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Abstract

Utility holds paramount significance in comprehending human decision-making
processes, with the principle of maximum expected utility widely embraced across
various domains, including Preference-based Reinforcement Learning (PbRL). This
approach addresses numerous challenges within Reinforcement Learning (RL),
particularly those concerning the reward function it employs, by adopting the
concept of human utility. By utilizing a utility function that doubles as the reward
function, PbRL empowers agents to make more rational decisions that closely align
with human intentions. Therefore, it becomes imperative to explore methods for
representing and adapting the utility function within PbRL. This paper aims to
introduce two distinct approaches for representing and learning the utility function,
leveraging collected human preferences between trajectory pairs. Additionally, it
delves into an analysis of their respective merits and limitations within practical
scenarios.

1 Introduction

Utility serves as a pivotal factor in human decision-making processes across various academic
domains, spanning philosophy, economics, and game theory. The prevailing hypotheses in these
disciplines often propose that agents opt for rational decisions by aiming to maximize their expected
utility, as articulated in the principle of maximum expected utility [19]. In specific contexts, for
instance when we discuss a plant’s profit or an action’s reward, utility can be explicitly quantified as
cardinal utility, enabling discussions on marginal utility and facilitating the derivation of optimal
choices for agents. However, in the majority of cases, we can only obtain ordinary utility, where
utility is only discernible through preference pairs of two choices, rendering its explicit form elusive.
Consequently, the effective representation and alignment with human utility emerge as crucial
imperatives across numerous research domains.

Reinforcement Learning (RL) has found widespread applications across diverse domains such as
games and robotics [9, 11]. Nevertheless, the success of RL is heavily contingent on the initial
knowledge embedded within the reward function [17]. Reward engineering poses substantial chal-
lenges, including intricate issues like reward hacking [3], reward shaping [12], and infinite rewards
[18]. Furthermore, relying solely on absolute reward values often leads to poor robustness, as minor
alterations in rewards may significantly impact the learned policy, resulting in markedly different
decisions with certain probabilities. In addressing these challenges, Preference-based Reinforcement
Learning (PbRL) emerges as a solution. This paradigm facilitates learning from non-numerical feed-
back, representing human ordinary utility in sequential domains. Its primary objective is to alleviate
the aforementioned complexities, making RL more adaptable to a broader spectrum of tasks and
accessible to non-expert users [17]. By doing so, it endeavors to extend the applicability of RL in
diverse real-world scenarios.

Consequently, it holds paramount significance to delve into discussions regarding viable method-
ologies for representing and fitting utility functions based on human preferences within the domain

1



of PbRL. To facilitate these discussions in subsequent sections, we will commence by providing a
concise overview of the PbRL algorithms’ overall pipeline in Sec. 2. Subsequently, in Sec. 3, we
will present two distinct methods for representing and learning human utility, as well as conduct an
analysis, scrutinizing their respective advantages and limitations.

2 Pipeline of Preference-based Reinforcement Learning

Initially, we offer a succinct introduction to the workflow within PbRL. In addition, this section
includes the establishment of essential mathematical notations, intended for utilization in Sec. 3.

The algorithm comprises a policy network π : S → A, where S represents the state space and A
denotes the action space, and an utility function U as the guiding criterion for policy updates, which
maps a trajectory τ = {(si, ai)}ni=0 ∈ (S ×A)n+1 to a real numerical value. The utility function U
is parameterized by a set of learnable parameters, and undergoes continuous updates throughout the
training process, refining its fit to human preferences with greater precision.

A typical PbRL algorithm conducts the following three steps iteratively to update the policy network
and utility function [6, 17]:

1. The policy π interacts with the environment to produce a set of trajectories {τ1, · · · , τk}.
2. Randomly generate one pair of trajectories (τ1, τ2) as a query of preference. The preference

relation will be evaluated by human comparison. Whether to allow weak preference, i.e.,
allowing the indifference between τ1 and τ2, depends on the actual settings in different tasks.

3. Leverage the preference relation obtained in Step 2 to update the parameters of the utility
function, and utilize this refined utility function that served as the reward function to update
the parameters of π.

In the realm of improving the performance of PbRL, the generation of trajectories and preference
queries offers several beneficial methods. Strategies such as directed homogeneous exploration
[14], heterogeneous exploration [1], and user-guided exploration [20] significantly contribute to
generating more sensible trajectories for enhanced human evaluation. Similarly, for preference query
generation, methods like exhaustive [5], greedy [2], and interleaved approaches [16] exist, each
offering distinct advantages. While these generation methodologies are often crucial in practical
PbRL implementations, we omit these specific details since they are less directly related to the focus
of our discussion. Instead, we will concentrate on elucidating the presentation and learning process
of the utility function in Sec. 3.

3 Methods to Represent and Fit Utility Functions

Next, we introduce two methods for representing and fitting utility functions: Bradley-Terry models
[4] and linear utility functions [17]. Both of these representations offer simplicity in accommodating
human preferences owing to the explicit form of their loss functions. However, they possess distinct
advantages and limitations compared to an alternate method, which will be succinctly analyzed in the
subsequent subsections.

3.1 Bradley-Terry Model

Bradley-Terry Model offers an intuitive method to measure the probability of preference relation
using the utility function. In this model, the predicted probability that τ1 is preferred to τ2, i.e.,
τ1 ≻ τ2, is defined as the softmax of two utility values:

Pr(τ1 ≻ τ2) =
expU(τ1)

expU(τ1) + expU(τ2)
.

In order to more effectively represent the utility, this method decomposes the overall utility on an
entire trajectory to the utility term of the state and action in each step:

U(τ) =

n∑
i=0

Û(si, ai), where τ = {(si, ai)}ni=0.
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In practice, τ will be replaced by its randomly sampled consecutive segment σ = {(s′i, a′i)}
m−1
t=0 with

a fixed length m This substitution aims to enhance human evaluation since the original trajectory
might be excessively long for precise preference assessment. Consequently, the predicted probability
will be

Pr(τ1 ≻ τ2) =
exp

∑m−1
t=0 Û(s

(1)
t , a

(1)
t )

exp
∑m−1

t=0 Û(s
(1)
t , a

(1)
t ) + exp

∑m−1
t=0 Û(s

(2)
t , a

(2)
t )

.

Then, the formulation of the loss function employed for updating the utility function Û : S×A → Ris
defined as follows: For a pair of trajectories (τ1, τ2), an expert is tasked with evaluating their
preference. The outcome is recorded as a probability distribution µ over {1, 2}. If τi ≻ τj then
µi = 1, µj = 0. In cases where the expert expresses indifference between the two trajectories,
i.e., τi ∼ τj , both µ1 and µ2 are assigned a value of 0.5. If the expert deems the trajectories as
incomparable, the pair is skipped and not included in the utility updating process. Utilizing this
ground truth, the loss function is defined as the cross-entropy loss between the model predictions and
the actual human labels:

L(Û) = −

[ ∑
τ1,τ2,µ

µ1 log Pr(τ1 ≻ τ2) + µ2 log Pr(τ2 ≻ τ1)

]
.

This approach offers a concise method to represent and optimize the utility function through the
minimization of cross-entropy loss. It involves the utilization of a neural network to express the
utility of a state-action pair, leveraging the distinctive characteristics of both states and actions.
This approach grants the flexibility to adapt utility representations according to varying state-action
dynamics. However, this flexibility introduces challenges in identifying an appropriate model that
effectively represents utility amidst dynamic scenarios, often entailing a balance between variance
and bias. Empirical findings from experiments [6] highlight the potential improvements achievable
in specific environments using this method. Nevertheless, these improvements exhibit instability,
and the selection of different concrete implementation methods (e.g., variations in query generation
approaches) leads to disparate outcomes across diverse environments. This underscores the necessity
for meticulous human oversight to prevent suboptimal performances when employing this method.

3.2 Linear Utility Function

Many researchers in the field of PbRL have employed linear utility functions for their simplicity
in representation and training. This approach leverages a trajectory feature vector ψ(τ) ∈ Rd to
provide a more comprehensive description of a trajectory. The utility of τ is then represented as
U(τ) = θ⊤ψ(τ), where θ ∈ Rd is a learnable vector. To effectively fit such a linear utility function,
the loss function L can be defined as a weighted sum of the pairwise disagreement loss L:

L(θ, ζ) =
|ζ|∑
i=1

αiL(θ, ζi),

where ζ represents the set of all the preference relations {ζi}|ζ|i=1, and αi signifies the weight or
importance attributed to ζi which varies for different choices of L. Each preference relation ζi
comprises two trajectories τi1, τi2, demonstrating a strong preference relation where τi1 ≻ τi2. This
implies that U(τi1) = θ⊤ψ(τi1) > U(τi2) = θ⊤ψ(τi2). The pairwise disagreement loss is predicated
on the difference in utilities between these trajectories:

d(θ, ζi) = θ⊤(ψ(τi1)− ψ(τi2)).

Numerous options exist for L(θ, ζi). For examples, certain algorithms [13, 15] define L(θ, ζi) as
the hinge loss L(θ, ζi) = max{0, 1− d(θ, ζi)}, a formulation conducive to optimization by Support
Vector Machine (SVM) ranking algorithms [8]. Other approaches model the likelihood function
pθ(ζi) and seek to minimize the negative log-likelihood, i.e., L(θ, ζi) = − log(pθ(ζi)). The selection
of the likelihood function is also flexible. For instance, Kupcsik et al. [10] leveraged cumulative
likelihood:

pθ(ζi) = Φ

(
d(θ, ζi)√

2σp

)
= Φ

(
θ⊤(ψ(τi1)− ψ(τi2))√

2σp

)
,
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where Φ(·) represents the Cumulative distribution function (CDF) of a standard normal distribution,
and σp denotes a noise term that accommodates feedback noise. The pursuit of minimizing the
negative log-likelihood, particularly when adopting the likelihood in a cumulative style, has been
established as a convex optimization task, particularly when utilizing preference feedback exclusively
[7]. Consequently, this approach leads to a unique global minimum, rendering the problem more
deterministic in nature.

This approach offers a more straightforward means of representing human utility. The linear as-
sumption simplifies representation forms and streamlines optimization, often leading to convex
optimization problems when seeking the optimal utility function parameters. Additionally, comput-
ing the utility function is more computationally efficient. However, this simplicity in form might
compromise its generalization capabilities. Models based on linear assumptions may have a substan-
tially smaller VC dimension compared to neural network-based utility representations introduced in
Sec. 3.1. Moreover, designing an effective method to accurately represent a trajectory using a feature
function ψ(·) presents considerable challenges within this framework.

4 Conclusion

In this paper, we present two methods aimed at effectively representing and fitting human utili-
ties within the framework of PbRL: the Bradley-Terry model and the linear utility function. Both
approaches offer intuitive means of creating concise utility functions that align well with human
preferences. The former method, leveraging neural networks, possesses higher potential for gener-
alization but tends to be more challenging to train and doesn’t consistently outperform traditional
RL algorithms. The latter method employs a simpler linear function to capture human preferences
across different trajectories, simplifying both its representation and training processes. However,
this method also exhibits shortcomings such as limited generalization ability and the complexity
of designing features for diverse trajectories. While advancements in PbRL are evident, achieving
definitively satisfactory results remains a distant goal. We remain optimistic that researchers in this
field will eventually uncover a method capable of striking a balance between enhanced generalization
capabilities and mitigated training difficulties.
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