
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OUT-OF-DISTRIBUTION TESTS REVEAL COMPOSI-
TIONALITY IN CHESS TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Chess is a canonical example of a task that requires rigorous reasoning and long-
term planning. Modern decision Transformers - trained similarly to LLMs - are
able to learn competent gameplay, but it is unclear to what extent they truly cap-
ture the rules of chess. To investigate this, we train a 270M parameter chess
Transformer and test it on out-of-distribution scenarios, designed to reveal fail-
ures of systematic generalization. Our analysis shows that Transformers exhibit
compositional generalization, as evidenced by strong rule extrapolation: they ad-
here to fundamental ‘syntactic’ rules of the game by consistently choosing valid
moves even in situations very different from the training data. Moreover, they
also generate high-quality moves for OOD puzzles. In a more challenging test,
we evaluate the models on variants including Chess960 (Fischer Random Chess)
- a variant of chess where starting positions of pieces are randomized. We found
that while the model exhibits basic strategy adaptation, they are inferior to sym-
bolic AI algorithms that perform explicit search, but gap is smaller when playing
against users on Lichess. Moreover, the training dynamics revealed that the model
initially learns to move only its own pieces, suggesting an emergent compositional
understanding of the game.

1 INTRODUCTION

Chess has long been regarded as a symbol of human intellectual endeavor. While the most competent
machine chess engines leverage highly interpretable traditional search-based algorithms Stockfish,
it is also possible to learn capable chess policies directly through reinforcement learning or behavior
cloning using Transformers Ruoss et al. (2024); Noever et al. (2020) and other neural networks. This
raises an open question: to what extent can these black-box, model-free chess Transformers be said
to truly “understand” the game?
Studying chess holds significant relevance for broader reasoning tasks, since reasoning, too, involves
chaining together a sequence of logically valid inferences and requires long-term planning and strat-
egy. This connects to the pivotal question of whether LLMs and reasoning models can develop
a genuine internal model of the process of reasoning or whether they simply reproduce fragments
of strategy gleaned from statistical regularities in training data Shojaee et al. (2025); Zhou et al.
(2023). To empirically test such inherent understanding, we propose evaluating a model’s behavior
in out-of-distribution (OOD) situations. We are particularly interested in two key aspects of this
evaluation:
Rule Extrapolation: Can the model adhere to the fundamental rules of the task by consistently

producing valid moves, even in unfamiliar, out-of-distribution settings?
Strategy Adaptation: Can the model productively adapt its approach to reach a desirable goal state

when the game’s basic rules are unchanged, but altered initial conditions render its learned
strategies suboptimal?

Chess is a rich and useful context to test these phenomena in: thanks to its rigid rules, games can
be described in a formal language, and the validity of moves can be easily checked using readily
available software . On the other hand, several game variants and puzzle types exist, providing
interesting and human-interpretable out-of-distribution test environments. Our contributions are:
• we created a battery of chess puzzles that present out-of-distribution situations
• we trained a model-free Transformer-based chess policy using behaviour cloning reproducing the

methodology of Ruoss et al. (2024), but using a training dataset more suitable for our study;

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: OOD board types: We consider four out-of-distribution chess scenarios. The first board
shows a position with more pieces of a certain type than allowed (the exception is via pawn promo-
tion), 3 white queens in this case; while the second one illustrates 2 white bishops on squares with
the same color. We also study two chess variants: Chess960, where in the starting position pieces on
the first rank are randomly reordered and this is mirrored in the 8th rank (third board); and Horde,
where White only has pawns and Black has a different objective (fourth board). The next moves of
our model are highlighted with purple.

• we evaluated the models on rule extrapolation and strategy adaptation;
• we evaluated the policy’s ability to play full games in Chess9601 (Fisher Random Chess), in which

the starting positions of pieces are randomized, and Horde, where the Black’s objective is altered;
• we analyzed the dynamics of rule learning.

2 BACKGROUND AND RELATED WORK

Reasoning is the process of synthesizing factual knowledge (what is known) with procedural knowl-
edge (how to derive new information) to solve problems that are intractable with the initial facts
alone. In the case of chess, using basic rules of the game together with a procedure like minimax
search can yield high-quality moves in a variety of situations Stockfish. When implemented ex-
plicitly, reasoning algorithms like minimax search display a form of compositional generalization,
guaranteeing high-quality solutions to a potentially infinite range of problems that adhere to the
same compositional structure.
When we train language models on internet data or decision-Transformers via behaviour cloning,
such reasoning-derived decisions are distilled into autoregressive neural network models. It is an
open question to what degree the resulting models are able to display similar levels of composition-
ality and strong generalization. Empirical evidence on this question is non-conclusive (Reizinger
et al. (2024)).
On the one hand, studies show that Transformer-based models display more-than-expected degrees
of compositional generalization, and are able to transcend the limitations of their finite training data
(Ahuja & Mansouri (2025); Han & Padó (2024); Ramesh et al. (2024); Lake & Baroni (2023)).
For example, research into how language models handle formal languages—which are defined by a
clear set of compositional rules—provides a controlled environment to test these abilities (Delétang
et al. (2023); Mészáros et al. (2024)). In this setting, models have been shown to succeed at rule
extrapolation, a challenging form of out-of-distribution generalization where they must complete
prompts that violate one or more of the rules seen during training (Mészáros et al., 2024). The
ability to correctly apply a subset of known rules to these novel, rule-breaking scenarios suggests
that the models are not merely interpolating from training data but are learning a more abstract and
flexible representation of the underlying rule system. This observation is so striking that it has led
some to argue that our current understanding of statistical generalization is insufficient to explain
these emergent capabilities (Reizinger et al., 2024).
This capacity for generalization is powerfully illustrated within the domain of chess—a core focus
of our own work. Recent research highlights the phenomenon of transcendence, where a generative
model can outperform the very experts who created its training data (Zhang et al., 2024). Specifi-
cally, a Transformer trained simply to predict moves in a large corpus of chess games was shown to
achieve a higher level of play than any individual player represented in its dataset. This emergent
ability arises because the model synthesizes a more robust and general strategy from diverse data
sources. It effectively performs skill denoising by averaging out the individual errors of many play-

1https://en.wikipedia.org/wiki/Chess960

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ers, while simultaneously achieving skill generalization by combining the specialized strengths of
different experts into novel, superior strategies (Abreu et al., 2025).
Providing a more nuanced look at the Transformer architecture, Weiss et al. (2021); Zhou et al.
(2023) found that a model’s ability to generalize compositionally depends heavily on the underlying
procedure it must learn. They investigate why Transformers succeed at some algorithmic tasks but
fail at others by focusing on length generalization—the capacity to handle inputs longer than those
seen during training. The authors propose the RASP-Generalization Conjecture, which posits that
Transformers will successfully learn and generalize an algorithm if its solution can be expressed
as a short program in RASP-L, a language designed to mirror the Transformer’s native computa-
tional primitives. This framework suggests that strong generalization occurs when a task’s inherent
algorithm aligns well with the Transformer’s architectural biases.
Other published works detailed failure cases where state-of-the-art reasoning language models fail
to generalize successfully Shojaee et al. (2025); Malek et al. (2025). Closest to our work is the recent
investigation by Malek et al. (2025), who find that even state-of-the-art models often fail on easier
or simplified versions of tasks they otherwise excel at. This indicates that they likely memorize
strategies from their training data which they aren’t able to adapt to new situations, even if the new
puzzle is in some sense easier to solve. This suggests that the models rely on statistical shortcuts
rather than robust reasoning.
Our work aims to contribute to this body of evidence by decomposing two aspects of compositional
generalization to (1) rule extrapolation - as studied by Mészáros et al. (2024); Reizinger et al. (2024),
and (2) strategy adaptation: dealing with situations when some strategies memorised during training
may not transfer. In this context, rule extrapolation measures whether the chess model continues
to respect the rules of the game and choose valid moves even in situations it has never encountered
during training, while strategy adaptation measures how competently it is at choosing a high-quality
move in a game against an opponent or a puzzle. In particular, we study a chess model’s ability to
generate next moves for boards that are qualitatively different from the ones seen during training
(see Fig. 1), and to play variants of chess including Chess960 and Horde.

2.1 CHESS ENGINES

Stockfish 17, currently the strongest chess engine, relies on classical search techniques like alpha-
beta pruning and handcrafted evaluation functions, recently enhanced with neural network support
(NNUE) for better positional insight (Nasu, 2018). In contrast, AlphaZero (Silver et al., 2017)
and (LCZero, 2018) are neural network-based engines that use deep learning and reinforcement
learning. AlphaZero was trained by playing millions of games against itself, using Monte Carlo Tree
Search (MCTS) for decision-making. LCZero follows AlphaZero’s principles but is open-source and
continuously trained by a distributed network of contributors. Recently, searchless methods have
emerged (Ruoss et al., 2024; Monroe & Chalmers, 2024): Transformer architectures were trained
on large datasets and annotated by Stockfish, and they achieved grandmaster level. Other studies
(Zhang et al., 2024; Noever et al., 2020; Toshniwal et al., 2022), used the Transformer architecture
in a self-supervised way: the training set consisted only of games given by the move history. In
this paper, the use Stockfish 17 (the version of May 2025) with depth 20 as an oracle, and train a
searchless Transformer-based model which is capable to produce next moves for any board states.

3 EXPERIMENTAL SETUP
3.1 TRAINING

To study the rule extrapolation and strategy adaptation of Transformer-based chess models, we train
a Transformer with ≈ 270 million parameters using supervised learning, similarly to Ruoss et al.
(2024). We train on their ChessBench dataset created for behaviour cloning. It consists of board
positions with the labels as the best next move generated by Stockfish 16, in a way that each legal
move from the board state was assigned a score by Stockfish (with a time limit of 50ms), and the
move with the highest score was selected as the best. Generally, there are 30 legal moves from a
board state, thus Stockfish spends approximately 1.5s per board. We treat states reachable by pawn
promotion as OOD, and filter these out from ChessBench—these include board states containing
more pieces of a given type than normally allowed, e.g., 3 white queens, or positions with two
bishops on squares with the same color. The original ChessBench was extracted from 10M games
on Lichess (lichess.org an open-source online chess server), making the dataset size ≈ 528M, from
which we excluded ≈ 2.5M. Only 0.43% of the boards fell under what we define as OOD. After
filtering, these situations have zero probability under the training distribution.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The board is represented by a FEN string (Edwards, 1994), which is a standard description of a
chess position. It consists of a board state, the current side to move, the castling availability for
both players, a potential en passant target, a half-move clock and a full-move counter, all repre-
sented in a single ASCII string. For example, the FEN of the starting position of the standard
chess is rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1, where
the lowercase letters denote the black player, and the uppercase letters denote the white player. Ac-
tions are stored in UCI notation (Huber & Meyer-Kahlen, 2000), e.g., e2e4 correspond to the
popular opening where a white pawn moves from square e2 to e4. The input of the Transformer is
the tokenized FEN string and the output is the log probability distribution over all possible actions.
Importantly, when generating the next move, we do not enforce it to be legal. Further training details
are in § B.

3.2 OOD DATASETS

To assess the model’s out-of-distribution (OOD) performance, we study 7 OOD datasets, which have
zero probability under the training distribution. To confirm that the model operates in the regime of
perfect legal move accuracy, we also evaluate it on 2 in-distribution (ID) sets.
ID and OOD Puzzles. The puzzle datasets are downloaded from Lichess2. These are curated in-
distribution board states from games and corresponding puzzle solutions as sequences of moves .
According to Lichess, all moves of the solution are “only moves”, i.e., playing any other move would
considerably worsen the player’s position. Except for mate situations, where any move resulting in
mate is correct. The puzzles having more pieces of a given type than allowed or having two bishops
on same-colored squares form the OOD set, and the others form the ID set. Both datasets consist of
1000-1000 puzzles.
ID test set, More pieces, and Same color. The ChessBench dataset also includes a test set, which
we filter in the same way as the training set: removing the aforementioned OOD boards. This results
in 1000 ID board state–next move pairs. We separate the OOD boards into two datasets: the boards
with more pieces of a given type than allowed forms “More pieces” (1000 boards; see Fig. 1, first
board). Positions presenting two bishops on same-colored squares form the “Same color” dataset
(1000 boards; see Fig. 1 second board). As these datasets where filtered from the test set, we will
refer these datasets together as “OOD test scenarios”. Note that these datasets comprise boards from
real games featuring pawn promotions making them more representative of late-game positions.
Chess960 and All starting positions. The next types of OOD boards feature starting positions in
which the first-rank white pieces are randomly reordered, with the black pieces mirrored accordingly,
but the pawns start in their standard position. Additionally, in Chess960, in the starting position,
the king must be placed between the two rooks because of castling, and the two bishops must be on
opposite-colored squares. In contrast, there are no such requirements for the “All starting positions”
dataset, it contains all starting positions which cannot be reached from the classical starting position.
There are 959 Chess960 starting positions without the standard starting positions (see Fig. 1, third
board), and when evaluating the All starting positions dataset, 1000 boards are sampled from the
possible starting positions.

Figure 2: Knights&Rooks:
extreme cases of boards
having more pieces (knights
and rooks) than normally
allowed.

Chess variants. We consider two chess variants to measure the
model’s ability to adapt to unseen scenarios. Chess960 is a popu-
lar, well studied variant (Gligoric, 2003; Deo & Dwivedi, 2023; Pav,
2025), where the game starts from the positions described above, but
the goal remains the same. Standard chess involves extensive open-
ing theory (Sterren, 2009), encouraging reliance on memorized se-
quences. Chess960 mitigates this by randomizing starting positions,
requiring the model to depend on general principles and strategic rea-
soning. The second variant we study is Horde, which is a chess variant
with White having 36 pawns (see Fig. 1, fourth board). The goal of
White is to checkmate the black king, but as White does not have a
king, Black wins by capturing all pieces of White. Note that the game
is asymmetric, according to Lichess database, Black wins 52% of the
time, therefore it is the slightly more advantageous color.
Knights&Rooks. This dataset is a custom-made collection de-
signed to explore the limits of OOD behavior. Each board contains
a black and a white king, 2–4 white rooks to restrict the black king’s movements, and 3–15 white
knights. An example board, featuring 4 rooks and 15 knights, is shown in Fig. 2.

2Lichess games and puzzles are released under the Creative Commons CC0 license.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 EVALUATION

We evaluate the model on the ID and OOD datasets using the following metrics.
Legal move accuracy is calculated by the percentage of the model’s moves that obey the rules of
chess. For every board state, only the legality of the next move is evaluated.
Stockfish topK accuracy measures the quality of the model’s predictions by determining whether
the chosen move is among the topK move recommended by Stockfish. When multiple strong moves
are available, expecting the Transformer’s move to exactly match Stockfish’s may not be represen-
tative. Therefore, we evaluate whether the chosen move falls within Stockfish’s top3, top5, or top10
suggestions generated independently. We use Stockfish 17 with a search depth of 20, rather than
a fixed time limit, to ensure a fair evaluation, since endgames and starting positions may require
different amounts of time to produce moves of comparable quality. In § C.2, we perform extensive
Stockfish ablations, examining the effects of search depth, comparing results with a fixed time limit,
and evaluating different generating techniques for the top moves.
Puzzle sequence accuracy measures whether the model predicts correctly the entire move se-
quence of the solution—move sequences are 3.69±2.16 long for the in-distribution, and 3.36±1.87
for the OOD case on average. If any time during the sequence prediction a mate-in-1 situation oc-
curs, every possible move that checkmates is considered correct. In this scenario only, the predicted
move does not need to exactly match the move in the solution.
Elo rating is a standard metric of playing ability. We measure the model’s Elo in three chess
variants: Standard chess, Chess960, and Horde Chess—for descriptions of the variants, refer to
§ 3.2. We evaluate it in two settings: first, in an internal tournament, the model plays against 5
Stockfish engines with skill levels 0, 1, 2, 3, 4 out of 20. The skill level is weakened by introducing
noise to the searching mechanism. According to Zhang et al. (2025), Stockfish level 0 has an Elo
score of 1350-1440, level 1 has 1450-1560, and level 2 has 1570-1720 in Standard chess. Note
that Stockfish, being a goal-driven symbolic AI, cannot play Horde, since Black’s objective is not
checkmate. Accordingly, for Horde we employ Fairy-Stockfish, which includes built-in support for
chess variants. In the tournament, 100-100 games per opponent pair are played (altogether 500
per player), and every player plays half of their games as White and half of the games as Black.
We compute the Elo score with relative BayesElo (Coulom, 2008) using the default confidence
parameter of 0.5. The relative Elo score is used only to determine the playing strength order of the
models, it cannot be directly compared to FIDE Elo ratings or to Elo ratings on Lichess. The average
of the relative Elo scores of the models in a tournament is designed to be 0. To ensure variability
of the games, for Standard chess, we use the openings from the Encyclopaedia of Chess Openings
(Matanović, 1978), and for fair comparison, in Chess960, from the starting positions 10 full steps are
made using the oracle Stockfish (depth 20, maximum skill level). We also made our model publicly
available on Lichess, and let it play against both bots and humans. On Lichess the Glicko-2 system
(Glickman, 2012) is used, as an improvement of the Elo system.

4 RESULTS

To study to what extent our model understands chess, we distinguish between learning the rules
and learning the strategy and study these in OOD scenarios—in models that achieve perfect in-
distribution performance w.r.t. making legal moves. This is to disentangle whether the model overfit
the data (which could follow from perfect ID performance) and to realistically assess OOD perfor-
mance (if ID the model is far from perfect, we cannot have reasonable expectations OOD).

4.1 RULE EXTRAPOLATION

Rule extrapolation is a term coined by Mészáros et al. (2024) for neural networks that can extract
(language) rules during training and apply them in OOD scenarios. As chess is rule-based, we can
apply the same investigative lens in OOD scenarios of different complexity (blue rows in Tab. 1).
As a sanity check, we calculate the % of legal moves on in-distribution data (puzzles and the test set
from ChessBench): the model gradually learns the rules of the pieces during training (Fig. 5 right),
and the trained model achieved perfect score in these datasets. Even in OOD cases, our model almost
always makes perfect moves—apart from the Knights&Rooks scenario, it achieves 96 + %. Our
model also makes mostly legal moves on the Knights&Rooks, which is designed to explore the
limits of OOD behaviour. Surprisingly, it is also able to play Chess960 and Horde, by making
legal moves in 99.36% and 95.96% of the time, respectively (see Tab. 2). When the model played

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Accuracy (%)
Dataset Legal Sf. top1 Sf. top3 Sf. top5 Sf. top10 Puzzle seq.
ID Puzzles 100 70.50 87.17 92.56 96.88 58.80

Test set 100 56.30 79.48 86.62 94.24 -

OOD Puzzles 99.60 67.70 84.81 89.04 92.93 54.70
More pieces 97.20 30.49 39.53 37.12 43.12 -
Same color 97.60 30.60 45.54 45.18 50.46 -
Chess960 starting pos. 96.45 22.73 52.24 66.42 88.80 -
All Starting pos. 97.00 22.80 49.90 66.00 84.60 -
Knights&Rooks 90.20 02.00 03.70 06.30 13.80 -

Table 1: Rule extrapolation (“Legal” col.) and Strategy adaptation (other cols.) accuracies
over the ID and OOD datasets: the model has perfect legal next move accuracy on the ID datasets,
and almost always makes legal moves on the OOD sets, even on the highly OOD Knights&Rooks. In
terms of strategy adaptation, Sf. top1 in OOD Puzzles is only marginally worse than in the ID case,
and is still non-trivially large on the other sets. Also, there is a clear inverse relationship between
the number of possible good moves and the Sf. top1 accuracy. The model could not adapt to the
extremely OOD nature of the Knights&Rooks dataset. For details, refer to § 4

Horde games in Black, the legal move accuracy was slightly higher (97.18%) compared to when it
played Black (94.74%).
Sometimes move illegality arises not from violating a piece’s movement rules (i.e., the model is not
trying to move a bishop, e.g., vertically) but by moving pinned pieces (when a piece is not allowed
to move because that puts the king into check). However, this only occurs rarely—from 342 cases
when there is a pinned piece on board, it only fails in 4 cases (Fig. 3). Notably, these are the only
cases when the model does not predict a legal move for the OOD Puzzles.

Figure 3: The illegal moves on OOD puzzles arise from the model trying to move pinned pieces.
E.g. on the fourth board, moving the black queen d5g2 would mate the white king, but it allows to
the white queen on b3 to put the black king into check.

4.2 STRATEGY ADAPTATION

Strategy adaptation goes beyond rule extrapolation as it entails not just knowing the correct rules,
but making the best next move, constrained by the game’s rules. Measuring the optimality of a move
is less obvious than checking move legality. We can evaluate against the Stockfish engine, though
that is not entirely deterministic3. Despite this fact, it is a good indicator of move quality, as used in
previous works (Ruoss et al., 2024; Feng et al., 2023; Zhang et al., 2025). When there are multiple
potential good next moves, predicting the same one as Stockfish might not be perfectly indicative of
whether a model makes a good move. Therefore, we measure not just the top1 accuracy, but also
top3, top5 and top10 accuracies. However, boards are not guaranteed to have K next steps. In that
case, we average over a different number of boards—for details refer to § C.1. Generating the moves
independently makes it possible that there is a slight decrease in accuracy even for a larger K value
in More pieces and Same color.

3One reason for this is the neural network–based NNUE module

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

OOD datasets. We summarize our findings in the following and detail them below:
1. For the puzzles, OOD Stockfish accuracy is very close to the ID one, with the top3 accuracy

already being above 80%, the top5 being very close to 90% and top10 is above 90%.
2. For the OOD test scenarios that are reachable in standard chess through pawn promotion (More

pieces, Same color), the Stockfish topK accuracy is significantly lower, though still non-trivially
large (above 30%).

3. For the starting positions, the Stockfish top1 accuracy is the lowest (≈ 23%), but the top10
accuracy increases to 84− 88%.

An important distinction between the puzzles and OOD test scenarios is that the puzzles were “su-
pervised” in the following sense: According to Lichess, the player moves for the puzzles are “only
moves”, i.e., playing any other move would considerably worsen the player’s position. This is not
true for the other datasets. Thus, it is easier for our model to predict the same best next move as that
of Stockfish for the Puzzles.
Another difference is whether the dataset consists of early-game (All starting pos., Chess960 starting
pos.), more late-game (More pieces, Same color), or end-game (Puzzles) positions. In this order,
the number of potentially good moves decreases rapidly (in starting positions, there are several good
openings to play, but for puzzles, often there is only a single good move). This is reflected in Tab. 1
Stockfish accuracies, especially in the Sf. top1 columns. As the puzzles, the More pieces and Same
color data sets capture late-game boards, the amount of good moves is smaller; thus, it is easier
for the model to predict the same move as the Sf engine. Also, late-game bards require a shorter
planning horizon. The only failure case for strategy adaptation is the Knights&Rooks scenario,
which was designed to explore the limits of OOD behavior. The model could not adapt to the highly
OOD nature of the boards, which were extremely divergent from the training data.
Chess960 and All starting pos. posits a seemingly surprising dichotomy: while the top1 and top3
Sf accuracies are among the lowest, the top5 and top10 are among the highest (except the puzzles).
The reason behind this is the early vs late game differences across the evaluation scenarios. Namely,
the number of possible legal moves is very limited in starting positions (only pawns and knights can
move). or example, for starting positions where the pieces on the 1st rank are randomly reordered,
there at most 20 legal moves. However, neither Stockfish nor our model moves a pawn by only
one square, leaving only 12 legal moves. For details on the number of possible starting scenarios,
see § D. As Stockfish only predicts legal moves, if we chose K large enough, the moves predicted
by the Transformer will be among them with very high probability (since the Transformer also
mostly predicts legal moves). As the number of possible legal moves is much larger in the late-
game scenarios More pieces and Same color, it is necessary that for a large enough K, accuracy for
these two scenarios will be lower. This also implies that as K increases, the increase in late game
accuracies will be lower than for Chess960 and All starting pos., meaning that even if these have
higher top1 accuracy than More pieces and Same color, the relationship will flip—empirically, it
already flips for our model for K=3.

Variant Legal acc. % Lichess Elo
Standard 99.92 1550± 45

Chess960 99.36 1571± 51

Horde 95.96 1178± 68

HordeW 94.74 -
HordeB 97.18 -

Table 2: Legal % and Lichess Elo:
Legal move accuracy in tournaments
and Lichess Elo of our model across
variants. HordeW/HordeB show results
when our model played White/Black.

Tournaments. In terms of the Puzzle sequence accu-
racy, the model achieves 58.80% on the ID dataset, which
is not surprisingly lower than the Stockfish top1 accuracy
as the model have to predict not one but a sequence of
moves. On the OOD dataset, the accuracy is only slightly
lower (54.70%), indicating that the model is able to adapt
comparab to the OOD situations and show non-trivial per-
formance.
The tournament setting measures long-horizon planning
and reasoning in our model, as it needs to play whole
games against different Stockfish configurations (for de-
tails, refer to § 3.3)—or bots/humans on Lichess. Note
that even in the standard chess tournaments, our model
can face situations that are OOD regarding our training set—namely, pawn promotion can occur,
and it does occur, making 0.29% of the boards OOD when it is the model’s turn. This potentially
explains the 99.92% not perfect Legal move accuracy on Standard chess (Tab. 2).
In the tournaments not conducted via Lichess, we used three different chess variants. In the order
of increasing OOD complexity, these are: standard chess, Chess960, and Horde chess. In standard
chess, our model places 3rd, though in terms of relative Elo, it comes very close to the second-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Standard Rel. Elo Draws
1. Sf.4 205±28 3%
2. Sf.3 114±26 2%
3. Trf 88±26 5%
4. Sf.2 −27±26 3%
5. Sf.1 −126±27 1%
6. Sf.0 −253±31 1%

Chess960 Rel. Elo Draws
1. Sf.4 240±30 2%
2. Sf.3 169±27 3%
3. Sf.2 14±26 3%
4. Sf.1 −86±26 3%
5. Trf −110±26 5%
6. Sf.0 −227±29 1%

Horde Rel. Elo Draws
1. FSf.4 384±38 0%
2. FSf.3 239±32 0%
3. FSf.2 10±29 0%
4. FSf.1 −61±29 0%
5. FSf.0 −223±31 0%
6. Trf −350±36 0%

Table 3: Tournament results: The figure shows the tournament results of the model (Trf) against
Stockfishes level 0-4 in Standard Chess (Left) and Chess960 (Middle) and against Fairy-Stockfishes
level 0-4 in Horde Chess (Right). Our model places 3rd in Standard chess, 5th in Chess960, and 6th
in Horde. The % of draws of the games the players had is also reported.

placed Stockfish level 3. In Chess960, it places 5th with a close gap to the 4th Stockfish level
1 engine. The Transformer clearly ranks last in the Horde chess tournament.
Stockfish, being a goal-driven engine, cannot play Horde, since Black’s objective is not checkmate,
so for Horde we use Fairy-Stockfish. Surprisingly, our model can play Horde legally and even
win against Fairy Stockfish: it won 31 games out of 250 when playing white, 76 out of 250 when
playing black. We want to emphasize that Horde chess represents a significant distribution shift,
as our model either needs to adapt to having only pawns (when playing White) or playing against
an opponent without a king (when playing Black). When playing Black, the model also needs to
optimize for a different objective: instead of mating a (non-existent) white king, it needs to capture
all white pawns. Indeed, when playing Black, our model learns the strategy that capturing pieces
is advantageous. Moreover, it even performs better when playing with pieces from the classical
starting position but with different aim, than with 36 pawns but the original goal of chess. However,
it still underperforms all Stockfish variants in our tournament (Tab. 4).

White
Black FSf.4 FSf.3 FSf.2 FSf.1 FSf.0 Trf.

FSf.4 - 26 41 44 49 48
FSf.3 13 - 30 34 42 48
FSf.2 2 6 - 19 34 39
FSf.1 1 3 11 - 21 41
FSf.0 1 2 2 6 - 29
Trf 2 2 10 6 11 -

Table 4: Win count in Horde The figure shows
the number of games won by the models in White
against the models in Black. The models in-
clude Fairy-Stockfish level 0-4 and our Trans-
former model. In each cell, the total number of
played games is 50. Our model won 31 games as
White and 76 as Black.

On Lichess, our model was playing against both
humans and bots and reaches a Lichess Elo
score of 1550 in Standard Bullet chess (better
than 48.5% of players), of 1571 in Chess960
(better than 42.9% of players), and of 1178
in Horde (better than only 8.4% of the play-
ers) (Tab. 2). We conclude, that the model’s
Chess960 playing ability is almost as good
as the Standard chess playing ability against
players on Lichess, but fails to the strate-
gies of Horde. Note that we cannot control
who plays against our model, therefore we re-
port the deviation in the ratings Tab. 3, the %
of the games played by human and the average
Elo of the opponents. More details and statis-
tics about the games played on Lichess, the %
of the games played by human and the average
Elo of the opponents and the average Elo of the
opponents can be found in § E.1.
While the models fails to play Horde well both in the tournament and on Lichess, one can observe
that when the model plays against humans/bots, its playing ability of Chess960 is close to Standard
chess Tab. 2. However, the difference seems larger when playing in tournament against Stockfish.
We hypothesize that this happens because Stockfish plays the two variants in the same way (expicitly
searching for the best move), but humans rely much more on statistical patterns and memorized
openings.
Furthermore, the model is easily drawn by threefold repetition (when the same board occurs three
times), because the model does not keep track of the past moves of the game, only sees the current
board. Stockfish can detect possible threefold repetition, making the % of draws small in the tour-
nament Tab. 3. However, when the model plays against humans (and bots) on Lichess, the draw %
is much higher Tab. 9.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Training dynamics of piece selection: Heatmap of an ID Puzzle board showing summed
probabilities of next moves starting from each square, depicted at initialization (left), during training
(middle), and after training (right). On each board, the probabilities are normalized to [0; 1] by the
maximum value, dark blue indicates 0, yellow indicates 1

4.3 TRAINING DYNAMICS

We study the dynamics of how our Transformer model learns to select the piece for its next move.
We illustrate this process with an in-distribution puzzle (Fig. 4, showing initialization, mid-training,
and end-of-training probabilities from left to right). From an approximately uniform probability
distribution at initialization, the model first learns to move with its own (black) pieces (Fig. 4,
middle) shown by the probabilities concentrating on black pieces. It also learns that the pawn on f7
is not movable. At the end, it picks the black knight by concentrating the probability mass to it.
We also investigate the dynamics of learning all legal moves, both ID and OOD (Fig. 5). The model
first learns to generate a single legal move on the ID boards, then on the OOD boards. After that,
it starts to identify all legal moves of the ID positions and then on the OOD positions by assigning
them higher probability (see Fig. 5 middle). At the end of the training, all curves reach almost
perfect legal move accuracy. Note that the majority of the change in the probabilities occurs at the
beginning of the training (unit 1M steps), followed by a slower convergence to 1 (Fig. 5 left).

5 CONCLUSION

In this work, we investigated the extent to which Transformer-based chess policies display system-
atic generalization beyond their training distribution. Our experiments demonstrate that the model
exhibits compositional generalization, as evidenced by strong rule extrapolation: it reliably adheres
to the syntactic rules of chess even in novel and highly out-of-distribution positions. This capacity
enables it to play valid and often strategically sound moves in puzzles and variants very different
from its training data. When tested on challenging variants such as Chess960 and Horde, the model
shows partial but limited strategy adaptation, highlighting the gap between implicit generalization in
black-box neural policies and explicit compositional reasoning in search-based symbolic algorithms.
By contrast, the gap is much smaller against players on Lichess, where the model’s Chess960 play-
ing ability is nearly on par with its Standard chess playing ability. The training dynamics revealed
that the model initially learns to move only its own pieces, suggesting an emergent compositional
understanding of the game. Nevertheless, the fact that a purely behaviour-cloned Transformer can
generalize to legal and strategically plausible play across diverse out-of-distribution settings indi-
cates that these models capture more compositional structure than would be expected from mere
statistical pattern matching.

Limitations Our chess Transformer shows promising signs of compositional generalization by
extrapolating the rules to substantially different OOD scenarios. However, the model’s strategic
adaptation remains limited: while it reliably follows the rules of chess, it struggles in scenarios
requiring long-term planning or novel strategies, such as the Horde variant or high-level play against
Stockfish. Also, we could not control who plays against our model on Lichess, which may introduce
bias to the rating.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we will release the full codebase, trained model checkpoints,
and the datasets used in this study upon acceptance of the paper.

REFERENCES

Natalie Abreu, Edwin Zhang, Eran Malach, and Naomi Saphra. A taxonomy of transcendence,
2025. URL https://arxiv.org/abs/2508.17669.

Kartik Ahuja and Amin Mansouri. On provable length and compositional generalization, 2025.
URL https://arxiv.org/abs/2402.04875.

Rémi Coulom. Whole-history rating: A bayesian rating system for players of time-varying strength.
In Computers and Games, 2008.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural networks
and the chomsky hierarchy, 2023. URL https://arxiv.org/abs/2207.02098.

Shreyan Deo and Nishchal Dwivedi. Machine learning algorithms to predict chess960 result and
develop opening themes, 2023. URL https://arxiv.org/abs/2310.18938.

Steven J. Edwards. Standard: Portable game notation specification and implemen-
tation guide. 1994. URL https://ia802908.us.archive.org/26/items/
pgn-standard-1994-03-12/PGN_standard_1994-03-12.txt.

Fairy-Stockfish. URL https://fairy-stockfish.github.io.

Xidong Feng, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, David Mguni,
Yali Du, and Jun Wang. Chessgpt: Bridging policy learning and language modeling, 2023. URL
https://arxiv.org/abs/2306.09200.

M. E. Glickman. Example of the glicko-2 system. Boston University, 2012.

S. Gligoric. Shall we play fischerandom chess? Pavilion Books, 2003.

Sungjun Han and Sebastian Padó. Towards understanding the relationship between in-context
learning and compositional generalization, 2024. URL https://arxiv.org/abs/2403.
11834.

Rudolf Huber and Stefan Meyer-Kahlen. Universal chess interface. 2000. URL https://www.
shredderchess.com/chess-features/uci-universal-chess-interface.
html.

B. M. Lake and M. Baroni. Human-like systematic generalization through a meta-learning neural
network. Nature, 2023.

LCZero. Leelachesszero. 2018. URL https://lczero.org.

Lichess. Black is better in horde. URL https://lichess.org/forum/
general-chess-discussion/black-is-better-in-horde.

Alan Malek, Jiawei Ge, Nevena Lazic, Chi Jin, András György, and Csaba Szepesvári. Frontier llms
still struggle with simple reasoning tasks, 2025. URL https://arxiv.org/abs/2507.
07313.

Aleksandar Matanović. Encyclopaedia of chess openings. Batsford Limited, 1978.

Daniel Monroe and Philip A. Chalmers. Mastering chess with a transformer model, 2024. URL
https://arxiv.org/abs/2409.12272.

Anna Mészáros, Szilvia Ujváry, Wieland Brendel, Patrik Reizinger, and Ferenc Huszár. Rule ex-
trapolation in language models: A study of compositional generalization on ood prompts, 2024.
URL https://arxiv.org/abs/2409.13728.

10

https://arxiv.org/abs/2508.17669
https://arxiv.org/abs/2402.04875
https://arxiv.org/abs/2207.02098
https://arxiv.org/abs/2310.18938
https://ia802908.us.archive.org/26/items/pgn-standard-1994-03-12/PGN_standard_1994-03-12.txt
https://ia802908.us.archive.org/26/items/pgn-standard-1994-03-12/PGN_standard_1994-03-12.txt
https://fairy-stockfish.github.io
https://arxiv.org/abs/2306.09200
https://arxiv.org/abs/2403.11834
https://arxiv.org/abs/2403.11834
https://www.shredderchess.com/chess-features/uci-universal-chess-interface.html
https://www.shredderchess.com/chess-features/uci-universal-chess-interface.html
https://www.shredderchess.com/chess-features/uci-universal-chess-interface.html
https://lczero.org
https://lichess.org/forum/general-chess-discussion/black-is-better-in-horde
https://lichess.org/forum/general-chess-discussion/black-is-better-in-horde
https://arxiv.org/abs/2507.07313
https://arxiv.org/abs/2507.07313
https://arxiv.org/abs/2409.12272
https://arxiv.org/abs/2409.13728


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yu Nasu. Efficiently updatable neural-network-based evaluation functions for computer shogi. 2018.
URL https://oscarbalcells.com/assets/nnue_paper_english.pdf.

David Noever, Matt Ciolino, and Josh Kalin. The chess transformer: Mastering play using generative
language models, 2020. URL https://arxiv.org/abs/2008.04057.

Steven Pav. Inferring piece value in chess and chess variants, 2025. URL https://arxiv.org/
abs/2509.04691.

Rahul Ramesh, Ekdeep Singh Lubana, Mikail Khona, Robert P. Dick, and Hidenori Tanaka. Com-
positional capabilities of autoregressive transformers: A study on synthetic, interpretable tasks,
2024. URL https://arxiv.org/abs/2311.12997.

Patrik Reizinger, Szilvia Ujváry, Anna Mészáros, Anna Kerekes, Wieland Brendel, and Ferenc
Huszár. Position: Understanding llms requires more than statistical generalization, 2024. URL
https://arxiv.org/abs/2405.01964.

Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin Wenliang, Elliot
Catt, John Reid, Cannada A. Lewis, Joel Veness, and Tim Genewein. Amortized planning with
large-scale transformers: A case study on chess, 2024. URL https://arxiv.org/abs/
2402.04494.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity, 2025. URL https://arxiv.org/abs/2506.
06941.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm, 2017. URL https://arxiv.org/abs/1712.01815.

P. v. d. Sterren. Fundamental chess openings. Gambit Publications, 2009.

Stockfish. URL https://stockfishchess.org/blog/2025/stockfish-17-1/.

Shubham Toshniwal, Sam Wiseman, Karen Livescu, and Kevin Gimpel. Chess as a testbed for
language model state tracking. Proceedings of the AAAI Conference on Artificial Intelligence, 36
(10):11385–11393, Jun. 2022. doi: 10.1609/aaai.v36i10.21390. URL https://ojs.aaai.
org/index.php/AAAI/article/view/21390.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers, 2021. URL https:
//arxiv.org/abs/2106.06981.

Edwin Zhang, Vincent Zhu, Naomi Saphra, Anat Kleiman, Benjamin L. Edelman, Milind Tambe,
Sham M. Kakade, and Eran Malach. Transcendence: Generative models can outperform the
experts that train them, 2024. URL https://arxiv.org/abs/2406.11741.

Yinqi Zhang, Xintian Han, Haolong Li, Kedi Chen, and Shaohui Lin. Complete chess games enable
llm become a chess master, 2025. URL https://arxiv.org/abs/2501.17186.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization,
2023. URL https://arxiv.org/abs/2310.16028.

11

https://oscarbalcells.com/assets/nnue_paper_english.pdf
https://arxiv.org/abs/2008.04057
https://arxiv.org/abs/2509.04691
https://arxiv.org/abs/2509.04691
https://arxiv.org/abs/2311.12997
https://arxiv.org/abs/2405.01964
https://arxiv.org/abs/2402.04494
https://arxiv.org/abs/2402.04494
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/1712.01815
https://stockfishchess.org/blog/2025/stockfish-17-1/
https://ojs.aaai.org/index.php/AAAI/article/view/21390
https://ojs.aaai.org/index.php/AAAI/article/view/21390
https://arxiv.org/abs/2106.06981
https://arxiv.org/abs/2106.06981
https://arxiv.org/abs/2406.11741
https://arxiv.org/abs/2501.17186
https://arxiv.org/abs/2310.16028


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A TRAINING DYNAMICS

0.0 0.2 0.4 0.6 0.8 1.0
Training steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Le
ga

l m
ov

e 
ac

cu
ra

cy

ID Puzzles
OOD Puzzles
ID sum of probabilities
OOD sum of probabilities

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0 1K 2K 3K 4K 5K 6K 7K 8K 9K 10
K

10
0K

20
0K

30
0K

40
0K

80
0K

1.2
M

10
M

Training steps

0.0

0.2

0.4

0.6

0.8

1.0

Le
ga

l m
ov

e 
ac

cu
ra

cy

ID Puzzles
OOD Puzzles
ID sum of probabilities
OOD sum of probabilities

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0 1K 2K 3K 4K 5K 6K 7K 8K 9K 10
K

10
0K

20
0K

30
0K

40
0K

80
0K

1.2
M

10
M

Training steps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 th
e 

le
ga

l m
ov

es

N
R
B
Q
P
K

Figure 5: Training dynamics of move legality: the left and middle plots illustrate the legal next
move accuracy during training on the ID (blue) and the OOD Puzzles (orange); and the sum of
all legal moves’ probabilities from all possible moves for the ID (green) and the OOD Puzzles
(red). Averages are taken over 1000 puzzles. The two plots are scaled differently to better see
the beginning of the training. The right plot shows the relative legal probability of the pieces,
calculated as p(legal moves of a given piece)/p(all moves with a given piece). The notation of the
pieces is the following: N - knight, R - rook, B - bishop, Q - queen, P - pawn, K - king. These values
were calculated on very simple boards containing one black, one white king and only the type of
piece whose legal move was examined.

B EXPERIMENTAL DETAILS

Our Transformer model uses the same setup as Ruoss et al. (2024), excluding the dataset and the
bach size. Our the exact size of our filtered dataset is 525 388 668 as described in § 3.1. For the
batch size, we choose 256, which is more suitable to our GPU. The experimental details can be
found in their paper. Here we only detail some hyperparameters. A decoder only Transformer is
trained with 16 layers, 8 heads and embedding dim of 1024, making the model ≈ 270M parameters.
The context length was 78 from which 77 corresponds to the tokenized FEN, and one for the next
action. When the model is used for prediction, a dummy action character appended after the FEN.
THE output dim is 1968, corresponding to all the possible actions. The model is trained for 10M
steps, which corresponds to 4.87 epochs. For prediction, the argmax of the output probabilities is
chosen.
To train the model, we used 4XH100 GPUs (80GB SXM5) and the evaluation is run on a dual-socket
Intel(R) Xeon(R) Gold 6526Y CPU (32 physical cores, 64 threads, up to 3.9 GHz) and four NVIDIA
L40S GPUs (46 GB memory, CUDA 13.0).

C STOCKFISH

C.1 DETAILS OF TAB. 1

As it was described in § 4.2, when there are no K legal moves from a board, Stockfish cannot
generate topK best moves. In Tab. 5, we report the number of boards top1,3,5,10 were calculated on
regarding each dataset.

C.2 STOCKFISH ABLATIONS

In this section we describe the extensive Stockfish ablations we conducted. This was necessary,
because the Stockfish engine used for generating the test labels (see § 3.1) cannot be reproduced
as the quality of the engine with 0.05 time limit per move greatly depends on the chip Ruoss et al.
(2024) used for running it. Also, they used an older version of Stockfish (16), but the time we are
writing the paper a newer version (17) is available. Therefore, we calibrate Stockfish 17. Fist, we
compare Stockfish with different time and depth limits to ground truth values. We use depth as the
limit, rather than a fixed time, to ensure a fair evaluation, since endgames and starting positions
may require different amounts of time to produce moves of comparable quality. From Tab. 6, we
conclude that depth 20 only marginally worse than depth 30, but requires much less compute time.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Accuracy (%)
Dataset Sf.Top1 Sf.Top3 Sf.Top5 Sf.Top10
ID Puzzles 1000 990 968 898
ID test set 1000 965 934 886
OOD Puzzles 1000 981 958 947
More pieces 1000 819 653 543
Same color 1000 774 625 545
Chess960 starting pos. 959 959 959 959
All starting pos 1000 1000 1000 1000
Knights&Rooks 1000 1000 1000 1000

Table 5: Ablation on the method of choosing the topK move of Stockfish: On the More pieces
dataset (1000 boards), we evaluate Stockfish with varying depth and method of choosing topK, and
report the top1,3,5,10 accuracies. Moreover, in (parentheses) we show the number of boards the
accuracies were calculated on.

Accuracy (%)
Time limit Puzzles Test label
0.05 98.80 61
0.5 99.20 62
1 99.20 63
1.5 99.40 63

Accuracy (%)
Depth limit OOD Puzzles Filtered test set
10 97.20 52
15 98.80 62
20 99.20 63
30 99.40 64

Table 6: Stockfish with varying limits compared to ground truth values Table on the left: Stock-
fish is evaluated on 1000 OOD Puzzles whether the next move predicted by the engine equals the
first move of the solution of the puzzle. While on the right: On 100 boards from the (ID) filtered
test set, we measure whether the move of Stockfish is the same as the test label.

Even though we do not know the exact Elo scores of the engine, but based on Ruoss et al. (2024),
we hypothesize that a depth 20 Stockfish 17 has 3000 Elo score making it a very strong engine.
For comparison, the world no.1 chess player, Magnus Carlsen, has 2839 Elo in classical chess at the
moment (September 2025).
Next, we compare Stockfish to our Transformer model (Tab. 7).

Accuracy (%)
Depth OOD Puzzles Filtered test set
10 67.90 42
15 67.70 52
20 67.70 57
30 67.00 53

Table 7: Stockfish compared to the
Transformer model: On 1000 OOD
Puzzles and on 100 positions from the
filtered test set, we evaluated whether
the Transformer’s next move is equal to
Stockfish’s next move.

As it can be seen in Tab. 1, we evaluate whether the
Transformer’s next move is among the topK (K=1,3,5,10)
moves of Stockfish. For this, an ablation is made on
how we choose the topK moves. We compare the case
where top1,3,5,10 are independently generated to the case
where top10 is generated but top1,3,5 are chosen as the
top moves among top10 (Tab. 8). These methods have
different outcomes.
Generating only top10 (then choosing top1,3,5 from it)
seems unfair, because there are only 545 cases when
Stockfish can generate 10 moves, therefore top1,3,5 will
be estimated on 545 boards, too. Thus, all the boards,
where there are no 10 different moves (very endgame po-
sitions) will be left out. Intuitively, generating moves for
endgame positions is easier, so leaving them out would
unfairly lower the accuracies. In fact, generating top1 in-
dependently with even depth 20 significantly increases accuracy compared to the case when top1 in
chosen from top10 with depth 30.
Consequently, we choose to generate top1,3,5,10 moves independently. The only downside is that it
can lead to non-consistently increasing values (top3 ¿ top5). One can argue that it should be allowed

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

more searching for generating top10 than top1, but allowing searching depth 30 does not really differ
from depth 20.

Accuracy (%)
Method Sf.Top1 Sf.Top3 Sf.Top5 Sf.Top10
Depth 20 + generate all top1,3,5,10 30.40 (1000) 39.53 (774) 37.12 (625) 43.12 (545)
Depth 30 + generate top10 and choose top1,3,5 13.30 (545) 26.24 (545) 31.01 (545) 43.85 (545)
Depth 20 + generate top1,10, and choose top3,5 30.40 (1000) 24.95 (545) 31.01 (545) 43.12 (545)
Depth 30 + generate top1,3,5,10 29.90 (1000) 41.09 (774) 38.88 (625) 43.85 (545)

Table 8: Ablation on the method of choosing the topK move of Stockfish: On the More pieces
dataset (1000 boards), we evaluate Stockfish with varying depth and method of choosing topK, and
report the top1,3,5,10 accuracies. Moreover, in (parentheses) we show the number of boards the
accuracies were calculated on.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D OPENING MOVES OF STARTING POSITIONS

Figure 6: Starting position:
a starting position from the
Chess960 dataset.

From a starting position described in § 3.2, there can be at most
20 legal moves, as the first piece to move is either a pawn or a
knight. For example, on the board Fig. 6, each of the 8 pawns
can move 1 or 2 squares forward, and each knight can be placed
to 2 squares: the knight on c1 can move to b3 or d3, and the
knight on d1 to c3 or e3. If we assume that most of the time
when a player moves a pawn as a very first move of the game,
the pawn is moved by 2 squares, then the effective number of
legal moves is 12.
The model tends to play the same openings for Chess960 starting
boards, d2d4, c2c4, e2e4, f3f4 as the knight moves cover
≈ 90% of the cases. The model plays d2d4 360, c2c4 335,
e2e4 70, f2f4 44, c2c3 10, a2a4 8, b2b4 7, f2f3 7, h2h4
4, d2d3 3, g2g3 2, g2g4 1, a2a3 0, b2b3 0, e2e3 0, h2h3
0 times, and moves the knight 74 times. While Stockfish generates d2d4 150, e2e4 148, f2f4
124, c2c4 117, b2b4 89, a2a4 80, g2g4 79, h2h4 61, g2g3 22, c2c3 19, b2b3 18, f2f3 12,
e2e3 8, d2d3 6, a2a3 0, h2h3 0 times, and moves the knight 26 times. Here, the top10 moves
cover the 92.7% of the cases.

E ELO RATINGS

E.1 LICHESS

Bullet Blitz Chess960 Horde
win 24% 35% 23% 14%
draw 41% 35% 14% 32%
loss 35% 30% 63% 54%

Table 9: Draw percentages of the games
playen on Lichess.

In this section, the details of the games played on
Lichess can be found. In Standard chess, the model
played Blitz games, too, in which it achieved an Elo
score of 1493±61 making it better that the 51% of
the players on Lichess. The number of games the
Elo ratings are based on is 100 for Standard Bullet,
100 for Chess960, 50 for Horde, and 55 for Standard
Blitz. This is the reason why the deviation of the
rating is higher in the case of Horde and Blitz. The
win/draw/loss percentages can be seen in Tab. 9. The
average Elo of the opponent was 1572 in Standard
Bullet, 1544 in Blitz, 2041 in Chess960 and 1650 in Horde. The 14% of the Standard Bullet, 13%
of Standard Blitz, 57% of Chess960 and 76% of Horde games was played by a human.

E.2 TOURNAMENTS

In addition to the realtive Elo in the Tournaments, we report the score of each player, which defined
as

score =
1 ∗#wins + 0.5 ∗#draws

#all games
.

The scores can be found in Tab. 10. The order of the models based on their score is identical to the
order based on their relative Elo ratings in every chess variant.

Model Standard Chess960 Horde
Trf 61% 36% 15%
Sf.4 75% 79% 88%
Sf.3 64% 71% 76%
Sf.2. 46% 52% 51%
Sf.1 34% 39% 44%
Sf.0 19% 23% 27%

Table 10: Scores: of the models played in the tournament of the different variants.

15


	Introduction
	Background and related work
	Chess engines

	Experimental setup
	Training
	OOD datasets
	Evaluation

	Results
	Rule extrapolation
	Strategy adaptation
	Training dynamics

	Conclusion
	Training dynamics
	Experimental details
	Stockfish
	Details of table:oodresults
	Stockfish ablations

	Opening moves of starting positions
	Elo ratings
	Lichess
	Tournaments


