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ABSTRACT

The MLSP 2025 “The Sampling-Assisted Pathloss Radio
Map Prediction Data Competition” challenges participants
to construct accurate path-loss maps from building-scale
ray-tracing data while leveraging only sparse ground-truth
samples. Each submission is evaluated under four condi-
tions—Task 1 and Task 2, each tested with 0.50% and 0.02%
sampling budgets—and the final score is computed as a
weighted average of the RMSEs across these four settings.
We address this challenge with Sparse-Guided RadioUNet,
a five-channel U-Net architecture that integrates physics-
informed inputs and sparse supervision. The model excludes
sampled pixels from the loss computation, allowing it to
focus on interpolating unknown regions. A two-stage fre-
quency transfer learning routine—multi-frequency pretrain-
ing followed by fine-tuning on the target band—enables the
network to generalize across propagation conditions while
adapting to band-specific characteristics. To further regu-
larize spatial consistency, we introduce a spread loss term
that penalizes discontinuities, though it may occasionally
oversmooth sharp transitions. For Task 2, we propose a
lightweight edge–strata–boundary (ESB) sampling algo-
rithm that combines saliency, distance strata, and LoS/NLoS
boundary cues to place informative probes under a tight
sampling budget. Our experiments demonstrate that this
framework enables high-quality PL map prediction with as
little as 0.5% or 0.02% supervision. The full pipeline runs
in 2.5 ms per building—orders of magnitude faster than ray-
tracing—and achieves strong validation accuracy without
relying on dense ground truth. These findings highlight the
potential of structured sparse learning and efficient sampling
in scalable radio frequency environment modeling.

Index Terms— path-loss prediction, sparse supervision,
U-Net, adaptive sampling, frequency transfer learning

1. INTRODUCTION

Accurate prediction of radio-frequency (RF) path-loss (PL)
maps is fundamental to a wide range of wireless applica-
tions, including access-point placement, network planning,

and 6G digital twins. Traditional empirical models (e.g.,
COST-231 [1], ITU-R [2, 3]) offer fast but coarse estimates,
whereas high-fidelity approaches—such as full-wave FDTD
or commercial 3-D ray-tracing—typically require from sev-
eral minutes to hours to simulate a single urban block (e.g.,
≈ 50 s for a 1 km2 map at 30 GHz)[4], which limits their scal-
ability. Recently, data-driven approaches using convolutional
neural networks (CNNs) have emerged as promising surro-
gates—provided that sufficient GT data are available[5, 6, 7].
However, RF data collection in practice is extremely costly,
often requiring thousands of transmitter–receiver (Tx–Rx)
measurements per building, leading to a severe data scarcity
bottleneck. To address this, synthetic datasets such as Deep-
MIMO [8] and RadioMapSeer [9] provide realistic and re-
producible radio maps based on ray-tracing simulations in
complex urban environments.

The MLSP 2025 “The Sampling-Assisted Pathloss Radio
Map Prediction Data Competition” directly targets this chal-
lenge [10]. Each submission is evaluated under four distinct
conditions—Task 1 and Task 2, each with 0.50% and 0.02%
sampling rates—and the final score is computed as a weighted
average of the RMSEs across these settings. Task 1 provides
a fixed sparse sampling mask (0.50%), whereas Task 2 evalu-
ates the ability to design an effective sampling strategy under
a stringent 0.02% budget.

This setting raises two central questions: (i) How can a
neural network be trained under extremely sparse supervi-
sion without collapsing to trivial solutions? and (ii) Which
sampling strategy best supports model generalization under
tight supervision budgets?

To address these questions, we propose a unified sparse-
guided learning framework with the following key contribu-
tions:

• We introduce Sparse-Guided RadioUNet, a five-
channel U-Net architecture that incorporates physics-
informed inputs—reflection (R), transmission (T ), and
distance (D)—along with a binary sampling mask (M )
and masked ground truth (M ⊙ G). Supervised loss
is computed only on unobserved pixels (M = 0),
enabling focused interpolation.
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• We employ a two-phase frequency transfer learning
scheme, consisting of multi-frequency pretraining fol-
lowed by fine-tuning on the target band (868 MHz).
We also study scheduler choices (cosine annealing vs.
ReduceLROnPlateau) and apply data augmentation for
better generalization.

• We introduce a spread loss term that penalizes spatial
discontinuities to enforce smoothness. While beneficial
overall, it may oversmooth sharp transitions, particu-
larly behind walls.

• For Task 2, we propose a lightweight physics-guided
edge–strata–boundary (ESB) sampling algorithm
that combines gradient saliency, distance stratification,
and LoS/NLoS boundary cues to select informative
samples under tight budgets, without requiring forward
passes.

Extensive ablation studies (§4) confirm that each com-
ponent contributes to improved RMSE. Our full pipeline
achieves high-accuracy predictions using only sparse su-
pervision, with an inference time of just 2.5 ms per build-
ing—orders of magnitude faster than ray-tracing simulations.

Our final submission to this competition achieved root-
mean-square errors (RMSEs) of 4.50 dB and 7.63 dB for
Task 1 (0.5%, 0.02%), and 4.51 dB and 7.78 dB for Task 2
(0.5%, 0.02%), respectively. The final weighted average
RMSE was 6.10 dB on the official test set. Additionally, to
evaluate the isolated performance of our framework with-
out any supervision signals, we trained a 3-channel baseline
variant that excludes both the sampled ground truth and the
sampling mask. As our architecture was explicitly designed
to leverage sparse supervision—via masked loss computa-
tion, auxiliary GT fusion, and task-specific regularization—it
is naturally under-optimized for this 0% setting. As a result,
the model exhibited significantly degraded performance, with
an RMSE of 16.08 dB on the official test set. This outcome
highlights the critical role of guided samples and validates our
architectural design choices. We note, however, that unlike
our extensively tuned 0.5% and 0.02% models, this baseline
was trained without dedicated hyperparameter optimization.
Future tuning and component-level refinements may help
mitigate this performance gap.

2. RELATED WORK

Path-Loss Prediction. Fast but coarse empirical tools such
as ITU–R P.1238 [2] remain popular baselines for in-building
planning, yet recent deep-learning surrogates outperform
them by large margins. EM DeepRay [11] employs a U-Net-
based model trained to replicate ray-traced pathloss using
reflection and permittivity maps, regularized by physics-
informed constraints. In contrast, IPP-Net [12] incorporates

multi-channel physical inputs including reflection, trans-
mission, distance, and empirical pathloss, trained via cur-
riculum learning to enhance generalization across indoor
layouts. Transformer backbones (e.g. ViT) have also been
adapted to radio maps, improving parameter efficiency and
receptive-field modeling [13]. Extremely sparse supervision
is a defining challenge indoors: Radio DIP [14] leverages the
deep-image-prior effect from a single sparse snapshot. Our
Sparse-Guided RadioUNet extends this line of work by con-
catenating a binary sampling mask and masked ground truth
as auxiliary channels and by adding a spread-loss term that
regularizes local smoothness while preserving sharp transi-
tions.

Wide-area planning traditionally relies on COST-231 [1]
or ITU–R P.1411 [3] for fast estimates, and on full 3-D ray-
tracing for high precision. CNN surrogates now bridge this
gap. RadioUNet [5] achieves near ray-tracing accuracy in
milliseconds; PLNet [6] learns from multi-channel grids en-
coding terrain, building footprint, and height; FadeNet [7]
extends the approach to mm-wave fading with enhanced
residual blocks; and DeepREM [15] recovers dense radio-
environment maps from drive-test samples using a condi-
tional GAN. Diffusion-based surrogates such as RMDM [16]
have recently been proposed to capture long-range multipath
statistics more faithfully.

Sparse Supervision and Dense Reconstruction. Sparse
radio map reconstruction is closely related to sparse-to-dense
regression tasks in vision—such as depth completion from
LiDAR and monocular images [17] and free-form image in-
painting [18]—but is even more challenging due to the ex-
treme sparsity (0.02–0.50%) and the high dynamic range of
RF signals. DeepREM and our method both follow the vision
paradigm of mask-guided completion, yet we additionally in-
ject physics priors and leverage transfer learning for stability.

Physics Priors and Transfer Learning. Injecting dis-
tance rasters, LoS masks, or free-space path-loss maps has
been shown to consistently improve generalization across en-
vironments. Multi-band pre-training followed by single-band
fine-tuning—first demonstrated in EM DeepRay [11] and later
adopted by FadeNet [7]—has proved particularly effective;
we employ the same strategy before specializing to the com-
petition’s 868 MHz band.

Active Sampling. Entropy- and mutual-information–driven
probing dominate the active-learning literature [19], but their
iterative optimization is expensive. Our ESB sampling offers
an O(N) alternative by greedily selecting spatial edges, dis-
tance strata, and LoS/NLoS boundaries, thereby improving
0.02%-budget performance without extra forward passes.

Benchmark Datasets. Progress is catalyzed by public
corpora: DeepMIMO [8] supplies mm-wave MIMO channel
snapshots, RadioMapSeer [9] provides simulated urban path-
loss and time-of-arrival layers, and the Indoor Radio Map
Dataset [20] introduces the first large-scale benchmark with
ultra-sparse ground truth. These resources enable compre-



hensive evaluation across indoor and outdoor scenarios and
motivate hybrid physics–data models such as ours.

3. METHOD

3.1. Problem Formulation

Since the raster sizes vary across buildings, all images are
zero-padded to a fixed size of height H = 530 and width
W = 610 before training and inference. Each raster I ∈
RH×W×3 contains three physics-derived channels: reflection
(R), transmission (T ), and distance (D). A sparse binary
mask M ∈ {0, 1}H×W identifies a small proportion r of
pixels (r ∈ {0.5, 0.02}%) where the ground-truth path-loss
values G are revealed. The goal is to predict a dense map
Ĝ minimizing the root-mean-square error (RMSE) across all
pixels.

3.2. Sparse-Guided RadioUNet Architecture

We adopt a custom deep U-Net [21] variant, Sparse-Guided
RadioUNet, featuring multiple down-sampling and up-sampling
stages. The encoder comprises progressively deeper convo-
lutional blocks with feature depths from 10 to 500, while the
decoder symmetrically reconstructs spatial resolution with
transposed convolutions and skip connections at multiple
levels.

The network takes five input channels: the three physics-
based rasters [R, T,D], the binary mask M , and the masked
ground-truth path-loss map M ⊙ G. Instance normalization
and leaky-ReLU activations are applied throughout to stabi-
lize training in high-dynamic-range regions. The final pre-
diction is passed through a ReLU activation to ensure non-
negativity.

3.3. Loss Function

Our proposed Spread Loss encourages locally smooth yet
edge-preserving reconstructions. We minimize a composite
loss:

L = MSE(Ĝ,G)︸ ︷︷ ︸
Lmse

+λ Spread(Ĝ)︸ ︷︷ ︸
Lspread

, (1)

Inspired by the classical anisotropic Total Variation (TV) reg-
ularizer [22], we extend the idea by (i) weighting each gradi-
ent by the sampling mask M , and (ii) cosine-annealing the co-
efficient λ during training. This design preserves sharp walls
while avoiding over-smoothing of observed pixels. To pre-
vent trivial learning from the sparse ground-truth locations,
we exclude sampled pixels from the loss computation. That
is, both the MSE and Spread losses are computed only over
unobserved pixels where M = 0.

Here, MSE evaluates prediction accuracy, and the Spread
loss penalizes spatial discontinuities. The weighting coeffi-
cient λ is gradually increased from 0 to 0.1 via a half-period

cosine annealing schedule. This encourages the model to first
fit the data, then smooth spatial artifacts.

3.4. Training Strategy

Phase I: 3-Frequency Pre-Training

We train the model on 3750 maps spanning 868 MHz, 1.8
GHz, and 3.5 GHz. The dataset is split 4:1 into 3000 training
and 750 validation images. Random 90◦ rotations, flips, and
480×560 crops with zero-padding are applied to augment the
training set, resulting in 4× data expansion.

Training is performed for 40 epochs using AdamW (ini-
tial learning rate 10−3, weight decay 10−4), with a cosine-
annealing learning rate schedule and warm restarts every 10
epochs.

Phase II: 868 MHz Fine-Tuning

The model is then fine-tuned on the 868 MHz subset for 20
additional epochs. A Reduce-on-Plateau schedule reduces
the learning rate by a factor of 0.3 when validation RMSE
does not improve over five consecutive epochs.

3.5. Adaptive Sampling for Task 2

Task 2 allows each team to select a sparse subset of sample
points (typically 0.02% or 0.5% of pixels per building) before
inference. Since building image sizes vary, the actual number
of samples is not fixed but depends on image resolution.

We propose an Edge–Strata–Boundary (ESB) sampling
policy that combines four heuristics:

1. Edge saliency: compute Sobel gradients on R and T ,
and select the top 10% high-gradient pixels.

2. Distance strata: divide D into near/mid/far bins and
sample equally from each to capture range-dependent
loss.

3. NLoS regions: identify pixels where T < 0.2 and sam-
ple uniformly within these shadow regions.

4. LoS/NLoS boundaries: apply Sobel to the NLoS
mask to target sharp transitions.

Since the combined candidate set usually exceeds the
sampling budget, we apply a greedy farthest-point strategy
to maximize spatial coverage. Let C denote the set of can-
didate pixels generated by our heuristics and S the set of
already selected samples. At each iteration, we select the
point p∗ ∈ C \ S that is farthest from all previously selected
points in terms of Euclidean distance:

p∗ = arg max
p∈C\S

min
q∈S

∥p− q∥2.



Table 1: Ablation results on our validation set (B21–B25).

Variant RMSE

Baseline (3 ch, no GT) 4.2401
+ 5-channel input 3.6866
+ Phase 2: ReduceLROnPlateau 3.1285
+ Transfer learning (3→1 frequency) 2.0535
+ Data augmentation 1.5139

This process is repeated until the sampling budget is met. By
prioritizing maximal spatial dispersion, this method reduces
redundancy and ensures broad coverage of diverse propaga-
tion conditions, which is particularly beneficial under extreme
sparsity (e.g., 0.02%).

The sampling method runs in under 1.6 ms per map and
improves RMSE by an additional 0.10 dB on our validation
split.

3.6. Inference Pipeline

At inference time, each five-channel padded tensor is pro-
cessed through the network. The output is cropped back to
the original field of view and converted to dB scale. The av-
erage inference time is 2.5 ms per map, enabling real-time
prediction at the building level—orders of magnitude faster
than conventional ray-tracing methods.

4. EXPERIMENTS

4.1. Dataset and Metrics

We independently split the dataset by assigning buildings
B1–B20 for training and B21–B25 for validation, with each
raster padded to a resolution of 530×610. The evaluation
metric is root-mean-square error (RMSE) in dB after clipping
predictions to the range [13, 160].

4.2. Implementation Details

All models are trained on a single NVIDIA A100 GPU. Batch
size is set to 2. Training Phases I and II take 7 hours and 90
minutes respectively. Inference requires 2.5 milliseconds per
map.

4.3. Ablation Study

Table 1 summarizes the incremental improvements brought
by each architectural and training component. All results are
based on the 0.5% supervision case and averaged over five
validation folds.

Notably, using cosine annealing in both Phase I and II
leads to degraded performance (RMSE = 4.0641), likely due
to overly aggressive learning rate decay during fine-tuning.
In contrast, when Phase I uses cosine annealing and Phase

Fig. 1: Ground truth, predicted maps and absolute errors for
a representative case.

II switches to a ReduceLROnPlateau strategy, the model
achieves a more stable descent to 3.1285. This suggests that
fine-tuning benefits from adaptive learning rate schedules
tailored to validation performance. Among all ablations,
transfer learning yields the largest single performance gain
(-1.075 dB), while data augmentation provides a further sig-
nificant reduction of -0.5396 dB.

4.4. Qualitative Results

Figure 1 shows representative examples of poor predictions
alongside ground-truth maps and their absolute errors. Error
hotspots are typically found in deep-indoor zones or behind
walls, indicating the presence of multipath artifacts not well
captured by local cues.

Notably, certain blurry regions in the prediction maps fail
to replicate sharp discontinuities present in the ground truth.
This may be attributed to the smoothing effect of the spread
loss, which—while generally effective—can undesirably flat-
ten sharp transitions, potentially degrading performance in
such regions.

5. DISCUSSION

Sparse Supervision and Interpolation

Under extremely sparse conditions (e.g., 0.5%), excluding
the sampled points from the loss computation allows the net-
work to focus entirely on interpolating the unknown regions.
This implicitly encourages spatial consistency while reducing
task entropy. The spread loss supports this by suppressing
high-frequency noise and encouraging continuity. However,
as shown in our qualitative results, it may also overly smooth
abrupt transitions—particularly behind walls—leading to
blurry predictions. This suggests a tension between regular-
ization and fidelity in spatial interpolation tasks.

Effectiveness of Frequency Transfer

Our two-phase training scheme, consisting of multi-frequency
pretraining followed by band-specific fine-tuning, yields the
largest performance gain in our ablation study. The initial
phase teaches the network generalizable low-level features,
while the fine-tuning stage adapts high-level patterns spe-
cific to the target band (868 MHz). This approach not only



prevents overfitting but also leverages cross-band regulari-
ties, resulting in a 1.075 dB RMSE reduction compared to
single-band training.

Limitations and Future Directions

Task 2 scored only marginally lower than Task 1; this small
gap is likely due to statistical variability inherent in our
heuristic ESB sampling, which—although it usually aligns
points with edges and strata—can still overlook critical prop-
agation hotspots in complex layouts and leave the model
under-constrained at those locations. The ESB policy is there-
fore effective yet inherently heuristic and may miss other im-
portant areas in spatially uniform or repetitive environments.
Additionally, it assumes pixel-aligned transmitter positions
and does not account for angular propagation effects such as
beamforming. Future work could explore uncertainty-aware
or learning-based sampling strategies that adaptively balance
informativeness and coverage, and incorporate physics priors
to better capture sharp transitions.

6. CONCLUSION

We proposed Sparse-Guided RadioUNet, a five-channel U-
Net architecture that integrates physics-informed inputs with
sparse supervision for path-loss map reconstruction. By ex-
plicitly excluding ground-truth pixels from the loss compu-
tation, the model focuses on interpolating unknown regions
more effectively. We also employed a two-phase training
strategy consisting of multi-frequency pretraining followed
by fine-tuning on the target band (868 MHz), allowing the net-
work to learn general propagation patterns and adapt to band-
specific distributions. In addition, we incorporated a spread
loss to promote spatial consistency under sparse supervision,
while also observing that it may oversmooth sharp transi-
tions—such as those behind walls—leading to slight blurring
in some predictions. With this design, our method enables
accurate radio map prediction even under extremely sparse
conditions with only 0.5% or 0.02% of ground-truth labels.
Moreover, the inference time per building is just 2.5 millisec-
onds, which is orders of magnitude faster than traditional ray-
tracing approaches. Future work will explore uncertainty-
based and reinforcement learning–driven sampling strategies,
as well as generative priors using diffusion models, to further
improve reconstruction performance under extreme sparsity.
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