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Abstract

Graph Structure Learning (GSL) has been widely adopted in the design of Graph1

Neural Networks (GNNs), with similarity-based graph learning emerging as the2

most popular approach for node classification. However, which component of3

GSL really enhances GNN performance remains underexplored. In this paper,4

we disentangle its effects and present a comprehensive analysis. Specifically,5

we propose a novel framework that can decompose GSL into three steps: (1)6

GSL bases (i.e., processed node embeddings for construction) generation, (2) new7

graph construction, and (3) view fusion. Through empirical studies and theoretical8

analysis, we demonstrate that applying graph convolution to the newly constructed9

graphs does not increase the Mutual Information (MI) between node embeddings10

and labels. Our findings reveal that model performance is primarily driven by the11

quality of GSL bases rather than the graph construction methods. To validate them,12

we conduct extensive experiments with 450 GSL variants and benchmark them13

against GNN baselines within the same search space for GSL bases. Results show14

that similarity-based graph construction has negligible or even adverse impacts on15

GNN performance, while pre-trained GSL bases provide significant performance16

gains. These findings verify and confirm our analysis, underscoring the critical role17

of GSL bases and highlighting the need to simplify the other two GSL steps.18

1 Introduction19

Graph Neural Networks (GNNs) [17] are effective in capturing structural information from non-20

Euclidean data, which can be used in many applications such as recommendation [50, 49], telecom-21

munication [29], bio-informatics [54, 12, 13], and social networks [34, 24]. However, conventional22

GNNs suffer from issues including heterophily [30, 31], over-squashing [5], adversarial attacks23

[15, 22], and missing or noisy structures [21, 28]. To address these issues, Graph Structure Learning24

(GSL), especially the similarity-based method that reconstructs or refines the original graph structures,25

has been widely used in enhancing GNN performance and robustness [60]. Even though GSL is26

believed to improve GNN performance, it introduces more hyperparameters and adds plenty of27

computational cost in both the construction process and the learning process. In addition, recent28

studies [39, 36] have shown that GSL methods cannot consistently outperform baseline GNNs with29

the same hyperparameter tuning strategy. Therefore, an in-depth analysis of the effectiveness and30

necessity of GSL is highly needed.31

To have a detailed understanding of each component in GSL, we propose a new framework that32

can break down GSL into 3 steps: (1) GSL Bases Generation. GSL bases are the processed node33

embeddings that serve as inputs for the structure construction of new graphs. They are built by either34

graph-aware or graph-agnostic models with fixed or learnable parameters. (2) Graph Structure35

Construction. Based on the GSL bases, new structures are constructed with similarity-based [14, 38],36
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structural-based [55, 27], or optimization-based approaches [15] 1, followed by graph refinements.37

(3) View Fusion. To incorporate the original graph or combine multiple GSL-generated graphs,38

various view fusion strategies are applied, e.g., late fusion [45], early fusion [22], or separation [28].39

Compared with existing categorizations of GSL [40, 60, 61, 18] that mainly focus on step (2), our40

proposed framework is more comprehensive, and is able to disentangle the effect of each component41

in GSL.42

More specifically, for step (1), we argue that a fair comparison between GSL-enhanced GNNs43

and traditional GNNs should be made using the same GSL bases. Previous GSL studies often44

enhance node inputs with additional information before graph construction, such as pre-trained node45

embeddings [6, 51] or structural embeddings [38, 57]. However, these enhancements are typically46

absent for the inputs of GNN baselines, leading to potentially biased and invalid evaluations. For47

step (2), we examine the effectiveness of graph convolution operations with the similarity-based48

graphs. Our empirical and theoretical findings indicate that the Mutual Information (MI) between49

convolved node representations and labels does not increase after graph convolution. This suggests50

that the performance improvements observed in previous similarity-based GSL methods result from51

the processed GSL bases (i.e.,, enhanced node inputs) in step (1) rather than new graph construction52

in step (2)2.53

We conducted extensive experiments to validate our hypothesis. To thoroughly evaluate the perfor-54

mance of GSL-enhanced GNNs, we implemented these methods using six GNN backbones, five GSL55

bases, three GSL graph construction approaches, three view fusion methods, and two types of fusion56

strategies, resulting in 450 different GSL variants. The results demonstrate that, within the same57

search space of GSL bases, there are no significant performance differences between GSL-enhanced58

GNNs and the corresponding baseline GNNs on node classification tasks. In addition, the results59

show that the pre-trained GSL bases is the component which significantly enhance GNN performance60

on certain datasets. This aligns with our analysis and validate our claim. In summary, our main61

contributions are as follows:62

• Comprehensive GSL Framework: In Section 3, we propose a novel framework that decom-63

poses the GSL process into three steps. This decomposition provides a more comprehensive64

perspective than existing categorizations, offering valuable insights into the workings of65

GSL.66
• Empirical and Theoretical Analysis: In Section 4, we present both empirical evidence67

and theoretical analysis demonstrating that the Mutual Information (MI) between node68

representations and labels does not increase after applying graph convolution on similarity-69

based GSL graphs. This finding suggests that similarity-based GSL methods may be70

unnecessary.71
• Fair Re-Evaluation of GSL: In Section 5, we conduct a fair reassessment of GSL’s72

impact on GNN performance. Our results highlight that GSL bases play a crucial role in73

improving GNN performance, while similarity-based graph construction has a negligible74

effect. Besides, we identify the key components for effective GSL, including pretrained75

GSL bases, parameter separation, and early fusion strategies.76

2 Preliminary77

Graphs. Suppose we have an undirected graph G = {V, E} with node set V and edge set E . Let78

Y ∈ RN×C denote the node labels and X ∈ RN×M represent the node features, where N is79

the number of nodes, C is the number of classes, and M is the number of features. The graph80

structure is represented by an adjacency matrix A, where Au,v = Av,u = 1 indicates the existence81

of an edge euv, evu ∈ E between nodes u and v. The normalized adjacency matrix is given by82

Â = D̃− 1
2 ÃD̃− 1

2 , where D̃ = D+In and Ã = A+In represent the degree matrix and adjacency83

matrix with added self-loops. The neighbors of node u is denoted as Nu = {v|euv ∈ E}. Graph84

Structure Learning (GSL) generates a new graph topology A′, where the new neighbors of node u85

are denoted as N ′
u. Graph-aware models MG , such as Graph Convolutional Networks (GCN) [17],86

are powerful in extracting structural information in graphs by message aggregation or graph filters87

[35]. In contrast, graph-agnostic models M¬G , such as Multilayer Perceptrons (MLP), only use X88

without considering G. For example, the updating process of node embeddings in GCN and MLP89

1Note that most of the construction methods are similarity-based, which is the main focus of our paper.
2As step (3) fuses the results from step (2), if step (2) is ineffective, then step (3) will also be ineffective.
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can be represented as Hl = σ(ÂHl−1W l−1) and Hl = σ(Hl−1W l−1), respectively. Here, Hl90

and W l are the node embeddings and weight matrix at the l-th layer, respectively, and σ(·) is an91

activation function.92

Graph Homophily. The concept of homophily originates from social network analysis and is93

defined as the tendency of individuals to connect with others who have similar characteristics [16]. A94

higher level of graph homophily makes the topological information of each node more informative,95

thereby improving the performance of graph-aware models MG [32, 33, 56]. Commonly used96

homophily metrics include edge homophily [2, 59] and node homophily [38]:97

hedge(G,Y ) =

∣∣{euv | euv ∈ E , Yu = Yv}
∣∣

|E|
(1)

98
hnode(G,Y ) =

1

|V|
∑
v∈V

∣∣{u | u ∈ Nv, Yu = Yv}
∣∣∣∣Nv

∣∣ (2)

99

Mutual Information. Mutual Information quantifies the amount of information obtained about one100

random variable given another variable [1]. The mutual information between variable X and Y can101

be expressed as:102

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(3)

where p(x, y) is joint probability, and p(x) and p(y) are marginal probability.103

Mutual information could be used to analyze the quality of input features by measuring how much104

information the inputs X retain about the outputs Y . However, in graphs under the task of node105

classification, the mutual information between a discrete variable Y and a continuous variable X106

cannot be directly measured by Eq. (3). Therefore, in this paper, we measure the mutual information107

I(X;Y ) based on entropy estimation from k-nearest neighbors distances following [19, 20, 41].108

3 Graph Structure Learning109

Existing studies and evaluations of GSL mainly focus on the structure construction method. However,110

through extensive literature review, we find that it only constitutes one step of GSL [40, 60, 61]. To111

comprehensively understand and disentangle GSL for GNN learning, we propose a new framework.112

As shown in Figure 1, our framework includes three steps: GSL bases generation, new structure113

construction, and view fusion. Then, the whole pipeline of GSL is: First, GSL bases B is constructed114

based on node features X (and input graphs G); Then, new graph structures G′ are constructed with115

the GSL bases; At last, the information from G′ (sometimes with multiple views) and original graph116

G are combined with different view fusion strategies for GNN training. We will introduce each117

component in the following subsections.3118

3.1 GSL Bases119

The GSL bases B is defined as the pre-processed node embeddings used for new structure con-120

struction. The quality of the GSL bases plays a crucial role for the graph construction step. For121

node classification tasks, an effective GSL bases B should exhibit consistency among intra-class122

nodes, as shown in Figure 2 (left). The construction of B can be categorized into non-parametric123

approaches [8, 38, 63], which generate fixed B, and parametric approaches [15, 6, 53], where B124

is learnable during training. The construction of B can also be categorized into graph-agnostic125

[8, 15, 63] and graph-aware approaches [38, 53, 45], based on whether the original graph information126

will be contained in B. Combining these two perspectives, in Figure 1, we show the diagrams of four127

types of bases: B = X , B = (A)kX , B = MLP(X), and B = GNN(X,A).128

3.2 New Structure Construction129

The construction of the new structure G′, based on B, is a key element of GSL. Based on relation130

extraction methods, the construction of G′ can be categorized into similarity-based [14, 38, 23],131

structure-based [55, 27, 63], and parametric optimization-based [15, 28, 25] approaches. Similarity-132

based method is the most prevalent one, and the choice of similarity measurement, such as k-Nearest133

3Please refer to Appendix A for a more detailed discussion of the representative GSL methods within our
proposed GSL framework.
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Figure 1: Our proposed GSL framework consists of three steps: GSL base generation, new structure
construction, and view fusion.

Neighbors [8], cosine similarity [6], or Minkowski distance [28], plays a critical role in the quality of134

the reconstructed graphs. However, the initial G′ produced by these methods often results in a coarse135

graph structure, which may not be optimal for GNN training. Thus, further refinements are often136

necessary, such as sampling [55, 22, 28], symmetrization [53, 7, 28], normalization [14, 55, 28], or137

applying graph regularization [14, 15, 25].138

3.3 View Fusion139

For GSL methods which have already implicitly fused the information from the original graph140

structure G into the reconstructed structure G′ [14, 7, 63], further view fusion is unnecessary. However,141

for other approaches, the fusion of information from G and G′ is crucial. Based on the fusion stage,142

methods can be classified as early fusion [22, 21, 27], late fusion [45, 28, 57], and separation [28].143

Early fusion, often seen as "graph editing", modifies G by adding or removing edges with G′ before144

training. Late fusion keeps both views as input, fusing node embeddings either at each layer or in the145

final layer. Separation methods, typically paired with contrastive learning, maintain multiple views146

without embedding fusion during GNN training. Additionally, view fusion methods can be further147

distinguished by whether they involve parameter sharing across layers during training.148

3.4 Training Mode149

In addition to the previous three steps, the training mode of G′ plays a crucial role in GSL and can be150

categorized into static, joint, and 2-stage approaches. Most methods [15, 25, 51] use joint training151

where G′ and model parameters are optimized simultaneously. In contrast, some methods [8, 45, 27]152

follow a 2-stage mode, iteratively updating G′ and model parameters. While dynamic updates153

offer better flexibility for learning complex structures through parameter optimization, they also154

significantly increase computational complexity, especially during the bases and graph construction155

steps. To address this, other methods [43, 23, 57] opt for a static G′ during training. Although156

this fixed structure may limit performance, it avoids the time-consuming process of frequent graph157

updates.158

4 Effectiveness of Graph Structure Learning159

Based on the framework built in the previous section, in this section, we question the necessity of160

similarity-based graph construction methods with theoretical analysis and extensive experiments. We161

introduce the motivation with an example in Section 4.1. We then explore the impact of GSL on162
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Successful GSL Unsuccessful GSL
Figure 2: Examples of GSL that use the similarity of neighbor distribution as GSL bases for graph
construction. The color of nodes indicates their labels. Left: new edges successfully connect intra-
class (red) nodes, which share similar GSL bases (neighborhood pattern with 3 green nodes and 1
blue node). Right: new edges connect inter-class nodes, resulting in an unsuccessful GSL.

GNN performance through empirical observations in Section 4.2 and theoretical analysis in Section163

4.3. Finally, the time complexity of GSL is discussed in Section 4.4.164

4.1 Motivation165

We revisit the effectiveness of GSL by the examples shown in Figure 2, where we use neighborhood166

distributions as GSL bases. Suppose a successful new edge is the one that connect intra-class167

nodes (Figure 2 (Left)), i.e., homophilic connection [31]; and an unsuccessful edge connects inter-168

class nodes (Figure 2 (Right)), i.e., heterophilic edge. We can see that successful and unsuccessful169

connections both follow node similarity principle to build edges. In other words, the same construction170

method can lead to totally different outcomes. Instead, the main difference comes from the GSL bases:171

the left example has high-quality bases, where intra-class nodes share consistent representations;172

however, the right example has low-quality bases, where inter-class nodes have similar embeddings.173

On the other hand, this example also points out an awkward situation for GSL: when we have174

low-quality bases, GSL cannot work well; when we have high-quality bases, it means that the bases175

themselves can already provide sufficiently informative and distinguishable node embeddings for176

classification, and therefore, new graph construction may still be unnecessary. To further explore177

the effectiveness of the new graph construction step in GSL, we conduct empirical and theoretical178

analyses in the following subsections.179

4.2 Empirical Observations on Synthetic Graphs180

In this section, we investigate how GSL bases and the graph reconstruction methods influence GNN181

performance through experiments on synthetic graphs. The graph generation process is as follows.182
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(a) B = X
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(b) B = ÂX

Figure 3: Mutual information and accuracy of node classification for GSL bases B, convoluted bases
H = ÂB, new graph convoluted bases H ′ = Â′B, across various homophily degrees. B is set to
node features X in (a) and aggregated features ÂX in (b). Note that in (a), Â′ only depends on B
and does not change with homophily.

Settings Based on CSBM-H [33] (see details in Appendix B), we generate synthetic graphs with183

10 random seeds for each homophily degree h ∈ {0, 0.1, . . . , 1.0} to mitigate randomness effects.184

Each graph G contains 1000 nodes, with each node characterized by 10 features, 5 balanced classes,185
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and a degree sampled from the range [2, 10]. Then, we apply k-Nearest-Neighbors (kNN) on GSL186

bases B with k = 5 to generate new graphs, i.e., G′ = kNN(B).187

The experiments are designed to answer two questions: Q1: Is the reconstructed graph necessary for188

GNN? Q2: How much does the reconstructed graph enhance GNN performance compared to the189

original graph structure?190

Let us denote the original node representations (i.e., original GSL bases) as B, the original graph191

convoluted representations as H, and the reconstructed graph convoluted embeddings as H′. These192

bases will be separately fed into MLP, GCN, and GCN+GSL to compare model performance193

(prediction accuracy). We measure the quality of the bases using both the non-parametric metric194

mutual information I(·) and the parametric metric Acc(·). We test two different settings of GSL bases195

(1) graph-unaware GSL bases B = X in Figure 3a, where H′ does not rely on graph homophily; (2)196

and graph-aware GSL bases B = ÂX in Figure 3b, where H′ depends on graph homophily.197

To answer Q1, we can compare I(B;Y ) vs. I(H ′;Y ) and Acc(B;Y ) vs. Acc(H ′;Y ). They198

compare the models which have and do not have graph reconstruction step, under the same GSL199

bases. To answer Q2, we can compare I(H;Y ) vs. I(H ′;Y ) and Acc(H;Y ) vs. Acc(H ′;Y ),200

which compare the performance of GCN and GSL-enhanced GCN. Through extensive experiments,201

we have the following observations.202

Observation 1. Mutual information is an effective non-parametric measure of model perfor-203

mance. As shown in Figure 3a and 3b, the shape of mutual information I(·) curves (left) are highly204

similar to the curves for model accuracy ACC(·) (right). This shows that mutual information can205

effectively measure the quality of the embeddings. We will use it for theoretical analysis in the next206

section.207

Observation 2. Graph construction does not make significant difference. In Figure 3, the208

mutual information I(B;Y ) and classification accuracy ACC(B,Y ) are close to I(H ′;Y ) and209

ACC(H ′,Y ), respectively, across both graph-agnostic and graph-aware GSL bases. This suggests210

that the model performance does not improve significantly after applying graph convolution on the211

reconstructed graph G′, which aligns with our analysis in the previous section.212

Observation 3. GSL-enhanced GCN only outperforms GCN in heterophilous graphs under213

graph-agnostic bases. With graph-agnostic bases in Figure 3a, I(H;Y ) and ACC(H,Y ) increase214

as homophily increases, while I(H ′;Y ) and ACC(H ′,Y ) remain constants across homophily215

degrees. As the reconstructed graph does not depend on homophily, the harmful connections in216

graphs with low homophily will not cause negative impact on H ′. Thus, GSL-enhanced GCN can217

outperform GCN. However, this effect is observed only when B = X .218

Note that when B = ÂX in Figure 3b, even when GCN+GSL outperforms GCN, its performance219

still remains close to MLP under the same GSL bases. This means that GSL-enhanced GNN220

cannot outperform the simple baselines significantly. Recent studies [36, 39] also indicate that221

under consistent hyperparameter tuning, GSL does not always consistently outperform classic GNN222

baselines. This leads us to reconsider the necessity of GSL. In addition to the above empirical223

observations, we proceed with a theoretical analysis on the effectiveness of GSL in the following224

section.225

4.3 Theoretical Analysis226

To explain the above empirical observations, in this section, we first prove that the mutual information227

I(Y ;H) between label Y and aggregated features H can serve as a non-parametric measurement of228

the effect of graph convolution. Following this, we compare the mutual information between the node229

labels Y and either the original GSL bases B or the aggregated GSL bases H ′ (on G′), to reveal the230

impact of GSL on model performance.231

Theorem 4.1. Given a graph G = {V, E} with node labels Y and node features X , the accuracy of232

graph convolution on node classification PA is upper bounded by the mutual information of node233

label Y and aggregated node features H = AX:234

PA ≤ I(Y ;H) + log 2

log(C)
(4)

Proposition 4.2. Consider a graph G = {V, E} characterized by node labels Y and n-dimensional235

node bases B = (B1, B2, . . . , Bn) with C classes. Each base Bi is independent and follows a class-236

dependent Gaussian distribution, i.e., Bi ∼ N (µY , σY ). A new graph G′ = {V, E ′} is generated237
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using a non-parametric method based on the bases B. For the aggregated bases B′ on G′, we have238

inf I(Y ;B′) ≤ inf I(Y ;B).239

where the proofs are shown in Appendix C.240

Theorem 4.1 shows that the mutual information I(Y ;H) provides an upper bound on the accuracy241

of graph convolution for node classification, which justifies why mutual information serves as an242

effective measure of model performance, as demonstrated in Observation 1.243

Based on the conclusion of mutual information in Theorem 4.1, we analyze the effectiveness of GSL.244

Proposition 4.2 shows that the graph convolution on new graphs generated by GSL does not increase245

the lower bound of mutual information. This explains why MLP performs similarly to, or slightly246

better than, GCN+GSL in Observation 2 and the dilemma of GSL in Figure 2247

To further explain Observation 3 in Section 4.2, we refer again to Proposition 4.2. In conjunction248

with previous studies on graph homophily [38, 32, 56], we know that the performance of GCN could249

be inferior to MLP on heterophilous graphs. Since GCN+GSL is upper bounded by the MLP on250

the same GSL bases, when MLP outperforms GCN, GCN+GSL may also outperform GCN, as seen251

in Figure 3a. However, even when GCN+GSL surpasses GCN in some cases, it still lags behind252

MLP, a much simpler model, on the same GSL bases. Therefore, we hypothesize that previous GSL253

improvements stem from the construction of the GSL bases or the introduction of additional model254

parameters. A fair comparison of GSL with other GNNs or MLP baselines should be conducted using255

the same GSL bases, as demonstrated in our experiments.256

4.4 Complexity Analysis257

After investigating the difference in the performance of GCN+GSL and GCN, we then analyze the258

time complexity of some representative methods of GSL, such as IDGL [6], GRCN [53], GAug [55],259

and HOG-GCN [46], as shown in Table 2. Assume the dimension of node representation is F for all260

the layers, the additional time complexity introduced by GSL generally includes: 1. Construction261

of GSL bases: O(|E|F + |V|F 2) for graph-aware bases or O(|V|F 2) for graph-agnostic bases, 2.262

Graph construction: O(|V|2 F ), 3. Graph refinement: O(|V|2), and 4: View Fusion O(|V|2). Apart263

from the complexity of the new graph construction in GSL, during the graph convolution, compared264

with GNNs without using GSL, the additional complexity is further introduced by single view GSL265

O(|E ′|F ) or multiple view GSL O((NG − 1)(|E|F + |V|F 2)), where |E ′| is the additional edges266

introduced in GSL and NG is the number of views in GSL. Consider the fact that |V|2 ≫ |E|, we267

have the total additional complexity of GSL by summing up all these terms: O(|V|2 F + |V|F 2).268

Compared with the complexity in normal GCN O(|E|F + |V|F 2) [4], this additional complexity269

O((|V|2 − |E|)F ) adds tremendous training time and grows exponentially with the number of nodes270

in graphs, which is shown in our experiments.271

5 Experiments272

In this section, we examine the effectiveness of Graph Structure Learning (GSL) through extensive273

experiments. To explore GSL’s impact on Graph Neural Networks (GNNs), we compare the perfor-274

mance of 450 GSL variants integrated with various GNN backbones in Section 5.1. Furthermore,275

we analyze the influence of different components on GSL through an ablation study of each GSL276

component in Section 5.2.277

Settings. Our experiments include six popular GNNs as backbones: GCN [17], SGC [47], GraphSage278

[10], and GAT [44], Mixhop [2], and ACMGNN [32]. The datasets used in our experiments279

include heterophilous graphs: Squirrel, Chameleon, Actor, Texas, Cornell, Wisconsin, Roman-empire,280

and Amazon-ratings [38, 42, 39], and homophilous graphs: Cora, PubMed, and Citeseer [52],281

Minesweeper, Tolokers, and Questions [39]. We show more dataset details in Appendix D. The model282

performance is measured by accuracy for multi-class datasets or AUC-ROC for binary-class datasets283

on node classification tasks. We use 50%/25%/25% random splits for training/validation/test sets.284

For each experiment, we report the mean and standard deviation across 10 splits.285

5.1 Performance Comparison286

We investigate the impact of GSL on GNNs by the comparison of GNNs and the corresponding287

GSL-enhanced GNNs (GNN+GSL). As GSL introduces significant variations in three key aspects,288

we aim to comprehensively evaluate all possible GSL configurations through a combination of289
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Table 1: Performance Comparison of MLP, GNNs and the corresponding GSL-enhanced GNNs. For
each GNN backbone, the best-performing method is highlighted in red, while the second-best method
is highlighted in blue.

Model Construct Fusion Param Sharing Mines. Roman. Amazon. Tolokers Questions Squirrel Chameleon Actor Texas Cornell Wisconsin Cora CiteSeer PubMed Rank
MLP None - - 79.55±1.23 65.45±0.99 46.65±0.83 75.94±1.38 74.92±1.39 39.29±2.22 43.57±4.18 35.40±1.38 80.46±6.44 73.78±7.34 85.88±7.78 87.97±1.80 76.68±2.10 87.39±2.18 3.93
GCN None - - 90.07±5.79 81.46±1.25 50.89±1.16 84.61±0.99 77.68±1.10 41.26±2.47 43.24±3.86 34.34±1.17 73.08±8.68 67.03±10.54 78.24±8.32 87.97±1.51 76.75±2.30 89.47±0.64 1.36
GCN cos-graph {G′} - 77.91±5.25 67.40±1.02 46.72±1.51 76.11±1.52 72.56±1.14 38.15±2.45 39.87±4.87 33.47±1.61 63.06±9.85 65.68±7.76 72.75±5.70 85.21±1.39 75.52±1.14 89.03±0.42 6.71
GCN cos-graph {G,G′} θ1 = θ2 52.53±6.45 62.57±0.81 41.29±1.61 74.22±1.79 69.63±1.52 37.62±1.74 39.78±4.00 32.74±0.92 57.88±8.75 66.49±9.12 73.14±5.92 64.68±1.61 67.32±1.89 86.43±0.76 9.32
GCN cos-graph {G,G′} θ1 ̸= θ2 88.70±0.86 69.90±2.38 47.35±0.83 82.85±0.95 75.29±1.38 38.84±2.87 40.30±4.31 33.73±1.49 65.47±8.48 62.97±10.89 75.29±6.54 85.51±1.87 75.23±1.14 88.74±0.59 4.79
GCN cos-node {G′} - 85.57±6.63 68.24±2.49 47.56±1.32 77.26±1.44 74.16±1.80 38.14±2.40 40.16±3.13 34.04±1.66 61.13±8.19 61.08±8.16 71.18±6.98 86.06±1.95 75.76±1.39 88.92±0.50 5.93
GCN cos-node {G,G′} θ1 = θ2 52.53±6.45 62.57±0.81 41.29±1.61 74.22±1.79 69.63±1.52 37.62±1.74 39.78±4.00 32.74±0.92 57.88±8.75 66.49±9.12 73.14±5.92 64.68±1.61 67.32±1.89 86.43±0.76 9.36
GCN cos-node {G,G′} θ1 ̸= θ2 89.17±0.68 72.63±1.45 48.31±0.96 82.91±0.97 75.56±1.05 38.41±2.32 39.94±4.49 34.10±1.53 64.68±8.85 63.24±9.47 73.92±7.51 85.69±1.73 75.49±1.42 88.72±0.71 4.29
GCN kNN {G′} - 82.89±6.66 68.44±0.83 47.13±1.00 78.92±1.79 73.90±1.73 38.15±2.02 40.22±3.82 33.94±1.24 63.03±8.53 61.35±9.28 72.16±7.41 86.08±1.62 75.56±1.42 88.59±0.58 5.93
GCN kNN {G,G′} θ1 = θ2 52.53±6.45 62.57±0.81 41.29±1.61 74.22±1.79 69.63±1.52 37.62±1.74 39.78±4.00 32.74±0.92 57.88±8.75 66.49±9.12 73.14±5.92 64.68±1.61 67.32±1.89 86.43±0.76 9.39
GCN kNN {G,G′} θ1 ̸= θ2 88.96±0.73 72.44±1.61 47.06±0.83 83.10±0.80 75.61±1.19 37.63±1.93 40.18±4.76 33.84±1.94 63.87±9.68 62.16±9.77 75.49±7.29 85.82±1.55 75.50±1.30 88.54±0.55 5.00
MLP None - - 79.55±1.23 65.45±0.99 46.65±0.83 75.94±1.38 74.92±1.39 39.29±2.22 43.57±4.18 35.40±1.38 80.46±6.44 73.78±7.34 85.88±7.78 87.97±1.80 76.68±2.10 87.39±2.18 3.71
SGC None - - 83.45±4.47 78.04±0.69 51.38±0.68 84.88±1.13 77.39±1.23 41.18±2.73 42.35±4.10 34.05±1.41 73.63±6.94 70.27±9.91 80.59±5.13 88.10±1.89 77.52±2.20 89.39±0.62 1.57
SGC cos-graph {G′} - 73.76±4.46 67.17±0.81 47.15±0.88 76.28±1.63 73.93±2.66 38.66±2.53 40.07±4.39 33.87±1.45 71.19±7.38 67.57±9.19 77.65±6.08 86.95±2.01 76.12±1.29 89.10±0.43 5.79
SGC cos-graph {G,G′} θ1 = θ2 52.53±4.89 62.97±0.78 42.42±1.57 74.29±1.79 70.56±1.27 37.56±2.25 39.33±3.60 32.85±0.90 57.60±7.53 66.49±10.37 71.57±4.46 64.82±2.11 67.55±1.80 86.58±0.72 9.64
SGC cos-graph {G,G′} θ1 ̸= θ2 79.70±1.21 62.02±2.06 47.24±0.93 83.22±1.52 77.19±0.99 38.32±1.80 40.85±4.61 33.51±1.50 70.34±7.31 64.86±9.01 75.29±6.82 87.47±1.70 75.70±1.28 88.65±0.49 6.14
SGC cos-node {G′} - 79.03±3.76 67.84±1.87 47.93±0.94 78.09±1.84 75.46±1.43 38.61±2.20 40.50±4.10 34.03±1.27 70.08±6.84 68.11±9.23 77.45±4.63 87.47±1.86 76.36±1.27 89.37±0.41 4.54
SGC cos-node {G,G′} θ1 = θ2 52.53±4.89 62.97±0.78 42.42±1.57 74.29±1.79 70.56±1.27 37.56±2.25 39.33±3.60 32.85±0.90 57.60±7.53 66.49±10.37 71.57±4.46 64.82±2.11 67.55±1.80 86.58±0.72 9.57
SGC cos-node {G,G′} θ1 ̸= θ2 80.12±1.36 66.90±1.66 48.04±0.97 83.53±1.43 77.11±1.09 38.52±2.29 40.20±4.66 34.20±1.79 68.47±8.11 64.59±9.74 75.29±6.05 87.54±1.63 75.88±1.26 88.68±0.43 5.11
SGC kNN {G′} - 75.53±4.98 67.94±0.70 47.68±0.84 79.45±2.06 74.22±2.47 37.32±2.10 39.92±3.91 34.05±1.55 72.81±6.15 70.00±7.98 77.84±6.02 87.82±1.77 76.54±1.44 89.19±0.42 4.64
SGC kNN {G,G′} θ1 = θ2 52.53±4.89 62.97±0.78 42.42±1.57 74.29±1.79 70.56±1.27 37.56±2.25 39.33±3.60 32.85±0.90 57.60±7.53 66.49±10.37 71.57±4.46 64.82±2.11 67.55±1.80 86.58±0.72 9.50
SGC kNN {G,G′} θ1 ̸= θ2 80.78±1.08 64.59±1.93 47.48±0.99 83.17±1.43 76.80±1.09 36.53±2.06 40.17±4.24 34.23±1.72 69.26±6.77 65.95±8.87 76.08±5.92 87.38±1.49 76.02±1.22 88.77±0.45 5.79
MLP None - - 79.55±1.23 65.45±0.99 46.65±0.83 75.94±1.38 74.92±1.39 39.29±2.22 43.57±4.18 35.40±1.38 80.46±6.44 73.78±7.34 85.88±7.78 87.97±1.80 76.68±2.10 87.39±2.18 4.14

SAGE None - - 90.66±0.88 85.02±0.97 52.93±0.83 83.31±1.12 75.95±1.41 40.43±2.64 42.95±5.37 34.83±1.20 80.17±6.90 75.68±7.52 86.27±6.67 88.13±1.77 76.65±2.00 89.18±0.65 1.71
SAGE cos-graph {G′} - 80.39±4.66 70.13±1.05 47.55±1.17 76.77±1.28 72.86±1.18 39.03±2.69 40.84±5.42 34.75±1.39 70.91±8.58 70.00±7.56 78.24±6.87 83.64±2.03 75.53±1.36 89.18±0.35 6.07
SAGE cos-graph {G,G′} θ1 = θ2 53.02±6.49 59.98±1.73 39.99±2.29 71.57±2.28 66.01±3.58 35.05±2.41 38.49±3.68 31.32±1.04 60.30±7.05 67.57±4.59 76.47±5.92 64.58±1.74 67.77±1.31 85.53±0.51 9.93
SAGE cos-graph {G,G′} θ1 ̸= θ2 90.67±0.66 79.02±1.21 52.10±0.84 82.17±0.89 75.38±0.96 39.36±2.14 40.64±6.06 35.14±1.08 76.08±6.30 70.27±6.62 79.41±5.71 83.60±1.78 74.39±1.35 88.88±0.50 3.86
SAGE cos-node {G′} - 85.26±4.64 71.25±1.76 48.96±0.87 78.39±1.75 73.01±1.11 38.68±2.75 40.81±4.51 35.10±1.26 71.47±9.47 68.11±7.87 75.49±6.32 84.88±1.90 75.58±1.04 89.17±0.35 5.64
SAGE cos-node {G,G′} θ1 = θ2 53.02±6.49 59.98±1.73 39.99±2.29 71.59±2.28 66.01±3.58 35.05±2.41 38.49±3.68 31.32±1.04 60.30±7.05 67.57±4.59 76.47±5.92 64.58±1.74 67.77±1.31 85.53±0.51 9.79
SAGE cos-node {G,G′} θ1 ̸= θ2 90.64±0.65 78.60±0.98 52.08±0.90 82.02±0.88 75.31±1.12 39.18±2.54 40.86±6.17 35.18±1.24 74.71±5.65 69.73±7.43 80.00±5.68 83.96±1.65 74.63±1.26 88.93±0.64 3.93
SAGE kNN {G′} - 82.86±3.14 70.74±0.80 48.40±1.01 78.12±2.17 72.70±1.15 38.93±2.84 39.68±5.40 35.09±1.14 70.91±9.05 68.92±6.88 75.69±6.73 84.40±1.75 75.68±1.43 88.86±0.44 6.50
SAGE kNN {G,G′} θ1 = θ2 53.02±6.49 59.98±1.73 39.99±2.29 71.59±2.28 66.01±3.58 35.05±2.41 38.49±3.68 31.32±1.04 60.30±7.05 67.57±4.59 76.47±5.92 64.58±1.74 67.77±1.31 85.53±0.51 9.86
SAGE kNN {G,G′} θ1 ̸= θ2 90.61±0.63 79.16±1.15 51.56±1.07 81.66±0.87 75.22±0.97 39.20±2.39 40.44±5.82 35.13±1.38 74.17±6.31 70.54±7.32 79.61±6.61 84.05±1.63 74.59±1.25 88.67±0.55 4.57
MLP None - - 79.55±1.23 65.45±0.99 46.65±0.83 75.94±1.38 74.92±1.39 39.29±2.22 43.57±4.18 35.40±1.38 80.46±6.44 73.78±7.34 85.88±7.78 87.97±1.80 76.68±2.10 87.39±2.18 3.86
GAT None - - 90.41±1.34 84.51±0.84 52.00±2.84 84.37±0.96 77.78±1.27 41.67±2.51 43.83±3.66 33.73±1.77 75.28±8.12 65.41±12.14 77.84±7.41 88.02±1.92 76.77±2.02 89.21±0.67 2.04
GAT cos-graph {G′} - 80.78±8.24 67.68±1.25 45.79±1.10 74.84±1.84 72.34±1.49 38.74±2.54 40.21±3.53 33.37±1.10 62.73±9.06 67.57±7.03 77.06±7.29 86.03±1.85 75.46±1.49 88.63±0.59 6.29
GAT cos-graph {G,G′} θ1 = θ2 53.16±7.93 63.67±1.08 44.83±2.04 73.46±1.07 68.92±1.53 37.14±2.13 39.85±2.87 32.06±1.12 57.03±8.70 67.30±4.67 75.10±5.85 64.84±1.45 67.82±0.62 86.47±0.66 9.46
GAT cos-graph {G,G′} θ1 ̸= θ2 89.97±0.80 76.08±1.70 49.61±0.73 82.75±0.90 77.13±1.20 39.21±2.81 40.40±3.30 33.05±1.20 70.66±7.77 66.76±7.23 78.82±6.76 86.60±1.75 75.05±1.36 87.85±0.72 4.71
GAT cos-node {G′} - 87.64±8.40 68.80±2.39 46.37±1.06 77.77±1.86 73.65±1.47 38.65±2.46 40.33±3.25 33.43±0.94 64.64±9.09 65.41±8.48 75.10±6.13 87.08±1.66 75.59±1.49 88.59±0.49 5.82
GAT cos-node {G,G′} θ1 = θ2 53.16±7.93 63.67±1.08 44.83±2.04 73.46±1.07 68.92±1.53 37.14±2.13 39.85±2.87 32.06±1.12 57.03±8.70 67.30±4.67 75.10±5.85 64.84±1.45 67.82±0.62 86.47±0.66 9.46
GAT cos-node {G,G′} θ1 ̸= θ2 90.03±0.78 77.56±2.75 50.36±0.70 82.72±1.16 76.83±1.16 38.97±3.12 40.56±3.77 33.49±1.35 70.39±7.34 65.95±6.77 78.63±6.59 86.64±1.78 75.32±1.04 87.87±0.61 4.21
GAT kNN {G′} - 84.27±5.25 68.73±1.47 46.05±0.90 77.57±1.75 71.58±1.62 38.82±2.33 40.12±3.69 33.84±1.07 61.68±8.71 62.97±7.43 74.90±5.86 86.77±1.90 75.64±1.45 88.29±0.48 6.50
GAT kNN {G,G′} θ1 = θ2 53.16±7.93 63.67±1.08 44.83±2.04 73.46±1.07 68.92±1.53 37.14±2.13 39.85±2.87 32.06±1.12 57.03±8.70 67.30±4.67 75.10±5.85 64.84±1.45 67.82±0.62 86.47±0.66 9.46
GAT kNN {G,G′} θ1 ̸= θ2 89.96±0.79 77.23±1.63 49.79±0.72 82.78±0.95 76.67±1.13 39.65±2.76 41.11±3.92 33.54±1.36 70.38±7.22 65.95±6.52 77.84±7.23 86.97±1.75 75.20±1.55 87.97±0.51 4.18

various GSL components, which include (1) five GSL bases: original features X , aggregated290

features ÂX , MLP-pretrained features MLP(X), GCN-pretrained features GCN(X,A), GCL291

(Graph Contrastive Learning)-pretrained features [62] GCL(X,A); (2) three similarity-based graph292

construction methods: graphs are constructed via cosine similarity of GSL bases with threshold from293

the graph level (cos-graph) and node level (cos-node), and k-nearest neighbors (kNN); and (3) three294

view fusion methods: early fusion {G′}, late fusion {G,G′} with parameter sharing θ1 = θ2 or not295

θ1 ̸= θ2. To ensure a fair comparison of the performance between GNN+GSL, GNN, and MLP, we296

consider all five GSL bases as input choices and train all models on each GSL bases. The details of297

all these modules can be found in Appendix E.298

Table 1 reports the performance of MLP, GNN baselines, and GNN+GSL across eight datasets299

under the best of five GSL bases. Notably, under fair comparison conditions, all six baseline GNNs300

outperform their GNN+GSL counterparts4. This suggests that the incorporation of GSL does not301

consistently yield performance improvements of GNNs, and in some situations, it even lead302

to worse results. Besides, under the same search space of GSL bases, MLP outperforms most303

GNN+GSL in average rank. This result verifies the dilemma in Section 4.1 that high-quality GSL304

bases already provide informative node representations without newly constructed graphs. Since305

GSL-based methods may require specific training procedures or more complex model designs, we306

further examine the performance of state-of-the-art (SOTA) GSL approaches to evaluate the potential307

of GSL in Appendix F.3, where the results also indicate GSL makes no significant improvement.308

As previously mentioned, besides boosting model performance, GSL is often used to enhance the309

robustness of GNNs [15]. Therefore, under our proposed framework, we conduct fair experiments to310

study the robuseness of GSL-enhanced GNNs with the same GSL search space. Figure 4 demonstrates311

the performance of GNNs alongside their GSL-enhanced counterparts on perturbed graphs, incorpo-312

rating feature noise, edge addition, and edge removal, as suggested by (author?) [26]. The curves313

for GSL-enhanced GNNs (dotted lines) is close to those of the original GNNs (solid lines) across314

three types of perturbations and four GNN backbones, indicating that the baseline GNNs perform315

comparably to their GSL-enhanced versions. Therefore, the similarity-based graph construction316

may not be indispensable for enhancing model robustness. See Appendix F.8 for more details.317

5.2 Ablation Study on Each GSL Component318

Since the performance of GNN and GNN+GSL models is comparable under the same bases, we319

further investigate how different components of GSL influence GNNs in Figure 5, where each result320

is the averaged performance of four GNN backbones, including GCN, GAT, SGC, and GraphSAGE.321

4Due to page limitation, results of the other two heterophily-oriented GNNs are shown in Appendix F.5,
where we can derive the same conclusion as in Table 1.
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Figure 4: Response to feature noise, edge additions, and edge removals in GNN baselines and their
GSL-enhanced counterparts.

The results indicate that: (1) Pretrained node representations, such as MLP(X) and GCN(X,A),322

significantly enhance GNN performance 5, (2) GSL graph generation has minimal impact on model323

performance, (3) two view fusion with parameter separation improves GNN performance, and (4)324

early fusion generally outperforms late fusion. Especially, GSL bases influence model performance325

most among all the GSL components, verifying our analysis in Section 4 that the quality of GSL326

bases greatly influences GNN performance, while graph construction has little impact.327
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Figure 5: The influences of different GSL components on GNN+GSL.

6 Conclusion328

In this paper, we disentangle the impact of GSL in GNN performance through our proposed GSL329

framework. Motivated by the dilemma associated with GSL, we show that it is the pretrained node330

features that really improve GNN performance instead of the similarity-based graph construction331

methods. Our research contributes to a deeper understanding of GSL and provides insights for332

re-evaluating essential components in future GNN designs. Although this paper primarily focuses333

on the impact of GSL on model performance in node classification tasks, future research could334

expand this analysis to other graph-related tasks and different types of graphs, as well as theoretically335

examine the effects of GSL under broader assumptions.336

5See more discussion of GSL bases in Appendix F.2.1.
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NeurIPS Paper Checklist494

The checklist is designed to encourage best practices for responsible machine learning research,495

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove496

the checklist: The papers not including the checklist will be desk rejected. The checklist should497

follow the references and follow the (optional) supplemental material. The checklist does NOT count498

towards the page limit.499

Please read the checklist guidelines carefully for information on how to answer these questions. For500

each question in the checklist:501

• You should answer [Yes] , [No] , or [NA] .502

• [NA] means either that the question is Not Applicable for that particular paper or the503

relevant information is Not Available.504

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).505

The checklist answers are an integral part of your paper submission. They are visible to the506

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it507

(after eventual revisions) with the final version of your paper, and its final version will be published508

with the paper.509

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.510

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a511

proper justification is given (e.g., "error bars are not reported because it would be too computationally512

expensive" or "we were unable to find the license for the dataset we used"). In general, answering513

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we514

acknowledge that the true answer is often more nuanced, so please just use your best judgment and515

write a justification to elaborate. All supporting evidence can appear either in the main paper or the516

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification517

please point to the section(s) where related material for the question can be found.518

IMPORTANT, please:519

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",520

• Keep the checklist subsection headings, questions/answers and guidelines below.521

• Do not modify the questions and only use the provided macros for your answers.522

1. Claims523

Question: Do the main claims made in the abstract and introduction accurately reflect the524

paper’s contributions and scope?525

Answer: [Yes]526

Justification:527

Guidelines:528

• The answer NA means that the abstract and introduction do not include the claims529

made in the paper.530

• The abstract and/or introduction should clearly state the claims made, including the531

contributions made in the paper and important assumptions and limitations. A No or532

NA answer to this question will not be perceived well by the reviewers.533

• The claims made should match theoretical and experimental results, and reflect how534

much the results can be expected to generalize to other settings.535

• It is fine to include aspirational goals as motivation as long as it is clear that these goals536

are not attained by the paper.537

2. Limitations538

Question: Does the paper discuss the limitations of the work performed by the authors?539

Answer: [Yes]540

Justification:541
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Guidelines:542

• The answer NA means that the paper has no limitation while the answer No means that543

the paper has limitations, but those are not discussed in the paper.544

• The authors are encouraged to create a separate "Limitations" section in their paper.545

• The paper should point out any strong assumptions and how robust the results are to546

violations of these assumptions (e.g., independence assumptions, noiseless settings,547

model well-specification, asymptotic approximations only holding locally). The authors548

should reflect on how these assumptions might be violated in practice and what the549

implications would be.550

• The authors should reflect on the scope of the claims made, e.g., if the approach was551

only tested on a few datasets or with a few runs. In general, empirical results often552

depend on implicit assumptions, which should be articulated.553

• The authors should reflect on the factors that influence the performance of the approach.554

For example, a facial recognition algorithm may perform poorly when image resolution555

is low or images are taken in low lighting. Or a speech-to-text system might not be556

used reliably to provide closed captions for online lectures because it fails to handle557

technical jargon.558

• The authors should discuss the computational efficiency of the proposed algorithms559

and how they scale with dataset size.560

• If applicable, the authors should discuss possible limitations of their approach to561

address problems of privacy and fairness.562

• While the authors might fear that complete honesty about limitations might be used by563

reviewers as grounds for rejection, a worse outcome might be that reviewers discover564

limitations that aren’t acknowledged in the paper. The authors should use their best565

judgment and recognize that individual actions in favor of transparency play an impor-566

tant role in developing norms that preserve the integrity of the community. Reviewers567

will be specifically instructed to not penalize honesty concerning limitations.568

3. Theory assumptions and proofs569

Question: For each theoretical result, does the paper provide the full set of assumptions and570

a complete (and correct) proof?571

Answer: [Yes]572

Justification:573

Guidelines:574

• The answer NA means that the paper does not include theoretical results.575

• All the theorems, formulas, and proofs in the paper should be numbered and cross-576

referenced.577

• All assumptions should be clearly stated or referenced in the statement of any theorems.578

• The proofs can either appear in the main paper or the supplemental material, but if579

they appear in the supplemental material, the authors are encouraged to provide a short580

proof sketch to provide intuition.581

• Inversely, any informal proof provided in the core of the paper should be complemented582

by formal proofs provided in appendix or supplemental material.583

• Theorems and Lemmas that the proof relies upon should be properly referenced.584

4. Experimental result reproducibility585

Question: Does the paper fully disclose all the information needed to reproduce the main ex-586

perimental results of the paper to the extent that it affects the main claims and/or conclusions587

of the paper (regardless of whether the code and data are provided or not)?588

Answer: [Yes]589

Justification:590

Guidelines:591

• The answer NA means that the paper does not include experiments.592
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• If the paper includes experiments, a No answer to this question will not be perceived593

well by the reviewers: Making the paper reproducible is important, regardless of594

whether the code and data are provided or not.595

• If the contribution is a dataset and/or model, the authors should describe the steps taken596

to make their results reproducible or verifiable.597

• Depending on the contribution, reproducibility can be accomplished in various ways.598

For example, if the contribution is a novel architecture, describing the architecture fully599

might suffice, or if the contribution is a specific model and empirical evaluation, it may600

be necessary to either make it possible for others to replicate the model with the same601

dataset, or provide access to the model. In general. releasing code and data is often602

one good way to accomplish this, but reproducibility can also be provided via detailed603

instructions for how to replicate the results, access to a hosted model (e.g., in the case604

of a large language model), releasing of a model checkpoint, or other means that are605

appropriate to the research performed.606

• While NeurIPS does not require releasing code, the conference does require all submis-607

sions to provide some reasonable avenue for reproducibility, which may depend on the608

nature of the contribution. For example609

(a) If the contribution is primarily a new algorithm, the paper should make it clear how610

to reproduce that algorithm.611

(b) If the contribution is primarily a new model architecture, the paper should describe612

the architecture clearly and fully.613

(c) If the contribution is a new model (e.g., a large language model), then there should614

either be a way to access this model for reproducing the results or a way to reproduce615

the model (e.g., with an open-source dataset or instructions for how to construct616

the dataset).617

(d) We recognize that reproducibility may be tricky in some cases, in which case618

authors are welcome to describe the particular way they provide for reproducibility.619

In the case of closed-source models, it may be that access to the model is limited in620

some way (e.g., to registered users), but it should be possible for other researchers621

to have some path to reproducing or verifying the results.622

5. Open access to data and code623

Question: Does the paper provide open access to the data and code, with sufficient instruc-624

tions to faithfully reproduce the main experimental results, as described in supplemental625

material?626

Answer: [Yes]627

Justification:628

Guidelines:629

• The answer NA means that paper does not include experiments requiring code.630

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/631

public/guides/CodeSubmissionPolicy) for more details.632

• While we encourage the release of code and data, we understand that this might not be633

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not634

including code, unless this is central to the contribution (e.g., for a new open-source635

benchmark).636

• The instructions should contain the exact command and environment needed to run to637

reproduce the results. See the NeurIPS code and data submission guidelines (https:638

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.639

• The authors should provide instructions on data access and preparation, including how640

to access the raw data, preprocessed data, intermediate data, and generated data, etc.641

• The authors should provide scripts to reproduce all experimental results for the new642

proposed method and baselines. If only a subset of experiments are reproducible, they643

should state which ones are omitted from the script and why.644

• At submission time, to preserve anonymity, the authors should release anonymized645

versions (if applicable).646
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• Providing as much information as possible in supplemental material (appended to the647

paper) is recommended, but including URLs to data and code is permitted.648

6. Experimental setting/details649

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-650

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the651

results?652

Answer: [Yes]653

Justification:654

Guidelines:655

• The answer NA means that the paper does not include experiments.656

• The experimental setting should be presented in the core of the paper to a level of detail657

that is necessary to appreciate the results and make sense of them.658

• The full details can be provided either with the code, in appendix, or as supplemental659

material.660

7. Experiment statistical significance661

Question: Does the paper report error bars suitably and correctly defined or other appropriate662

information about the statistical significance of the experiments?663

Answer: [Yes]664

Justification:665

Guidelines:666

• The answer NA means that the paper does not include experiments.667

• The authors should answer "Yes" if the results are accompanied by error bars, confi-668

dence intervals, or statistical significance tests, at least for the experiments that support669

the main claims of the paper.670

• The factors of variability that the error bars are capturing should be clearly stated (for671

example, train/test split, initialization, random drawing of some parameter, or overall672

run with given experimental conditions).673

• The method for calculating the error bars should be explained (closed form formula,674

call to a library function, bootstrap, etc.)675

• The assumptions made should be given (e.g., Normally distributed errors).676

• It should be clear whether the error bar is the standard deviation or the standard error677

of the mean.678

• It is OK to report 1-sigma error bars, but one should state it. The authors should679

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis680

of Normality of errors is not verified.681

• For asymmetric distributions, the authors should be careful not to show in tables or682

figures symmetric error bars that would yield results that are out of range (e.g. negative683

error rates).684

• If error bars are reported in tables or plots, The authors should explain in the text how685

they were calculated and reference the corresponding figures or tables in the text.686

8. Experiments compute resources687

Question: For each experiment, does the paper provide sufficient information on the com-688

puter resources (type of compute workers, memory, time of execution) needed to reproduce689

the experiments?690

Answer: [Yes]691

Justification: We put it in the main paper692

Guidelines:693

• The answer NA means that the paper does not include experiments.694

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,695

or cloud provider, including relevant memory and storage.696
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• The paper should provide the amount of compute required for each of the individual697

experimental runs as well as estimate the total compute.698

• The paper should disclose whether the full research project required more compute699

than the experiments reported in the paper (e.g., preliminary or failed experiments that700

didn’t make it into the paper).701

9. Code of ethics702

Question: Does the research conducted in the paper conform, in every respect, with the703

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?704

Answer: [Yes]705

Justification:706

Guidelines:707

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.708

• If the authors answer No, they should explain the special circumstances that require a709

deviation from the Code of Ethics.710

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-711

eration due to laws or regulations in their jurisdiction).712

10. Broader impacts713

Question: Does the paper discuss both potential positive societal impacts and negative714

societal impacts of the work performed?715

Answer: [NA]716

Justification: We have carefully reevaluated our project and we do not have such negative717

impact.718

Guidelines:719

• The answer NA means that there is no societal impact of the work performed.720

• If the authors answer NA or No, they should explain why their work has no societal721

impact or why the paper does not address societal impact.722

• Examples of negative societal impacts include potential malicious or unintended uses723

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations724

(e.g., deployment of technologies that could make decisions that unfairly impact specific725

groups), privacy considerations, and security considerations.726

• The conference expects that many papers will be foundational research and not tied727

to particular applications, let alone deployments. However, if there is a direct path to728

any negative applications, the authors should point it out. For example, it is legitimate729

to point out that an improvement in the quality of generative models could be used to730

generate deepfakes for disinformation. On the other hand, it is not needed to point out731

that a generic algorithm for optimizing neural networks could enable people to train732

models that generate Deepfakes faster.733

• The authors should consider possible harms that could arise when the technology is734

being used as intended and functioning correctly, harms that could arise when the735

technology is being used as intended but gives incorrect results, and harms following736

from (intentional or unintentional) misuse of the technology.737

• If there are negative societal impacts, the authors could also discuss possible mitigation738

strategies (e.g., gated release of models, providing defenses in addition to attacks,739

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from740

feedback over time, improving the efficiency and accessibility of ML).741

11. Safeguards742

Question: Does the paper describe safeguards that have been put in place for responsible743

release of data or models that have a high risk for misuse (e.g., pretrained language models,744

image generators, or scraped datasets)?745

Answer: [NA]746

Justification: We have carefully reevaluated our project and we do not have such risk.747

Guidelines:748
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• The answer NA means that the paper poses no such risks.749

• Released models that have a high risk for misuse or dual-use should be released with750

necessary safeguards to allow for controlled use of the model, for example by requiring751

that users adhere to usage guidelines or restrictions to access the model or implementing752

safety filters.753

• Datasets that have been scraped from the Internet could pose safety risks. The authors754

should describe how they avoided releasing unsafe images.755

• We recognize that providing effective safeguards is challenging, and many papers do756

not require this, but we encourage authors to take this into account and make a best757

faith effort.758

12. Licenses for existing assets759

Question: Are the creators or original owners of assets (e.g., code, data, models), used in760

the paper, properly credited and are the license and terms of use explicitly mentioned and761

properly respected?762

Answer: [Yes]763

Justification:764

Guidelines:765

• The answer NA means that the paper does not use existing assets.766

• The authors should cite the original paper that produced the code package or dataset.767

• The authors should state which version of the asset is used and, if possible, include a768

URL.769

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.770

• For scraped data from a particular source (e.g., website), the copyright and terms of771

service of that source should be provided.772

• If assets are released, the license, copyright information, and terms of use in the773

package should be provided. For popular datasets, paperswithcode.com/datasets774

has curated licenses for some datasets. Their licensing guide can help determine the775

license of a dataset.776

• For existing datasets that are re-packaged, both the original license and the license of777

the derived asset (if it has changed) should be provided.778

• If this information is not available online, the authors are encouraged to reach out to779

the asset’s creators.780

13. New assets781

Question: Are new assets introduced in the paper well documented and is the documentation782

provided alongside the assets?783

Answer: [NA]784

Justification:785

Guidelines:786

• The answer NA means that the paper does not release new assets.787

• Researchers should communicate the details of the dataset/code/model as part of their788

submissions via structured templates. This includes details about training, license,789

limitations, etc.790

• The paper should discuss whether and how consent was obtained from people whose791

asset is used.792

• At submission time, remember to anonymize your assets (if applicable). You can either793

create an anonymized URL or include an anonymized zip file.794

14. Crowdsourcing and research with human subjects795

Question: For crowdsourcing experiments and research with human subjects, does the paper796

include the full text of instructions given to participants and screenshots, if applicable, as797

well as details about compensation (if any)?798

Answer: [NA]799
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Justification: We do not have such problem800

Guidelines:801

• The answer NA means that the paper does not involve crowdsourcing nor research with802

human subjects.803

• Including this information in the supplemental material is fine, but if the main contribu-804

tion of the paper involves human subjects, then as much detail as possible should be805

included in the main paper.806

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,807

or other labor should be paid at least the minimum wage in the country of the data808

collector.809

15. Institutional review board (IRB) approvals or equivalent for research with human810

subjects811

Question: Does the paper describe potential risks incurred by study participants, whether812

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)813

approvals (or an equivalent approval/review based on the requirements of your country or814

institution) were obtained?815

Answer: [Yes]816

Justification: We have carefully reevaluated our project and we do not have such risk.817

Guidelines:818

• The answer NA means that the paper does not involve crowdsourcing nor research with819

human subjects.820

• Depending on the country in which research is conducted, IRB approval (or equivalent)821

may be required for any human subjects research. If you obtained IRB approval, you822

should clearly state this in the paper.823

• We recognize that the procedures for this may vary significantly between institutions824

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the825

guidelines for their institution.826

• For initial submissions, do not include any information that would break anonymity (if827

applicable), such as the institution conducting the review.828

16. Declaration of LLM usage829

Question: Does the paper describe the usage of LLMs if it is an important, original, or830

non-standard component of the core methods in this research? Note that if the LLM is used831

only for writing, editing, or formatting purposes and does not impact the core methodology,832

scientific rigorousness, or originality of the research, declaration is not required.833

Answer: [NA]834

Justification: LLM only for grammar check.835

Guidelines:836

• The answer NA means that the core method development in this research does not837

involve LLMs as any important, original, or non-standard components.838

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)839

for what should or should not be described.840

20

https://neurips.cc/Conferences/2025/LLM


A Taxonomy of Graph Structure Learning Methods841

We present several representative GSL-based GNNs within our proposed GSL framework in Table 2.842

Below, we provide a detailed description of each method.843

Table 2: Representative GSL methods under our proposed GSL framework
Method Bases Construct Refinement View Fusion Training Mode

LDS [8] X {E ′ = kNN(B)} +Opt. Bernoulli(E ′) Late Fusion, {G′
1,G′

2, . . . ,G′
m}, θ1 = θ2 2-stage

Geom-GCN [38] Isomap/Poincare/
Struc2vec(X,A)

{E ′|e′ij = |Bi −Bj |} threshold(E ′) Late Fusion, {G,G′}, θ1 ̸= θ2 Static

ProGNN [15] ϵ {E ′ = Opt(ϵ)} Low Rank+Sparsity
+Original No Fusion, {G′} Joint

IDGL [6] MLP(X) {E ′|e′ij = cos(Bi,Bj)} topk(E ′) Early Fusion, {G + G′} Joint
GRCN [53] GCN(X ,A) {E ′|e′ij = σ(BiB

T
j )} topk(E ′), sym(E ′) Early Fusion, {G + G′} Joint

GAug-M [55] GCN(2)(X ,A) {E ′|e′ij = σ(BiB
T
j )}

G′
+ = topk(E ′),

G′
− = bottom(E ′)

Early Fusion, {G + G′
+ − G′

−} Joint

GAug-O [55] X {E ′|e′ij = p(eij |GAE(B,A))} Gumbel(E ′) Early Fusion, {G + G′} Joint
SLAPS [7] MLP(X) {E ′ = kNN(B)} norm(E ′),sym(E ′) No Fusion, {G′} Joint

CoGSL [27] GCN(X, {A, kNN(X),
PPR(X),Subgraph(X)}) {E ′|e′ij = p(eij |MLP(B,A))} - Early Fusion, {G∗|minLCL(G,G′)}, θ1 ̸= θ2 2-stage

GEN [45] GCN(X,A) {E ′ = kNN(B)} - Late Fusion, {G′
1,G′

2, . . . ,G′
m} , θ1 ̸= θ2 2-stage

STABLE [22] GCL(X,A)
{E ′|e′ij = cos(Bi,Bj)

or cos(Bi,Bj)}
G′
+ = topk(E ′),

G′
− = threshod(E ′)

Early Fusion, {G + G′
+ − G′

−} Joint

SEGSL [63] X
{E ′|minHS ,

e′ij ∈ EncTree(kNN(B))} - No Fusion, {G′} Joint

SUBLIME [28] GCN(X,A)
{E ′ = Opt(ϵ)} or

{E ′|e′ij = cos/Minkowski(Bi,Bj)} topk(E ′),sym(E ′),norm(E ′) Separation, {G,G′}, θ1 = θ2 Joint

BM-GCN [11] Ŷ = MLP(X),
minLCE(Ŷ ,Y )

{E ′ = BQBT } norm(E ′) Early Fusion, {G ⊙ G′} Joint

WSGNN [21] MLP(X) {E ′|e′ij = cos(Bi,Bj)} - Early Fusion, {G + G′} Joint

GLCN [14] X {E ′|e′ij = ϕ(|Bi −Bj |)}
norm(E ′), Original

+Sparsity+Smoothness No Fusion, {G′} Joint

ASC [23] SpectralCluster(X) {E ′|e′ij = ∥Bi −Bj∥} topk(E ′) No Fusion, {G′} Static
WRGAT [43] GCN(X , A) {E ′|e′ij ·Opt(B)} Sparsity + MultiHop Early Fusion {G + G′} Static

HOG-GCN [46] GCN(X , A) {E ′|e′ij = σ(BiB
T
j )} Sparsity + Smoothness No Fusion {G′} Joint

GGCN [51] MLP(X) {E ′|e′ij = cos(Bi,Bj)} Low Rank + Sparsity Early Fusion, {G + G′} Joint
GloGNN [25] MLP(X) {E ′ = Opt(B)} Sparsity+MultiHop No Fusion, {G′} Joint

HiGNN [57] Ŷ = GCN(X,A),
minLCE(Ŷ ,Y )

{E ′ = e′ij = cos(Bi,Bj))} topk(E ′), sym(E ′) Late Fusion, {G,G′}, θ1 ̸= θ2 Static

LDS [8]. The GSL bases in LDS is constructed as node features X and the GSL graph G′ is initialized844

using a k-Nearest-Neighbors algorithm based on B. Then, G′ is updated with a loss function of node845

classification. Then multiple graphs are sampled based on G′ with a Bernoulli function and used to846

update the model parameters. The G′ construction and model parameters are updated as a 2-stage847

mode.848

Geom-GCN [38]. Geom-GCN constructs the GSL bases from several graph-aware node embedding849

strategies using both of the X and A: Isomap [], Poincare [], and struc2vec []. Then, new graphs850

are constructed by filtering node pairs with a higher similarity measured by Euclidean distance851

{E ′|e′ij = |Bi −Bj | < δ} where δ is a threshold. Finally, both of the aggregated message from G852

and G′ are fused after applying graph convolution layers with no parameter sharing. The G′ is not853

updated through the training process.854

ProGNN [15]. The G′ in ProGNN is purely learned by optimization without GSL bases. It optimizes855

the G′ using low rank, sparsity, and similarity with the original graphs G. It outputs a single graph G′856

without fusion and updates the G′ together with model parameters.857

IDGL [6]. The GSL bases in LDS is constructed by linear transformation of node features MLP(X).858

Then, a GSL graph G′ is constructed using cosine similarity with topk threshold refinement. The859

early fusion is applied by fusing GSL graph G′ with original graph G before training. The GSL graph860

G′ is trained with model parameters jointly.861

GRCN [53]. GRCN constructs GSL bases by node embeddings of graph convolution GCN(X,A).862

Then, the GSL graph G′ is constructed by a kernel function with topk and symmetrization refinement863

{E ′|e′ij = σ(BiBj) > δ}. The final graph is obtained by early fusion and the GSL graph G′ is864

updated together with model parameters.865

GAug-M and GAug-O [55]. GAug-M constructs GSL bases using a 2-layer graph convolution866

GCN(2)(X,A). Then, the GSL graph G′ is constructed by a kernel function. The final graph is867

obtained by adding some edges with highest probabilities and removing some edges with lowest868

probabilities on G. GAug-O selects node features as GSL bases X , then trains a Graph Auto-Encoder869

to predict edges as G′. Then, after gumbel sampling, the GSL graph G′ is fused with original graph870

G before training. The G′ in both of the GAug-M and GAug-O is updated together with model871

parameters.872
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SLAPS [7]. SLAPS constructs the GSL bases by applying MLP(X) followed by a k-nearest neighbors873

(kNN) algorithm based on node feature similarities. The GSL graph G′ is then processed by an adja-874

cency processor that symmetrizes and normalizes the adjacency matrix to ensure non-negativity and875

symmetry. The final graph is obtained of the generated graph G′ with the node features without fusion.876

Additionally, a self-supervised denoising autoencoder LDAE = L(Xi, GNNDAE(X̂i; θGNNDAE
))877

is introduced to address the supervision starvation problem, updating G′ together with the model878

parameters.879

CoGSL [27]. CoGSL constructs GSL bases using two views, one of them is the Origin graph. Another880

is selected from the Adjacency matrix A, Diffusion matrix PPR(X), the KNN graph KNN(X)881

and the Subgraph of the Origin. GCNs are applied to these views to obtain node embeddings. The882

GSL graph is constructed by applying a linear transformation to the node embeddings of each node883

pair to estimate the connection probability between them. This connection probability is then added884

to the original view to finalize the graph. The refinement E ′|e′ij = p(eij |MLP(B,A)) step involves885

maximizing the mutual information between the two selected views and the newly constructed graph.886

InfoNCE loss is used to optimize the connection probability, where the same node serves as a positive887

sample, and different nodes serve as negative samples. The final graph G′ is obtained via early fusion888

of the selected views, and the GSL graph is updated with model parameters.889

GEN [45]. GEN constructs the GSL bases by generating kNN graphs though several GCN layer,890

utilizing node representations from different layers. These kNN graphs are then combined us-891

ing a Stochastic Block Model (SBM) to create a new graph G′. The GSL graph G′ is refined892

iteratively through Bayesian inference to maximize posterior probabilities P (G,α, β|O,Z, Yl) =893
P (O|G,α,β)P (G,α,β)P (O,Z,Yl)

P (O,Z,Yl)
, considering both the original graph and node embeddings. The final894

graph is obtained by feeding the graph Q back into the GCN for further optimization. The iterative895

process updates both the GSL graph and GCN parameters as a 2-stage mode, providing mutual896

reinforcement between the graph estimation and model learning.897

STABLE [22]. STABLE constructs the GSL bases by generating augmentations based on node898

similarity through kNN graph and perturbing edges to simulate adversarial attacks. The GSL graph G′899

is constructed by refining the structure using contrastive learning between positive samples (slightly900

perturbed graphs) and negative samples (undesirable views generated by feature shuffling). The901

refinement step applies a top-k filtering strategy on the node similarity matrix to retain helpful edges902

while removing adversarial ones. The final graph is obtained through early fusion, and the GSL graph903

G′ is updated together with model parameters during joint training904

SE-GSL [63]. SE-GSL constructs the GSL bases using a kNN graph fused with the original graph.905

The GSL graph G′ is constructed through a structural entropy minimization process that extracts906

hierarchical community structures in the form of an encoding tree. The final graph is optimized907

by sampling node pairs from the encoding tree and generating new edges based on the minimized908

entropy structure. The refined graph is then used for downstream tasks, and the GSL graph G′ is909

updated jointly with model parameters during training.910

SUBLIME [28]. SUBLIME constructs the GSL bases using both an anchor view (original graph)911

and a learner view (new graph). The new graph is initialized through kNN and further optimized912

either by parameter-based methods (using models like MLP, GCN, or GAT) or by non-parameter-913

based approaches (using cosine similarity or Minkowski distance). After obtaining the new graph,914

post-processing operations such as top-k filtering, symmetrization, and degree-based regularization915

are applied to ensure the graph’s sparsity and structure. The GSL graph G′ is refined by applying916

contrastive learning between the anchor and learner views, incorporating edge drop and feature917

masking to generate node embeddings. The final graph is used in downstream tasks, and both views918

are updated together with model parameters in a joint training process.919

BM-GCN [11]. BM-GCN constructs the GSL bases by introducing soft labels for nodes enbedding920

B = softmax(σ(MLP (X))) via a multilayer perceptron LMLP =
∑

vi∈V f(Bi, Yi). These soft921

labels are then used to compute a block matrix (H) , which models the connection probabilities922

between different node classes. The GSL graph G′ is constructed by creating a block similarity matrix923

Q = HHT from the block matrix Ys = Yi, Bi|∀vi ∈ Ty,∀vj /∈ Ty, H = (Y T
s AYs) ◦ (Y T

s AE),924

reflecting similarities between classes. The new graph is optimized using BQBT and further fused925

with the original graph A+ βI for downstream tasks. The final graph is obtained by optimizing G′926
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through degree-based regularization and top-k filtering. The GSL graph G′ is updated together with927

model parameters during joint training.928

WSGNN [21]. WSGNN introduces a two-branch graph structure learning method, where each branch929

operates on different aspects of the graph: Branch AZ learns node labels from the new graph structure,930

while Branch ZA learns the new graph structure from the labels. The GSL bases is constructed using931

the observed graph Aobs and node features X . The new graph A′ is inferred via cosine similarity932

between node embeddings. After constructing two separate views from each branch, the final graph933

is obtained by averaging the graphs from both branches. The refinement process ensures sparsity934

through cosine-based edge calculation E ′|e′ij = cos(Bi,Bj). Finally, both views undergo early935

fusion, with graph structure and node labels optimized jointly using a composite loss function that936

includes ELBO for structure prediction and cross-entropy loss for label prediction. The final GSL937

graph G′ is updated during joint training.938

GLCN [14]. GLCN constructs the GSL bases by computing pairwise distances between node939

features and passing them through an MLP to obtain a block similarity score. This score is then940

processed with a softmax function to generate an n× n probability matrix that serves as the learned941

graph structure. The graph is refined using regularization techniques to ensure sparsity and feature942

smoothness LGL =
∑n

i,j=1 ||xi − xj ||22Sij + γ||S||2F + β||S − A||2F . The learned graph is then943

used for downstream graph tasks, where the task loss and the graph regularization loss are jointly944

optimized during joint training945

ASC [23]. ASC constructs the GSL bases is formed by using pseudo-eigenvectors from spectral946

clustering. They divide the Laplacian spectrum into slices, with each slice corresponding to an947

embedding matrix. The GSL graph G′ is constructed by adaptive spectral clustering, where pseudo-948

eigenvectors are weighted based on alignment with node labels Where fZ
i . For refinement, they949

apply top-K edge selection by minimizing node embedding distance and maximizing homophily950

argmin
Z

∑
i,j∈VY

(d(fZ
i , fZ

j ), 1(yi, yj)). This final restructured graph is training without fusion. Fi-951

nally, the GSL graph is updated together with the model parameters.952

WRGAT [43]. WRGAT constructs the GSL bases using the node features and a weighted relational953

GNN (WRGNN) framework that fuses structural and proximity information. A multi-relational graph954

is built by assigning different types of edges based on the structural equivalence of nodes at various955

neighborhood levels. This framework adapts to both assortative and disassortative mixing patterns,956

which helps improve node classification tasks. The GSL graph G′ is refined through attention-based957

message passing across these relational edges, and early fusion of proximity and structural features958

is used. The GSL graph G′ is trained jointly with the model parameters to optimize the node959

classification task.960

HOG-GCN [46]. HOG-GCN constructs the GSL bases by incorporating both topological information961

and node attributes to estimate a homophily degree matrix S = BBT , B = softmax(Zm), Z
(l)
m =962

σ(Z
(l−1)W (l)

m
m ). The GSL graph G′ is constructed using a homophily-guided propagation mechanism,963

which adapts the feature propagation weights between neighborhoods based on the homophily degree964

matrix Z(l) = σ(µZ(l−1)W
(l)
e + ξD̂(−1)Ak ⊙HZ(l−1)W

(l)
n ). For refinement, the graph incorpo-965

rates both k-order structures and class-aware information to model the homophily and heterophily966

relationships between nodes. The final graph is obtained through joint fusion of topological and967

attribute-based homophily degrees, and both graph structure and model parameters are updated during968

joint training.969

GGCN [51]. GGCN constructs the GSL bases using node features and structural properties such as970

node-level homophily hi and relative degree r̄i. It incorporates structure-based edge correction by971

learning new edge weights derived from structural properties like node degree, and feature-based edge972

correction by learning signed edge weights from node features, allowing for positive and negative973

influences between neighbors. The GSL graph G′ is constructed by combining signed and unsigned974

edge information, aiming to capture both homophily and heterophily. The refinement process uses975

edge correction and decaying aggregation to mitigate oversmoothing and heterophily problems. The976

final graph is updated with early fusion, and the GSL graph G′ is optimized during joint training977

GloGNN [25]. GloGNN constructs its GSL bases using node embeddings derived from MLP,978

combining both low-pass and high-pass convolutional filters. A coefficient matrix Z(l) is used to979

characterize the relationship between nodes and is optimized to capture both feature and structural980
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similarities H(0)
X = (1− α)H

(0)
X + αH

(0)
A . Refinement is achieved via top-k selection based on the981

multi-hop adjacency matrix, and the matrix is symmetrized. The final graph is obtained through982

global aggregation of nodes, capturing both local and distant homophilous nodes. This graph is then983

used in downstream tasks, where the GSL graph G′ is jointly optimized with the model parameters.984

HiGNN [57]. HiGNN constructs its GSL bases by utilizing heterophilous information as node985

neighbor distributions, which represent the likelihood of neighboring nodes belonging to different986

classes Hu = [p1, p2, ..., pc], where pi =
|v|v∈Nu,yv=i|

|Nu| . A new graph structure G′ is constructed987

by linking nodes with similar heterophilous distributions using cosine similarity. The refinement988

involves selecting top-k edges based on the similarity score and applying symmetrization. The final989

graph is fused with the original adjacency matrix A and the newly constructed adjacency matrix990

A′ via late fusion during message passing, where the node embeddings from both A and A′ are991

combined with a balance parameter λ. The graph G′ and node embeddings are updated during static992

training.993

B Contextual Stochastic Block Models with Homophily994

To study the behavior of GNNs, CSBM-H [33, 37] have been proposed to create synthetic graphs995

with a controlled homophily degree. Specifically, in CSBM-H, for a node u with label y, its features996

Xu ∈ RM are sampled from a class-wised Gaussian distribution Xu ∼ NYu
(µYu

,ΣYu
) with997

µYu
∈ RF and ΣYu

∈ RF×F , where each dimension of Xu is independent from each other,998

i.e.,ΣYu
= diag(Rn

≥0). Then, to generate graph structure G with given homophily degree h with the999

range of [0, 1], the node u has the probability h to connect intra-class nodes and the probability 1−h
C−11000

to connect inter-class nodes. After applying neighbor sampling, both of the node homophily hnode1001

and edge homophily hedge in G are approximately equal to h.1002

C Proof of Theorem1003

Theorem 4.1 Given a graph G = {V, E} with node labels Y and node features X, the accuracy of1004

graph convolution in node classification is upper bounded by the mutual information between the1005

node label Y and the aggregated node features H:1006

PA ≤ I(Y ;H) + log 2

log(C)
(5)

Proof. For an arbitrary node u, the aggregated node features can be derived as Hu = 1
|Nu|

∑
v∈Nu

Xv1007

following the graph convolution operation. For a classifier predicting labels based on Hu, we have1008

Ŷu = cls(Hu). Consequently, the Markov chain Y → H → Ŷ holds. By applying Fano’s inequality1009

[9], we obtain1010

H(Y |H) ≤ Hb(PE) + PE log(C − 1) (6)

where PE represents the error rate and Hb(·) is the binary entropy function. Rearranging this1011

inequality gives us a lower bound on PE :1012

PE ≥ H(Y |H)−Hb(PE)

log(C − 1)
(7)

Since H(Y |H) = H(Y )− I(Y ;H) = log(C)− I(Y ;H) and Hb(PE) ≤ log 2, we can substitute1013

these terms into the equation:1014

PE ≥ 1− I(Y ;H) + log 2

log(C)
(8)

Finally, by expressing the accuracy rate PA, we find:1015

PA = 1− PE ≤ I(Y ;H) + log 2

log(C)
(9)

This concludes the proof of Theorem 4.1.1016
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Proposition 4.2 Consider a graph G = {V, E} characterized by node labels Y and n-dimensional1017

node bases B = {B1, B2, . . . , Bn} with C classes. Each base Bi is independent and follows a class-1018

dependent Gaussian distribution, i.e., Bi ∼ N (µY , σY ). A new graph G′ = {V, E ′} is generated1019

using a non-parametric method based on the bases B. For the aggregated bases B′ on G′, we have1020

inf I(Y ;B′) ≤ inf I(Y ;B).1021

Proof. Let’s first consider the mutual information for i-th node base Bi. For a non-parametric GSL1022

method, we have the probability that class k connects with class j as:1023

pk,j =
g(Bk

i , B
j
i )∑C

q=1 g(B
k
i , B

q
i )

(10)

where g(·) is a non-parametric measurement of the probability of new connections, such as cosine1024

similarity or Minkowski Distance. Then, we can get aggregated bases from the new graph by the1025

operation of graph convolution [37, 33]:1026

B′k
i =

C∑
q=1

pk,qB
q
i (11)

Therefore, the Markow chain Y → Bi → B′
i holds. From data processing inequality [3], we have1027

I(Y ;B′
i) ≤ I(Y,Bi) (12)

To extend this conclusion to multi-dimensional variables, we apply the chain rule of mutual informa-1028

tion1029

I(Y ;B) = I(Y ; {B1, . . . , Bn}) =
n∑

i=1

I(Y ;Bi | {B1, . . . , Bi−1})

I(Y ;B′) = I(Y ; {B′
1, . . . , B

′
n}) =

n∑
i=1

I(Y ;B′
i | {B′

1, . . . , B
′
i−1})

(13)

Due to the property that conditioning reduces entropy, we have1030

I(Y ;Bi | {B1, . . . , Bi−1}) ≥ I(Y ;Bi)

I(Y ;B′
i | {B′

1, . . . , B
′
i−1}) ≥ I(Y ;B′

i)
(14)

Thus, we have1031

inf I(Y ;B) =

n∑
i=1

I(Y ;Bi) and inf I(Y ;B′) =

n∑
i=1

I(Y ;B′
i) (15)

where inf represents infimum. Since I(Y ;B′
i) ≤ I(Y,Bi) holds for each i, we have1032

inf I(Y ;B′) ≤ inf I(Y ;B) (16)

This concludes the proof of Proposition 4.2.1033

D Dataset Details1034

The datasets used in our experiments include heterophilous graphs: Squirrel, Chameleon, Actor,1035

Texas, Cornell, and Wisconsin [38, 42], homophilous graphs: Cora, PubMed, and Citeseer [52], and1036

Minesweeper, Roman-empire, Amazon-ratings, Tolokers, and Questions [39]. The dataset statistics1037

are shown in 3. The descriptions of all the datasets are given below:1038

Cora, Citeseer, and Pubmed datasets are widely used citation networks in graph structure learning1039

research. In each dataset, nodes represent academic papers, while edges capture citation relationships1040
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Table 3: Dataset Statistics
Dataset #Nodes #Edges #Classes #Features Edge Homophily

Cora 2,708 5,278 7 1,433 0.81
Pubmed 19,717 44,324 3 500 0.80
Citeseer 3,327 4,552 6 3,703 0.74

Roman-empire 22,662 32,927 18 300 0.05
Amazon-ratings 24,492 93,050 5 300 0.38

Minesweeper 10,000 39,402 2 7 0.68
Tolokers 11,758 529,000 2 10 0.59

Questions 48,921 153,540 2 301 0.84

Cornell 183 295 5 1,703 0.30
Chameleon 2,277 36,101 5 2,325 0.23
Wisconsin 251 466 5 1,703 0.21

Texas 183 309 5 1,703 0.11
Squirrel 5,201 216,933 5 2,089 0.22
Actor 7,600 33,544 5 931 0.22

between them. The node features are bag-of-words vectors derived from the paper’s content, and1041

each node is assigned a label based on its research topic. These datasets offer a structured framework1042

to evaluate GNN models on classification tasks within citation networks.1043

Roman-Empire is constructed from the Roman Empire Wikipedia article, with nodes representing1044

words and edges formed by either word adjacency or dependency relations. It contains 22.7K nodes1045

and 32.9K edges. The task is to classify words by their syntactic roles, and node features are fastText1046

embeddings. The graph is chain-like, with an average degree of 2.9 and a large diameter of 6824.1047

Adjusted homophily is low (hadj = -0.05), making it useful for GNN evaluation under low homophily1048

and sparse connectivity.1049

Amazon-Ratings is based on Amazon’s product co-purchasing network, this dataset includes nodes1050

as products (books, CDs, DVDs, etc.) and edges linking frequently co-purchased items. It consists of1051

the largest connected component of the graph’s 5-core. The goal is to predict product ratings grouped1052

into five classes.1053

Minesweeper is a synthetic dataset resembling the Minesweeper game, nodes in a 100x100 grid1054

represent cells, with edges connecting adjacent cells. The task is to identify mines (20% of nodes).1055

Node features indicate neighboring mine counts, with 50% of features missing. The average degree1056

is 7.88, and the graph has near-zero homophily due to random mine placement.1057

Tolokers is derived from the Toloka crowdsourcing platform, where nodes represent workers con-1058

nected by shared tasks. The graph has 11.8K nodes and an average degree of 88.28. The task is to1059

predict which workers have been banned, using profile and task performance features. The graph is1060

much denser than others in the benchmark.1061

Questions is based on user interactions from Yandex Q, this dataset focuses on users interested in1062

medicine. Nodes are users, and edges represent questions answered between users. It contains 48.9K1063

nodes with an average degree of 6.28. The task is to predict user activity at the end of a one-year1064

period, with fastText embeddings from user descriptions as features. The graph is highly imbalanced1065

(97% active users).1066

Texas, Wisconsin, Cornell are part of the WebKB project, representing web pages from university1067

computer science departments. Nodes correspond to web pages, and edges represent hyperlinks1068

between them. The node features are bag-of-words vectors from the web page content, and the labels1069

classify each page into one of five categories: student, project, course, staff, and faculty.1070

Chameleon, Squirrel are page-page networks based on specific topics from Wikipedia. Nodes1071

represent web pages, and edges correspond to mutual links between them. Node features are derived1072

from the page content, and the classification task is based on average monthly traffic. These datasets1073

are characterized by high heterophily, making them challenging for traditional GNN models.1074
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Actor is an induced subgraph from a film-director-actor-writer network. Nodes represent actors, and1075

edges are created when two actors co-occur on the same Wikipedia page. The task is to classify1076

actors into five categories based on the keywords associated with their Wikipedia pages.1077

E Implementation Details1078

We implement GSL on 6 baseline GNNs with a variety of GSL approaches from the perspective of1079

GSL bases, GSL graph construction, and view fusion. The baseline GNNs include:1080

• GCN [17] performs layer-wise propagation of node features and aggregates information1081

from neighboring nodes to capture local graph structures. Each layer applies a convolution1082

operation to update node embeddings, combining the node’s features with its neighbors.1083

• GAT [44] employs self-attention to learn dynamic attention coefficients between nodes1084

and their neighbors. These coefficients are normalized using softmax, and the final node1085

representation is computed as a weighted sum of the neighbor features. Multi-head attention1086

is used to enhance stability and expressiveness, with the number of attention heads set to 81087

by default in our experiments.1088

• SAGE [10] uses an inductive framework to aggregate features from a node’s local neighbor-1089

hood, allowing it to generalize to unseen nodes. The aggregation function, set to mean in1090

our experiments, efficiently combines neighbor information at each layer.1091

• SGC [47] simplifies the GCN model by removing non-linear activations and collapsing1092

multiple layers into a single linear transformation. This reduction in complexity accelerates1093

training. Node features are propagated using precomputed matrices, making the model faster1094

and more efficient. In our experiments, the number of k-hops in SGC is set to 2 by default.1095

• MixHop [2] extends traditional GNNs by allowing nodes to aggregate information from1096

neighbors at multiple distances within a single layer. Instead of only considering immediate1097

neighbors, MixHop raises the adjacency matrix to different powers, capturing diverse1098

topological signals. In our experiments, we follow the original paper’s setup by using three1099

propagation levels.1100

• ACMGCN [32] introduces an adaptive channel mixing mechanism to dynamically learn1101

and combine information from different channels of node features. By leveraging attention-1102

based feature transformation, ACMGCN enhances representation learning for graphs with1103

diverse structural properties. In our experiments, we use the default channel mixing setup as1104

described in the original paper.1105

The GSL bases B includes the following options:1106

• B = X: The original node features are used as the GSL bases.1107

• B = ÂX: Aggregated node features from 1-hop neighbors, normalized by node degree,1108

are used as the GSL bases.1109

• B = MLP(X): Pretrained MLP embeddings are used as the GSL bases. A 2-layer MLP is1110

trained using node features and labels on the training set for 1000 epochs per run. The hidden1111

layer size is set to 128, the learning rate to 1e−2, the dropout rate to 0.5, and the weight1112

decay to 5e−4. All parameters are optimized with Adam. After training, node embeddings1113

are extracted from the last hidden layer, with a dimension of 128, prior to classifier input.1114

• B = GCN(X,A): Pretrained node embeddings are obtained from a 2-layer GCN model,1115

following the same training procedure as for the MLP embeddings.1116

• B = GCL(X,A): Pretrained node embeddings are derived from a Graph Contrastive1117

Learning (GCL) model without supervision, following the same training process as the MLP1118

embeddings. GRACE [62] is used as the GCL model, with 2 views and 2 layers. The edge1119

and feature dropout rates in each view are set to 0.2.1120

The approaches for the construction of GSL graph G′ includes:1121

• Cos-graph: G′ = {eij |cos(Bi,Bj) > δ, i ∈ V, j ∈ V}. This method calculates the cosine1122

similarity between all node pairs in the original graph G. Node pairs with a similarity higher1123

than the threshold δ are selected as the edge set for the GSL graph G′.1124
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• Cos-node: G′ =
⋃

i∈V{{eij}|cos(Bi,Bj) > δi, j ∈ Ni}. Unlike Cos-graph, which1125

operates at the graph level, Cos-node constructs G′ at the node level. To prevent nodes from1126

being left without neighbors (which may occur in Cos-graph), Cos-node selects neighbors1127

based on node-level cosine similarity, ensuring each node has sufficient connections.1128

• kNN: G′ = kNN(B). This method constructs a kNN graph using the k-Nearest Neighbors1129

algorithm based on the GSL bases B.1130

The view fusion in GSL includes:1131

• {G′}: This approach uses only the GSL graph G′ for subsequent GNN training, completely1132

ignoring the original graph G.1133

• {G,G′}, θ1 = θ2. Both the GSL graph G′ and the original graph G are used for GNN1134

training, with parameter sharing across each layer of the GNN.1135

• {G,G′}, θ1 ̸= θ2. Both the GSL graph G′ and the original graph G are used for GNN1136

training, but with separate model parameters for each graph.1137

Especially, for graphs with two views, the fusion stage in GSL includes:1138

• Early Fusion: G + G′.Combine the two graphs, G and G′, into a single new graph prior to1139

GNN training.1140

• Late Fusion: H +H ′. After training the GNN on the original graph G and the GSL graph1141

G′, merge the node embeddings, H and H′, before passing them to the classifiers.1142

In addition to the original models based on 4 baseline GNNs, we implement GNN+GSL (GSL-1143

augmented GNNs) by combining the aforementioned GSL modules, resulting in multiple variants for1144

each type of GNN. For all models, we explore hyperparameters including hidden dimensions from the1145

set {64, 128, 256}, learning rates from {1e-2, 1e-3, 1e-4}, weight decay values from {0, 1e-5, 1e-3},1146

the number of layers from {2, 3}, and dropout rates from {0.2, 0.4, 0.6, 0.8}. All the experiments are1147

conducted on a Linux server(Operation system: Ubuntu 16.04.7 LTS) with one NVIDIA Tesla V1001148

card.1149

For GSL graph generation, we also search for additional hyperparameters to ensure the performance1150

quality of the GSL-augmented GNN. Specifically, for Cos-graph and Cos-node, we control the1151

parameter δ to vary the ratio of the number of edges in G′ to the number of edges in G across the set1152

{0.1, 0.5, 1, 5}. For kNN, we investigate the number of neighbors from the set {2, 3, 5, 10}.1153

F Additional Experiment Results1154

F.1 Impact of GSL Bases on GNN baselines1155

In Figure 6, we illustrate the influence of 5 GSL bases on the performance of 4 GNNs across both1156

homophilous and heterophilous graphs. The results indicate that MLP-pretrained features, denoted as1157

MLP(X), significantly enhance GNN performance compared to raw features X across 6 out of 91158

datasets. These improvements stem from the self-training process applied to node inputs, suggesting1159

that various self-training strategies could be employed with different graph datasets to further enhance1160

GNN performance. Many GSL-enhanced GNNs leverage trained GSL bases to improve model1161

performance, whereas GNN baselines utilize raw node features as GSL bases for comparison. This1162

raises concerns about the fairness of previous comparisons between GNNs using original node1163

features and those employing GNN+GSL, underscoring the importance of high-quality GSL bases.1164

Additionally, we observe that GCN and GCL-pretrained features tend to degrade GNN performance1165

on heterophilous datasets. This degradation is attributed to the increased noise within heterophilous1166

datasets, leading to lower-quality GSL bases that can negatively impact GNN performance.1167

F.2 Impact of each GSl component on GNN+GSL1168

F.2.1 GSL Bases1169

In addition to the analysis of the impact of GSL bases shown in Figure 5, Figure 7 presents further1170

results on the performance of various GSL bases (X, ÂX, MLP (X), GCN(X,A), GCL(X,A))1171
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Figure 6: Influences of different GSL bases to GNNs.

across GAT, SGC, and GraphSAGE. The results are consistent with those observed in GCN and MLP,1172

where the original node features do not always yield the best input. Some pretrained features, such1173

as MLP (X) on the Texas, Cornell, and Wisconsin datasets, demonstrate significant improvement1174

compared to the original features X, highlighting the necessity of self-training. Since many GSL1175

methods [57, 43] utilize self-training during the training process, a fair comparison of these GSL1176

methods and baseline GNNs should be conducted in the context of self-training, such as by using1177

pretrained node features as input, as shown in Table 1.1178

F.2.2 GSL Graph Generation1179

Figure 8 compares the Cos-graph, Cos-node, and kNN methods for GSL graph generation. Across1180

most datasets, the performance differences among these methods are minimal. In certain datasets,1181

such as Roman-empire and Pubmed, the models exhibit comparable performance regardless of the1182

graph generation technique employed. This suggests that variations in graph generation have a limited1183

effect on overall performance.1184

F.2.3 View Fusion1185

Figure 9 illustrates the impact of different view fusion approaches, comparing the use of only the1186

GSL graph G′, the combination of the original graph G with G′ using shared parameters θ1 = θ2,1187

and the use of separate parameters θ1 ̸= θ2. Notably, using only the GSL graph G′ underperforms1188

compared to employing both graph views with separate model parameters. This indicates that incor-1189

porating information from the original graph G is beneficial for maximizing GNN+GSL performance.1190

Furthermore, for the two graph views, parameter sharing significantly underperforms parameter1191

separation. We speculate that the messages aggregated under G and G′ differ considerably, suggesting1192

that different graphs should be treated with distinct model parameters.1193
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F.2.4 Fusion Stage1194

Figure 10 compares early fusion and late fusion for GNN+GSL with multiple graph views. The1195

performance difference between the two fusion states is often minimal. While early fusion tends to1196

perform slightly better on complex datasets like Actor and Pubmed, the overall impact of switching1197

between early and late fusion is limited across most datasets. For simpler datasets like Minesweeper1198

and Amazon, both fusion methods yield nearly identical performance, indicating that the choice of1199

fusion state does not drastically alter the model’s outcome in most cases.1200
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Figure 7: Influences of different GSL bases to more GNNs.

F.3 Removing GSL in SOTA GNNs1201

Settings To fairly reassess the impact of GSL in state-of-the-art (SOTA) methods, we compare the1202

performance of SOTA models with their SOTA-GSL counterparts within the same hyperparameter1203

search space. These GSL-based SOTA models include GAug [55], GEN [45], GRCN [53], IDGL [6],1204

NodeFormer [48], GloGNN [25], WRGAT [43], and WRGCN [43]. Corresponding to the analysis1205

of GCN and MLP in Section 4.2, the SOTA-GSL methods include two variants: (1) SOTA, G′ = G,1206

which replaces the GSL graph G′ with the original graph G; and (2) SOTA, G′ = MLP, which1207

substitutes the graph convolution layers of GSL G′ with MLP layers. We train each model for 10001208

epochs and search the hidden dimensions from the set {16, 32, 64, 128, 256, 512}, learning rate from1209

{1e-1, 1e-2, 1e-3, 1e-4, 1e-5}, weight decay values from {5e-4, 5e-5, 5e-6, 5e-7, 0}, the number of1210

layers from {1, 2, 3}, and dropout rates from {0.2, 0.4, 0.6, 0.8}. The hyperparameters of the above1211

methods are shown in Table 5. The model-specific hyperparameters are shown as follows:1212

In GRCN, the hyperparameter K determines the number of nearest neighbors used to create a sparse1213

graph from a dense similarity graph which helps balance efficiency and accuracy.We set the k as 5.1214

In GAug, the alpha is a hyperparameter that regulates the influence of the edge predictor on the1215

original graph. We set the alpha as 0.1.1216

In IDGL, The parameter graph_learn_num_pers defines the number of perspectives for evaluating1217

node similarities in the graph learning process. The parameter num_anchors specifies the number of1218

30



Mine
s.

Ro
man

.

Amazo
n.

Tol
oke

rs

Que
stio

ns

Sq
uir

rel

Cha
mele

on
Ac

tor
Tex

as
Corn

ell

Wisc
on

sin Cora

Cite
see

r

Pu
bm

ed
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 / 
AU

C-
RO

C

GCN
cos-graph cos-node knn

Mine
s.

Ro
man

.

Amazo
n.

Tol
oke

rs

Que
stio

ns

Sq
uir

rel

Cha
mele

on
Ac

tor
Tex

as
Corn

ell

Wisc
on

sin Cora

Cite
see

r

Pu
bm

ed
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 / 
AU

C-
RO

C

GAT
cos-graph cos-node knn

Mine
s.

Ro
man

.

Amazo
n.

Tol
oke

rs

Que
stio

ns

Sq
uir

rel

Cha
mele

on
Ac

tor
Tex

as
Corn

ell

Wisc
on

sin Cora

Cite
see

r

Pu
bm

ed
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 / 
AU

C-
RO

C

SGC
cos-graph cos-node knn

Mine
s.

Ro
man

.

Amazo
n.

Tol
oke

rs

Que
stio

ns

Sq
uir

rel

Cha
mele

on
Ac

tor
Tex

as
Corn

ell

Wisc
on

sin Cora

Cite
see

r

Pu
bm

ed
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 / 
AU

C-
RO

C

GraphSAGE
cos-graph cos-node knn

Figure 8: Influences of the approaches of GSL generation to GNN+GSL.

anchor points used to reduce computational complexity and improve scalability in graph structure1219

learning. The graph_skip_conn parameter controls the proportion of skip connections, preserving1220

information from the original graph during new graph structure learning. The update_adj_ratio1221

parameter determines the proportion of the adjacency matrix updated at each iteration, influencing1222

the dynamic adjustment of the graph structure. We set the graph_learn_num_pers as 6, num_anchors1223

as 500, graph_skip_conn as 0.7, and update_adj_ratio as 0.3.1224

In NodeFormer, The parameter k determines the number of neighbors considered for each node1225

in constructing the local graph structure, influencing the strength of node connections and the1226

propagation of features. The parameter tolerance controls the degree of error tolerance during1227

optimization. A larger tolerance allows more flexibility in the search space near local optima, while1228

a smaller one results in stricter convergence. The number of attention heads in a graph attention1229

network (GAT). Multi-head attention enables the model to focus on different subspace representations1230

simultaneously, enhancing the diversity and stability of the representations. We set the k as 10,1231

lambda as 0.01, and n_heads as 4.1232

In GEN,the parameter K in KNN refers to the number of nearest neighbors used to construct the1233

graph structure, determining how many adjacent nodes are selected. The parameter tolerance defines1234

the acceptable range of error during optimization, controlling the convergence criteria of the model.1235

The parameter threshold determines the edge weight threshold in the graph, deciding which edges to1236

retain in the graph structure.We set the k as 10, tolerance as 0.01, and threshold as 0.5.1237

In GloGNN, we set the Delta as 0.9, Gamma as 0.8, alpha as 0.5, beta as 2000, and orders as 5. Delta1238

adjusts the balance between local and global node embeddings. Gamma controls the significance of1239

global aggregation versus local information. Alpha balances the contributions of node features and1240

graph structure. Beta regularizes the model, preventing overfitting. Order defines how many layers of1241

neighbors are considered.1242

In WRGAT, we set the number of attention heads as 2 and the negative slope as 0.2. The number of1243

attention heads determines how many attention mechanisms are used. The negative slope modifies1244

the LeakyReLU activation.1245
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Figure 9: Influences of the approaches of view fusion in GSL to GNN+GSL.

Results. The results are presented in Table 4, where "OOM" denotes out-of-memory. It is evident1246

that removing GSL does not diminish model performance; in fact, it is often comparable to or even1247

exceeds the original results. Furthermore, GSL-based SOTA methods require significantly more GPU1248

memory and longer running times compared to their non-GSL counterparts. Based on these findings,1249

we conclude that GSL not only fails to enhance performance across most datasets but also increases1250

model complexity. In conjunction with the results in Table 1, we assert that GSL may be unnecessary1251

for effective GNN design in most cases.1252

Table 4: Model Performance and training time per epoch of SOTA methods and SOTA-GSL. The
results for methods marked with “*" are reported in (author?) [58].

Questions Minesweeper Roman-empire Amazon-ratings Tolokers Cora Pubmed Citeseer
Model AUC Time AUC Time Acc Time Acc Time AUC Time Acc Time Acc Time Acc Time

GAug* OOM - 77.93±0.64 - OOM - 48.42±0.39 - OOM - 82.48±0.66 7s 78.73±0.77 20s 72.79±0.86 10s
GAug, G′ = G OOM - 80.56±0.36 11s OOM - 48.45±0.37 12s OOM - 81.73±0.38 1s 79.38±0.46 6s 72.34±0.18 2s
GAug, G′ = MLP OOM - 64.31±1.40 4.8s OOM - 48.05±0.66 37s OOM - 78.90±0.00 3.2s 77.40±0.00 8.1s 72.91±0.32 9s

GEN* OOM - 79.56±1.09 260s OOM - 49.17±0.68 - OOM - 81.66±0.91 214s 78.49±3.98 1384s 73.21±0.62 470s
GEN, G′ = G OOM - 80.81±0.23 75s OOM - 50.08±0.30 130s OOM - 82.16±0.37 39s 80.49±0.13 114s 71.52±0.34 25s
GEN, G′ = MLP OOM - 71.81±0.98 12s OOM - 49.29±0.65 49s OOM - 80.20±0.00 140s 66.80±0.00 1592s 73.50±0.00 310s

GRCN* 74.50±0.84 - 72.57±0.49 60s 44.41±0.41 180s 50.06±0.38 220s 71.27±0.42 37s 84.61±0.34 13s 79.30±0.34 17s 72.34±0.34 20s
GRCN, G′ = G 75.69±0.52 8s 71.15±0.05 10s 45.84±0.52 8s 46.07±1.02 10s 71.73±0.42 10s 81.66±1.10 2s 79.35±0.26 3s 69.55±1.28 2s
GRCN, G′ = MLP 63.59±2.35 3.9s 72.18±1.09 2s 45.89±0.83 7.5s 48.77±0.60 8.1s 70.45±1.39 8s 79.40±0.00 1.3s 78.10±0.00 5s 71.40±0.00 4.2s

IDGL* OOM - 50.00±0.00 157s 47.10±0.65 186s 45.87±0.58 - 50.00±0.00 279s 84.19±0.61 123s 82.78±0.44 146s 73.26±0.53 332s
IDGL, G′ = G OOM - 50.00±0.00 51s 41.24±0.86 42s OOM - 50.00±0.00 52s 82.43±0.45 13s 73.50±1.85 23s 73.13±0.49 36s
IDGL, G′ = MLP OOM - 79.56±1.26 13.7s 50.35±0.36 35s 39.93±0.88 15s 71.55±1.08 11s 83.20±0.00 6.6s 79.20±0.00 13s 72.60±0.00 13.9s

NodeFormer* OOM - 77.29±1.71 - 56.54±3.73 - 41.33±1.25 - OOM - 78.81±1.21 213s 78.38±1.94 - 70.39±2.04 219s
NodeFormer, G′ = G OOM - 80.66±0.82 215s 68.37±1.95 236s OOM - OOM - 77.01±1.99 152s OOM - 70.82±0.13 139s
NodeFormer, G′ = MLP OOM - 80.04±1.42 21s 53.08±2.37 7.2s 71.55±1.08 26s OOM - 78.82±0.00 8s 76.30±0.00 127s 72.80±0.00 15s

GloGNN 68.67±1.07 66.6s 52.45±0.30 13.0s 66.21±0.17 26.1s 50.72±0.88 31.1s 79.81±0.20 47.4s 78.07±1.66 6.6s 87.88±0.26 18.2s 71.95±1.90 21.8s
GloGNN, G′ = G 68.32±1.23 49.4s 52.30±0.21 3.6s 66.03±0.14 15.3s 50.23±0.83 21.7s 80.02±0.16 25.1s 73.49±2.01 5.1s 87.62±0.20 14.4s 72.27±2.08 21.2s
GloGNN, G′ = MLP 69.69±0.22 25.7s 52.30±0.20 2.1s 66.49±0.16 12.4s 49.56±0.73 12.3s 74.85±0.12 2.8s 73.93±1.81 3.2s 87.64±0.27 10.2s 72.09±1.81 13.8s

WRGAT OOM - 90.22±0.64 168.0s OOM - OOM - 78.69±1.21 153.0s 84.28±1.52 19.5s 88.82±0.50 421.6s 73.50±1.41 22.1s
WRGAT, G′ = G 74.67±0.95 64.1s 89.79±0.37 18.6s OOM - 50.41±0.53 49.9s 78.81±0.89 47.0s 83.48±1.48 3.4s 88.92±0.43 26.5s 73.22±1.90 4.7s
WRGAT, G′ = MLP 68.07±2.62 75.8s 87.08±2.11 16.2s OOM - 41.38±1.46 24.4s 76.41±1.25 37.7s 76.99±1.10 2.9s 80.27±6.23 23.9s 65.28±2.11 4.5s

WRGCN 74.70±1.71 358.3s 90.63±0.64 40.9s OOM - 52.76±0.95 508.4s 82.68±0.82 52.3s 88.30±1.46 23.7s OOM - 73.74±1.60 54.2s
WRGCN, G′ = G 75.91±1.30 43.3s 90.65±0.49 5.5s OOM - 52.54±0.56 50.1s 82.65±0.86 15.6s 88.32±0.79 3.9s 89.26±0.45 19.4s 74.45±1.51 10.5s
WRGCN, G′ = MLP 64.59±1.48 23.1s 70.66±1.37 7.7s OOM - 37.05±0.46 8.0s 69.10±0.91 12.2s 70.00±3.59 2.2s 67.29±2.49 9.9s 70.84±1.36 4.1s
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Figure 10: Influences of the states of view fusion in GSL to GNN+GSL.

F.4 Quality of GSL Graphs1253

Previous studies [25, 57] suggest that GSL constructs graphs with properties that improve intra-class1254

node connectivity, which can be measured by homophily. This improvement can be visualized by1255

inspecting graph structures with nodes sorted by their class labels. A graph that appears closer to a1256

block diagonal matrix indicates stronger intra-class connectivity. However, this enhancement may not1257

always be essential and can be achieved through non-GSL methods as well. In Figure 11, we visualize1258

the original and reconstructed structures of a heterophilous graph from the Wisconsin dataset. The1259

GSL graphs are constructed using various bases: X, ÂX, MLP(X), GCN(X,A), and GCL(X,A).1260

We also include reconstructed graphs using a simple method that samples edges between nodes1261

of the same class based on label predictions, i.e., Ŷ = GCN(X,A) or Ŷ = MLP(X,A). Figure1262

11 demonstrates that, although GSL improves intra-class connectivity, the improvement is not as1263

substantial as that achieved by non-GSL methods, as seen in the last two subfigures. Thus, the1264

improvement in homophily within GSL graphs is unnecessary, as it can be easily achieved through1265

simple methods.1266

F.5 Heterophily-oriented GNN with GSL1267

We also include heterophily-oriented GNNs, specifically ACMGNN [32] and MixHop [2], in our1268

experiments that incorporate GSL into GNN baselines. These experiments follow the same setup1269

as described in Table 1. The results, presented in Table 6, demonstrate that, under fair comparison1270

conditions, both ACMGNN and MixHop outperform their GNN+GFS counterparts. This suggests1271

that adding GSL to these heterophily-oriented GNNs may be unnecessary.1272

F.6 Trainable GSL1273

In Table 7, we present the results of applying trainable GSL to baseline GNNs. Specifically, we1274

select the best-performing GSL variants, as shown in Tables 1 and 6, for each backbone GNN. The1275

best-performing method is highlighted in bold, while the runner-up is indicated with an underline.1276
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Table 5: Hyperparameters for GSL-enhanced SOTA methods and their counterparts by replacing or
removing new graphs.

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Cora

GAug 1e-4 5e-7 0.8 512 2
GAug, G′ = G 1e-4 5e-7 0.8 512 2
GAug, G′ = MLP 1e-4 5e-7 0.8 512 2
GEN 1e-2 5e-4 0.5 16 2
GEN, G′ = G 1e-2 5e-4 0.5 16 2
GEN, G′ = MLP 1e-2 5e-4 0.5 16 2
GRCN 1e-3 5e-3 0.5 256 2
GRCN, G′ = G 1e-3 5e-3 0.5 256 2
GRCN, G′ = MLP 1e-3 5e-3 0.5 256 2
IDGL 1e-2 5e-4 0.5 512 2
IDGL, G′ = G 1e-2 5e-4 0.5 512 2
IDGL, G′ = MLP 1e-2 5e-4 0.5 512 2
NodeFormer 1e-2 5e-4 0.2 64 2
NodeFormer, G′ = G 1e-2 5e-4 0.2 64 2
NodeFormer, G′ = MLP 1e-2 5e-4 0.2 64 2
GloGNN 1e-2 5e-5 0.5 64 1
GloGNN, G′ = G 1e-2 5e-5 0.5 64 1
GloGNN, G′ = MLP 1e-2 5e-5 0.5 64 1
WRGAT 1e-2 1e-5 0.5 128 2
WRGAT, G′ = G 1e-2 5e-5 0.5 128 2
WRGAT, G′ = MLP 1e-2 1e-5 0.5 128 2
WRGCN 1e-2 1e-5 0.5 128 2
WRGCN, G′ = G 1e-2 5e-5 0.5 128 2
WRGCN, G′ = MLP 1e-2 1e-5 0.5 128 2

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

PubMed

GAug 1e-2 5e-4 0.5 128 2
GAug, G′ = G 1e-2 5e-4 0.5 128 2
GAug, G′ = MLP 1e-2 5e-4 0.5 128 2
GEN 1e-3 5e-4 0.2 32 2
GEN, G′ = G 1e-3 5e-4 0.2 32 2
GEN, G′ = MLP 1e-3 5e-4 0.2 32 2
GRCN 1e-3 5e-3 0.5 32 2
GRCN, G′ = G 1e-3 5e-3 0.5 32 2
GRCN, G′ = MLP 1e-3 5e-3 0.5 32 2
IDGL 1e-2 5e-4 0.5 16 2
IDGL, G′ = G 1e-2 5e-4 0.5 16 2
IDGL, G′ = MLP 1e-2 5e-4 0.5 16 2
NodeFormer 1e-3 5e-4 0.2 64 2
NodeFormer, G′ = G 1e-3 5e-4 0.2 64 2
NodeFormer, G′ = MLP 1e-3 5e-4 0.2 32 2
GloGNN 1e-3 5e-5 0.7 64 3
GloGNN, G′ = G 1e-3 5e-5 0.7 64 3
GloGNN, G′ = MLP 1e-3 5e-5 0.7 64 3
WRGAT 1e-2 5e-5 0.5 64 2
WRGAT, G′ = G 1e-2 1e-5 0.5 64 2
WRGAT, G′ = MLP 1e-2 5e-5 0.5 64 2
WRGCN 1e-2 5e-5 0.5 64 2
WRGCN, G′ = G 1e-2 5e-5 0.5 64 2
WRGCN, G′ = MLP 1e-2 5e-5 0.5 64 2

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Citeseer

GAug 1e-4 5e-7 0.8 512 2
GAug, G′ = G 1e-4 5e-7 0.8 512 2
GAug, G′ = MLP 1e-4 5e-7 0.8 512 2
GEN 1e-2 5e-4 0.5 16 2
GEN, G′ = G 1e-2 5e-4 0.5 16 2
GEN, G′ = MLP 1e-2 5e-4 0.5 16 2
GRCN 1e-3 5e-3 0.8 512 3
GRCN, G′ = G 1e-3 5e-3 0.8 512 3
GRCN, G′ = MLP 1e-2 5e-3 0.5 256 3
IDGL 1e-2 5e-4 0.5 32 2
IDGL, G′ = G 1e-3 5e-4 0.5 16 2
IDGL, G′ = MLP 1e-3 5e-4 0.5 16 2
NodeFormer 1e-2 5e-4 0.2 64 2
NodeFormer, G′ = G 1e-2 5e-4 0.2 64 2
NodeFormer, G′ = MLP 1e-2 5e-4 0.2 64 2
GloGNN 1e-2 1e-5 0.7 64 2
GloGNN, G′ = G 1e-2 1e-5 0.7 64 2
GloGNN, G′ = MLP 1e-2 1e-5 0.7 64 2
WRGAT 1e-2 5e-5 0.5 128 2
WRGAT, G′ = G 1e-2 5e-5 0.5 128 2
WRGAT, G′ = MLP 1e-2 5e-5 0.5 128 2
WRGCN 1e-2 5e-5 0.3 128 2
WRGCN, G′ = G 1e-2 5e-5 0.5 128 2
WRGCN, G′ = MLP 1e-2 1e-5 0.5 128 1

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Minesweeper

GAug 1e-3 5e-6 0.8 256 3
GAug, G′ = G 1e-3 5e-6 0.8 256 3
GAug, G′ = MLP 1e-3 5e-6 0.8 256 3
GEN 1e-4 5e-6 0.8 256 3
GEN, G′ = G 1e-4 5e-6 0.8 256 3
GEN, G′ = MLP 1e-4 5e-6 0.8 256 3
GRCN 1e-3 5e-7 0.2 128 2
GRCN, G′ = G 1e-3 5e-6 0.2 128 2
GRCN, G′ = MLP 1e-3 5e-6 0.2 128 2
IDGL 1e-1 5e-6 0.2 128 3
IDGL, G′ = G 1e-1 5e-6 0.2 128 3
IDGL, G′ = MLP 1e-1 5e-6 0.2 128 3
NodeFormer 1e-2 5e-4 0.8 32 2
NodeFormer, G′ = G 1e-2 5e-4 0.8 32 2
NodeFormer, G′ = MLP 1e-2 5e-4 0.8 32 2
GloGNN 1e-2 5e-4 0.5 512 5
GloGNN, G′ = G 1e-2 5e-4 0.5 512 5
GloGNN, G′ = MLP 1e-2 5e-4 0.5 512 5
WRGAT 1e-2 5e-5 0.5 128 2
WRGAT, G′ = G 1e-2 5e-5 0.5 128 2
WRGAT, G′ = MLP 1e-2 5e-5 0.5 128 2
WRGCN 1e-2 5e-5 0.5 128 2
WRGCN, G′ = G 1e-2 5e-5 0.5 128 2
WRGCN, G′ = MLP 1e-2 5e-5 0.5 128 2

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Roman-empire

GAug 1e-1 5e-5 0.5 32 2
GAug, G′ = G 1e-1 5e-5 0.5 32 2
GAug, G′ = MLP 1e-1 5e-5 0.5 32 2
GEN 1e-2 5e-7 0.2 128 2
GEN, G′ = G 1e-2 5e-7 0.2 128 2
GEN, G′ = MLP 1e-2 5e-7 0.2 128 2
GRCN 1e-3 5e-5 0.5 128 2
GRCN, G′ = G 1e-2 5e-5 0.5 128 2
GRCN, G′ = MLP 1e-2 5e-5 0.5 128 2
IDGL 1e-1 5e-5 0.5 128 2
IDGL, G′ = G 1e-1 5e-5 0.5 128 2
IDGL, G′ = MLP 1e-1 5e-5 0.5 128 2
NodeFormer 1e-3 5e-6 0.2 128 3
NodeFormer, G′ = G 1e-3 5e-6 0.2 128 3
NodeFormer, G′ = MLP 1e-3 5e-5 0.8 128 3
GloGNN 1e-2 5e-5 0.7 128 3
GloGNN, G′ = G 1e-2 5e-5 0.7 128 3
GloGNN, G′ = MLP 1e-2 5e-5 0.7 128 3
WRGAT 1e-2 5e-5 0.5 128 2
WRGAT, G′ = G 1e-2 1e-5 0.5 128 2
WRGAT, G′ = MLP 1e-2 5e-5 0.5 128 2
WRGCN 1e-2 5e-5 0.5 128 2
WRGCN, G′ = G 1e-2 5e-5 0.5 128 2
WRGCN, G′ = MLP 1e-2 5e-5 0.5 128 2

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Amazon-ratings

GAug 1e-2 5e-7 0.2 128 2
GAug, G′ = G 1e-2 5e-7 0.2 128 2
GAug, G′ = MLP 1e-2 5e-7 0.2 128 2
GEN 1e-2 5e-7 0.2 128 2
GEN, G′ = G 1e-2 5e-7 0.2 128 2
GEN, G′ = MLP 1e-2 5e-7 0.2 128 2
GRCN 1e-3 5e-7 0.2 128 2
GRCN, G′ = G 1e-2 5e-7 0.2 64 2
GRCN, G′ = MLP 1e-2 5e-7 0.2 128 2
IDGL 1e-2 5e-7 0.2 128 2
IDGL, G′ = G 1e-2 5e-7 0.2 128 2
IDGL, G′ = MLP 1e-2 5e-7 0.2 128 2
NodeFormer 1e-4 5e-5 0.5 128 3
NodeFormer, G′ = G 1e-4 5e-5 0.5 64 3
NodeFormer, G′ = MLP 1e-4 5e-5 0.5 64 3
GloGNN 1e-2 5e-5 0.3 128 3
GloGNN, G′ = G 1e-2 5e-5 0.3 128 3
GloGNN, G′ = MLP 1e-2 5e-5 0.3 128 3
WRGAT 1e-2 5e-5 0.3 128 2
WRGAT, G′ = G 1e-2 1e-5 0.3 128 2
WRGAT, G′ = MLP 1e-2 1e-5 0.3 128 2
WRGCN 1e-2 5e-5 0.7 128 3
WRGCN, G′ = G 1e-2 5e-5 0.7 128 3
WRGCN, G′ = MLP 1e-2 1e-5 0.7 128 3

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Questions

GAug 1e-2 5e-4 0.5 64 3
GAug, G′ = G 1e-2 5e-4 0.5 64 3
GAug, G′ = MLP 1e-2 5e-4 0.5 64 3
GEN 1e-2 5e-7 0.2 256 2
GEN, G′ = G 1e-2 5e-7 0.2 256 2
GEN, G′ = MLP 1e-2 5e-7 0.2 256 2
GRCN 1e-2 5e-6 0.5 64 2
GRCN, G′ = G 1e-2 5e-6 0.5 64 2
GRCN, G′ = MLP 1e-2 5e-6 0.5 64 2
IDGL 1e-2 5e-7 0.2 128 2
IDGL, G′ = G 1e-2 5e-7 0.2 128 2
IDGL, G′ = MLP 1e-2 5e-7 0.2 128 2
NodeFormer 1e-4 5e-3 0.5 128 3
NodeFormer, G′ = G 1e-4 5e-3 0.5 64 3
NodeFormer, G′ = MLP 1e-4 5e-3 0.5 64 3
GloGNN 1e-2 5e-5 0.7 128 3
GloGNN, G′ = G 1e-2 5e-5 0.7 128 3
GloGNN, G′ = MLP 1e-2 5e-5 0.7 128 3
WRGAT 5e-3 5e-5 0.3 64 2
WRGAT, G′ = G 5e-3 1e-5 0.3 64 2
WRGAT, G′ = MLP 5e-3 5e-5 0.3 64 2
WRGCN 5e-3 5e-5 0.7 64 2
WRGCN, G′ = G 5e-3 5e-5 0.7 64 2
WRGCN, G′ = MLP 5e-3 1e-5 0.7 64 2

Dataset Model Learning Rate Weight Decay Dropout Hidden Dim Num of Layers

Tolokers

GAug 1e-1 5e-5 0.5 32 2
GAug, G′ = G 1e-1 5e-5 0.5 32 2
GAug, G′ = MLP 1e-1 5e-5 0.5 32 2
GEN 1e-2 5e-5 0.2 128 2
GEN, G′ = G 1e-2 5e-6 0.2 128 2
GEN, G′ = MLP 1e-2 5e-6 0.2 128 2
GRCN 1e-2 5e-5 0.5 32 2
GRCN, G′ = G 1e-2 5e-6 0.5 32 2
GRCN, G′ = MLP 1e-1 5e-6 0.5 64 2
IDGL 1e-2 5e-4 0.5 64 2
IDGL, G′ = G 1e-2 5e-4 0.5 64 2
IDGL, G′ = MLP 1e-2 5e-4 0.5 64 2
NodeFormer 1e-2 5e-4 0.2 64 2
NodeFormer, G′ = G 1e-2 5e-4 0.2 64 2
NodeFormer, G′ = MLP 1e-2 5e-4 0.2 64 2
GloGNN 1e-2 5e-5 0.3 128 3
GloGNN, G′ = G 1e-2 5e-5 0.3 128 3
GloGNN, G′ = MLP 1e-2 5e-5 0.3 128 3
WRGAT 1e-2 5e-5 0.5 128 2
WRGAT, G′ = G 1e-2 1e-5 0.5 128 2
WRGAT, G′ = MLP 1e-2 5e-5 0.5 128 2
WRGCN 1e-2 5e-5 0.5 128 1
WRGCN, G′ = G 1e-2 5e-5 0.5 128 2
WRGCN, G′ = MLP 1e-2 5e-5 0.5 128 2

“OOM" refers to "out of memory." The results demonstrate the following: (1) The average rank1277

indicates that trainable GSL improves GNN performance on 5 out of 6 GNN backbones; (2) Although1278

trainable GSL outperforms non-trainable GSL, it remains inferior to GNN backbones without GSL,1279

indicating that GSL could be unnecessary in improving GNN performance on node classification.1280

F.7 Performance on Graph classification1281

In addition to the node classification experiments, we further investigate whether GSL consistently1282

improves GNN performance in graph classification. Specifically, we conduct ablation experiments1283

by replacing the GSL graph with the original graph, following the methodology outlined in [26].1284

As shown in 8, removing GSL from 4 state-of-the-art GNNs, including ProGNN [15], GEN [45],1285

GRCN [53], and IDGL [6], results in significantly reduced training time. At the same time, the GNN1286
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Original, hedge=0.18 B = X, hedge=0.81 B = AX, hedge=0.42 B = MLP(X), hedge=0.96

B = GCN(X,A), hedge=0.75 B = GCL(X,A), hedge=0.39 Y = GCN(X, A), hedge=0.71 Y = MLP(X, A), hedge=1.00

Figure 11: Visualization of original graph and reconstructed graphs on Wisconsin

Table 6: Performance of heterophily-oriented GNNs with GNN+GSL
Model Construct Fusion Param Sharing Mines. Roman. Amazon. Tolokers Questions Squirrel Chameleon Actor Texas Cornell Wisconsin Cora CiteSeer PubMed Rank
MLP - - - 79.55±1.23 65.45±0.99 46.65±0.83 75.94±1.38 74.92±1.39 39.29±2.22 43.57±4.18 35.40±1.38 80.46±6.44 73.78±7.34 85.88±7.78 87.97±1.80 76.68±2.10 87.39±2.18 2.93

ACMGNN - - - 90.56±1.03 84.86±0.73 52.07±1.72 84.41±1.12 77.72±1.59 41.53±2.43 44.65±4.43 34.86±1.22 82.62±5.97 75.68±8.99 87.65±7.15 88.23±1.81 76.63±2.34 89.37±0.56 1.21
ACMGNN cos-graph {G′} - 47.36±3.47 60.97±0.76 41.50±0.75 70.21±1.51 67.32±1.37 38.12±1.92 39.90±3.64 33.43±0.95 59.80±6.99 59.46±8.35 71.57±6.68 77.47±2.41 73.68±0.97 87.19±0.38 7.64
ACMGNN cos-graph {G,G′} θ1 = θ2 52.74±5.22 51.18±2.12 33.11±1.38 69.06±4.65 62.30±3.23 31.58±4.39 38.79±4.73 29.06±2.60 54.10±7.59 59.19±8.87 70.39±9.58 59.74±1.87 65.17±1.94 79.53±1.69 9.86
ACMGNN cos-graph {G,G′} θ1 ̸= θ2 87.46±1.02 74.63±0.76 49.35±0.58 81.63±0.87 73.84±1.41 38.54±1.89 41.16±4.18 34.23±0.98 67.67±5.97 70.00±5.90 80.78±5.21 80.83±1.84 73.43±1.47 88.98±0.47 3.64
ACMGNN cos-node {G′} - 52.83±3.52 61.26±0.62 42.47±0.53 74.14±1.14 72.23±1.36 38.23±1.97 40.77±3.68 34.74±0.90 61.45±6.13 63.51±5.87 74.31±6.43 75.84±2.93 73.05±1.18 87.22±0.41 6.21
ACMGNN cos-node {G,G′} θ1 = θ2 52.74±5.22 51.18±2.12 33.11±1.38 69.06±4.65 62.30±3.23 31.58±4.39 38.79±4.73 29.06±2.60 54.10±7.59 59.19±8.87 70.39±9.58 59.74±1.87 65.17±1.94 79.53±1.69 9.86
ACMGNN cos-node {G,G′} θ1 ̸= θ2 87.80±0.97 73.55±0.51 49.04±0.57 80.74±0.92 74.11±1.40 39.19±2.12 40.28±4.30 34.19±1.16 69.86±5.56 69.46±7.21 80.39±5.23 80.33±1.90 73.31±1.26 88.94±0.36 4.07
ACMGNN kNN {G′} - 51.68±3.38 60.86±0.87 41.68±0.95 71.31±0.64 69.56±1.41 38.58±1.96 40.56±2.34 34.88±0.77 62.51±6.16 62.70±5.95 76.47±4.43 75.99±2.85 70.20±1.51 87.20±0.45 6.64
ACMGNN kNN {G,G′} θ1 = θ2 52.74±5.22 51.18±2.12 33.11±1.38 69.06±4.65 62.30±3.23 31.58±4.39 38.79±4.73 29.06±2.60 54.10±7.59 59.19±8.87 70.39±9.58 59.74±1.87 65.17±1.94 79.53±1.69 9.86
ACMGNN kNN {G,G′} θ1 ̸= θ2 87.59±0.88 73.21±0.63 49.06±0.53 81.34±0.85 73.95±1.35 39.18±2.18 41.70±3.71 34.67±1.11 68.48±5.78 68.92±5.87 80.20±3.13 80.46±2.26 73.14±1.31 88.87±0.51 4.07

MLP - - - 79.55±1.23 65.45±0.99 46.65±0.83 75.94±1.38 74.92±1.39 39.29±2.22 43.57±4.18 35.40±1.38 80.46±6.44 73.78±7.34 85.88±7.78 87.97±1.80 76.68±2.10 87.39±2.18 2.29
MixHop - - - 90.10±5.59 81.70±0.89 50.95±0.71 84.56±1.19 77.66±1.24 41.22±2.66 43.11±4.73 33.59±1.23 72.54±8.98 62.43±9.54 75.88±8.27 87.76±1.94 76.51±1.93 89.42±0.81 1.86
MixHop cos-graph {G′} - 64.75±4.59 51.83±0.53 41.47±2.00 68.78±1.94 71.45±1.38 37.75±2.41 37.79±2.10 31.77±1.75 55.72±6.39 60.27±5.85 70.20±4.60 84.42±1.35 74.20±0.83 88.74±0.29 8.21
MixHop cos-graph {G,G′} θ1 = θ2 54.22±10.75 63.50±0.86 44.21±1.36 74.22±2.21 70.64±1.32 37.16±1.34 39.06±3.08 32.24±1.33 58.16±9.18 66.22±5.59 73.73±7.80 65.14±2.62 68.66±1.24 86.63±0.51 7.54
MixHop cos-graph {G,G′} θ1 ̸= θ2 84.71±1.19 55.41±1.63 43.37±0.75 74.41±1.33 69.63±2.03 37.64±2.19 38.71±4.36 31.73±1.77 61.13±7.96 61.35±7.10 75.29±6.00 85.42±1.21 74.57±1.34 88.16±0.46 6.50
MixHop cos-node {G′} - 60.56±7.08 51.74±0.68 42.71±0.97 74.27±1.84 72.83±1.12 38.35±1.99 38.88±3.00 33.05±1.04 58.42±6.52 60.27±5.98 71.57±4.91 83.22±1.16 74.11±1.12 88.23±0.45 6.71
MixHop cos-node {G,G′} θ1 = θ2 54.22±10.75 63.50±0.86 44.21±1.36 74.22±2.21 70.64±1.32 37.16±1.34 39.06±3.08 32.24±1.33 58.16±9.18 66.22±5.59 73.73±7.80 65.14±2.62 68.66±1.24 86.63±0.51 7.64
MixHop cos-node {G,G′} θ1 ̸= θ2 85.43±0.57 55.95±2.35 44.15±0.59 76.54±0.91 72.03±2.45 37.47±2.07 39.52±3.33 32.50±1.10 60.61±8.73 62.97±6.75 75.10±6.20 85.36±0.89 74.68±1.13 88.18±0.52 4.79
MixHop kNN {G′} - 59.50±6.26 50.39±0.72 42.07±0.93 70.49±1.70 69.57±1.32 38.07±1.72 38.76±2.91 33.23±1.30 59.25±4.49 57.30±6.96 69.22±7.22 83.99±1.28 74.96±1.18 87.99±0.40 8.00
MixHop kNN {G,G′} θ1 = θ2 54.22±10.75 63.50±0.86 44.21±1.36 74.22±2.21 70.64±1.32 37.16±1.34 39.06±3.08 32.24±1.33 58.16±9.18 66.22±5.59 73.73±7.80 65.14±2.62 68.66±1.24 86.63±0.51 7.54
MixHop kNN {G,G′} θ1 ̸= θ2 85.53±0.50 57.48±1.98 43.28±0.68 77.24±1.61 70.34±1.76 38.15±2.01 40.12±3.76 32.30±1.53 60.05±9.45 63.51±7.56 74.90±8.21 85.18±1.26 74.59±1.19 88.20±0.57 4.93

performance remains comparable to that of the GSL-enhanced counterparts. This suggests that GSL1287

does not consistently enhance GNN performance in graph classification. Due to page limitations,1288

we only tested a few methods in this paper. We believe it would be valuable to explore additional1289

state-of-the-art methods, datasets, and theoretical justifications for the effectiveness of GSL in graph1290

classification in future work.1291

F.8 Robustness of GSL1292

We investigate the robustness of GSL with GNNs using 3 types of graph perturbation strategies:1293

• Additive Feature Noise: We randomly inject noise into node features, where the noise1294

follows a normal distribution N(0, σ2). The level of noise is controlled by σ, taking values1295

from the set [0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 10.0].1296

• Edge Addition: We randomly add edges to the graph structure, with the ratio1297

of added edges proportional to the original number of edges, ranging from r ∈1298

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].1299

• Edge Removal: We randomly remove edges from the graph structure, with the ratio of1300

removed edges also proportional to the original number of edges, following the same range1301

as in edge addition.1302

We then measure model performance through accuracy or AUC-ROC in node classification.1303

Figure 12 illustrates the differences in model performance between GNN baselines and their GSL-1304

enhanced counterparts across additional datasets beyond those shown in Figure 4. Generally, the1305

performance of GSL is comparable to or even worse than that of the GNN baselines for all three1306

types of perturbed graphs. Notably, model performance is not consistently stable for structural1307
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Table 7: Performance of GNNs with their counterparts of trainable GSL.
Model GSL Type Mines. Roman. Amazon. Tolokers Questions Cora CiteSeer PubMed Rank

GCN
No GSL 90.07±5.79 81.46±1.25 50.89±1.16 84.61±0.99 77.68±1.10 87.97±1.51 76.75±2.30 89.47±0.64 1.19

Trainable GSL 90.07±0.58 78.76±0.46 50.89±0.65 84.61±0.65 OOM 84.92±1.51 74.89±1.13 88.66±0.45 2.31
Non-trainable GSL 89.17±0.68 72.63±1.45 48.31±0.96 82.91±0.97 75.56±1.05 85.69±1.73 75.49±1.42 88.72±0.71 2.50

SGC
No GSL 83.45±4.47 78.04±0.69 51.38±0.68 84.88±1.13 77.39±1.23 88.10±1.89 77.52±2.20 89.39±0.62 1.19

Trainable GSL 83.45±1.03 74.74±0.57 51.38±0.57 84.88±0.65 OOM 86.99±1.64 75.13±1.26 88.94±0.31 2.31
Non-trainable GSL 79.03±3.76 67.84±1.87 47.93±0.94 78.09±1.84 75.46±1.43 87.47±1.86 76.36±1.27 89.37±0.41 2.50

GraphSAGE
No GSL 90.66±0.88 85.02±0.97 52.93±0.83 83.31±1.12 75.95±1.41 88.13±1.77 76.65±2.00 89.18±0.65 1.31

Trainable GSL 90.66±0.58 82.54±0.60 52.93±0.59 83.31±0.50 OOM 83.48±1.69 74.18±1.02 88.67±0.39 2.44
Non-trainable GSL 90.67±0.66 79.02±1.21 52.10±0.84 82.17±0.89 75.38±0.96 83.60±1.78 74.39±1.35 88.88±0.50 2.25

GAT
No GSL 90.41±1.34 84.51±0.84 52.00±2.84 84.37±0.96 77.78±1.27 88.02±1.92 76.77±2.02 89.21±0.67 1.19

Trainable GSL 90.41±0.61 83.10±0.58 52.10±0.62 84.35±0.56 OOM 86.23±1.58 74.39±1.14 88.13±0.56 2.19
Non-trainable GSL 89.96±0.79 77.23±1.63 49.79±0.72 82.78±0.95 76.67±1.13 86.97±1.75 75.20±1.55 87.97±0.51 2.62

ACMGNN
No GSL 90.56±1.03 84.86±0.73 52.07±1.72 84.41±1.12 77.72±1.59 88.23±1.81 76.63±2.34 89.37±0.56 1.06

Trainable GSL 90.56±0.63 81.90±0.71 51.87±0.44 84.40±0.79 OOM 81.16±1.81 73.91±1.16 88.55±0.39 2.19
Non-trainable GSL 87.46±1.02 74.63±0.76 49.35±0.58 81.63±0.87 73.84±1.41 80.83±1.84 73.43±1.47 88.98±0.47 2.75

MixHop
No GSL 90.10±5.59 81.70±0.89 50.95±0.71 84.56±1.19 77.66±1.24 87.76±1.94 76.51±1.93 89.42±0.81 1.12

Trainable GSL 90.10±0.52 79.07±0.75 50.95±0.71 84.55±0.67 OOM 84.84±1.28 74.45±1.11 88.48±0.62 2.25
Non-trainable GSL 85.43±0.57 55.95±2.35 44.15±0.59 76.54±0.91 72.03±2.45 85.36±0.89 74.68±1.13 88.18±0.52 2.62

Table 8: Ablation study of GSL-enhanced methods for graph classification.

Model Cora PubMed CiteSeer

AUC Time AUC Time Acc Time

ProGNN 76.28±0.52 959s OOM - 67.14±0.23 1776s
ProGNN,w/o. GSL 78.96±0.64 30s 75.80±0.95 326s 67.24±1.48 44s
GEN 79.88 ± 0.93 219s OOM - 66.98 ± 1.28 320s
GEN,w/o. GSL 78.32 ± 1.21 3s 76.94 ± 0.40 47s 64.66 ± 1.46 3s
GRCN 83.04 ± 0.33 56s 74.55 ± 0.96 249s 70.85 ± 0.87 113s
GRCN,w/o. GSL 71.82 ± 0.61 9s 74.18 ± 0.63 28s 58.33 ± 0.17 24s
IDGL 83.32 ± 0.59 144s OOM - 70.57 ± 0.26 330s
IDGL,w/o. GSL 83.32 ± 0.59 129s OOM - 71.12 ± 0.31 401s

perturbations in heterophilous graphs. We attribute this inconsistency to the non-informative nature1308

of the structural information in these graphs, which leads to diminished responses to edge addition or1309

removal. Despite this, GSL still fails to consistently outperform GNN baselines.1310
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Figure 12: Response to feature noise, edge additions, and edge removals in GNN baselines and their
GSL-enhanced counterparts.
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