
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAINING WITH DYNAMIC SPARSE HEADS
AS THE KEY TO EFFECTIVE ENSEMBLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Model ensembles have long been a cornerstone for improving generalization and
robustness in deep learning. However, their effectiveness often comes at the
cost of substantial computational overhead. To address this issue, state-of-the-art
methods aim to replicate ensemble-class performance without requiring multiple
independently trained networks. Unfortunately, these algorithms often still demand
considerable compute at inference. In response to these limitations, we introduce
NeuroTrails, a sparse multi-head architecture with dynamically evolving topology.
This unexplored model-agnostic training paradigm improves ensemble performance
while reducing the required parameter count. We analyze the underlying reason
for its effectiveness and observe that the various neural trails induced by dynamic
sparsity attain a Goldilocks zone of prediction diversity. NeuroTrails displays
efficacy with convolutional and transformer-based architectures on vision, language,
and reinforcement learning tasks. Experiments on ResNet-50/ImageNet, LLaMA-
350M/C4, DQN/Atari demonstrate increased performance and stronger robustness
in zero-shot generalization, while requiring significantly fewer resources.

pruned

reactivated
retained

additional head

base network

Ensemblification
Topology & Weight
OptimizationSparsificationInitialization

Figure 1: Illustration of NeuroTrails. We divide a network into a shared backbone Fs and multiple
independent heads Fh. Weights are initially pruned at random to a target sparsity ratio. Finally,
the network topology is repeatedly refined through dynamic sparse training. The resulting sparse
multi-head architecture achieves better performance than a full ensemble while using fewer resources.

1 INTRODUCTION

The idea of combining the outputs of multiple models to produce a stronger predictor has
been around for a long time, with foundational works on stacking linear models (Beyer,
1981; Wolpert, 1992), bagging (Breiman, 1996) and boosting (Freund & Schapire, 1997)
establishing the efficacy of this approach. Following these early developments, ensembling
has proven to be a powerful technique in deep learning to increase accuracy, robustness, and
generalization performance (Hansen & Salamon, 1990; Maclin & Opitz, 2011; Zhou, 2012).

Table 1: NeuroTrails outperforms ensembles
across (self-)supervised learning and RL domains.

ResNet-50/ImageNet LLaMA-350M/C4 DQN/Atari
Method Accuracy (↑) Perplexity (↓) Wins (↑)

Single Network 76.1 22.8 1/6
Full Ensemble 77.5 21.3 0/6
NeuroTrails 78.1 20.7 5/6

A common approach involves training multiple
deep neural networks independently and averag-
ing their predictions at inference (Zhou, 2012).
Random initialization allows ensemble models to
explore various local optima, diversifying their
predictions (Fort et al., 2020). However, the
huge increase in required compute is a significant

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

disadvantage. Multiple works have attempted to reduce this overhead by, for example, factorizing
weight matrices (Wen et al., 2020), network distillation (Hinton et al., 2015), or with a Multi-Input
Multi-Output configuration (MIMO) (Havasi et al., 2021), usually reducing the number of parameters
of an ensemble to be approximately similar to a single model. An alternative approach to reducing
the parameter counts of neural networks lies in the extensive field of pruning (Frankle & Carbin,
2019; Lee et al., 2018; Wang et al., 2020) and dynamic sparse training (Mocanu et al., 2017; Evci
et al., 2020). Various studies leverage these methods to address the complexity challenges associated
with ensembles (Liu et al., 2022; Whitaker & Whitley, 2022).

In this paper, we approach ensembles from the perspective of TreeNet architectures (Lee et al.,
2015). These are structures that share the early layers of neural networks, while retaining as many
heads as a corresponding ensemble. While TreeNet’s shared backbone reduces the parameter count,
the performance may not always match a full ensemble, as the heads often fail to achieve enough
separation in prediction diversity.

To resolve this, we introduce NeuroTrails, a novel training paradigm enabling ensemble models
to share early backbone layers while forming diverse independent trails further in the network, see
Figure 1. We train the multi-head model using dynamic sparse training, which allows NeuroTrails to
adapt its network topology over time. By tuning the backbone length, the resulting model attains a
Goldilocks zone of prediction diversity—neither too little nor too much (Section 5.2). Furthermore,
the sparsity enables parameter reduction, directly translating to inference speedups (Section 5.4).

NeuroTrails is model-agnostic, outperforming ensembles built from both convolutional networks
(ResNet-50, Wide-ResNet28-10, DQN) and transformer models (LLaMA-130M, LLaMA-350M). It
surpasses them on vision, language, and reinforcement learning benchmarks such as Atari, CIFAR-
100, ImageNet, and the Colossal Clean Crawled Corpus, see Table 1. Additionally, NeuroTrails
displays strong zero-shot generalization to out-of-distribution images and downstream language tasks.

In summary, our contributions are:

• We introduce NeuroTrails, a novel training paradigm improving neural network ensembles
through two key mechanisms: shared early layers and dynamic sparse training.

• We validate our model-agnostic approach with extensive vision, language, and reinforcement
learning experiments on common benchmarks, showing consistent improvements.

• We provide deeper analysis on prediction diversity, real-time speedups, and key design
factors—including the optimal splitting point, ensemble size, and sparsity ratio.

2 PRELIMINARIES

2.1 ENSEMBLING

Combining the strength of multiple models in an ensemble is widely studied in the literature, and has
been shown to reduce variance and improve generalization (Hansen & Salamon, 1990). Ensembles
can be used for uncertainty estimation (Lakshminarayanan et al., 2017), leading to more calibrated
probability estimates, covering a larger portion of the problem space, bridging representation gaps
left by individual models (Dietterich, 2000; Zhou, 2012). However, the additional computational
cost in training and inference of neural network ensembles severely limits their scope of application
(Gomes et al., 2017; Dietterich, 2000).

2.2 SPARSITY

The sparsification of neural networks has been a prevalent resolution to ease this computational
burden (LeCun et al., 1989; Frankle & Carbin, 2019; Evci et al., 2020). Sparsifying a network
involves removing a certain fraction of its parameters to create a lightweight model. Let an n× k
dense layer be the weighted digraph G = (V,Edense,θ) where V = Vin ∪ Vout is the set of neurons,
Edense = Vin×Vout the set of potential edges, and θ∈Rnk the corresponding weight matrix. A binary
mask m∈ {0, 1}nk selects the active edge set E = { ei | mi = 1}, producing the sparse weight
matrix θ ⊙m. The sparsity ratio S = 1− ∥m∥0/nk ∈ [0, 1] is the fraction of edges removed.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Pruning. Pruning methods generally involve training a dense network to convergence, then selecting
a mask m with the desired sparsity, classifying these algorithms as dense-to-sparse. The process
ranks each weight θi with an importance score si, keeping the top (1− S)nk entries. Typically used
scores are magnitude smag

i = |θi|, first-order s(1)i = |θigi| with gi = ∂L/∂θi (Mozer & Smolensky,
1988), and second-order s(2)i = 1

2θ
2
iHii with Hii = ∂2L/∂θ2i (LeCun et al., 1989). A short finetuning

pass can restore accuracy after pruning (Han et al., 2015). See Appendix A for further background
and lottery-ticket variants.

Sparse Training. Training neural networks with a sparse structure throughout the entire training
process is the counterpart of pruning, depicting a sparse-to-sparse paradigm. In static sparse training,
the network topology is fixed, making it very sensitive to the initial choice of m. Dynamic sparse
training (DST) solves this issue, enabling the sparse topology to be adaptive. Popular algorithms
that exemplify this methodology are Sparse Evolutionary Training (SET) (Mocanu et al., 2017)
and Rigged Lottery Tickets (RigL) (Evci et al., 2020). SET starts with a sparsely connected neural
network and iteratively updates its structure m over fixed intervals ∆T . At each topology update,
a drop fraction p of the active weights with the smallest magnitude |θi| is pruned, after which an
equal number of inactive weights are regrown uniformly at random. RigL uses gradients of inactive
connections to guide regrowth, always selecting the highest absolute gradients |gi| as most promising.

3 NEUROTRAILS

We introduce NeuroTrails, a novel training paradigm to enhance the performance of neural network
ensembles, while reducing their parameter complexity (see Figure 1). The method is model-agnostic
and can be applied to any architecture. See Appendix D for a concise pseudocode overview.

Architecture split. Let the base network F be a composition of L blocks

F(x;θ) = fL
(
fL−1(· · · f1(x;θ1) · · · ;θL−1);θL

)
where a block is a collection of neural network layers, such as a residual or transformer block. We
choose a split index 1 ≤ ℓ ≤ L and partition into

Fs(x;θs) = fℓ ◦ · · · ◦ f1, Fh(x;θh) = fL ◦ · · · ◦ fℓ+1.

We instantiate M independent heads F (i)
h (i = 1, . . . ,M), each with separately initialized weights

θ
(i)
h and sparse mask m

(i)
h . These unique initial conditions seed distinct “neural trails”—deep,

long-range connectivity paths that give the multi-head network its diversity. The shared trunk Fs

likewise carries a mask ms. We analyze the ideal backbone length ℓ in Section 5.1, and investigate
the effect of different sparsity ratios S in Appendix H. In the remainder of this paper, we will denote
the number of blocks in the backbone and heads by |Fs| = ℓ and |Fh| = L− ℓ, respectively.

Training. On a minibatch (x, y), we compute each head’s logits

ŷ(i) = F (i)
h (Fs(x;θs);θ

(i)
h).

Individual losses Li for each head i are calculated and averaged to form the composite loss,

L(Θ) =
1

M

M∑
i=1

Li

(
ŷ(i), y

)
, Θ = (θs,θ

(1)
h , . . . ,θ

(M)
h),

which is used to update all active parameters through a masked version of stochastic gradient descent
(Robbins & Monro, 1951) or Adam (Kingma & Ba, 2015). Every ∆T steps, each component (shared
or head i), performs a topology update through dynamic sparse training. This process consists of
(1) layerwise pruning of p weights, and (2) reinitializing an equal number p previously inactive
connections, thereby maintaining a constant density ∥m∥0/nk while exploring new sparse trails.

In computer vision experiments, we reactivate weights with RigL (Evci et al., 2020) and prune by
standard magnitude |θi|, as recommended by Nowak et al. (2023). We use the Erdős–Rényi (ER)
approach (Mocanu et al., 2017; Evci et al., 2020) to distribute the global sparsity S into layerwise

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

sparsity ratios. ER has been shown to yield superior performance over simply setting each layer’s
sparsity to S, i.e., uniform sparsity (Liu et al., 2023). In a nutshell, ER assigns higher sparsity ratios
to larger layers. See Appendix A for additional information.

For language modeling, we likewise use ER, but leave attention projections dense while sparsifying
all other layers. Furthermore, we also use RigL for growth, but we prune using soft magnitude, shown
to work well for language models by Zhang et al. (2025). In this procedure, a weight’s absolute value
determines a probability of being pruned, instead of simply pruning the smallest weights.

Dense models tend to overfit once training is prolonged, whereas sparse networks keep improving as
they are still refining both weights and topology (Liu et al., 2021b). According to the schedules of
Evci et al. (2020), we extend the training of sparse variants by at most 1/(1−S), always keeping the
total number of floating-point operations (FLOPs) for training below those of their dense counterparts.
Exact number of epochs—or updates in the case of language modeling—appear in Appendix E.

Inference. During inference, the final prediction is computed through soft voting, averaging logits
across all ensemble members:

ȳ =
1

M

M∑
i=1

F (i)
h (Fs(x;θs);θ

(i)
h).

The shared backbone Fs(x;θs) forward pass naturally only needs to be computed once. NeuroTrails
ensures that while ensemble members share early feature extractors, the heads develop distinct
predictive pathways through sparse connectivity patterns, thereby stimulating diversity.

4 EXPERIMENTS

We compare our methods against a single model, a full ensemble, and various state-of-the-art efficient
ensemble methods in the literature, including MIMO (Havasi et al., 2021), TreeNet (Lee et al.,
2015), Batch Ensemble (Wen et al., 2020), as well as DST and EDST ensembles (Liu et al., 2022).
See Section 6 for detailed descriptions of these baselines. All architectures use the following base
models: Wide-ResNet28-10 on CIFAR-100, ResNet-50 on ImageNet, and LLaMA-130M/350M on
C4. Details on the training regime and hyperparameters are shared in Appendix E.

For computer vision experiments, we report the mean test accuracy, negative log-likelihood (NLL),
and expected calibration error (ECE). In language modeling, our main metric is perplexity on the
C4 validation set. We include the required number of FLOPs for training and inference. Next to the
name of the model, we indicate the ensemble size (or number of heads) M and sparsity ratio S. See
Appendix F for further details on the metrics.

4.1 COMPUTER VISION

As shown in Tables 2 and 3, NeuroTrails demonstrates strong performance both on CIFAR-100 and
ImageNet, while using significantly fewer FLOPs at inference time. We present additional results on
Tiny-ImageNet in Appendix G. The low FLOPs required at inference are crucial, making NeuroTrails
a compelling choice for deployment in resource-constrained environments. See Section 5.4 for the
real-time speedups that are directly available.

1 2 3 4 5 Sketch
Corruption Severity Level

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

ImageNet-C/Sketch
Single Dense
Full Ensemble
NeuroTrails

Figure 2: Zero-shot generalization ability.

Robustness against Corruptions. To test Neuro-
Trails for its zero-shot generalization capability, we
evaluate its robustness on ImageNet-C, a dataset of
corrupted ImageNet samples with various severity
levels (Hendrycks & Dietterich, 2019). Furthermore,
we test on ImageNet-Sketch (Wang et al., 2019), a
collection of black-and-white sketched illustrations,
assessing the model’s ability to extrapolate to out-of-
domain (OOD) data. The results in Figure 2 show
that NeuroTrails consistently outperforms the full
ensemble across all severity levels and tasks, while
requiring a fraction of its total FLOPs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Performance on CIFAR-100 with Wide-ResNet28-10 as the base. NeuroTrails and TreeNet
have 8 blocks in the heads, with 4 remaining blocks in the shared backbone. Results marked with *
are from Havasi et al. (2021), ** from Liu et al. (2022), and *** from Lee & Lee (2024).

Method Accuracy (↑) NLL (↓) ECE (↓) Train FLOPs (↓) Infer. FLOPs (↓)

Single Dense * 79.8 0.875 0.086 3.6e17 10.5e9
MIMO (M = 3) * 82.0 0.690 0.022 1.00× 1.00×
EDST Ensemble (M = 7) (S = 0.9) ** 82.6 0.653 0.036 0.57× 1.17×
DST Ensemble (M = 3) (S = 0.8) ** 83.3 0.623 0.018 1.01× 1.01×
Batch Ensemble (M = 4) * 81.5 0.740 0.056 1.10× 1.10×
NFE (M = 3) *** 83.5 0.658 0.061 1.02× 1.02×
TreeNet (M = 3) 83.2 0.673 0.052 2.91× 2.91×
Full Ensemble (M = 3) 83.3 0.663 0.042 3.00× 3.00×
NeuroTrails (M = 3) (S = 0.8) 83.8 0.681 0.044 0.85× 0.47×
NeuroTrails (M = 5) (S = 0.9) 83.9 0.675 0.041 0.67× 0.37×

Table 3: Performance on ImageNet with ResNet-50 as the baseline model. NeuroTrails and TreeNet
have 10 blocks in their multi-head structure, with 6 remaining blocks in the shared backbone. Results
marked with * are from Havasi et al. (2021) and ** from Liu et al. (2022).

Method Accuracy (↑) NLL (↓) ECE (↓) Train FLOPs (↓) Infer. FLOPs (↓)

Single Dense * 76.1 0.943 0.039 4.8e18 8.2e9
MIMO (M = 2) (ρ = 0.6) * 77.5 0.887 0.037 1.00× 1.00×
EDST Ensemble (M = 4) (S = 0.8) ** 77.7 0.935 0.064 0.87× 1.78×
DST Ensemble (M = 2) (S = 0.8) ** 78.3 0.914 0.060 1.12× 1.12×
Batch Ensemble (M = 4) * 76.7 0.944 0.049 1.10× 1.10×
TreeNet (M = 3) 78.1 0.886 0.053 2.91× 2.91×
Full Ensemble (M = 4) * 77.5 0.877 0.031 4.00× 4.00×
NeuroTrails (M = 3) (S = 0.7) 78.1 0.861 0.038 1.10× 0.67×

4.2 LANGUAGE MODELING

We pretrain variants of LLaMA-130M and LLaMA-350M on the Colossal Clean Crawled Corpus
(Raffel et al., 2020, C4). Motivated by the work of Wu et al. (2025), we use a low sparsity ratio
in these experiments, but maintain the adaptive nature of dynamic sparse training. The results in
Table 4 show that NeuroTrails performs strongly on transformer architectures, achieving the best
validation perplexity. Despite using a lower sparsity ratio in the language domain, our algorithm
yields a lightweight model with lower inference FLOPs than both TreeNet and the full ensemble.

Evaluation on Downstream Tasks. We test our pretrained LLAMA-350M models for zero-shot
generalization to multiple downstream tasks. The results in Table 5 compare model accuracy across
seven benchmarks: MMLU (Hendrycks et al., 2021), BoolQ (Clark et al., 2019), ARC (Clark et al.,
2018), PIQA (Bisk et al., 2019), Hellaswag (Zellers et al., 2019), OpenbookQA (Mihaylov et al.,
2018), and WinoGrande (Sakaguchi et al., 2019). These tasks span multiple domains including
common sense reasoning, multiple choice question answering, and scientific knowledge. NeuroTrails
achieves the highest average accuracy, suggesting that it offers improved generalization and robustness
across a wide range of language tasks.

Table 4: Pretraining performance on the C4 dataset with LLaMA-130M/350M as the baseline model.
NeuroTrails and TreeNet use 2/3 of the transformer blocks in the heads, with 1/3 in the backbone.

Method Perplexity (↓) Training FLOPs (↓) Inference FLOPs (↓)

LLaMA-130M
Single Dense 29.06 3.5e18 2.2e11
TreeNet (M = 3) 26.46 2.21× 2.21×
Full Ensemble (M = 3) 26.88 3.00× 3.00×
NeuroTrails (M = 3) (S = 0.1) 26.00 2.21× 1.99×

LLaMA-350M
Single Dense 22.80 4.2e19 6.9e11
TreeNet (M = 3) 21.06 2.27× 2.27×
Full Ensemble (M = 3) 21.25 3.00× 3.00×
NeuroTrails (M = 3) (S = 0.1) 20.70 2.27× 2.04×

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 5: Zero-shot accuracy (↑) of various LLaMA-350M models across seven downstream tasks.
Method MMLU BoolQ ARC PIQA Hellaswag OBQA WinoGrande Avg.
Single Dense 22.92 58.47 40.24 62.51 28.31 13.60 52.49 39.79
TreeNet (M = 3) 22.97 58.65 40.40 62.95 28.45 15.00 51.30 39.96
Full Ensemble (M = 3) 22.97 58.23 40.36 62.68 28.18 14.40 51.70 39.78
NeuroTrails (M = 3) (S = 0.1) 22.92 60.49 41.71 63.28 28.43 15.80 50.51 40.45

4.3 REINFORCEMENT LEARNING

We extend the applicability of NeuroTrails to the field of reinforcement learning (RL). In this
experiment, we take a standard Deep Q-Network (DQN) (Mnih et al., 2013) and adjust its architecture
to either NeuroTrails, TreeNet, or a Full Ensemble. Similar to earlier experiments, we ensure that
each head is trained independently. However, in RL the data (i.e., experience) needs to be gathered
by the agent itself. We decide to take actions after averaging Q-values across heads, meaning heads
jointly take decisions, but are independently trained on data from the replay buffer. We train for 10M
steps (40M frames) on six Atari environments (Bellemare et al., 2013), and report the interquartile
mean (IQM) over 8 seeds. As shown in Table 6, NeuroTrails performs well accross the environments,
even with a relatively high sparsity level of 80%. See Appendix E for further experimental details.

Table 6: Reinforcement learning return (↑) on six Atari environments with DQN as the base model.
We train for 10M env steps and report IQM ± s.e.m. over 8 seeds, following Agarwal et al. (2021).

Method Asterix BeamRider Breakout Seaquest SpaceInvaders UpNDown

3200.7 4201.7 126.2 605.0 632.0 6202.7Single Dense
±368.9 ±77.1 ±71.7 ±124.4 ±36.1 ±224.3

3010.1 4988.9 268.0 123.5 478.9 7241.6TreeNet (M = 3)
±461.4 ±35.9 ±12.4 ±6.6 ±42.4 ±471.3

4698.9 5072.3 223.8 263.7 539.1 6335.1Full Ensemble (M = 3)
±403.5 ±56.5 ±3.2 ±83.7 ±63.7 ±149.2

6058.5 5742.2 284.6 2331.9 626.7 6583.9NeuroTrails (M = 3) (S = 0.8)
±142.8 ±130.4 ±6.9 ±108.2 ±131.6 ±292.8

5 ANALYSIS

In this section, we explore various design choices for NeuroTrails. All results reported here were
obtained using Wide-ResNet28-10 on CIFAR-100, and present the mean and standard deviation over
3 independent seeds. For additional analysis on the effect of different sparsity ratios, see Appendix H.

5.1 BACKBONE LENGTH

2 4 6 8 10 12
Number of Blocks in Head

80

81

82

83

84

Te
st

 A
cc

ur
ac

y
(%

)

RigL
SET
Pruning
Static Sparsity

Figure 3: NeuroTrails models with varying backbone sizes
and sparsification methods (on CIFAR-100 with Wide-
ResNet28-10). Backbone Length: The most effective
(optimizing accuracy and efficiency) backbone length
appears around 1/3 of the network, meaning 8/12 blocks in
head. Sparsification: RigL and SET demonstrate superior
performance, confirming DST as the optimal approach.

An essential hyperparameter of Neuro-
Trials is the optimal split index l. The
ideal architecture may depend on both
the sparsity ratio S and the number of
heads M ; our analysis focuses on the
configuration with 80% sparsity and 3
heads. In addition, we examine different
sparsification methods on the same plot.

As detailed in Section 3, we split the
architecture between blocks, where each
block in Wide-ResNet28-10 consists of
two convolutional layers, two batch nor-
malization layers and a residual connec-
tion. The base network Wide-ResNet28-
10 has 12 blocks in total, so we can
vary the backbone length across this
depth. The results shown in Figure 3
reveal that performance is maximized
most efficiently with a split point at 8

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

blocks per head. This architecture consists of four shared backbone blocks (|Fs| = 12− 8 = 4) and
eight blocks for each of the independent heads (|Fh| = 8), resulting in approximately one-third of
the network serving as the shared backbone. The different sparsification methods used have varying
performance. However, the dynamic nature of RigL and SET helps them to consistently surpass static
sparse training and standard one-time pruning.

5.2 PREDICTION DIVERSITY

We analyze the effect of different NeuroTrails settings on the prediction diversity and its performance.
Although numerous metrics exist for quantifying diversity (Kuncheva & Whitaker, 2003), we adopt
prediction disagreement (PD), one of the most widely used. PD is defined as the proportion of test
samples where ensemble members produce conflicting predictions (Skalak, 1996).

Analysis of PD patterns in Table 7 reveals a monotonic increase in inter-head disagreement as the
proportion of the NeuroTrails architecture allocated to independent heads grows. This observation
aligns with intuition: As a larger portion of the network is dedicated to the heads, the extra head-only
layers let each branch specialize, so their outputs drift further from the initially shared representation.
A surprising finding emerges from our most accurate configuration with |Fh| = 8: This model
exhibits lower prediction disagreement between heads (14.6) compared to a full ensemble (15.4) and
configurations with more blocks in the heads (up to 16.0), while being superior in performance.

This observation points to the existence of an optimal disagreement threshold, which we refer to
as the PD Goldilocks zone (due to the amount being ‘just right’). Beyond this threshold, excessive
prediction diversity among ensemble members begins to degrade model performance. When heads
make significantly divergent predictions for the same input, they cease to complement each other
and instead compete, negating their contributions. This insight highlights that, while a certain level
of diversity is beneficial in ensemble learning, excessive diversity can be detrimental, see Figure 4.
Achieving the right balance between diversity and consensus is essential to maximize ensemble
performance. For further analysis on this issue, see Appendix J.

0 50 100 150 200 250 300 350 400 450
Epochs

0

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

Accuracy
PD

0

20

40

60

80

Pr
ed

ict
io

n
Di

sa
gr

ee
m

en
t (

%
)

Figure 5: Accuracy and Prediction Dis-
agreement over time for NeuroTrails on
CIFAR-100, displaying an inverse trend.

Prediction Disagreement over time. We observe
in Figure 5 that PD decreases throughout training as
accuracy is growing for NeuroTrails (M=3, S=0.8).
At initialization PD is relatively high (30 ∼ 40%),
continues to decrease before reaching a steady value
of approximately 14.6% at the end of the training.
The relationship between PD and accuracy exhibits
a notable negative correlation, particularly evident at
transition points of the stepwise learning rate decay.
This analysis highlights that while high diversity
between heads does not guarantee better performance,
low diversity similarly limits ensemble benefits.

Table 7: Comparing prediction disagreement (PD) and
test accuracy on CIFAR-100. NeuroTrails achieves
peak accuracy at |Fh| = 8, with lower PD than
configurations using more head blocks. This suggests
that optimal performance lies in a Goldilocks zone
where PD is neither too low nor too high.

Blocks in head PD (%) Accuracy (%)

2 2.9 ± 0.17 80.89 ± 0.01
4 11.2 ± 0.41 82.85 ± 0.09
6 12.4 ± 0.28 82.71 ± 0.14
8 14.6 ± 0.36 83.81 ± 0.10

10 15.3 ± 0.12 83.47 ± 0.16
12 16.0 ± 0.06 83.59 ± 0.08

Full Ensemble 15.4 ± 0.34 83.62 ± 0.10

NeuroTrails (8 blocks)
Predictions: couch, chair, chair
Aggregate: chair

NeuroTrails (12 blocks)
Predictions: chair, bed, table
Aggregate: bed

Ground truth: chair

Figure 4: Illustration of a CIFAR-100
test-set image where too much prediction
diversity between heads degrades perfor-
mance. NeuroTrails with 8 blocks in each
head seems to get the amount of diversity
just right for optimal performance. More
examples appear in Appendix J.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 3 5 10
Ensemble Size

81

82

83

84
Te

st
 A

cc
ur

ac
y

(%
)

Performance ()

Single Dense
EDST
DST
TreeNet
Full Ensemble
NeuroTrails

1 3 5 10
Ensemble Size

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
FL

OP
s

×1011 Efficiency ()
Single Dense
DST/EDST
TreeNet
Full Ensemble
NeuroTrails

Figure 6: Effect of the ensemble size on CIFAR-100 with Wide-ResNet28-10. NeuroTrails achieves
higher accuracy than a full ensemble (left) while consuming only a fraction of the FLOPs (right).

5.3 ENSEMBLE SIZE

We analyze the impact of ensemble size M on performance and efficiency. Single networks and
standard ensembles are fully dense, while NeuroTrails uses 80% sparsity and |Fh| = 8 across all
experiments in this section. The results are summarized in Figure 6. Both traditional ensembles
and NeuroTrails show significant accuracy gains as the ensemble size increases from 1 to 10,
with NeuroTrails consistently outperforming the baselines across all sizes. The most substantial
improvements occur between sizes 1 and 3, followed by diminishing returns.

The trade-offs are further illustrated in the right plot of Figure 6. Due to its high sparsity, NeuroTrails
incurs significantly lower computational costs, scaling more efficiently with ensemble size. These
gains could be further amplified—e.g., a 5-head NeuroTrails can support 90% sparsity without a
drop in performance on CIFAR-100 (see Table 2)—while larger ensembles may enable even greater
sparsity. Exploring such configurations is a promising avenue for future work.

5.4 INFERENCE SPEEDUP

While FLOPs reduction is a widely used proxy for model efficiency, achieving real-world speedups
often hinges on hardware compatibility and software execution paths. Recent hardware advances,
such as the Cerebras CS-2 system, have shown that unstructured sparsity can translate into substantial
runtime performance gains, even on GPU-class accelerators (Cerebras, 2024).

20 30 40 50 60 70
Throughput (images/sec)

80

81

82

83

84

Ac
cu

ra
cy

 (%
)

Single Dense

NeuroTrails (S=0.80)

NeuroTrails (S=0.95)

NeuroTrails (S=0.99)

Full Ensemble

TreeNet
DST Ensemble (S=0.80)

Inference Speedup with DeepSparse

Figure 7: NeuroTrails forms the Pareto front of
efficiency and performance on CPU hardware with
DeepSparse. Measuring Wide-ResNet28-10 on
CIFAR-100 with M=3 for all ensembling methods.

In parallel, software frameworks such
as DeepSparse already deliver substantial
inference-time speedups on commodity CPU
hardware (NeuralMagic, 2021). In our
experiments with CIFAR-100 and M=3, we
observe that NeuroTrails models significantly
outperform full ensembles in terms of practical
efficiency, see Figure 7. For example,
NeuroTrails (S=0.95) achieves a throughput
of 53.16 images per second, similar to a single
dense model, while achieving much higher
accuracy. These results position NeuroTrails on
the Pareto front of efficiency and performance,
giving a compelling solution for deployment
on smartphones or other edge devices, where
resources are constrained and GPUs are
often unavailable. Software frameworks for
unstructured sparsity on GPUs are likewise on
the horizon; details are described in Appendix I.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 8: Comparison between baselines across key ensembling desiderata. NeuroTrails exhibits a
unique combination. Symbols: ✓ = meets criterion, × = does not meet, ∼ = partially.

Method Prediction Diversity Efficient Inference Low Training FLOPs High Performance
Single Dense × ✓ ✓ ×
MIMO ✓ ∼ ✓ ∼
EDST Ensemble ∼ ∼ ✓ ∼
DST Ensemble ✓ ∼ ∼ ∼
TreeNet ∼ ∼ ✓ ∼
Full Ensemble ✓ × × ✓
NeuroTrails ✓ ✓ ✓ ✓

6 RELATED WORK

In deep learning, multiple attempts have been made to achieve ensemble-level performance while
attaining significant reductions in parameter count and FLOPs. In Table 8 we provide a direct
comparison between NeuroTrails and the varying baselines used in our experiments, indicating that
our method presents a novel combination of characteristics. We focus on the most relevant methods
in this section; Appendix A expands on additional topics, including Mixture-of-Experts, the Lottery
Ticket Hypothesis, and further sparse training studies.

Batch Ensemble (Wen et al., 2020) introduced an efficient ensemble approach by decomposing the
ensemble members into a shared matrix and rank-one personalized matrices, achieving near-single
network computational costs. Multi-Input Multi-Output Ensembles (MIMO) (Havasi et al., 2021)
subsequently improved on this method by ensembling only input and output layers, demonstrating
enhanced performance across ensemble architectures. In MIMO, the full original network is always
used as the main structure, while adding heads as additional layers at the input and output ends.
NeuroTrails differs in this regard, as it only splits into heads on the output side. Furthermore,
NeuroTrails has the ability to flexibly configure where our backbone splits into multiple heads, not
needing to keep the full original network intact.

In TreeNets, Lee et al. (2015) propose sharing early layers for ensembles. We enhance this
approach with two major components: (1) by incorporating dynamic sparse training, which fosters
greater diversity and independence among neural pathways throughout the multi-headed network,
significantly reducing the number of parameters and FLOPs required, particularly during inference;
and (2) by splitting the backbone based on layer-based blocks rather than individual layers, preserving
the structural integrity inherent in widely-used architectures such as ResNets (He et al., 2016) and
Transformers (Vaswani et al., 2017).

Liu et al. (2022) use dynamic sparse training for ensembles, but do not use a multi-headed network
structure. In the DST ensemble approach, independent sparse neural networks are trained from
scratch, while their Efficient-DST (EDST) method creates an ensemble from a single network by
using distinct model checkpoints throughout training.

7 CONCLUSION

We propose NeuroTrails, a novel training paradigm that is straightforward to integrate into various
neural network architectures. The methodology splits a network into multiple sparse heads, optimizing
their topology through dynamic sparse training. Extensive experiments demonstrate significant
improvements across supervised, self-supervised, and reinforcement learning settings, alongside
lower inference FLOPs and practical CPU throughput gains. NeuroTrails reveals that ensembling
all layers is not a necessary condition to achieve optimal performance. Early-stage representation
learning is more effectively handled through a single sparse backbone.

Our analysis highlights a Goldilocks zone of prediction disagreement: too little diversity wastes
ensemble benefits, too much disrupts aggregation. The backbone-to-heads splitting point provides
a simple, general knob to repeatedly place models near this sweet spot. More broadly, our results
suggest a reframing of ensembling: share early, grow sparse, and control diversity, serving as core
design principles for achieving scalable accuracy, robustness, and efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work advances core machine learning capabilities by improving the performance and efficiency
of neural networks. While we focus on algorithmic improvements, we acknowledge that, like most
technical advances in ML, this work may have various societal impacts. We encourage thoughtful
consideration of these implications when building upon this research.

By reducing parameter counts and inference FLOPs, NeuroTrails enables more efficient neural
networks that are easily deployable in resource-constrained environments. These improvements
help lower computational overhead and support broader, more sustainable use of AI technologies,
especially as hardware increasingly catches up to exploit the use of unstructured sparsity.

REPRODUCIBILITY

We provide our source code in the Supplementary Material and will make it publicly available at
camera-ready. The algorithm’s implementation is described in Section 3 and Appendix D. Further
training settings, hyperparameters, and model architectures are described in Appendices B and E.

REFERENCES

Taiga Abe, E. Kelly Buchanan, Geoff Pleiss, and John P. Cunningham. Pathologies of Predictive
Diversity in Deep Ensembles. Transactions on Machine Learning Research, 2024. URL: https:
//arxiv.org/abs/2302.00704. (Cited on page 18)

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep Reinforcement Learning at the Edge of the Statistical Precipice. Advances in Neural
Information Processing Systems, 34:29304–29320, 2021. URL: https://arxiv.org/abs/
2108.13264. (Cited on page 6, 25, 28)

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-DQN: Variance Reduction and
Stabilization for Deep Reinforcement Learning. In International Conference on Machine Learning,
pp. 176–185. PMLR, 2017. URL: https://arxiv.org/abs/1611.01929. (Cited on
page 19)

Yue Bai, Huan Wang, Zhiqiang Tao, Kunpeng Li, and Yun Fu. Dual Lottery Ticket Hypothesis.
In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL: https://arxiv.org/abs/2203.04248.
(Cited on page 19)

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep Rewiring: Training
very sparse deep networks. CoRR, abs/1711.05136, 2017. URL: https://arxiv.org/abs/
1711.05136. (Cited on page 20)

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning
Environment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013. URL: https://arxiv.org/abs/1207.4708. (Cited on
page 6, 21)

H. Beyer. Exploratory Data Analysis. Biometrical Journal, 23(4):413–414, January 1981. ISSN
1521-4036. URL: https://doi.org/10.1002/bimj.4710230408. (Cited on page 1)

Sameer Bibikar, Haris Vikalo, Zhangyang Wang, and Xiaohan Chen. Federated Dynamic Sparse
Training: Computing Less, Communicating Less, Yet Learning Better. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(6):6080–6088, 2022. URL: https://arxiv.org/
abs/2112.09824. (Cited on page 20)

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning
about Physical Commonsense in Natural Language. CoRR, abs/1911.11641, 2019. URL: https:
//arxiv.org/abs/1911.11641. (Cited on page 5)

10

https://arxiv.org/abs/2302.00704
https://arxiv.org/abs/2302.00704
https://arxiv.org/abs/2108.13264
https://arxiv.org/abs/2108.13264
https://arxiv.org/abs/1611.01929
https://arxiv.org/abs/2203.04248
https://arxiv.org/abs/1711.05136
https://arxiv.org/abs/1711.05136
https://arxiv.org/abs/1207.4708
https://doi.org/10.1002/bimj.4710230408
https://arxiv.org/abs/2112.09824
https://arxiv.org/abs/2112.09824
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 8 1996. ISSN 0885-6125.
URL: https://link.springer.com/article/10.1007/BF00058655. (Cited on
page 1)

Cerebras. Sparsity Made Easy – Introducing the Cerebras PyTorch Sparsity Library - Cerebras, 2024.
URL: https://www.cerebras.ai/blog/sparsity-made-easy-introducing
-the-cerebras-pytorch-sparsity-library [Accessed: 2025.09.12]. (Cited on page
8, 30)

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized Ensembled Double Q-Learning:
Learning Fast Without a Model. In International Conference on Learning Representations, 2021.
URL: https://arxiv.org/abs/2101.05982. (Cited on page 19)

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions. CoRR,
abs/1905.10044, 2019. URL: https://arxiv.org/abs/1905.10044. (Cited on page 5)

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
Challenge. CoRR, abs/1803.05457, 2018. URL: https://arxiv.org/abs/1803.05457.
(Cited on page 5)

Selima Curci, Decebal Constantin Mocanu, and Mykola Pechenizkiyi. Truly Sparse Neural Networks
at Scale. 2021. URL: https://arxiv.org/abs/2102.01732. (Cited on page 30)

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255. IEEE, 2009. URL: https://ieeexplore.ieee.org/docume
nt/5206848. (Cited on page 21)

Tim Dettmers and Luke Zettlemoyer. Sparse Networks from Scratch: Faster Training without Losing
Performance, 2019. URL: https://arxiv.org/abs/1907.04840. (Cited on page 22)

Thomas G. Dietterich. Ensemble Methods in Machine Learning. In Multiple Classifier Systems, pp.
1–15. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-45014-6. URL: https://link.s
pringer.com/chapter/10.1007/3-540-45014-9_1. (Cited on page 2)

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the Lottery:
Making All Tickets Winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020. URL: https://arxiv.org/abs/1911.11134. (Cited on page 2, 3, 4, 19,
20, 25, 26, 28)

Utku Evci, Yani Ioannou, Cem Keskin, and Yann Dauphin. Gradient flow in sparse Neural Networks
and how Lottery Tickets win. Proc. Conf. AAAI Artif. Intell., 36(6):6577–6586, June 2022. URL:
https://arxiv.org/abs/2010.03533. (Cited on page 20)

William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity. Journal of Machine Learning Research, 2021. URL:
https://arxiv.org/abs/2101.03961. (Cited on page 19)

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep Ensembles: A Loss Landscape
Perspective, 2020. URL: https://arxiv.org/abs/1912.02757. (Cited on page 1)

Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks. International Conference on Learning Representations, 2019. URL: https:
//arxiv.org/abs/1803.03635. (Cited on page 2, 19)

Yoav Freund and Robert E Schapire. A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.
URL: https://www.sciencedirect.com/science/article/pii/S002200009
791504X. (Cited on page 1)

11

https://link.springer.com/article/10.1007/BF00058655
https://www.cerebras.ai/blog/sparsity-made-easy-introducing-the-cerebras-pytorch-sparsity-library
https://www.cerebras.ai/blog/sparsity-made-easy-introducing-the-cerebras-pytorch-sparsity-library
https://arxiv.org/abs/2101.05982
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2102.01732
https://ieeexplore.ieee.org/document/5206848
https://ieeexplore.ieee.org/document/5206848
https://arxiv.org/abs/1907.04840
https://link.springer.com/chapter/10.1007/3-540-45014-9_1
https://link.springer.com/chapter/10.1007/3-540-45014-9_1
https://arxiv.org/abs/1911.11134
https://arxiv.org/abs/2010.03533
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/1912.02757
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S002200009791504X

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error in
Actor-Critic Methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR,
2018. URL: https://arxiv.org/abs/1802.09477. (Cited on page 19)

Heitor Murilo Gomes, Jean Paul Barddal, Fabrício Enembreck, and Albert Bifet. A Survey on
Ensemble Learning for Data Stream Classification. ACM Computing Surveys, 50(2):1–36, March
2017. ISSN 1557-7341. URL: https://dl.acm.org/doi/10.1145/3054925. (Cited
on page 2)

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The State of Sparse Training in
Deep Reinforcement Learning. In International Conference on Machine Learning, pp. 7766–7792.
PMLR, 2022. URL: https://arxiv.org/abs/2206.10369. (Cited on page 20, 25)

Bram Grooten, Ghada Sokar, Shibhansh Dohare, Elena Mocanu, Matthew E. Taylor, Mykola
Pechenizkiy, and Decebal Constantin Mocanu. Automatic Noise Filtering with Dynamic Sparse
Training in Deep Reinforcement Learning. Int. Conf. Autonomous Agents and Multiagent Systems
(AAMAS), 2023. URL: https://arxiv.org/abs/2302.06548. (Cited on page 20, 25)

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On Calibration of Modern Neural
Networks. In International Conference on Machine Learning, pp. 1321–1330. PMLR, 2017. URL:
https://proceedings.mlr.press/v70/guo17a.html. (Cited on page 27)

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In International
Conference on Machine Learning, pp. 1861–1870. PMLR, 2018. URL: https://arxiv.or
g/abs/1801.01290. (Cited on page 19)

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both Weights and Connections for
Efficient Neural Networks. Advances in Neural Information Processing Systems, 2015. URL:
https://arxiv.org/abs/1506.02626. (Cited on page 3)

Lars Kai Hansen and Peter Salamon. Neural Network Ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(10):993–1001, 1990. URL: https://ieeexplore.i
eee.org/document/58871. (Cited on page 1, 2)

Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double
Q-learning. AAAI, 2015. URL: https://arxiv.org/abs/1509.06461. (Cited on page
19)

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., 2001. URL: https://link.springe
r.com/book/10.1007/978-0-387-84858-7. (Cited on page 27)

Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji
Lakshminarayanan, Andrew Mingbo Dai, and Dustin Tran. Training independent subnetworks
for robust prediction. In International Conference on Learning Representations, 2021. URL:
https://arxiv.org/abs/2010.06610. (Cited on page 2, 4, 5, 9, 26)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016. URL: https://arxiv.org/abs/1512.03385. (Cited on page 9, 20)

Dan Hendrycks and Thomas Dietterich. Benchmarking Neural Network Robustness to Common
Corruptions and Perturbations. In International Conference on Learning Representations, 2019.
URL: https://arxiv.org/abs/1903.12261. (Cited on page 4)

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring Massive Multitask Language Understanding. International Conference for
Learning Representations, 2021. URL: https://arxiv.org/abs/2009.03300. (Cited
on page 5)

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. Neural
Information Processing Systems (Deep Learning Workshop), 2015. URL: https://arxiv.or
g/abs/1503.02531. (Cited on page 2)

12

https://arxiv.org/abs/1802.09477
https://dl.acm.org/doi/10.1145/3054925
https://arxiv.org/abs/2206.10369
https://arxiv.org/abs/2302.06548
https://proceedings.mlr.press/v70/guo17a.html
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1506.02626
https://ieeexplore.ieee.org/document/58871
https://ieeexplore.ieee.org/document/58871
https://arxiv.org/abs/1509.06461
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://arxiv.org/abs/2010.06610
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1903.12261
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.
URL: http://jmlr.org/papers/v23/21-1342.html. (Cited on page 20, 21, 22, 25)

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive Mixtures
of Local Experts. Neural Computation, 3(1):79–87, 1991. URL: https://www.cs.toronto
.edu/~fritz/absps/jjnh91.pdf. (Cited on page 19)

Alan Jeffares, Tennison Liu, Jonathan Crabbé, and Mihaela van der Schaar. Joint Training of Deep
Ensembles Fails Due to Learner Collusion. Advances in Neural Information Processing Systems,
2023. URL: https://arxiv.org/abs/2301.11323. (Cited on page 18, 24)

Frederick Jelinek, Robert L. Mercer, Lalit R. Bahl, and James K. Baker. Perplexity-a measure of
the difficulty of speech recognition tasks. In Proceedings of the IEEE Symposium on Speech
Recognition, pp. 393–398, 1977. URL: https://pubs.aip.org/asa/jasa/article/
62/S1/S63/642598/Perplexity-a-measure-of-the-difficulty-of-spe
ech. (Cited on page 27)

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. International
Conference for Learning Representations, 2015. URL: https://arxiv.org/abs/1412.6
980. (Cited on page 3)

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical report,
University of Toronto, 2009. URL: https://www.cs.toronto.edu/~kriz/learning
-features-2009-TR.pdf. (Cited on page 21)

Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of Diversity in Classifier Ensembles
and Their Relationship with the Ensemble Accuracy. Kluwer Academic Publishers, 2003. URL:
https://doi.org/10.1023/A:1022859003006. (Cited on page 7)

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. Advances in Neural Information Processing
Systems, 2017. URL: https://arxiv.org/abs/1612.01474. (Cited on page 2)

Ya Le and Xuan S. Yang. Tiny ImageNet Visual Recognition Challenge, 2015. URL: https:
//cs231n.stanford.edu/reports/2015/pdfs/yle_project.pdf. (Cited on
page 21)

Yann LeCun, John Denker, and Sara Solla. Optimal Brain Damage. In Advances in Neural Information
Processing Systems, 1989. URL: https://proceedings.neurips.cc/paper_files
/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf. (Cited
on page 2, 3)

Hojung Lee and Jong-Seok Lee. Network Fission Ensembles for Low-Cost Self-Ensembles. 2024.
URL: https://arxiv.org/abs/2408.02301. (Cited on page 5, 19, 26, 27, 28)

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. SNIP: Single-shot Network Pruning
based on Connection Sensitivity. International Conference on Learning Representations, 2018.
URL: https://arxiv.org/abs/1810.02340. (Cited on page 2, 19)

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Batra. Why
M Heads are Better than One: Training a Diverse Ensemble of Deep Networks, 2015. URL:
https://arxiv.org/abs/1511.06314. (Cited on page 2, 4, 9)

Pengxiang Li, Lu Yin, and Shiwei Liu. Mix-LN: Unleashing the Power of Deeper Layers by
Combining Pre-LN and Post-LN. International Conference on Learning Representations, 2025.
URL: https://arxiv.org/abs/2412.13795. (Cited on page 22)

Shiwei Liu, Decebal Constantin Mocanu, Amarsagar Reddy Ramapuram Matavalam, Yulong Pei,
and Mykola Pechenizkiy. Sparse evolutionary deep learning with over one million artificial
neurons on commodity hardware. Neural Computing and Applications, 33:2589–2604, 2021a.
URL: https://link.springer.com/article/10.1007/s00521-020-05136-7.
(Cited on page 30)

13

http://jmlr.org/papers/v23/21-1342.html
https://www.cs.toronto.edu/~fritz/absps/jjnh91.pdf
https://www.cs.toronto.edu/~fritz/absps/jjnh91.pdf
https://arxiv.org/abs/2301.11323
https://pubs.aip.org/asa/jasa/article/62/S1/S63/642598/Perplexity-a-measure-of-the-difficulty-of-speech
https://pubs.aip.org/asa/jasa/article/62/S1/S63/642598/Perplexity-a-measure-of-the-difficulty-of-speech
https://pubs.aip.org/asa/jasa/article/62/S1/S63/642598/Perplexity-a-measure-of-the-difficulty-of-speech
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1023/A:1022859003006
https://arxiv.org/abs/1612.01474
https://cs231n.stanford.edu/reports/2015/pdfs/yle_project.pdf
https://cs231n.stanford.edu/reports/2015/pdfs/yle_project.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://arxiv.org/abs/2408.02301
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1511.06314
https://arxiv.org/abs/2412.13795
https://link.springer.com/article/10.1007/s00521-020-05136-7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do We Actually Need
Dense Over-Parameterization? In-Time Over-Parameterization in Sparse Training. International
Conference on Machine Learning, 2021b. URL: https://arxiv.org/abs/2102.02887.
(Cited on page 4, 20, 22, 25)

Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Deep Ensembling with
No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity.
International Conference on Learning Representations, 2022. URL: https://arxiv.org/
abs/2106.14568. (Cited on page 2, 4, 5, 9, 20, 26)

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang,
and Mykola Pechenizkiy. The Unreasonable Effectiveness of Random Pruning: Return of the
Most Naive Baseline for Sparse Training. In Proceedings of the 11th International Conference on
Learning Representations, 2023. URL: https://arxiv.org/abs/2202.02643. (Cited
on page 4, 19)

Richard Maclin and David W. Opitz. Popular Ensemble Methods: An Empirical Study. Journal of
Artificial Intelligence Research, 11:169–198, 2011. URL: https://arxiv.org/abs/1106
.0257. (Cited on page 1)

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a Suit of Armor Conduct
Electricity? A New Dataset for Open Book Question Answering, 2018. URL: https://arxiv.
org/abs/1809.02789. (Cited on page 5)

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. NeurIPS Deep
Learning Workshop, 2013. URL: https://arxiv.org/abs/1312.5602. (Cited on page
6, 20)

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015. URL: https:
//www.nature.com/articles/nature14236. (Cited on page 20)

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable Training of Artificial Neural Networks with Adaptive Sparse
Connectivity inspired by Network Science. Nature communications, 9(1):1–12, 2017. URL:
https://arxiv.org/abs/1707.04780. (Cited on page 2, 3, 19, 20, 25)

Michael C Mozer and Paul Smolensky. Skeletonization: A Technique for Trimming the Fat from
a Network via Relevance Assessment. In D. Touretzky (ed.), Advances in Neural Information
Processing Systems, volume 1. Morgan-Kaufmann, 1988. URL: https://proceedings.ne
urips.cc/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper
.pdf. (Cited on page 3)

Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. Obtaining Well Calibrated
Probabilities Using Bayesian Binning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 29, 2015. URL: https://doi.org/10.1609/aaai.v29i1.9602.
(Cited on page 27)

NeuralMagic. DeepSparse Inference Engine, 2021. URL: https://neuralmagic.com/deep
sparse. (Cited on page 8, 29)

Aleksandra I. Nowak, Bram Grooten, Decebal Constantin Mocanu, and Jacek Tabor. Fantastic
Weights and How to Find Them: Where to Prune in Dynamic Sparse Training. Advances in Neural
Information Processing Systems, 36:55160–55192, 2023. URL: https://arxiv.org/abs/
2306.12230. (Cited on page 3, 20)

Aleksandra I. Nowak, Łukasz Gniecki, Filip Szatkowski, and Jacek Tabor. Sparser, Better, Deeper,
Stronger: Improving Sparse Training with Exact Orthogonal Initialization. In Proc. of the 41st
International Conference on Machine Learning, 2024. URL: https://arxiv.org/abs/24
06.01755. (Cited on page 20)

14

https://arxiv.org/abs/2102.02887
https://arxiv.org/abs/2106.14568
https://arxiv.org/abs/2106.14568
https://arxiv.org/abs/2202.02643
https://arxiv.org/abs/1106.0257
https://arxiv.org/abs/1106.0257
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1312.5602
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
https://arxiv.org/abs/1707.04780
https://proceedings.neurips.cc/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf
https://doi.org/10.1609/aaai.v29i1.9602
https://neuralmagic.com/deepsparse
https://neuralmagic.com/deepsparse
https://arxiv.org/abs/2306.12230
https://arxiv.org/abs/2306.12230
https://arxiv.org/abs/2406.01755
https://arxiv.org/abs/2406.01755

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

NVIDIA. ResNet50 v1.5 for PyTorch, 2024. URL: https://catalog.ngc.nvidia.com/o
rgs/nvidia/resources/resnet_50_v1_5_for_pytorch. (Cited on page 24)

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. (Cited on page 5,
21)

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951. ISSN 00034851. URL: https://www.co
lumbia.edu/~ww2040/8100F16/RM51.pdf. (Cited on page 3)

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An
Adversarial Winograd Schema Challenge at Scale. 2019. URL: http://arxiv.org/abs/
1907.10641. (Cited on page 5)

Erik Schultheis and Rohit Babbar. Towards Memory-Efficient Training for Extremely Large Output
Spaces – Learning with 500k Labels on a Single Commodity GPU. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pp. 689–704. Springer, 2023. URL:
https://arxiv.org/abs/2306.03725. (Cited on page 30)

David B. Skalak. The Sources of Increased Accuracy for Two Proposed Boosting Algorithms. In
AAAI Conference on Artificial Intelligence, 1996. URL: https://citeseerx.ist.psu.
edu/document?doi=fa8115f79d8b951b71c964fc0401d5a716d516ec. (Cited on
page 7, 27)

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone.
Dynamic Sparse Training for Deep Reinforcement Learning. International Joint Conference on
Artificial Intelligence, 2022. URL: https://arxiv.org/abs/2106.04217. (Cited on
page 20)

Yiqin Tan, Pihe Hu, Ling Pan, Jiatai Huang, and Longbo Huang. RLx2: Training a Sparse Deep
Reinforcement Learning Model from Scratch. In The Eleventh International Conference on
Learning Representations, 2023. URL: https://arxiv.org/abs/2205.15043. (Cited
on page 20)

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
Efficient Foundation Language Models. 2023. URL: https://arxiv.org/abs/2302.1
3971. (Cited on page 20)

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. Advances in Neural Information
Processing Systems, 2017. URL: https://arxiv.org/abs/1706.03762. (Cited on page
9)

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking Winning Tickets Before Training by
Preserving Gradient Flow. International Conference on Learning Representations, 2020. URL:
https://arxiv.org/abs/2002.07376. (Cited on page 2)

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning Robust Global
Representations by Penalizing Local Predictive Power. In Neural Information Processing Systems,
2019. URL: https://papers.nips.cc/paper_files/paper/2019/file/3eefc
eb8087e964f89c2d59e8a249915-Paper.pdf. (Cited on page 4)

Andrew M. Webb, Charles Reynolds, Wenlin Chen, Henry Reeve, Dan-Andrei Iliescu, Mikel Luján,
and Gavin Brown. To Ensemble or Not Ensemble: When does End-To-End Training Fail? ECML,
2019. URL https://arxiv.org/abs/1902.04422. (Cited on page 18)

Yeming Wen, Dustin Tran, and Jimmy Ba. BatchEnsemble: An Alternative Approach to Efficient
Ensemble and Lifelong Learning. International Conference on Learning Representations, 2020.
URL: https://arxiv.org/abs/2002.06715. (Cited on page 2, 4, 9)

15

https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch
https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch
https://www.columbia.edu/~ww2040/8100F16/RM51.pdf
https://www.columbia.edu/~ww2040/8100F16/RM51.pdf
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2306.03725
https://citeseerx.ist.psu.edu/document?doi=fa8115f79d8b951b71c964fc0401d5a716d516ec
https://citeseerx.ist.psu.edu/document?doi=fa8115f79d8b951b71c964fc0401d5a716d516ec
https://arxiv.org/abs/2106.04217
https://arxiv.org/abs/2205.15043
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2002.07376
https://papers.nips.cc/paper_files/paper/2019/file/3eefceb8087e964f89c2d59e8a249915-Paper.pdf
https://papers.nips.cc/paper_files/paper/2019/file/3eefceb8087e964f89c2d59e8a249915-Paper.pdf
https://arxiv.org/abs/1902.04422
https://arxiv.org/abs/2002.06715

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Wieger Wesselink, Bram Grooten, Qiao Xiao, Cassio de Campos, and Mykola Pechenizkiy. Nerva: a
Truly Sparse Implementation of Neural Networks. arXiv preprint arXiv:2407.17437, 2024. URL:
https://arxiv.org/abs/2407.17437. (Cited on page 30)

Tim Whitaker and Darrell Whitley. Prune and Tune Ensembles: Low-Cost Ensemble Learning
with Sparse Independent Subnetworks. In AAAI, pp. 8638–8646. AAAI Press, 2022. ISBN
978-1-57735-876-3. URL: https://arxiv.org/abs/2202.11782. (Cited on page 2)

Marco A. Wiering and Hado van Hasselt. Ensemble Algorithms in Reinforcement Learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(4):930–936, 2008. URL:
https://doi.org/10.1109/TSMCB.2008.920231. (Cited on page 19)

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. HuggingFace’s Transformers:
State-of-the-art Natural Language Processing. 2019. URL: https://arxiv.org/abs/19
10.03771. (Cited on page 20, 22)

David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992. URL: https://
www.sciencedirect.com/science/article/abs/pii/S0893608005800231.
(Cited on page 1)

Danny Wood, Tingting Mu, Andrew M. Webb, Henry W. J. Reeve, Mikel Luján, and Gavin Brown.
A Unified Theory of Diversity in Ensemble Learning. Journal of Machine Learning Research,
24(359):1–49, 2023. URL https://www.jmlr.org/papers/v24/23-0041.html.
(Cited on page 18)

Boqian Wu, Qiao Xiao, Shunxin Wang, Nicola Strisciuglio, Mykola Pechenizkiy, Maurice van
Keulen, Decebal Constantin Mocanu, and Elena Mocanu. Dynamic Sparse Training versus Dense
Training: The Unexpected Winner in Image Corruption Robustness. International Conference on
Learning Representations, 2025. URL: https://arxiv.org/abs/2410.03030. (Cited
on page 5)

Murat Onur Yildirim, Elif Ceren Gok Yildirim, Ghada Sokar, Decebal Constantin Mocanu, and
Joaquin Vanschoren. Continual Learning with Dynamic Sparse Training: Exploring Algorithms
for Effective Model Updates. Conference on Parsimony and Learning, 2024. URL: https:
//arxiv.org/abs/2308.14831. (Cited on page 20)

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, et al. Outlier Weighed Layerwise Sparsity (OWL): A Missing
Secret Sauce for Pruning LLMs to High Sparsity. International Conference on Machine Learning,
2023. URL: https://arxiv.org/abs/2310.05175. (Cited on page 19)

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G. Baraniuk,
Zhangyang Wang, and Yingyan Lin. Drawing Early-Bird Tickets: Towards More Efficient
Training of Deep Networks. International Conference on Learning Representations, 2020. URL:
https://arxiv.org/abs/1909.11957. (Cited on page 19)

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
Zhan, Chaoyang He, Qing Jin, Siyue Wang, Minghai Qin, Bin Ren, Yanzhi Wang, Sijia Liu, and
Xue Lin. MEST: Accurate and Fast Memory-Economic Sparse Training Framework on the Edge.
In Advances in Neural Information Processing Systems, 2021. URL: https://arxiv.org/
abs/2110.14032. (Cited on page 20)

Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. CoRR, abs/1605.07146, 2016.
URL: https://arxiv.org/abs/1605.07146. (Cited on page 20)

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
Machine Really Finish Your Sentence? Association for Computational Linguistics, 2019. URL:
https://arxiv.org/abs/1905.07830. (Cited on page 5)

Yingtao Zhang, Jialin Zhao, Wenjing Wu, Ziheng Liao, Umberto Michieli, and Carlo Vittorio
Cannistraci. Brain-inspired sparse training enables Transformers and LLMs to perform as fully
connected. arXiv preprint arXiv:2501.19107, 2025. URL: https://arxiv.org/abs/2501
.19107. (Cited on page 4)

16

https://arxiv.org/abs/2407.17437
https://arxiv.org/abs/2202.11782
https://doi.org/10.1109/TSMCB.2008.920231
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://www.sciencedirect.com/science/article/abs/pii/S0893608005800231
https://www.sciencedirect.com/science/article/abs/pii/S0893608005800231
https://www.jmlr.org/papers/v24/23-0041.html
https://arxiv.org/abs/2410.03030
https://arxiv.org/abs/2308.14831
https://arxiv.org/abs/2308.14831
https://arxiv.org/abs/2310.05175
https://arxiv.org/abs/1909.11957
https://arxiv.org/abs/2110.14032
https://arxiv.org/abs/2110.14032
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2501.19107
https://arxiv.org/abs/2501.19107

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection. International
Conference on Machine Learning, 2024. URL: https://arxiv.org/abs/2403.03507.
(Cited on page 22)

Rui Zheng, Bao Rong, Yuhao Zhou, Di Liang, Sirui Wang, Wei Wu, Tao Gui, Qi Zhang, and Xuanjing
Huang. Robust Lottery Tickets for Pre-trained Language Models. In Association for Computational
Linguistics, pp. 2211–2224, 2022. URL: https://arxiv.org/abs/2211.03013. (Cited
on page 19)

Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC press, 2012.
URL: https://dl.acm.org/doi/10.5555/2381019. (Cited on page 1, 2)

17

https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2211.03013
https://dl.acm.org/doi/10.5555/2381019

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

APPENDIX

TABLE OF CONTENTS

A Extended Background and Related Work 18
Ensembling . 18
Sparsity . 19

B Model Architectures 20
ResNet . 20
LLaMA . 20
DQN . 20

C Datasets and Environments 21
CIFAR-100 . 21
ImageNet . 21
Tiny-ImageNet . 21
Colossal Clean Crawled Corpus (C4) . 21
Arcade Learning Environment . 21

D NeuroTrails Algorithm 21

E Training Settings 22
Code Repositories . 22
Hyperparameters . 22
Training Schedules . 25

F Metrics 27

G Additional Results 28
Parameter-Matched Language Model Study . 28
Tiny-ImageNet . 28

H Sparsity Ratio Analysis 29
Ultra Sparse . 29

I Real-Time Inference Gain 29

J Goldilocks Image Samples 30

A EXTENDED BACKGROUND AND RELATED WORK

A.1 ENSEMBLING

Learning Dynamics. There are multiple works that investigate how training procedures shape
ensemble diversity. Webb et al. (2019) show that fully end-to-end (joint) training of multi-branch
ensembles can fail in over-parameterized regimes, with the optimum often lying between independent
and joint training. Extending this, Jeffares et al. (2023) identify learner collusion under joint
training, where members co-adapt to the shared loss and lose predictive diversity. Abe et al.
(2024) demonstrate that more diversity is not automatically beneficial: certain forms of predictive
disagreement can be pathological, harming accuracy and calibration. Finally, Wood et al. (2023)
provide a formal bias–variance–diversity decomposition across common losses, reframing ensemble
design as managing a three-way trade-off rather than maximizing diversity. These insights align with
our Goldilocks view: avoid collusion from excessive joint training, but also avoid too much diversity
when that becomes counterproductive.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Mixture-of-Experts. Mixture-of-Experts (MoE) models (Jacobs et al., 1991), such as Switch
Transformers (Fedus et al., 2021), also attach multiple expert subnetworks to a shared backbone, but
their goal is conditional computation. A learned router selects one or a few experts per token, so only
a fraction of the heads run on each forward pass; afterward, the router re-weights and merges the
expert outputs. In contrast, NeuroTrails does not need to train a router and simply activates every
sparse head. We do not re-merge intermediate activations and aggregate only at the final logits stage.
The absence of routing simplifies training, eliminates token-level gating hyperparameters, and ensures
deterministic FLOPs, while dynamic sparse heads keep total compute low and enable efficient and
parallelizable inference.

Network Fission Ensembles. Network Fission Ensembles (NFE) propose an ensemble learning
approach that transforms a conventional neural network into a multi-exit structure through weight
pruning and balanced weight grouping (Lee & Lee, 2024). A key advantage of NFE is that it
does not require widening layers; all gains are made through intricate arranging of existing layers
and parameters. NeuroTrails takes a fundamentally different approach. Our method strategically
initializes independent copies of specific network layers into a multi-head structure, followed by
sparsification and dynamic topology update. This approach more closely resembles traditional
ensemble architectures in its behavior.

Ensembling in RL. Within reinforcement learning, ensembling-like approaches have proven to be
a powerful tool to stabilize learning or improve sample-efficiency. In algorithms such as Double-DQN
(Hasselt et al., 2015), SAC (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018) the minimum of
two critic networks is used to prevent overestimation of Q-values. Even more than two critics seems
to work well (Chen et al., 2021), and ensembling the ouput of multiple RL algorithms (Wiering & van
Hasselt, 2008) can be beneficial. Averaging past target networks can help stabilize learning (Anschel
et al., 2017).

A.2 SPARSITY

Lottery Ticket Hypothesis. There exists a family of sparsification methods based on the Lottery
Ticket Hypothesis (Frankle & Carbin, 2019), which stipulates that each randomly initialized network
already contains a subnetwork that can be as accurate as the full network when trained in isolation.
Search of this subnetwork through Iterative Magnitude Pruning (IMP) involves training the dense
network, pruning p fraction of weights based on magnitude, and resetting weights to their initial
states (excluding the already pruned parameters). Subsequent works have refined and significantly
improved this process (Zheng et al., 2022; Bai et al., 2022; You et al., 2020).

Layerwise Sparsity Ratios. The distribution of sparsity over the layers of the network is shown
to be a vital factor for sparse training procedures (Liu et al., 2023; Yin et al., 2023). The main
approaches are:

• Uniform: each layer is assigned the sparsity ratio S, equal to the global sparsity ratio.

• Erdős–Rényi (ER): this approach (Mocanu et al., 2017) assigns higher sparsities to larger
layers. A layer l of size nl−1 × nl receives a sparsity ratio that scales with

1− nl−1 + nl

nl−1 · nl
.

• Erdős–Rényi-Kernel (ERK): this adaptation of ER is specifically designed by Evci et al.
(2020) for convolutional layers, which consists of additional kernel dimensions. The
calculation becomes

1− nl−1 + nl + wl + hl

nl−1 · nl · wl · hl
.

In all experiments we allocate sparsity with ER; for convolutional layers we switch to its ERK variant.
Some other sparse initialization methods involve loss function sensitivity initialization (Lee et al.,
2018) or globally random allocations (Liu et al., 2023).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Static Sparse Training. Static methods train neural networks with a fixed sparse topology
throughout the entire training process. While static sparse training requires fewer FLOPs compared
to dense methods, it suffers from several fundamental limitations. The fixed topology prevents
the network from adapting its structure during training, making the method highly sensitive to its
initialization. This rigidity can create suboptimal paths for gradient flow and potentially limit the
learning capacity of the network (Evci et al., 2022). There are promising directions to overcome these
challenges (Nowak et al., 2024). Despite its limitations, static sparse training remains an important
simple baseline in the sparse training field.

Dynamic Sparse Training. Methods in the domain of DST involve models that begin with sparse
architectures and dynamically adapt their network topology during training. This process enables
the network to explore alternative topologies in an evolutionary manner, gradually discovering more
optimal network structures during training. SET (Mocanu et al., 2017), described in Section 2, has
been successfully applied in different domains, from unsupervised and supervised learning (Nowak
et al., 2023; Liu et al., 2021b; 2022; Yuan et al., 2021), to reinforcement learning (Grooten et al.,
2023; Sokar et al., 2022) and continual learning (Yildirim et al., 2024). RigL (Evci et al., 2020) has
also been widely adopted in research, having been applied in supervised learning (Nowak et al., 2023;
Evci et al., 2022), reinforcement learning (Graesser et al., 2022; Tan et al., 2023), federated learning
(Bibikar et al., 2022), and others. In a related line of work, Bellec et al. (2017) proposed DeepR, a
similar approach where weights are pruned whenever the optimizer flips their sign.

B MODEL ARCHITECTURES

B.1 RESNET

ResNet-50 is a 50-layer deep convolutional neural network that introduced the concept of residual
learning to address the vanishing gradient problem in deep networks (He et al., 2016). It uses skip
connections (or shortcuts) to bypass one or more layers, enabling the training of very deep networks
by allowing gradients to flow directly through these connections. Its architecture consists of a series
of residual blocks, each containing multiple convolutional layers and batch normalization layers.

Wide Residual Networks, such as Wide-ResNet28-10, are an extension of the original ResNets
that focus on increasing the width (number of filters) of residual layers rather than their depth
(Zagoruyko & Komodakis, 2016). This approach has been shown to improve performance while
reducing computational complexity compared to very deep ResNets. Wide-ResNet achieves this by
using fewer layers but with more convolutional filters per layer, which enhances feature learning and
generalization.

B.2 LLAMA

LLaMA-130M and LLaMA-350M are members of the decoder-only LLaMA family introduced by
Touvron et al. (2023). The smaller variant comprises 12 transformer blocks with 768-dimensional
hidden states and 12 attention heads, while the larger consists of 24 transformer blocks with
1024-dimensional hidden states and 16 attention heads. Both models retain the architectural
choices of their larger counterparts, with LLaMA-130M fitting on commodity GPUs and achieving
competitive perplexity for its size, serving as a strong lightweight backbone for further language-
model experiments. LLaMA-350M offers greater capacity while maintaining the core architectural
principles of the series. Our implementation of both models employs the open-source HuggingFace
reproduction of LLaMA (Wolf et al., 2019).

B.3 DQN

Our Atari agent uses a standard convolutional Deep Q-Network (DQN) (Mnih et al., 2013; 2015)
as provided within CleanRL (Huang et al., 2022). The network takes a stack of 4 grayscale 84×84
frames and applies three conv blocks (channels 32, kernel 8 × 8, stride 4; 64, 4 × 4, 2; 64, 3 × 3,
1) with ReLU, followed by a flatten layer (3136 units) and two fully connected layers (1024 units),
ending in a linear output of |A| Q-values. For ensembles, we instantiate either independent full
networks or split the model after a shared convolutional backbone into M heads.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C DATASETS AND ENVIRONMENTS

C.1 CIFAR-100

CIFAR-100 is an image classification dataset consisting of 60,000 color images sized 32×32 pixels,
divided into 100 classes with 600 images per class. The dataset is split into 50,000 training and
10,000 test images (Krizhevsky, 2009).

License: CIFAR-100 is available for use in academic research. No official license was specified by
the original authors.

C.2 IMAGENET

ImageNet is a large-scale, high-resolution image database designed for research in visual object
recognition. It contains over 14 million annotated images. The dataset has been foundational for
advances in deep learning and computer vision, particularly through the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), which includes 1,281,167 training images, 50,000 validation
images, and 100,000 test images across 1,000 object categories (Deng et al., 2009).

License: ImageNet is available for non-commercial research and educational purposes under a
custom non-commercial license. Access requires agreement to ImageNet terms of use, which restrict
commercial exploitation.

C.3 TINY-IMAGENET

Tiny-ImageNet is a subset of the full ImageNet dataset, containing 100,000 images of size 64×64
pixels, labeled across 200 classes. Each class has 500 training images, 50 validation images, and 50
test images, making it suitable for experiments requiring a smaller-scale version of ImageNet (Le &
Yang, 2015; Deng et al., 2009).

License: Tiny-ImageNet is distributed for academic and research purposes only, under the same
non-commercial terms as ImageNet.

C.4 COLOSSAL CLEAN CRAWLED CORPUS (C4)

C4 is a large-scale text dataset constructed by cleaning and filtering web-crawled data from Common
Crawl. It contains hundreds of gigabytes of English text, designed for training large language models
and other NLP tasks. The dataset is filtered to remove low-quality and non-English content (Raffel
et al., 2020).

License: The C4 dataset is used under the Open Data Commons Attribution License (ODC-By) v1.0,
which allows free sharing, creation, and adaptation of the database provided proper attribution is
maintained.

C.5 ARCADE LEARNING ENVIRONMENT

The Arcade Learning Environment (ALE) provides a unified interface to dozens of Atari 2600 games
for benchmarking reinforcement learning agents (Bellemare et al., 2013). In our experiments we use
the NoFrameskip-v4 gymnasium bindings with the standard DQN preprocessing within CleanRL
Huang et al. (2022): no-op starts, action repeat (frameskip) of 4, grayscale, 84×84 resizing, and
4-frame stacking.

License: The ALE is available for academic research under the GNU General Public License.

D NEUROTRAILS ALGORITHM

The NeuroTrails algorithm, detailed in Algorithm 1, aims to efficiently enhance the performance of
neural network ensembles while significantly reducing their parameter footprint. The approach splits
a given base architecture into a shared backbone and multiple sparse heads, initializing each part with
a target sparsity ratio. Throughout training, each head independently processes shared representations
from the backbone, enabling diverse predictions while leveraging common representation learning.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 1 NeuroTrails

1: Input: Base architecture F , num. heads M , splitting point ℓ, sparsity ratio S, drop fraction p.
2:
3: Initialization Phase:
4: Split F at block ℓ into shared blocks Fs and independent heads Fh

5: Initialize F to sparsity ratio S
6:
7: Training Phase:
8: for each training iteration do
9: hs = Fs(x)

10: for each head i ∈ {1, . . . ,M} do
11: ŷi = F i

h(hs)
12: Li = L(ŷi, y)
13: end for
14: L = 1

M

∑M
i=1 Li

15: θe ← θe − η∇θeL
16: if current iteration %∆T = 0 then
17: Prune p fraction of parameters layerwise
18: Grow p fraction of parameters layerwise
19: end if
20: end for
21:
22: Inference Phase:
23: Compute NeuroTrails prediction ŷ by averaging the class probabilities predicted by each head j:

ŷ = argmax
i

(1

M

M∑
j=1

F j
h(Fs(x))

)
i

Periodically (every ∆T weight updates) the algorithm adjusts the network’s topology through pruning
and growing of parameters, controlled by a drop fraction p. During inference, predictions from
individual heads are combined by averaging their output probabilities, resulting in a final aggregated
prediction that leverages the strengths of each sparse pathway. See also Section 3 for further details.

E TRAINING SETTINGS

E.1 CODE REPOSITORIES

Vision. For computer vision experiments, we build upon the codebases from Liu et al. (2021b) and
Dettmers & Zettlemoyer (2019), implementing our method throughout their existing sparse training
library. The codebase from Dettmers & Zettlemoyer (2019) is released under the MIT license.

Language. For language experiments, we use the codebases from Li et al. (2025) and Zhao et al.
(2024) as a foundation, implementing NeuroTrails in conjunction with the LLaMA architectures
based on HuggingFace’s reproduction (Wolf et al., 2019). The codebase from Zhao et al. (2024) is
licensed under Apache 2.0.

RL. In the reinforcement learning setup we build upon the CleanRL codebase (Huang et al., 2022),
adjusting the DQN architecture for NeuroTrails, TreeNet, and the Full Ensemble, as well as enabling
independent training of these models. CleanRL is released under the MIT license.

E.2 HYPERPARAMETERS

We describe the hyperparameters for our experiments. Tables 9 to 11 present the settings of our
computer vision, language modeling and reinforcement learning experiments, respectively.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 9: Hyperparameters and settings for computer vision experiments.

Parameter Value

Shared by all experiments
optimizer SGD with momentum
learning rate schedule 0.1× step decay at 25%, 50%, 75% of training
ensemble aggregation soft voting (mean of probabilities)

CIFAR-100 and Tiny-ImageNet (all baselines)
model Wide-ResNet28-10
momentum 0.9
initial learning rate 0.1
batch size 128
weight decay (L2) 5 · 10−4

training device CIFAR-100 1 × NVIDIA V100 (16GB memory)
training device Tiny-ImageNet 4 × NVIDIA A100 (40GB memory)
approx. training time 6.25h (CIFAR-100), 5.5h (Tiny-ImageNet)

ImageNet (all baselines)
model ResNet-50
momentum 0.875
initial learning rate 0.256
batch size 256
weight decay (L2) 3.05 · 10−5

training device 4 × NVIDIA A100 (40GB memory)
approx. training time 53h

Static Sparse baseline
sparsity ratio varying (Section 5.1)
sparsity initialization ER
topology update interval (∆T) ∞ (no change)

NeuroTrails
sparsity ratio varying (Section 4)
sparsity initialization ER
DST drop fraction 0.5 · cosine_decay(t)
DST grow method gradient (RigL)
DST prune method magnitude-based
topology update interval (∆T) 100 (CIFAR-100), 1000 (ImageNet)
blocks in head 8 (CIFAR-100), 10 (ImageNet)

Pruning baseline
sparsity ratio varying (Section 5.1)
pruning method global magnitude
pre-pruning phase 250 epochs
fine-tuning phase 250 epochs

TreeNet
blocks in head 8 (CIFAR-100), 10 (ImageNet)

Full Ensemble
training paradigm Independent training

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Computer Vision. For CIFAR-100 and Tiny-ImageNet we train Wide-ResNet28-10 using SGD
with momentum 0.9 and an initial learning rate of 0.1. The batch size is 128, the L2 regularization
constant is set to 0.0005. For ImageNet, we follow the standard training regime (NVIDIA, 2024).
We train ResNet-50 using SGD with a momentum of 0.875 and an initial learning rate of 0.256. The
batch size is set to 256. We use L2 regularization with a fixed constant of 3.05e-05. For all computer
vision datasets, the learning rate decreases by a factor of 10 after 25%, 50%, and 75% of training.

DST hyperparameters are set as follows: pruning and regrowing 50% of the available parameters at
the beginning, with a cosine decay to 0 by the end of training. The ∆T topology update interval is
set to 100 for CIFAR-100 and 1000 for ImageNet.

For the static sparse baseline of Section 5.1, we instantiate the model with the desired sparsity ratio at
the start and subsequently train without adjusting the topology. For the pruning baseline, we employ
global magnitude pruning to achieve the target sparsity ratio after the first 50% of training. After
reaching the desired sparsity, we fine-tune the model for the remaining duration without making any
further changes to its topology.

For ensemble training, we use the independent training paradigm, shown to work well by Jeffares
et al. (2023), and train networks separately. At test time, we gather each network’s predictions for the
batch and average their raw probabilities, i.e., soft voting.

Table 10: Hyperparameters and settings for language modeling experiments.

Parameter Value

Shared by all experiments
model size 130M, 350M
optimizer Adam
learning rate 1.5e− 3 for 130M, 5e− 4 for 350M
learning rate schedule cosine decay (min LR: 0.1×base) + warmup
learning rate warmup 10% of update steps
weight decay 0 (no decay)
ensemble aggregation soft voting (mean of probabilities)
batch size 512
vocabulary size 32,000
max sequence length 1024
data type bfloat16
training device 4 × NVIDIA A100 (40GB memory)
approx. training time 7.5h (130M), 40h (350M)

NeuroTrails
sparsity ratio 0.1
sparsity initialization ER with attention projections dense
DST drop fraction 0.5 · cosine_decay(t)
DST grow method gradient (RigL)
DST prune method soft magnitude
soft magnitude temperature 3.0
topology update interval (∆T) 50 steps
blocks in head 8 (130M), 16 (350M)

TreeNet
blocks in head 8 (130M), 16 (350M)

Full Ensemble
training paradigm Independent training

Language Modeling. For our language modeling experiments on the C4 corpus with LLaMA-
130M/350M, we present the hyperparameters in Table 10. We train with Adam using a learning rate
cosine-decay schedule (minimum LR set to 10% of the base) and a linear warmup over the first 10%
of update steps. The batch size is 512 tokens, and we run on four A100 GPUs.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 11: Hyperparameters and settings for reinforcement learning experiments.

Parameter Value

Shared by all experiments
optimizer Adam
learning rate 1e−4
discount γ 0.99
batch size 32
replay buffer 1,000,000 transitions
learning starts 80,000 steps
train frequency every 4 env steps
target net update period every 1,000 env steps
target net update rate τ 1.0 (hard copy)
ϵ-greedy linear decay 1.0→ 0.01 over 10% of total steps

NeuroTrails
sparsity ratio 0.8
sparsity initialization ERK
DST drop fraction 0.5 · cosine_decay(t)
DST grow method random (SET)
DST prune method magnitude
topology update interval (∆T) 2000 grad steps
blocks in head 4

TreeNet
blocks in head 4

Our NeuroTrails models employ dynamic sparse training: at every ∆T = 50 steps we drop and
regrow a fraction p of the weights, decaying the drop fraction to zero by the end of training. We
allocate 8 or 16 transformer blocks per head, matching the approximate 1/3 shared-backbone setting
used in our vision experiments. This configuration lets each head discover and adapt its own topology
while respecting the overall FLOP budget.

As a reference, we split the TreeNet baseline likewise into a shared backbone and 8 or 16-block heads.
For the dense-ensemble baseline, we train three independent LLaMA-130M models from scratch
under the same schedule and aggregate their outputs via the same soft-voting scheme.

Experiments on C4, ImageNet, and Tiny-ImageNet have been carried out using distributed training
on 4 NVIDIA A100 GPUs, while for CIFAR-100 training was done on a single NVIDIA V100.

Reinforcement Learning. We train for 10M steps (40M frames) on the Atari environments:
Asterix, BeamRider, Breakout, Seaquest, SpaceInvaders, and UpNDown. Every
100K steps we evaluate the model on 10 episodes. We average these evaluation returns over the last
10% of training (100 eval episodes in total) for more reliable results, following (Graesser et al., 2022;
Grooten et al., 2023). We take the interquartile mean to be more robust against outliers, as proposed
by Agarwal et al. (2021).We train with standard Atari preprocessing (No-op starts, frameskip 4,
reward clipping) as is default in CleanRL (Huang et al., 2022). Hyperparameters are presented in
Table 11. As mentioned in Section 4.3, we train the heads independently, but sample actions in
the environment jointly as we aim to collect the best data. We find that training independently is
crucial, but joint or independent sampling does not make a large difference. For NeuroTrails and
TreeNet we split the backbone after the three convolutional layers (see Appendix B). NeuroTrails
adjusts the sparse topology after every ∆T = 2000 weight updates, with an initial drop fraction
p = 0.5 annealed through cosine decay. We simply use magnitude pruning and random growth, as
SET (Mocanu et al., 2017) has been shown to work just as well as RigL (Evci et al., 2020) in RL
(Graesser et al., 2022).

E.3 TRAINING SCHEDULES

Building on the observation that dense models tend to overfit once training is prolonged, whereas
sparse networks keep improving as they are still refining both weights and topology (Liu et al.,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

2021b), we follow the recipe of Evci et al. (2020) and extend the training of sparse variants by at most
1/(1−S), so that its total FLOPs never exceeds that of the dense counterpart. Exact training schedules
appear in Tables 12 to 15.

Table 12: Training cost comparison on CIFAR-100 (Wide-ResNet28-10). Baselines marked with *
are from Havasi et al. (2021), ** from Liu et al. (2022), and *** from Lee & Lee (2024).

Method Train Epochs Train FLOPs (↓)

Single Dense * 250 3.6e17
MIMO (M = 3) * 250 1.00×
EDST Ensemble (M = 7) (S = 0.9) ** 850 0.57×
DST Ensemble (M = 3) (S = 0.8) ** 3×250 1.01×
Batch Ensemble (M = 4) * 250 1.10×
NFE (M = 3) *** 200 1.02×
TreeNet (M = 3) 250 2.91×
Full Ensemble (M = 3) 3×250 3.00×
NeuroTrails (M = 3) (S = 0.8) 450 0.85×
NeuroTrails (M = 5) (S = 0.9) 450 0.67×

In Table 12 we report the number of epochs and relative training FLOPs on CIFAR-100 with Wide-
ResNet28-10. The dense model runs for 250 epochs (3.6e17 FLOPs). Sparse methods such as EDST
(S = 0.9) and DST (S = 0.8) run up to 850 or 750 total epochs—to compensate for their reduced
per-epoch cost, while other baselines (MIMO, BatchEnsemble, NFE, TreeNet) stay close to 250.
NeuroTrails is trained for 450 epochs, calibrated to maintain computational efficiency significantly
below a single dense network, as measured by total training FLOPs.

Table 13 shows the analogous schedule on ImageNet (ResNet-50). The single-model baseline uses
90 epochs (4.8e18 FLOPs); EDST and DST extend to 310 and 400 total epochs respectively, whereas
NeuroTrails (S = 0.7) runs for 270 epochs—staying close to a single dense model’s compute budget.
Notably, most baselines tune their schedules so that total training FLOPs remain close to the 1.0×
dense reference. We recognize that reported training lengths vary substantially across papers; to
ensure fidelity to each comparison, we simply report each method’s published schedule when taking
values from the original works. We encourage the ensembling field to always publish the full training
schedules of all baselines and adopt more consistent training protocols, to enable clearer comparisons.

Table 13: Training cost comparison on ImageNet (ResNet-50). Baselines marked with * are from
Havasi et al. (2021), ** from Liu et al. (2022).

Method Train Epochs Train FLOPs (↓)

Single Dense * 90 4.8e18
MIMO (M = 2) (ρ = 0.6) * 150 1.00×
EDST Ensemble (M = 4) (S = 0.8) ** 310 0.87×
DST Ensemble (M = 2) (S = 0.8) ** 2×200 1.12×
Batch Ensemble (M = 4) * 4×135 1.10×
TreeNet (M = 3) 180 2.91×
Full Ensemble (M = 4) * 4×90 4.00×
NeuroTrails (M = 3) (S = 0.7) 270 1.10×

For C4 pretraining with LLaMA models, Table 14 compares the number of weight-update steps, total
tokens seen, and training FLOPs across different methods. The dense baseline for LLaMA-130M
performs 10,000 updates (1.0B tokens), while NeuroTrails (S = 0.1) scales to 11,111 steps (1.1B
tokens), precisely matching TreeNet’s training FLOPs via the 1/(1−S) rule. A similar scaling applies
to the larger LLaMA-350M model, where NeuroTrails with sparsity 0.1 takes 44,444 steps (4.4B
tokens), again equating to the training FLOPs of the dense counterpart.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 14: Compute comparison on C4 pretraining (LLaMA-130M/350M).

Method Train Updates Tokens seen Training FLOPs (↓)

LLaMA-130M
Single Dense 10,000 1.0B 3.5e18
TreeNet (M = 3) 10,000 1.0B 2.21×
Full Ensemble (M = 3) 3×10,000 1.0B 3.00×
NeuroTrails (M = 3) (S = 0.1) 11,111 1.1B 2.21×

LLaMA-350M
Single Dense 40,000 4.0B 3.5e18
TreeNet (M = 3) 40,000 4.0B 2.27×
Full Ensemble (M = 3) 3×40,000 4.0B 3.00×
NeuroTrails (M = 3) (S = 0.1) 44,444 4.4B 2.27×

Finally, Table 15 gives epochs and FLOPs on Tiny-ImageNet (see results in Appendix G). The
baseline is 100 epochs (3.2 e17 FLOPs), NFE variants pretrained on CIFAR-100 add a 200-epoch
warm-up, and NeuroTrails heads (S = 0.8, 0.9) run 200 epochs—staying well below the 1/(1−S)

rule—achieving 0.74× training FLOPs compared to a single dense model.

Table 15: Training cost comparison on Tiny-ImageNet (Wide-ResNet28-10). Baselines marked with
* are from Lee & Lee (2024).

Method Train Epochs Train FLOPs (↓)

Single Dense 100 3.2e17
NFE (M = 2) (S = 0.25) (pretrained on CIFAR-100) * 100(+200 pre) 0.76×
NFE (M = 3) (S = 0) (pretrained on CIFAR-100) * 100(+200 pre) 1.01×
TreeNet (M = 3) 100 2.91×
Full Ensemble (M = 3) 3×100 3.00×
NeuroTrails (M = 3) (S = 0.8) 200 0.94×
NeuroTrails (M = 5) (S = 0.9) 200 0.74×

F METRICS

Test Accuracy quantifies the model’s generalization capability by measuring the proportion of
correctly classified samples in a held-out test set (Hastie et al., 2001). Higher test accuracy indicates
better classification performance. This fundamental metric serves as the primary indicator of
classification quality, though it should be interpreted in conjunction with uncertainty-aware metrics.

Negative Log-Likelihood (NLL) (Hastie et al., 2001) evaluates the quality of probabilistic predictions
by computing the negative logarithm of predicted probability assigned to the true class, where lower
values indicate superior uncertainty estimation.

Expected Calibration Error (ECE) (Guo et al., 2017; Naeini et al., 2015) measures the model
calibration by calculating the discrepancy between the prediction confidence and the empirical
accuracy between different confidence bins. Lower ECE indicates better calibration, meaning the
model confidence estimates align more closely with actual accuracy. We used 15 bins to estimate this
metric, following (Guo et al., 2017).

Perplexity is a statistical measure used to evaluate how well a probabilistic model predicts a sample,
commonly applied in natural language processing to assess language models (Jelinek et al., 1977). It
quantifies the model’s uncertainty when predicting the next token in a sequence by calculating the
exponential of the average negative log-likelihood, with lower perplexity values indicating higher
quality models.

Prediction Disagreement quantifies the extent to which multiple models produce differing outputs
for the same input (Skalak, 1996). Higher disagreement often indicates areas of uncertainty, offering
insight into decision boundaries and aiding in the detection of out-of-distribution samples.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Throughput for a machine learning model is defined as the number of data samples processed by the
model per unit time, typically measured in items or images per second.

Latency for a machine learning model is the time taken for the model to process a data sample from
input to output, usually measured in milliseconds or seconds per batch.

FLOPs refers to the number of floating-point operations a model performs during training or inference.
It serves as a measure of the model’s computational complexity and efficiency. We adopt the FLOPs
calculation methodology from Evci et al. (2020): For a given dense architecture with forward pass
FLOPs fD and a sparse version with FLOPs fS , the total FLOPs required for one update step scale
with 3 · fS and 3 · fD FLOPs, respectively. This scaling arises because training consists of two main
steps: (1) a forward pass, where activations are computed and stored layer-by-layer to evaluate the
loss, and (2) a backward pass, where the error signal is back-propagated to compute gradients. The
backward pass is approximately twice as expensive as the forward pass, as each layer must compute
gradients with respect to both its parameters and its input activations. For further details we refer to
Appendix H of the RigL paper (Evci et al., 2020).

Interquartile Mean (IQM) is a robust summary statistic that averages only the middle 50% of scores,
i.e., after trimming the lowest and highest quartiles, and is recommended for RL reporting due to its
reduced sensitivity to outliers and occasional run failures (Agarwal et al., 2021). We report IQM with
the standard error of the mean (s.e.m.), where s.e.m. is computed over the retained middle 50% only.

G ADDITIONAL RESULTS

G.1 PARAMETER-MATCHED LANGUAGE MODEL STUDY

To isolate the effect of sparsity + multi-heads from sheer model size, we build a parameter-matched
NeuroTrails variant whose total parameter budget is essentially identical to that of a larger dense
model. We compare a single dense LLaMA-250M model with a NeuroTrails variant of LLaMA-130M
which we designed to match the number of parameters. It uses 3 heads, with just 7 blocks per head
(instead of our default 8), and a sparsity ratio of 13%. We train both for exactly the same number
of update steps (10k), meaning both models see approximately 1B training tokens. As shown in
Table 16, NeuroTrails delivers a modestly lower validation perplexity (26.48 vs. 26.59), despite
having slightly fewer parameters than the 250M dense baseline.

Table 16: Size–efficiency comparison: a 250M-parameter single dense model versus a NeuroTrails
variant with essentially the same parameter budget.

Method Perplexity (↓) Parameters (↓) Train FLOPs (↓) Infer. FLOPs (↓)
Single Dense 26.59 247.37M 7.0e18 4.56e11
NeuroTrails (M = 3,S = 0.13) 26.48 245.66M 1.0× 1.0×

G.2 TINY-IMAGENET

In this section, we present results from training our model on the Tiny-ImageNet benchmark in
Table 17. NeuroTrails outperforms the baselines trained from scratch at a competitive accuracy.
Furthermore, NeuroTrails requires significantly fewer inference FLOPs than any other model, using
only 34% of the budget of a single dense model.

Table 17: Performance on Tiny-ImageNet (Wide-ResNet28-10). NeuroTrails and TreeNet have 8
blocks in the heads, with 4 in the backbone. Results marked with * are from Lee & Lee (2024), who
did not report NLL and ECE, and used a pretrained model instead of training from scratch.

Method Accuracy (↑) NLL (↓) ECE (↓) Train FLOPs (↓) Infer. FLOPs (↓)
Single Dense 66.5 1.510 0.121 3.2e17 10.5e9
NFE (M=2, S=0.25) (pretrained on CIFAR-100) * 71.0 - - 0.76× 0.76×
NFE (M=3, S=0) (pretrained on CIFAR-100) * 70.6 - - 1.01× 1.01×
TreeNet (M = 3) 69.6 1.310 0.118 2.91× 2.91×
Full Ensemble (M = 3) 70.8 1.273 0.115 3.00× 3.00×
NeuroTrails (M = 3) (S = 0.8) 70.7 1.322 0.117 0.94× 0.47×
NeuroTrails (M = 5) (S = 0.9) 70.9 1.251 0.115 0.74× 0.34×

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

H SPARSITY RATIO ANALYSIS

This section examines the relationship between sparsity ratios and the accuracy of the model. To
ensure a controlled analysis, we fix the ensemble size at 3, set the backbone sharing factor to 8, and
vary the sparsity ratio from fully dense, which corresponds to being 0% sparse, to 99% sparse.

Our experimental results indicate that for CIFAR-100, optimal performance is achieved at 80%
sparsity, where the model retains only 20% of its original parameters (Figure 8). Interestingly,
the dense model performs worse, probably due to the overparameterization introduced during the
ensemblification process, leading to overfitting. These results underscore the critical role of sparsity
as a regularization mechanism in NeuroTrails, which enhances the model’s predictive performance.

Dense 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.950.99
Sparsity Ratio

79

80

81

82

83

84

Te
st

 A
cc

ur
ac

y
(%

)

Figure 8: Impact of sparsity ratio on accuracy in a NeuroTrails model with three heads (M = 3,
Wide-ResNet28-10) on CIFAR-100. The 80% sparse configuration emerges as the optimal choice,
though the performance differences across closest competitors are notably small.

H.1 ULTRA SPARSE

We provide additional experiments with ultra-sparse networks in Table 18. While performance
gradually declines with increasing sparsity, models still maintain strong accuracy even in the ultra-
sparse regime. These regimes are crucial for real-world deployment, especially on devices with
limited computational capacity. We present examples of real-time inference gains in Section 5.4 and
Appendix I.

Table 18: NeuroTrails performance in ultra-sparse regimes on CIFAR-100.

Model on CIFAR-100 Accuracy ↑ (%)
NeuroTrails (M = 3) (S = 0.95) 83.05 ± 0.11
NeuroTrails (M = 3) (S = 0.99) 80.20 ± 0.08
NeuroTrails (M = 5) (S = 0.95) 83.48 ± 0.04
NeuroTrails (M = 5) (S = 0.99) 81.06 ± 0.15
NeuroTrails (M = 5) (S = 0.995) 79.24 ± 0.17

I REAL-TIME INFERENCE GAIN

In this section we examine the discrepancy between theoretical gains from sparsity and the practical
speedups achieved on existing hardware. Despite growing interest in sparsity-aware computation,
current hardware support remains limited. Notable developments include the DeepSparse library
(NeuralMagic, 2021), which offers CPU-level sparse acceleration through an accessible Python library,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

and dedicated hardware solutions like Cerebras chips (Cerebras, 2024). However, deploying models
on Cerebras hardware typically requires proprietary access, which restricts broader experimentation.
By contrast, DeepSparse provides an immediate, open solution for evaluating sparse inference
performance. There are multiple other works in the direction of truly sparse implementations on GPU
hardware (Schultheis & Babbar, 2023; Liu et al., 2021a; Curci et al., 2021; Wesselink et al., 2024).

As illustrated in Figure 9, the theoretical number of sparse FLOPs (shown in blue) decreases
substantially with increasing sparsity, dropping well below the latency of a single dense model
(indicated by the dashed line) at 80% sparsity model with 3 heads. However, the extent to which
these theoretical savings translate into real-world latency reductions is highly dependent on hardware
capabilities. In the absence of dedicated sparsity acceleration (yellow), inference latency remains
constant across sparsity ratios. Partial hardware support through DeepSparse integration (orange), on
the other hand, enables meaningful efficiency gains—particularly at ultra-high sparsity ratios (e.g.,
95–99%). These findings highlight the promise of sparse model execution under current constraints
and underscore the need for further research into hardware architectures optimized for sparsity.

0.80 0.90 0.95 0.99
Sparsity Level

0

10

20

30

40

50

La
te

nc
y

(s
ec

s/
ba

tc
h)

Theoretical (Sparse FLOPs)
Without Sparsity Support
With Sparsity Support
Single Dense Model

Figure 9: Inference latency comparison across NeuroTrails models with increasing
sparsity ratios (M = 3), using DeepSparse for sparse inference acceleration.

J GOLDILOCKS IMAGE SAMPLES

We defined prediction conflict in Section 5.2 and present examples in this section that illustrate this
phenomenon. In short, we theorize that models with high prediction diversity among ensemble
members may suffer from aggregation inefficiency when these predictions conflict with each other.
For the sake of conciness, we refer to model with 8 blocks in head as NeuroTrails 8, and model with
12 blocks in head as NeuroTrails 12 in this section.

This phenomenon is demonstrated in Figure 10, where we observe that the lower prediction
disagreement in NeuroTrails 8 consistently produces better prediction estimates, while NeuroTrails
12 exhibits signs of aggregation breakdown, resulting in erroneous predictions. For example,
NeuroTrails 8 predicts poppy–poppy–worm for the first image, whereas NeuroTrails 12 predicts
orange–sunflower–poppy. The ground truth label is poppy, making the former a correct prediction and
the latter an incorrect one. In this instance, the higher prediction diversity in NeuroTrails 12 results in
conflicting outputs that hinder accurate aggregation. This illustrates how excessive diversity among
predictors can degrade ensemble performance, supporting our hypothesis that prediction conflict
undermines aggregation efficiency.

It is important to note that both models achieve high accuracy, with minimal differences between
them (83.81% for NeuroTrails 8 versus 83.59% for NeuroTrails 12). While our proposed explanation
of prediction conflict may account for this difference, we acknowledge that alternative factors could
also contribute to these observations.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

NeuroTrails (8 blocks) predictions:
 poppy, poppy, worm

 Aggregate: poppy

NeuroTrails (12 blocks) predictions:
 orange, sunflower, poppy

 Aggregate : sunflower

True: poppy

NeuroTrails (8 blocks) predictions:
 forest, forest, forest
 Aggregate: forest

NeuroTrails (12 blocks) predictions:
 plain, willow_tree, forest

 Aggregate : plain

True: forest

NeuroTrails (8 blocks) predictions:
 skyscraper, skyscraper, skyscraper

 Aggregate: skyscraper

NeuroTrails (12 blocks) predictions:
 bridge, skyscraper, skyscraper

 Aggregate : bridge

True: skyscraper

NeuroTrails (8 blocks) predictions:
 bear, bear, elephant

 Aggregate: bear

NeuroTrails (12 blocks) predictions:
 elephant, seal, bear
 Aggregate : elephant

True: bear

Figure 10: Direct prediction comparison between NeuroTrails models with 8 and
12 blocks in their heads. NeuroTrails-8 exhibits a prediction diversity level that
is just right, enabling it to produce more accurate results than its counterpart.

31

	Introduction
	Preliminaries
	Ensembling
	Sparsity

	NeuroTrails
	Experiments
	Computer Vision
	Language Modeling
	Reinforcement Learning

	Analysis
	Backbone Length
	Prediction Diversity
	Ensemble Size
	Inference Speedup

	Related Work
	Conclusion
	Extended Background and Related Work
	Ensembling
	Sparsity

	Model Architectures
	ResNet
	LLaMA
	DQN

	Datasets and Environments
	CIFAR-100
	ImageNet
	Tiny-ImageNet
	Colossal Clean Crawled Corpus (C4)
	Arcade Learning Environment

	NeuroTrails Algorithm
	Training Settings
	Code Repositories
	Hyperparameters
	Training Schedules

	Metrics
	Additional Results
	Parameter-Matched Language Model Study
	Tiny-ImageNet

	Sparsity Ratio Analysis
	Ultra Sparse

	Real-Time Inference Gain
	Goldilocks Image Samples

