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ABSTRACT

Few-Shot Learning (FSL) is a challenging task of recognizing novel classes from
scarce labeled samples. Many existing researches focus on learning good repre-
sentations that generalize well to new categories. However, given low-data regime,
the restricting factors of performance on novel classes has not been well studied.
In this paper, our objective is to understand the cause of error in few-shot classi-
fication, as well as exploring the upper limit of error rate. We first introduce and
derive a theoretical upper bound of error rate which is constrained to 1) linear
separability in the learned embedding space and 2) discrepancy of task-specific
and task-independent classifier. Quantitative experiment is conducted and results
show that the error in FSL is dominantly caused by classifier discrepancy. We fur-
ther propose a simple method to confirm our theoretical analysis and observation.
The method adds a constraint to reduce classifier discrepancy so as to lower the
upper bound of error rate. Experiments on three benchmarks with different base
learners verify the effectiveness of our method. It shows that decreasing classifier
discrepancy can consistently achieve improvements in most cases.

1 INTRODUCTION

Learning novel concepts from few samples is one of the most important ability in human cogni-
tion system (Chen et al. (2018); Dhillon et al. (2019); Wang et al. (2020)). By contrast, massive
achievements of modern artificial intelligent systems are dependent upon lots of data and annotation
which are hard to acquire in many scenarios. Blocked by the difficulty in obtaining large labeled
datasets, community shows more interests in developing algorithms with high data-efficiency. It
is so-called few-shot learning that learns to generalize well to new categories with scarce labeled
samples (Sung et al. (2018); Vinyals et al. (2016)). Existing methods deal with few-shot learning in
the general framework of meta-learning where a base learner is developed and optimized across dif-
ferent episodes (or tasks). Episodes are formed in a N-way K-shot fashion where K support samples
per class are available for training. The overall objective is enabling the base learner to exploit on
base classes and to transfer learnt knowledge to recognize novel classes with few support data. Since
training and evaluation are performed on different tasks, the base learner holds different task-specific
classifiers that depend on data sampling.

In general, classification model has two components: feature extractor and classifier (Simonyan &
Zisserman (2015); He et al. (2016); Zagoruyko & Komodakis (2016)). Most approaches of few-shot
learning exploit from according perspectives: learning a good embedding and finding a right base
learner. Rethinking-FSC (Tian et al. (2020)) demonstrates that a good learned embedding space can
be more effective than many sophisticated meta-learning algorithms. It argues for the performance
on meta set where embeddings are learnt in supervised or self-supervised way. Goldblum et al.
(2020) reveal the importance of feature clustering in few-shot learning. Since classifier performance
is sample-dependent especially in one-shot scenario, variance of feature is expected to be small so as
to retain good performance. It shows that classifier performance is not stable across different tasks.
MetaOptNet (Lee et al. (2019)) and R2-D2 (Bertinetto et al. (2018)) explore training and optimiza-
tion routines for linear classifier, enabling good few-shot performance through simple base learner.
These literatures develop specific algorithms from the aspects of learning good representation or op-
timizing base learner. Most recent methods use linear classifier as base learner, so we also consider
linear model in this paper. To our best knowledge, there has been little research focusing on how the
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two components (aka feature representation and classifier) respectively influence the performance
on novel classes in FSL.

In this paper, we introduce an upper bound of error rate in few-shot learning, indicating that the
error comes from two aspects: 1) linear separability in the embedding space and 2) classifier dis-
crepancy between task-specific and task-independent classifiers. The ideal classifier is viewed to
be task-independent since its performance is not sample-dependent (Goldblum et al. (2020)). To
quantitively estimate each term, an experiment is performed where we use error rate of supervised
classification tasks on novel classes to measure feature separability, and use disagreement of results
obtained from different classifiers to measure discrepancy. It comes to an interesting observation that
features learned through simple methods are sufficiently discriminative and the error mainly comes
from classifier discrepancy. Based on our observation and theoretical analysis, we propose a simple
method of reducing classifier discrepancy so as to boost few-shot performance. Experiments on
three benchmarks are conducted to empirically verify our theory. Results on different datasets with
various base learners show consistent improvements, supporting our finding and theory in few-shot
learning.

The main contributions of this paper are:

1. The upper bound of error rate on novel classes is theoretically analyzed. From derived equa-
tions we figure out that the error in FSL is caused by linear separability in the feature space and
discrepancy between task-specific and task-independent classifiers.

2. Quantitative experiments are conducted to verify the theoretical analysis. Results show that the
error is dominantly caused by classifier discrepancy.

3. Based on the theoretical analysis and the experiment results, a constraint is proposed to reduce
classifier discrepancy so as to decrease the upper bound of error rate in FSL.

4. Further experiments on mini-ImageNet, tiered-ImageNet and CIFAR-FS confirm the effectiveness
of the proposed method. It shows that decreasing classifier discrepancy can consistently achieve
improvements in most cases.

2 RELATED WORK

Algorithms of Few-Shot Learning Prototypical Network (Snell et al. (2017)) is a classical al-
gorithm for its simplicity and effectiveness, which performs few-shot classification by nearest-
prototype matching. Since class prototype is the mean of features, the linear separability in feature
space has direct impact on classification results. Performance of following series of prototype based
methods (Allen et al. (2019); Liu et al. (2020)) is also limited by feature separability. Different with
these methods using nearest-neighbor classifier, Bertinetto et al. (2018) adopt ridge regression and
logistic regression as base learner. Similarly, Lee et al. (2019) use classical linear classifier SVM in
few-shot learning to learn representations. Simple linear classifier shows competitive performance
and in this paper, we use linear classifier in measuring linear separability and classifier discrepancy.

Theoretical Analysis of Few-Shot Learning Cao et al. (2019) introduce a bound for accuracy of
Prototypical Network (Snell et al. (2017)), demonstrating that the intrinsic dimension of the em-
bedding function’s output space varies with the number of shots. They further propose a method to
overcome the negative impact of mismatched shots in meta-train and meta-test stages. As in (Liu
et al. (2020)), they give a lower bound for accuracy cosine similarity based prototypical network.
Two key factors: intra-class bias and cross-class bias are theoretically formulated. We also analyze
theoretical bounds in few-shot learning. Theory in this paper does not focus on specific algorithm
like Prototypical Network but on general scenarios, from the perspective of feature separability and
classifier discrepancy.

Theoretical Analysis of Domain Adaptation: Methods of domain adaptation (Ben-David et al.
(2007; 2010); Ganin & Lempitsky (2015)) solve the problem of how to train a classifier on source
domain and guarantee the classifier performs well on target domain. A classifier’s target error is
bound by its source error and the divergence between the two domains in (Ben-David et al. (2010)).
They utilize H-divergence and H∆H-divergence to measure discrepancy between two domains.
H∆H-divergence can be computed from finite unlabeled data, allowing us to directly estimate the
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error of a source-trained classifier on the target domain. Inspired by their work, we also use H∆H-
divergence to measure discrepancy between sets on novel classes and base classes.

3 BACKGROUND

3.1 PROBLEM SETUP

The common setup of few-shot learning used in this paper is described below. A space of class is
divided into two parts: base classes Cbase and novel classes Cnovel where Cbase ∩ Cnovel = ∅.
Dataset Dbase of base classes is used for model training and the model is evaluated on dataset
Dnovel whose samples belong to unseen classes during training. The model is composed of a feature
extractor F and a classifier h. In few-shot learning, we usually consider N -way K-shot Q-query
tasks T . In task τi = (Ds

i , D
q
i , h), the support set Ds

i includes K data x ∈ Rd per class and its true
label y ∈ {c1, ..., cN}. The goal is to predict labels for query data in Dq

i given Ds
i . In this paper, we

use error rate on novel classes to evaluate the few-shot performance of a trained model. The error
rate is formulated as:

εnovel = E[ετ ] =
1

M ×Q

M∑
i

Q∑
j

1(h(F (xi,j))! = yi,j) (1)

where M is the number of sampled tasks τi ∼ Tnovel. 1(·) is indicator function.

3.2 DISTRIBUTION DIVERGENCE

We adopt following concepts to explore the cause of error in few-shot scenarios.

Definition 1 Given a set D = {(x1, y1), ..., (xm, ym)} where xi ∈ X and yi ∈ Y , for any mappings
h1, h2 ∈ X , disagreement is defined in Eqn. 2 to measure the difference of these two mappings.

dis(h1, h2) = Px∼DX (h1(x) 6= h2(x)) (2)

Definition 2 Given a domain X withD1 andD2 probability distributions over X , letH be a hypoth-
esis class on X and denote by I(h) the set for which h ∈ H is the characteristic function; that is,
x ∈ I(h)⇔ h(x) = 1. H divergence between D1 and D2 is

dH(D1,D2) = 2suph∈H|PrD1
[I(h)]− PrD2

[I(h)]| (3)

Definition 3 For hypotheses h, h′ ∈ H, the symmetric difference hypothesis space H∆H is the set
of hypotheses g ∈ H∆H ⇔ g(x) = h(x)⊕h′(x) where ⊕ is the XOR function. H∆H divergence
over distributions is defined as following:

dH∆H(D1,D2) = 2suph∈H|Prx∼D1 [h(x) 6= h′(x)]− Prx∼D2 [h(x) 6= h′(x)]| (4)

4 PROPOSED METHOD

4.1 MEASURING CLASSIFICATION PERFORMANCE ON NOVEL CLASSES

A classification model generally consists of two parts: feature extractor and classifier. Hence, the
model holds two expectations: 1) Extracted features are expected to be discriminative for classi-
fication (Snell et al. (2017); Lee et al. (2019)). 2) Classifier is supposed to be stable concerning
different tasks (Cao et al. (2019); Liu et al. (2020)). Consider linear classifier in this paper, we in-
vestigate from linear separability and classifier stability to measure classification performance on
novel classes. To quantitively estimate these two terms, we design experiments using a base model
with ResNet-12 backbone and FC (fully-connected) layer classifier. The base model is first trained
on base classes in supervised way. When testing on novel classes, we replace FC layer classifier
with ProtoNet (Snell et al. (2017)) and ridge regression (RR) as in paper Ye et al. (2020). The
εnovel(h

∗)(i.e. error rate ε on Cnovel with classifier h∗), is used to approximate and quantify feature
separability on novel classes (Eqn. 5).

εnovel(h
∗) =

1

N ×Q∗
N×Q∗∑
i

1(ŷi 6= yi) (5)
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Table 1: Experiment of linear separability and classifier discrepancy of 5-way (N=5) classification
tasks on novel classes.

Dataset Classifier εnovel(h
∗)

dis(h, h∗)
1-shot 5-shot

mini-ImageNet PN 11.72% 39.32% 16.23%
tiered-ImageNet 11.28% 32.65% 14.60%
mini-ImageNet RR 6.72% 38.34% 19.45%
tiered-ImageNet 5.97% 31.10% 16.94%

In Eqn. 5, Q∗ is the number of all samples of each class c ∈ {c1, ..., cN}. ŷi is predicted label
and yi is true label. h∗ is trained under supervised way from large set of samples and is used to
approximate the expected ideal N -way classifier. On the other hand, we use disagreement defined
in Eqn. 6 to measure classifier discrepancy.

dis(h, h∗) =
1

N ×Q

N×Q∑
i

1(ŷi 6= ŷ∗i ) (6)

where Q is the number of query samples. h is task-specific classifier that differentiates among
tasks, decided by sampled support data. h∗ is task-independent concerning these N classes. Thus,
dis(h, h∗) indicates the discrepancy between the task-specific classifiers and the ideal classifier.

Table 1 shows results on two benchmarks: mini-ImageNet and tiered-ImageNet. From Table 1, we
can see that εnovel(h∗) is generally lower than dis(h, h∗) in a large margin. For example, 1-shot
dis(h, h∗) on mini-ImageNet with RR is up to 38.34% while εnovel(h∗) is 6.72%, which is five
times lower. Furthermore,the obvious drop of dis(h, h∗) from 1-shot to 5-shot indicates obvious
raising of classifier discrepancy. An interesting conclusion can be drawn from this experiment that
the error on novel classes is dominantly caused by classifier discrepancy in low-data regimes rather
than linear separability. More details about this experiment are presented in the appendix.

4.2 UPPER BOUND OF ERROR RATE

In this section, we introduce an upper bound of error rate on novel classes in few-shot learning.

Proposition 1 Consider a feature extractor F and a hypothesis space H. Based on triangular
inequality, for h, h∗ ∈ H, it follows that:

ε(h;F ) ≤ ε(h∗;F ) + dis(h, h∗;F ) (7)

h∗ is the ideal hypothesis in H, holding that h∗ = arg minh∈HE[ετ (h;F )]. Proof is in the ap-
pendix.

In few-shot learning, error rate on novel classes is usually denoted by εnovel = E[ετ (h;F )]. Hence,
the upper bound is:

εnovel ≤ E[ετ (h∗;F )] + E[disτ (h, h∗;F )] (8)

where τ ∼ Tnovel. From Eqn. 8, boosting few-shot performance can be achieved by minimizing
the two terms in right side of above inequality. However, h∗ is unavailable when testing on novel
classes. In order to connect the performance on novel set and it on base set we consifer following
setting.

Consider N -way K-shot tasks where N is assumed to be same in meta-train and meta-test stages.
h, h′ are linear classifiers of novel classes and base classes respectively. For classification weights
Wb,Wn ∈ RN×d of base and novel classes, there exists a linear transformation matrix W̃ ∈ Rd×d
that hasWb = WnW̃ . We define the linear transformation between the ideal hypothesis on the novel
set and that on the base set as Λ, h′∗ = Λ(h∗), h∗ = Λ−1(h′∗). For query samples X = {xi ∈ Rd},
predicted results are:

h(X;Wn) = XWT
n = X(WbW̃

−1)
T (9)

According to the above analysis we know that performing a transformation on the classifier is equiv-
alent to perform the transformation on the data, Λ(h)(X) = h(Λ(X)).
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Lemma 1 LetH be a hypothesis space of VC dimension d. h∗, h′∗ are ideal hypotheses on Dnovel

and Dbase. There is an ideal hypothesis ĥ = arg minh∈H εnovel(h) + εbase(Λ
−1(h)). Then for h∗

and h′∗:
εnovel(h

∗) ≤ εbase(h′∗) +
1

2
dH∆H(Dnovel, Dbase) + λ (10)

where λ = εnovel(ĥ) + εbase(Λ
−1(ĥ)) is the combined error of the ideal hypothesis ĥ.

Lemma 2 For linear hypotheses h, h′ ∈ H and ideal hypotheses h∗ on Dnovel, h′∗ on Dbase, there
exists:

dis(h, h∗;Dnovel)

≤ dis(h,Λ(h′∗);Dbase) +
1

2
dH∆H(Dnovel, Λ(Dbase))

≤ dis(h′, h′∗;Dbase) + dis(h′, Λ(h);Dbase) +
1

2
dH∆H(Dnovel, Λ(Dbase))

(11)

Proofs of Lemma 1 and Lemma 2 are provided in the appendix. We give the core theory in this
paper by plugging Lemma 1 and Lemma 2 into Eqn. 8.

Theorem 1 The upper bound of error rate on novel classes in few-shot learning is:

εnovel ≤ εbase(h′∗) + dis(h′, h′∗;Dbase)

+ dis(Λ−1(h), h′;Dbase) + λ+
1

2
dH∆H(Dnovel, Dbase) +

1

2
dH∆H(Dnovel, Λ(Dbase))

(12)

Based on theoretical analysis and experiments, we come to several conclusions:

1. In theory, the error rate of few-shot classification is influenced by linear separability of feature
representation and classifier discrepancy between task-specific and task-independent classifiers. Ex-
periment results indicate that the main cause of error in few-shot learning is classifier discrepancy.

2. From Theorem 1, we can see that the upper bound of error rate on novel classes is positively
related to 1) linear separability on Dbase, 2) classifier discrepancy on Dbase, 3) the combined error
and 4)H∆H-divergence of Dnovel and Dbase measuring the discrepancy between two domains.

4.3 REDUCING CLASSIFIER DISCREPANCY FOR FEW-SHOT LEARNING

Based on our theoretical analysis, we propose a simple method to reduce the upper bound of error
rate, boosting few-shot performance by reducing classifier discrepancy.

Measuring Classifier Discrepancy It is proved in Sec. 4.2 that reduce error on novel classes can be
achieved by improving linear separability and reducing classifier discrepancy. Furthermore, exper-
iment reveals that the cause is the discrepancy between task-specific classifier and ideal classifier.
For these reasons, we target to reduce the upper bound by decreasing classifier discrepancy. Dis-
crepancy denoted in Eqn. 6 is non-differentiable so that we propose two measurements of classifier
discrepancy to ease gradient propagation in training stage. Since we consider linear classifier in this
paper, an intuitive way to reduce classifier discrepancy is to reduce distance between classification
weights. Squared euclidean distance can be used as a measurement:

disMSE(h, h∗;W,W ∗) = E[‖W −W ∗‖22] (13)
where W is the weight of task-specific classifier h and W ∗ is the weight of task-independent clas-
sifier h∗. disMSE measures the variance of classification weights. Since task-specific classifier is
decided by data sampling, taking data distribution into consideration, we suggest to calculate the dif-
ference of logit predicted by various classifiers. Consider commonly used KL divergence to measure
the difference of logits:

disKL(h, h∗) = E[KLD(h(Dq;Ds), h∗(Dq))] (14)

Training Policy Training process of proposed method Reducing Classifier Discrepancy (RCD)
consists two phases. In the first phase, model is trained in conventional supervised way on base
classes. Loss function in phase 1 is:

Lsup = Lce(h(F (x)), y),with (x, y) ∼ Dbase (15)
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Table 2: Performance of RCD. 5-way classification accuracies (%) without/with disMSE constraint.
Results in bold indicate performance is improved by reducing classifier discrepancy.

Backbone Setting Dataset PN LR RR
- disMSE - disMSE - disMSE

ResNet-12

1-shot
mini-ImageNet 60.18 61.42 61.28 61.43 62.30 63.64
tiered-ImageNet 66.24 65.84 64.23 65.03 66.77 67.48

CIFAR-FS 67.90 71.02 66.86 70.77 67.92 70.27

5-shot
mini-ImageNet 79.07 80.10 77.64 77.27 79.34 80.94

tiered-ImageNet 82.98 82.35 81.62 82.64 82.63 83.12
CIFAR-FS 84.38 86.33 83.14 85.20 82.73 85.55

ConvNet-64

1-shot
mini-ImageNet 52.61 54.39 51.43 51.99 53.40 54.05
tiered-ImageNet 59.71 61.92 57.44 57.60 60.11 61.27

CIFAR-FS 68.59 68.20 67.94 68.21 69.10 70.55

5-shot
mini-ImageNet 71.33 72.55 70.95 70.39 72.58 72.30
tiered-ImageNet 74.18 75.06 74.39 75.01 75.35 76.22

CIFAR-FS 78.05 79.80 78.54 78.66 79.46 80.14

where Lce is standard cross-entropy loss. The classifier h∗ = arg minh Lsup obtained in this stage
is treated as the ideal classifier, also the task-independent classifier, on Dbase. With fixed h∗, we
train the model on meta tasks T base with loss in Eqn. 16:

Lmeta = Lce(h(F (x)), y) + β dis(h, h∗),with (x, y) ∼ T base (16)

The second training procedure aims to reduce classifier discrepancy on base classes. Consequently,
the upper bound of εnovel can be decreased as verified in Theorem 1.

Our method shows great flexibility that training in the first phase is free of carefully designing base
learners. Moreover, policy in the second phase can generalize to different base learners. Algorithm
is shown in the appendix.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Dataset and Backbone We conduct experiments on three benchmarks: mini-ImageNet (Vinyals
et al. (2016)), tiered-ImageNet (Ren et al. (2018)) and CIFAR-FS (Bertinetto et al. (2018)). ResNet-
12 (Lee et al. (2019)) and ConvNet-64 (Snell et al. (2017)) are employed as backbones in this paper.
Details about data setting and architectures are shown in the appendix.

Base Learner To illustrate the effectiveness of our proposed method, we use three base learners:
PN, Ridge Regression (RR) and Logistic Regression (LR) (Bertinetto et al. (2018)). 1)PN is derived
from (Snell et al. (2017)) which finds the nearest prototype based on cosine similarity. Prototype is
computed from support samples: P = norm( 1

K

∑K
i F (xi)). Predicted labels of query samples are

given by Ŷ = arg minc Cos(Pc, X). 2) RR Classification weight is estimated by W = (XTX +
γI)−1XTY where Y is one-hot labels of support samples and I is identity matrix. Prediction
of query samples are Ŷ = X · W . 3) LR Classification weight in logistic regression is W =

arg minW Lce(D
s,W ). Query samples are predicted by Ŷ = X ·W . Descriptions are detailed in

the appendix.

5.2 RESULTS OF RCD

We evaluate the proposed Reducing Classifier Discrepancy (RCD) on three benchmarks, with three
base learners and two backbones. Table 2 and Table 3 summarize few-shot results with disMSE

and disKL be auxiliary loss respectively. Overall, RCD achieves consistent improvements in most
cases.

Auxiliary Loss As displayed in Eqn. 16, two measurements of classifier discrepancy can be added
as auxiliary loss in meta-train stage. We compare the results without and with auxiliary constraints
in Table 2 and Table 3. Each second column of three base learners shows few-shot accuracies by
reducing classifier discrepancy constrained by disMSE or disKL. Generally, disMSE is an useful
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Table 3: Performance of RCD. 5-way classification accuracies (%) without/with disKL constraint.
Results in bold indicate performance is improved by reducing classifier discrepancy.

Backbone Setting Dataset PN LR RR
- disKL - disKL - disKL

ResNet-12

1-shot
mini-ImageNet 60.18 63.25 61.28 62.59 62.30 64.41
tiered-ImageNet 66.24 67.37 64.23 65.11 66.77 67.97

CIFAR-FS 67.90 71.35 66.86 70.21 67.92 71.06

5-shot
mini-ImageNet 79.07 80.82 77.64 78.50 79.34 80.27

tiered-ImageNet 82.98 83.32 81.62 82.03 82.63 83.40
CIFAR-FS 84.38 86.49 83.14 85.96 82.73 85.49

ConvNet-64

1-shot
mini-ImageNet 52.61 55.52 51.43 52.02 53.40 54.25
tiered-ImageNet 59.71 62.94 57.44 57.97 60.11 62.04

CIFAR-FS 68.59 68.62 67.94 68.10 69.10 70.73

5-shot
mini-ImageNet 71.33 73.40 70.95 72.15 72.58 73.88
tiered-ImageNet 74.18 76.23 74.39 75.09 75.35 77.63

CIFAR-FS 78.05 78.69 78.54 79.31 79.46 79.55

Table 4: Changes of classifier discrepancy on novel classes. Columns of Stage 1 show discrepancy
on novel classes after the fist conventional training stage. Columns of Stage 2 show discrepancy on
novel classes after the second training stage with auxiliary constraints disMSE or disKL. Differ-
ences are highlighted by green and red respectively. Green/red means reduced/enlarged discrepancy.
Backbone in this experiment: ResNet-12.

RCD Setting Dataset PN LR RR
Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

disMSE

1-shot
mini-ImageNet 39.32% 37.96%(-1.36) 39.48% 36.99%(-2.49) 38.34% 36.24%(-2.10)
tiered-ImageNet 32.65% 32.82%(+0.17) 32.21% 32.01%(-0.20) 31.10% 30.28%(-0.82)

CIFAR-FS 30.73% 27.49%(-3.24) 31.15% 29.64%(-1.51) 30.64% 29.03%(-1.61)

5-shot
mini-ImageNet 16.23% 15.81%(-0.42) 16.26% 16.40%(+0.14) 19.45% 18.86%(-0.59)
tiered-ImageNet 14.60% 14.76%(+0.16) 15.92% 15.64%(-0.28) 16.94% 16.54%(-0.40)

CIFAR-FS 12.58% 11.25%(-1.33) 13.78% 12.03%(-1.75) 14.17% 12.30%(-1.87)

disKL

1-shot
mini-ImageNet 39.32% 33.85%(-5.47) 39.48% 34.57%(-4.91) 38.34% 33.21%(-5.13)
tiered-ImageNet 32.65% 31.84%(-0.81) 32.21% 31.72%(-0.49) 31.10% 30.11%(-0.99)

CIFAR-FS 30.73% 26.03%(-4.70) 31.15% 27.59%(-3.56) 30.64% 27.44%(-3.20)

5-shot
mini-ImageNet 16.23% 15.70%(-0.53) 16.26% 16.02%(-0.24) 19.45% 16.43%(-3.02)
tiered-ImageNet 14.60% 14.02%(-0.58) 15.92% 15.39%(-0.53) 16.94% 15.98%(-0.96)

CIFAR-FS 12.58% 10.80%(-1.78) 13.78% 12.74%(-1.04) 14.17% 12.62%(-1.55)

constraint which results in improvements up to 2.82% on 1-shot CIFAR-FS with RR. By contrast,
disKL shows superiority in reducing classifier discrepancy that by adding constraint disKL, accu-
racy is raised in all cases, up to 3.45% on 1-shot CIFAR-FS with PN. Under the same conditions,
reducing classifier discrepancy can bring in larger improvements in 1-shot scenarios. For exam-
ple, on mini-ImageNet with PN, reducing classifier discrepancy through diminishing KL divergence
achieves improvement by margins of 2.91% in 1-shot and 2.07% in 5-shot. Experiment results are
consistent with our theory. In 1-shot settings, discrepancy is larger due to data scarcity. Thus, RCD
makes more obvious increase on 1-shot tasks.

Base Learner We argue for the flexibility and generalization of proposed RCD. For verification, we
adopt three commonly used linear classifiers as base learner in meta-train stage. Results in Table 2
and Table 3 demonstrate feasibility of our method in improving few-shot performance regardless of
specific classifier. It indicates that reducing classifier discrepancy on base set is effective to lower
the upper bound of εnovel.

Backbone In this section, ResNet-12 and ConvNet-64 are used for ablation study. Overall per-
formance on ResNet-12 is prominently better than performance on ConvNet-64. Moreover, RCD
makes relatively larger improvements when taking ResNet-12 as architecture. Note that dimension
of features extracted by ConvNet-64 is 64 while dimension of ResNet-12 features is 640. Higher
dimension indicates larger hypothesis space. That is, classifier in higher-dimension space is less
stable so classifier discrepancy is larger. ResNet-12 holds a higher-dimension space where reducing
classifier discrepancy can result in more obvious improvements.
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(a) mini-ImageNet

(b) CIFAR-FS

Figure 1: t-SNE visualization of features of novel classes. The first column: feature space is learnt
in conventional training. The second and third column: feature space is learnt with disMSE and
disKL. In each dataset, 5 novel classes are randomly sampled. Backbone: ResNet-12. Base learner:
PN. Best viewed in color.

5.3 CLASSIFIER DISCREPANCY

We compare changes of discrepancy in Table 4 to clearly illustrate the proposed method is effective
in reducing classifier discrepancy. Changes are denoted in colors. It can be clearly see that after
the second training stage with constraints disMSE and disKL, classifier discrepancy is reduced
in nearly all settings, especially on mini-ImageNet and CIFAR-FS. Downward trend of classifier
discrepancy is positively correlated to decreasing the upper bound of error rate. Results in Table 4
are consistent with accuracy increment in Table 2 and Table 3, further proving the rationality of our
proposed theory.

5.4 VISUALIZATION

T-SNE visualization (Maaten & Hinton (2008)) is provided in Fig. 1 to give an intuitive understand-
ing of our method. In Fig. 1, figures in the first column display the distribution of features that
trained in conventional way. Figures in latter columns visualize features trained with proposed con-
straints disMSE and disKL. We can see that features within same classes cluster more tightly and
the boundaries among different classes become more clear. Our method enables larger separability
in feature space.

6 CONCLUSION

In this paper, we theoretically analyze the upper bound of error rate on novel classes in few-shot
learning. We derive that the upper bound is decided by feature separability and classifier discrep-
ancy. Furthermore, the observation shows that classification error is mainly caused by classifier dis-
crepancy in few-shot scenarios. Based on our observation and theory, we propose a simple method
to lower the upper bound of classification error by reducing classifier discrepancy. Two differen-
tiable discrepancy measurements are proposed as auxiliary constraints in our method RCD which
is feasible on different base learners. To verify the feasibility and generalization of proposed RCD,
comprehensive experiments are conducted on three few-shot benchmarks with three base learners.
Experiment results powerfully prove that RCD is effective to reduce classifier discrepancy and con-
sequently lower the upper bound of error rate in few-shot learning.
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