLP le2 S5e-5 05 64 2
WRGCN le2 05 128 2 WRGCN le2 Se-5 05 64 2
WRGCN, §' = G le-2 05 128 2 WRGCN, G’ =G le-2 Se-5 05 64 2
WRGCN, G’ = MLP le-2 05 128 2 WRGCN, ¢ = MLP le-2 Se-5 05 64 2

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim _ Num of Layers Dataset Model Learning Rate ~ Weight Decay Dropout Hidden Dim Num of Layers
GAug le-4 08 12 2 GAug 1e-3 08 256 3
GAug, @' = ¢ le-4 08 512 2 GAug,G' =G 103 03 256 3

. G' = MLP le-d 08 512 2 A B p 3
GAug, G GAug, §' = MLP le-3 08 256 3
GEN 0.5 16 2 GEN led 08 256 3

0.5 16 2 led 08 256 3

05 16 2 led 08 256 3

08 512 3 le-3 02 128 2

GRCN, ¢’ =G 08 512 3 le3 02 128 2

GRCN, ' = MLP 05 256 3 le-3 02 128 2

IDGL 05 32 2 le-1 02 128 3

IDGL, §' = G 05 16 2 le-1 02 128 3

. IDGL, G’ = MLP 0.5 16 2 coweener 1D le-l 02 128 3

Citeseer NodeFormer 02 64 2 Minesweeper NogeFormer le2 08 32 2
NodeFormer, ' = G 02 64 2 NodeFormer, ¢’ = G le2 08 32 2
NodeFormer. ¢’ — MLP 02 64 2 NodeFormer, G’ = MLP le2 08 32 2
GIoGNN 07 64 2 GloGNN le2 05 512 5
GloGNN. ¢’ = G 07 64 2 GloGNN, G = G le-2 0.5 512 5
GIoGNN, ¢’ = MLP 07 64 2 GIoGNN, G’ = MLP le2 05 512 5
WRGAT 05 128 3 WRGAT le2 05 128 2

. 3 WRGAT, ¢ le2 05 128 2

a’ﬁgﬁ fi, _ f/m, ?,; :32 5 WRGAT, G le- 05 128 2
LG = . 2 |)

WRGEN 03 128 2 WRGCN le2 05 128 2

'RGON. G/ — G WRGCN, G' le2 05 128 2
WRGCN, ¢ = G le2 05 128 2 WRGCN, ¢ he 02 128 :
WRGCN, G’ = MLP le2 05 128 1 ! - z

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

GAug Te-1 0.5 32 2 GAug le-2 02 128 2

GAug,¢' =g le-l 05 32 2 GAug.G' =G le2 02 128 2

GAug, G’ = MLP le-l 05 3 2 GAug, G' = MLP le2 02 128 2

SEN le2 02 128 2 N le2 02 128 2

GEN.G' =G le2 02 128 2 GEN.G' =G le2 02 128 2

GEN, G' = MLP le2 02 128 2 GEN, G' = MLP le2 02 128 2

le3 05 128 2 GRCN le3 02 128 2
le2 05 128 2 GRCN,G' =G le2 02 64 2
le2 05 128 2 GRCN, G’ = MLP le2 02 128 2
le-l 05 128 2 IDGL le2 02 128 2
le-l 05 128 2 IDGL, ' = G le2 02 128 2

Roman-empire lel 05 128 2 Amazon-ratings IDOL 0 = MLP le2 02 128 2

A er le3 02 128 3 NodeFormer led 05 128 3

NodeFormer, §' = G le-3 02 128 3 NodeFormer, ¢’ = G led 05 64 3

NodeFormer, G' = MLP le-3 08 128 3 NodeFormer, G’ = MLP led 05 64 3

GloGNN le2 07 128 3 GloGNN le2 03 128 3

GIoGNN, G = G le2 07 128 3 GIoGNN, ¢’ le2 03 128 3

GIoGNN, G’ = MLP le2 07 128 3 GloGN! le2 03 128 3

WRGAT le-2 0.5 128 2 WRGAT le-2 03 128 2

WRGAT, G’ = G le2 05 128 2 WRGAT, G’ = G le2 03 128 2

WRGAT, §' = MLP le2 05 128 2 WRGAT, ¢’ = MLP le2 03 128 2

WRGC le2 05 128 2 WRGCN le2 07 128 3

WRGCN, le2 05 128 2 le2 07 128 3

WRGCN, G' le2 05 128 2 le2 07 128 3

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers Dataset_ Model Learning Rate Weight Decay Dropout _Hidden Dim _ Num of Layers

GAug le2 05 64 3 GAug le-1 05 32 2

GAug. ¢’ = G le2 05 64 3 GAug.G' =G le-l 05 32 2

GAug. G’ = MLP le2 05 64 3 GAug, G' = MLP le-1 05 32 2

GEN le2 02 256 2 EN le-2 02 128 2

GEN,G' =G le-2 0.2 256 2 GEN.G' = ¢ le-2 02 128 2

GEN, G’ = MLP le2 02 256 2 GEN, G’ = MLP le2 02 128 2

GRCN le2 05 64 2 GRCN le2 05 32 2

GRCN,G' =G le-2 0.5 64 2 GRCN,G' =¢ le-2 05 32 2

GRCN, ' = MLP le2 05 64 2 GRCN, ' = MLP le-1 05 64 2

IDGL le2 02 128 2 IDGL le2 05 64 2

IDGL, ' = G le-2 02 128 2 IDGL. G’ = § le-2 05 64 2

Questions DOL: & = MLP le2 02 128 2 Tolokers IDGL.G' = MLP le2 05 64 2

" NodeFormer led 05 128 3 * NodeFormer le2 02 64 2

NodeFormer, ' = G le-d 0.5 64 3 NodeFormer, §' = G le-2 02 64 2

NodeFormer, §' = MLP le-d 05 64 3 NodeFormer, §' = MLP le2 02 64 2

GloGNN le2 07 128 3 GloGNN le2 03 128 3

GloGNN, ¢’ = G le2 07 128 3 GIoGNN, ¢’ = G le2 03 128 3

GloGNN, G’ = MLP le2 07 128 3 GIoGNN, G’ = MLP le2 03 128 3

WRGAT Se3 03 64 2 WRGAT le2 05 128 2

g Se-3 03 64 2 WRGAT, ¢’ = G le-2 05 128 2

S5e-3 03 64 2 WRGAT, G’ = MLP le2 05 128 2

S5e3 07 64 2 WRGCN le2 05 128 1

WRGCN, G’ = G Se-3 0.7 64 2 WRGCN,G' =G le-2 05 128 2
WRGCN, G' = MLP Se-3 0.7 64 2 WRGCN, G’ = MLP le-2 0.5 128 2

“OOM" refers to "out of memory." The results demonstrate the following: (1) The average rank
indicates that trainable GSL improves GNN performance on 5 out of 6 GNN backbones; (2) Although
trainable GSL outperforms non-trainable GSL, it remains inferior to GNN backbones without GSL,
indicating that GSL could be unnecessary in improving GNN performance on node classification.

F.7 Performance on Graph classification

In addition to the node classification experiments, we further investigate whether GSL consistently
improves GNN performance in graph classification. Specifically, we conduct ablation experiments
by replacing the GSL graph with the original graph, following the methodology outlined in [26].
As shown in @ removing GSL from 4 state-of-the-art GNNs, including ProGNN [15]], GEN [43],
GRCN [53]], and IDGL [6], results in significantly reduced training time. At the same time, the GNN

34

1287
1288
1289
1290
1291

1292

1293

1294
1295
1296

1297
1298
1299

1300
1301
1302

1303

1304
1305
1306
1307

original, hegge=0.18 B =X, hegge=0.81 B = AX, hegge=0.42 B = MLP(X), hegge=0.96

B = GCN(X,A), hegge=0.75 B = GCL(X,A), hegge=0.39 Y = GCN(X, A), hegge=0.71 ¥'=MLP(X,A), hegge=1.00

Figure 11: Visualization of original graph and reconstructed graphs on Wisconsin

Table 6: Performance of heterophily-oriented GNNs with GNN+GSL

Model _ Construct _Fusion _Param Sharing ___ Mines. Roman. Amazon. Tolokers Questions __ Squirrel __ Chameleon __ Actor Texas Comell __ Wisconsin Cora CiteSeer __ PubMed _ Rank
- - - 6545£0.99 46.65+0.83 75944138 2 43574408 354 80464644 7378+734 85884778 8797180 76.68+210 87394218 293
30 8486+0.73 5 84414112 826245, 5 87.6547.15 88.23+181 3 5

44.65+4.43 3 8 5.
5 59.804£6.99 5

52.07£1.72
« - 60974076 41.50£075 7021151 39.90463.64 TLSTL6.68 77474241
< 0, =0, 3311138 69.06+4.65 38.79+4.73 260 54.10+7.59 7039+£9.58 59.74+1.87 4 79.53 9.86
ACMGNN 01 # 0 493550.58 81.63+0.87 4116+4.18 34232098 67.67+5.97 8078521 8083184 7 88.98+047 3.64
ACMGNN ¢ - 2 42474053 74144114 38234197 40774368 34742090 6145613 74314643 75.8442.93 872240041 621
ACMGNN ¢ 0 =0, 3IIE138 69.06+4.65 31584439 38794473 29062260 54104759 59 70.39+9.58 59.74+1.87 79.53+1.69 9.86
ACMGNN c 6 #6; 49042057 8074092 39.194212 40284430 3419116 69.86+5.56 80394523 8033190 88.94:£036 4.07
ACMGNN - 41685095 71314064 38584196 405614234 34882077 62514616 62.7 7647443 75.9942.85 87204045 6.64
ACMGNN 6 =6; 3311138 69.06+4.65 31584439 38794473 20.06£2.60 54104759 S 7039+£9.58 59.74+1.87 79.53£1.69 9.86
ACMGNN 01 #0, 73214063 49.06+0.53 8134+0.85 7 39.1842.18 41704371 34.67+1.11 68484578 802043.13 80464226 88.87-0.51 407
MLP - 65454099 46.65+083 75944138 74924139 39294222 43574418 35404138 80464644 8588+7.78 87.97+180 87391218 229
MixHop 81.70£0.89 50955071 84.56+1.19 77.66=124 41224266 43.11+4.73 72.548.98 75.88£827 8776194 3 89.42+081 1.86
MixHop - 51834053 41474200 68784194 71454138 37754241 37.7942.10 55.7246.39 5 70204460 84424135 88742029 821
MixHop 0, =0, 5 63.50+0.86 4421+136 74224221 7 2 37064134 39.064308 3 3 58.16:+9.18 T3T3£780 65144262 6 86.63£0.51 7.54
MixHop 0 # 6, SS41EL63 4337075 74414133 37644219 38714436 31 61.13£7.96 61 75294600 85424121 88162046 6.50
MixHop - 60.56+7.08 SI74L0.68 42712097 74.27+1.84 2 38354199 38.88:43.00 4 58.4246.52 71574491 83224116 88231045 671

MixHop 6=0, 542241075 6350£086 4421136 74224221 2 37065134 39064308 3 3 58.16+9.18 6.2 TITIETR0 65.1442.62 86.63+0.51 7.64
0.5

MixHop 040, 7 55954235 44154059 76.54+£091 37474207 39.524333 60614873 62974675 75104620 85.36:0.89 74, 88184052 4.79
MixHop - 50394072 42.07:£0.93 70494170 2 38074172 38764291 33 59254449 57.30£696 69224722 $3.99+1.28 87994040 8.00
MixHop 6 =0, 63.50+£0.86 44214136 74224221 70, 2 37064134 39.0643.08 3. 3 58.16:49.18 559 TITILTED 65.14+2.62 4 86.63+£0.51 7.54
MixHop 040, 5748+198 43285068 77.24+1.61 70.34+176 38154201 40.1243.76 3 3 60.05£9.45 63514756 74904821 85.1841.26 88204057 493

performance remains comparable to that of the GSL-enhanced counterparts. This suggests that GSL
does not consistently enhance GNN performance in graph classification. Due to page limitations,
we only tested a few methods in this paper. We believe it would be valuable to explore additional
state-of-the-art methods, datasets, and theoretical justifications for the effectiveness of GSL in graph
classification in future work.

F.8 Robustness of GSL
We investigate the robustness of GSL with GNNs using 3 types of graph perturbation strategies:

* Additive Feature Noise: We randomly inject noise into node features, where the noise
follows a normal distribution IV (0, 02). The level of noise is controlled by o, taking values
from the set [0, 0.01,0.02,0.05,0.1,0.2,0.5, 1.0, 2.0, 3.0, 10.0].

* Edge Addition: We randomly add edges to the graph structure, with the ratio
of added edges proportional to the original number of edges, ranging from r &
[0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9].

* Edge Removal: We randomly remove edges from the graph structure, with the ratio of
removed edges also proportional to the original number of edges, following the same range
as in edge addition.

We then measure model performance through accuracy or AUC-ROC in node classification.

Figure[I2]illustrates the differences in model performance between GNN baselines and their GSL-
enhanced counterparts across additional datasets beyond those shown in Figure |4} Generally, the
performance of GSL is comparable to or even worse than that of the GNN baselines for all three
types of perturbed graphs. Notably, model performance is not consistently stable for structural

35

Table 7: Performance of GNNs with their counterparts of trainable GSL.

Model GSL Type Mines. Roman. Amazon. Tolokers Questions Cora CiteSeer PubMed Rank
No GSL 90.07+5.79 81.46+1.25 50.89+1.16 84.61+0.99 77.68+1.10 87.97+1.51 76.75+2.30 89.47+0.64 1.19

GCN Trainable GSL 90.07+0.58 78.76+0.46 50.89+0.65 84.61+0.65 OOM 84.92+1.51 74.89+1.13 88.66+0.45 2.31
Non-trainable GSL ~ 89.17+0.68 72.63+1.45 48.31+0.96 82.91+0.97 75.564+1.05 85.69+1.73 75.49+1.42 88.72+0.71 2.50

No GSL 83.45+4.47 78.04+0.69 51.38+0.68 84.88+1.13 77.39+1.23 88.10+1.89 77.52+2.20 89.39+0.62 1.19

SGC Trainable GSL 83.45+1.03 74.74+0.57 51.38+0.57 84.88+0.65 OOM 86.99+1.64 75.13+£1.26 88.94+0.31 231
Non-trainable GSL 79.034+3.76 67.84+1.87 47.9340.94 78.09+1.84 75.46+143 87.47+1.86 76.36+1.27 89.374+0.41 2.50

No GSL 90.66+0.88 85.02+0.97 52.93+0.83 83.31+1.12 75.95+1.41 88.13+1.77 76.65+2.00 89.18+0.65 1.31

GraphSAGE Trainable GSL 90.66+0.58 82.5440.60 52.93+0.59 83.31+0.50 OOM 83.48+1.69 74.18%£1.02 88.67+0.39 2.44
Non-trainable GSL 90.67+0.66 79.024+1.21 52.10+0.84 82.17+£0.89 75.384£0.96 83.60+1.78 74.39+1.35 88.88+0.50 2.25

No GSL 90.41+1.34 84.514+0.84 52.00+2.84 84.37+0.96 77.78+1.27 88.02+1.92 76.77+2.02 89.21+0.67 1.19

GAT Trainable GSL 90.41+0.61 83.104+0.58 52.10+0.62 84.35+0.56 OOM 86.23+£1.58 74.39+1.14 88.13+0.56 2.19
Non-trainable GSL ~ 89.96+0.79 77.23+1.63 49.79+0.72 82.78+0.95 76.67+1.13 86.97+1.75 75.20£1.55 87.97+0.51 2.62

No GSL 90.56+1.03 84.86+0.73 52.07+1.72 84.41+1.12 77.72+1.59 88.23+1.81 76.63+2.34 89.37+0.56 1.06

ACMGNN Trainable GSL 90.56+0.63 81.90+0.71 51.87+0.44 84.404+0.79 OOM 81.16£1.81 73.91+£1.16 88.55+0.39 2.19
Non-trainable GSL 87.46+1.02 74.63+0.76 49.35+£0.58 81.63+0.87 73.84+1.41 80.83+1.84 73.43+1.47 88.9840.47 2.75

No GSL 90.10+5.59 81.70+0.89 50.95+0.71 84.56+1.19 77.66+1.24 87.76+1.94 76.51+1.93 89.42+0.81 1.12
MixHop Trainable GSL 90.10£0.52 79.074+0.75 50.95+0.71 84.5540.67 OOM 84.84+1.28 74.45£1.11 88.48+0.62 225
Non-trainable GSL ~ 85.43+0.57 55.954+2.35 44.15+£0.59 76.54+£091 72.03£2.45 85.36+0.89 74.68+1.13 88.184+0.52 2.62

Table 8: Ablation study of GSL-enhanced methods for graph classification.

Cora PubMed CiteSeer

Model

AUC Time AUC Time Acc Time
ProGNN 76.28+0.52 959s OOM - 67.14+0.23 1776s
ProGNN,w/o. GSL 78.96+0.64 30s 75.80£0.95 326s 67.24+1.48 44s
GEN 79.88 £093 219s OOM - 66.98 +£1.28 320s
GEN,w/o. GSL 78.32 £ 1.21 3s 7694 £ 040 47s 64.66 £ 1.46 3s
GRCN 83.04 +£0.33 56s 74.55+0.96 249s 70.85+0.87 113s
GRCN,w/o. GSL 71.82 + 0.61 9s 7418 £0.63 28s 58.33 £0.17 24s
IDGL 83.32 +£0.59 144s OOM - 70.57 £0.26 330s
IDGL,w/o. GSL 83.32 +0.59 129s OOM - 71.12 £ 031 401s

1308 perturbations in heterophilous graphs. We attribute this inconsistency to the non-informative nature
1309 of the structural information in these graphs, which leads to diminished responses to edge addition or
1310 removal. Despite this, GSL still fails to consistently outperform GNN baselines.

36

PubMed, Feature Noises PubMed, Add Edges PubMed, Delete Edges

—— GCN SGC. SAGE —— GAT 0.90{ — GCN SGC. SAGE —— GAT 08951 — Gen SGC. SAGE —— GAT
09007 __. GeN+GSL SGC+GSL SAGE+GSL GAT+GSL. - GCN+GSL. SGC+GSL SAGE+GSL - GAT+GSL 0.890 GCN+GSL. SGC+GSL SAGE+GSL ==~ GAT+GSL
075 o088
" o L, 0885
£ 050 2 2
: ; ? 0850
g S 086 s
S0 K 2oars
30300 5“5‘ Ensm
< < < 0865
0775 082
0.860
0750
080 055
00 o0l 002 005 01 o2 05 10 20 50 100 G0 o1 o2 o3 o4 05 os o7 o8 09 00 o1 o2 03 04 05 06 07 o8 09
Squirrel, Feature Noises Squirrel, Add Edges Squirrel, Delete Edges
04251 — GCN SGC. SAGE —— GAT —— GCN SGC. SAGE —— GCN SGC. SAGE —— GAT
-~ GON+GSL SGC+GSL SAGE+GSL GAT+GSL .40~ GeN+GsL SGC+GSL SAGE+GSL 0.335 GCN+GSL SGC4+GSL SAGE+GSL === GAT+GSL
0.400 -
039
g g g
g 033 - 79 8 o0
H H H
20350 2 20300
o325 gom Foas
2 000 H Loam0
037
0365
0275
036 . 0.360
00 001 002 005 01 0z 05 10 20 50 100 G0 01 oz 03 04 05 o6 07 o8 09 00 o1 o2 o3 04 05 06 07 o8 09
Chameleon, Feature Noises Chameleon, Add Edges Chameleon, Delete Edges
— oo sC SnGE —onr — eon sec SAGE —onr oas{— oon sec SAGE —onr
0.42 GCN+GSL. SGC+GSL SAGE+GSL ==~ GAT+GSL 0424 - GCN+GSL. SGC+GSL SAGE+GSL - GAT+GSL === GCN+GSL SGC+GSL SAGE+GSL GAT+GSL
0.40 0.41
g g
8 8
Go3 & 040
2 2
3036 So3s
Jo4 Josm
2 2
032 037
0.30 0.36
00 001 00z 005 01 0z 05 1o 20 50 100 G0 o1 oz 03 04 05 os 07 o8 09 G0 o1 oz 03 04 05 os 07 o8 09
Texas, Feature Noises Texas, Add Edges Texas, Delete Edges
074
08 — oon sc saGe — ot 0775] — oon seC saGe — ot — oo sec snGe oar
- GenssL SecrosL SAGE+GSL -~ GAT+GSL - GenssL seCrasL SAGE+GSL -~ GAT+GSL 072 —-- GensasL secrasL SAGE+GSL -~ GAT+GSL
0750
07
o o 070
8 goms 8
goe g gose
g o g
3os Zoers goee
H Joes
o £oeso g
0.625 o062
03
0600 oso] |
00 o001 002 005 01 02 05 10 20 50 100 00 01 o0z 03 04 05 05 07 08 09 0o 01 o0z 03 04 05 os 07 o8 09
Cornell, Feature Noises Cornell, Add Edges Cornell, Delete Edges
074
— oo sace — oo sac sace —oar 072{— cen sec sace
07 - consest secrGsL SAGE+GSL. P secrasL SAGE+GSL -~ GAT4GSL - GensGsL secrasL SAGE+GSL.
070
gos gor H
& & 068
Zos < So6s
3 Z o6 3
go4 Zoes goe
0 062 062
060 060
00 o001 002 005 01 02 05 10 20 50 100 G0 o1 o2 o3 o4 05 os o7 o8 09 G0 o1 o2 o3 o4 05 os o7 o8 09
Wisconsin, Feature Noises Wisconsin, Add Edges Wisconsin, Delete Edges
09
— oo sace 0s2] — oon sace —— 080 — cen sace — car
o] o soNHGSL seerGsL SAGE+GSL GensGsL secrGsL SAGESGSL -~ GAT+GSL g - GNHGSL seerGsL SAGESGSL -~ GAT+GSL
080
go7 8
g g
<06 zo078
308 3076
H H
04
074
03
072

00 001 002 005 01 02 05 10 20 50 100

Figure 12: Response to feature noise, edge additions, and edge removals in GNN baselines and their
GSL-enhanced counterparts.

37

	Introduction
	Preliminary
	Graph Structure Learning
	GSL Bases
	New Structure Construction
	View Fusion
	Training Mode

	Effectiveness of Graph Structure Learning
	Motivation
	Empirical Observations on Synthetic Graphs
	Theoretical Analysis
	Complexity Analysis

	Experiments
	Performance Comparison
	Ablation Study on Each GSL Component

	Conclusion
	Taxonomy of Graph Structure Learning Methods
	Contextual Stochastic Block Models with Homophily
	Proof of Theorem
	Dataset Details
	Implementation Details
	Additional Experiment Results
	Impact of GSL Bases on GNN baselines
	Impact of each GSl component on GNN+GSL
	GSL Bases
	GSL Graph Generation
	View Fusion
	Fusion Stage

	Removing GSL in SOTA GNNs
	Quality of GSL Graphs
	Heterophily-oriented GNN with GSL
	Trainable GSL
	Performance on Graph classification
	Robustness of GSL

