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Abstract

We study a two-institution stable matching model in which candidates from two
distinct groups are evaluated using partially correlated signals that are group-
biased. This extends prior work (which assumes institutions evaluate candidates
in an identical manner) to a more realistic setting in which institutions rely on
overlapping, but independently processed, criteria. These evaluations could consist
of a variety of informative tools such as standardized tests, shared recommendation
systems, or AI-based assessments with local noise. Two key parameters govern
evaluations: the bias parameter β ∈ (0, 1], which models systematic disadvantage
faced by one group, and the correlation parameter γ ∈ [0, 1], which captures
the alignment between institutional rankings. We study the representation ratio
R(β, γ), i.e., the ratio of disadvantaged to advantaged candidates selected by the
matching process in this setting. Focusing on a regime in which all candidates
prefer the same institution, we characterize the large-market equilibrium and derive
a closed-form expression for the resulting representation ratio. Prior work shows
that when γ = 1, this ratio scales linearly with β. In contrast, we show that R(β, γ)
increases nonlinearly with γ and even modest losses in correlation can cause
sharp drops in the representation ratio. Our analysis identifies critical γ-thresholds
where institutional selection behavior undergoes discrete transitions, and reveals
structural conditions under which evaluator alignment or bias mitigation are most
effective. Finally, we show how this framework and results enable interventions
for fairness-aware design in decentralized selection systems.

1 Introduction

Stable matching mechanisms are a cornerstone of allocation theory, extensively studied in game
theory, economics, and, more recently, machine learning [50, 51, 52, 8, 22, 43, 34, 35, 41]. These
mechanisms assign agents (e.g., students, workers, users) to institutions (e.g., schools, employers,
content slots) under preference and capacity constraints, ensuring that no unmatched agent-institution
pair would mutually prefer each other over their assigned match. Such matching systems are widely
deployed in admissions practices, labor markets, and digital platforms.

Often, preferences across candidates are determined using evaluations such as standardized
tests, interviews, or aggregate reviews. However, such evaluations can exhibit group-dependent
bias—systematically disadvantaging candidates from certain demographic groups [49, 29, 48, 23,
42, 57, 38]. Further, institutions often rely on overlapping signals (e.g., standardized test scores or
resumes), yielding inter-institutional correlation in how candidates are assessed. These structural
properties of bias and correlation can jointly skew allocation outcomes, compounding access gaps
across education, employment, and economic opportunity [32, 31, 58, 27, 10].

The rise of AI-driven evaluation tools has further amplified these concerns. Predictive scoring models,
automated interviews, and recommender systems are now widely used to rank candidates [45]. While
scalable and efficient, these systems often inherit biases from historical data and reinforce alignment
through shared features or pretraining [46, 56]. As a result, modern evaluations may not only be
biased but also correlated across institutions in opaque or unintended ways.
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A growing body of work has studied the impact of biased evaluations on allocation. For example, [16]
analyzes a centralized matching model where a common evaluation multiplicatively downweights
scores for one group. They show that representation degrades linearly with bias and propose
fairness-preserving mechanisms. In contrast, many real-world systems are decentralized: institutions
make decisions independently, often using correlated but locally processed signals. For instance,
school choice programs use structured tie-breaking rules that induce inter-institutional correlation
[1, 4]. Even in the absence of bias, such correlation can generate disparities across groups [12].
These insights motivate our central question: How do group-dependent bias and inter-institutional
correlation jointly shape group-level representation in decentralized matching markets?

Our contributions. We build on and generalize the centralized model of [16] by introducing
a decentralized stable matching framework that jointly models group-dependent bias and inter-
institutional correlation. We consider a two-institution setting where candidates belong to one of two
groups: G1 (advantaged) and G2 (disadvantaged). A total fraction c of candidates must be matched
across both institutions. Each candidate possesses two latent attributes. Institution 1 ranks candidates
solely by the first attribute, while Institution 2 uses a weighted combination of both attributes. The
correlation parameter γ ∈ [0, 1] controls the degree of alignment between the evaluations of the
two institutions. As in [16], candidates from G2 face a multiplicative bias β ∈ (0, 1] applied to both
attributes. For our main results, we assume that all candidates prefer Institution 1, reflecting prestige-
driven preferences in many real-world settings (e.g., centralized college admissions [2, 44, 37, 55]).
We extend our analysis to general preference distributions in Section L. Our main contributions are:

1. Equilibrium characterization. We first show that, in the infinite population limit, the stable
matching is governed by two thresholds, s⋆1 and s⋆2, which depend on β, γ, and c. The threshold s⋆1
admits a straightforward expression; see Equation (4). In contrast, deriving s⋆2 requires resolving
interdependence between institutions’ rankings and cross-group orderings. We introduce a regime-
reduction technique that collapses sixteen potential case distinctions into three interpretable
γ-based regions, determined by analytically derived thresholds γ1, γ2, γ3 (Theorem 3.1). Using
this structure, we obtain a closed-form expression for s⋆2 (Theorem 3.2) and prove that it varies
unimodally with respect to γ (Theorem E.1), capturing a subtle trade-off: increasing correlation can
both enhance evaluator alignment and reduce access to high-scoring candidates due to intensified
competition with Institution 1.

2. Fairness metric and monotonicity. Building on the equilibrium thresholds, we derive a piecewise
closed-form expression for the representation ratio R(β, γ), which measures the relative selection
rates between the two groups (Theorem 3.3). We introduce a normalized variant, N (β, γ), which
quantifies fairness relative to the ideal setting with full evaluator alignment. Unlike R, previously
studied in the centralized model of [16], the normalized ratio isolates the effect of evaluator
misalignment and enables scale-free comparisons across regimes. Because both R and N depend
on regime-specific thresholds, direct algebraic analysis is intractable; instead, we establish their
monotonicity in β and γ by examining the equilibrium-defining equations themselves.

3. Studying fairness interventions. Leveraging the structure of N (β, γ), we identify the Pareto
frontier of minimal interventions that achieve a desired fairness level τ . Specifically, we character-
ize the combinations of evaluator bias β and alignment γ that satisfy N (β, γ) ≥ τ , and visualize
these trade-offs via contour plots. This enables system designers—given current evaluation param-
eters (β0, γ0) and a target τ—to determine whether fairness can be achieved by adjusting either
parameter and to select cost-effective strategies accordingly; see Section 4.

Together, these results provide a structural and quantitative foundation for fairness-aware design in
decentralized selection systems with biased and partially aligned evaluations.

Related work. Stable matching has been extensively studied in game theory, economics, and machine
learning, with foundational contributions on stability, truthfulness, and decentralized evaluation
[25, 50, 51, 52, 22, 8, 34, 35, 41]. Our work builds on [16], who studied fairness in centralized
matching under group-biased evaluations. We generalize their setting to allow partially correlated,
institution-specific evaluations in decentralized markets. This aligns with recent work highlighting
the role of inter-institutional correlation in shaping outcomes [12, 4, 1]. While prior models focus on
either bias or correlation, we analyze their joint effect on representation. We also connect to literature
on algorithmic fairness in subset selection, ranking, and admissions [30, 17, 26], and to empirical
studies showing persistent disparities in algorithmic selection systems [27, 32, 31]. A full discussion
of related work is deferred to Appendix A.
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2 Model

We consider a two-institution matching setting where Institution i has capacity cin for i ∈ {1, 2}.
Candidates belong to an advantaged group G1 or a disadvantaged group G2, with group sizes
|Gi| = νin. We focus on the demand-exceeding-supply regime, where c1 + c2 < ν1 + ν2.

Correlated evaluations. Each candidate i has two independent attributes, vi1 and vi2, drawn i.i.d.
from the uniform distribution on [0, 1]. Institution 1 evaluates candidates using vi1, while Institution 2
uses a convex combination:

ui1 = vi1 and ui2 = γvi1 + (1− γ)vi2,

where γ ∈ [0, 1] controls the degree of correlation between the two institutions’ evaluations. This
model captures, for instance, settings where Institution 2 relies partly on a common criterion and
partly on institution-specific judgments.

Bias in evaluations. We model bias using a parameter β ∈ (0, 1], following the framework of
[30, 16]. The estimated utility ûiℓ of a candidate from group G2 for Institution ℓ is downscaled
relative to their true utility:

ûiℓ = uiℓ if i ∈ G1 and uiℓ = βuiℓ if i ∈ G2.

This captures settings where disadvantaged candidates are systematically undervalued in evaluations,
for example, due to differences in interview performance or standardized tests. Our analysis focuses
on β ≤ 1, though it extends naturally to β > 1 to model overestimation, to asymmetric bias across
institutions; see Appendix I), or to additive bias (Appendix J). Both institutions evaluate and select
candidates from both groups; the parameter β only affects how candidates from G2 are evaluated.

Stable matching. A matching M assigns each candidate to an institution, subject to institutional
capacity constraints. The matchingM is stable if no candidate i and institution ℓ form a blocking pair:
that is, if i prefers ℓ to their assigned institutionM(i), and there exists a candidate j currently matched
to ℓ such that ûiℓ > ûjℓ, then i must already be assigned to ℓ. Stable matchings can be computed via
the Deferred Acceptance algorithm [25, 52]. We consider a model in which each candidate prefers
Institution 1 over Institution 2 with probability p. The main body focuses on the case p = 1, where
all candidates prefer Institution 1. Extensions to general p are discussed in Appendix L.

Scaling limit. We analyze the model in the large-market regime, where the number of candidates
n → ∞. This is a standard approach in stable matching theory for capturing micro-to-macro
behavior. In the finite setting, it is known that stable matchings are characterized by threshold-
based rules; see Proposition B.1. Specifically, for any realization of the evaluation scores û, the
unique stable assignment is determined by two cutoffs S1 and S2 such that M−1(1) = {i : ûi1 ≥
S1}, M−1(2) = {i : ûi1 < S1 and ûi2 ≥ S2}. Taking expectations, normalizing by n, and
letting n→ ∞, we obtain the scaling limit, where the stable matching is described by deterministic
thresholds s1 and s2 satisfying:

ν1 Pr[ûi1 ≥ s1] + ν2 Pr[ûi′1 ≥ s1] = c1, (1)
ν1 Pr[ûi1 < s1, ûi2 ≥ s2] + ν2 Pr[ûi′1 < s1, ûi′2 ≥ s2] = c2. (2)

Here, i denotes a candidate from group G1 and i′ from group G2. These equations admit a unique
solution (s⋆1, s

⋆
2); see Appendix B for formal details. We show in Appendix B.3 that the finite

thresholds (S1, S2) converge to their deterministic limits (s⋆1, s
⋆
2) as n→ ∞.

Metrics. To quantify fairness in selection outcomes, we use the representation ratio introduced
by [16]. Let ρj denote the fraction of selected candidates from group Gj , and define: R(M) :=
min(ρ1,ρ2)
max(ρ1,ρ2)

. This metric captures disparity in group-level representation, with R(M) = 1 indicating
perfect proportionality across groups. In the scaling limit, the representation ratio can be expressed in
closed form in terms of the stable matching thresholds (s⋆1, s

⋆
2) derived from equations (1)–(2):

R(β, γ) =
Pr[ûi′1≥s⋆1 ]+Pr[ûi′1<s⋆1 , ûi′2≥s⋆2 ]
Pr[ûi1≥s⋆1 ]+Pr[ûi1<s⋆1 , ûi2≥s⋆2 ]

. (3)

While R(β, γ) is useful for quantifying raw disparity, it is not always scale-free: for fixed β,
it may attain a maximum below 1 depending on the alignment parameter γ. This complicates
comparisons across systems with different baseline levels of bias. To address this, we introduce the
normalized representation ratio N (β, γ) := R(β,γ)

maxγ′∈[0,1] R(β,γ′) , which measures the fraction of ideal
representation achieved at the current alignment level. Unlike R, this normalized metric allows us
to isolate the impact of misalignment independently of the underlying bias and supports principled
intervention analysis.
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3 Main results

We characterize the representation ratio R(β, γ) (and thus N (β, γ)), which quantifies how equitably
candidates from advantaged and disadvantaged groups are selected under a stable matching. Under
the scaling limit introduced in Section 2, the matching is determined by two thresholds s⋆1 and s⋆2,
which are solutions to Equations (1) and (2). For clarity, we focus on the symmetric case c1 = c2 = c
and ν1 = ν2 = 1, providing a complete piecewise characterization of s⋆1, s⋆2, and the resulting R(β, γ)
as functions of the bias parameter β and the correlation parameter γ. We focus on the demand-
exceeding-supply regime c < 1, where the thresholds determine partial selection. Our analysis centers
on the regime β ≥ 1− c, where both groups are eligible for selection by Institution 1—capturing
cases where bias is moderate and fairness is nontrivial. Extensions to β < 1− c and to more general
preference models are deferred to Appendix K and Appendix L respectively.

Step 1: Computing the threshold s⋆1. We begin by solving equation (1), which determines the
threshold s⋆1 used by Institution 1. Since Institution 1 evaluates candidates using their first attribute
vi1, and a bias factor of β is applied to candidates from group G2, assuming ν1 = ν2 = 1 and
c1 = c2 = c, the left-hand side of (1) becomes the average admission probability across both groups:
1
2 Pr[ûi1 ≥ s1] +

1
2 Pr[ûi′1 ≥ s1] =

1
2 (1− s1) +

1
2

(
1− s1

β

)
. Setting this to c yields:

s⋆1 = 2−c
1+1/β . (4)

This expression shows that s⋆1 increases with β: as bias decreases and evaluations of group G2

improve, the institution can raise its threshold while maintaining its target capacity. For this threshold
to admit candidates from both groups, it must satisfy s⋆1 ≤ β, ensuring that the effective threshold for
group G2 does not exceed their maximum possible score. Moreover, when β ≥ 1− c, one can show
that s⋆2 ≤ s⋆1 (Proposition C.2). This yields the condition β ≥ 1− c, which defines our main regime
of interest. When β < 1 − c, Institution 1 selects only from group G1, resulting in a degenerate
matching; we defer this case to Appendix K. Finally, note that s⋆1 depends only on β and c, and is
independent of γ, which influences only the threshold s⋆2 used by Institution 2.

Step 2: Computing the threshold s⋆2. The threshold s⋆2 satisfies the second matching equation (2),
which captures the fraction of candidates not admitted by Institution 1 but accepted by Institution 2.
That is, s⋆2 defines the acceptance region for Institution 2 over candidates rejected by Institution 1,
based on a potentially different evaluation criterion. As a warm-up, consider the case γ = 1,
where both institutions evaluate candidates using the same biased attribute vi1. This corresponds
to a centralized setting previously studied in [16]. In this case, Institution 2 selects candidates
whose (biased) utility falls in the interval [s⋆2, s

⋆
1), so the selection probabilities for each group are:

Pr[ûi1 ∈ [s2, s1]] = s1−s2, Pr[ûi′1 ∈ [s2, s1]] =
s1−s2

β . Using equation (2), the capacity constraint

becomes: 1
2 (s1−s2)+

1
2

(
s1−s2

β

)
= c. Solving yields the closed-form expression: s⋆2 = s⋆1− c

1+1/β .
This expression serves as a benchmark and reveals a useful structure: when both institutions are
aligned in evaluation, s⋆2 is simply a shifted version of s⋆1.

In the general case γ ∈ (0, 1), Institution 2 evaluates a convex combination of the two attributes:
ui2 = γvi1 + (1− γ)vi2. A candidate is selected if they are rejected by Institution 1 (ûi1 < s1) and
accepted by Institution 2 (ûi2 ≥ s2). The key term in (2) is the joint probability Pr[ûi2 ≥ s2 ∧ ûi1 <
s1], which corresponds to the area above the line L(γ, s2) := γx+(1−γ)y = s2 inside the rectangle
[0, s1]× [0, 1]. Depending on how this line intersects the rectangle, we distinguish four cases:

Case I: s2 ≤ min(s1γ, 1− γ). The line intersects the y-axis at s2
1−γ ≤ 1 and the x-axis at s2

γ ≤ s1,

yielding Pr[ûi1 < s1, ûi2 ≥ s2] = s1 − s22
2γ(1−γ) .

Case II: s2 ≥ max(s1γ, 1− γ). The line intersects the y-axis at s2
1−γ > 1 and the x-axis at s2

γ > s1,

so Pr[ûi1 < s1, ûi2 ≥ s2] =
(1−γ−s2+γs1)

2

2γ(1−γ) .

Case III: s1γ < s2 < 1− γ. The line intersects the y-axis at s2
1−γ ≤ 1 and the line x = s1 at s2−γs1

1−γ ,

leading to Pr[ûi1 < s1, ûi2 ≥ s2] =
s1
2

(
2− 2s2−γs1

1−γ

)
.

Case IV: 1 − γ < s2 < s1γ. The line intersects the y-axis at s2
1−γ > 1 and the x-axis at s2

γ ≤ s1,
giving Pr[ûi1 < s1, ûi2 ≥ s2] = s1 − s2

γ + 1−γ
2γ .
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Figure 1: (Left to Right) Cases I, II, III, IV that arise in the probability computation.

We now repeat the analysis for group G2, whose evaluations are rescaled by β. That is, the decision
boundary becomes Lβ(γ, s2) := γx+(1−γ)y = s2/β, and the relevant domain is [0, s1/β]× [0, 1].
The same four cases apply, denoted I’–IV’, depending on how the line intersects this rectangle. A
brute-force approach would guess the correct pair of cases for groups G1 and G2 (16 combinations
total), and solve (2) under that assumption. However, this yields little structural insight into the
behavior of s⋆2 or the resulting representation ratio R(β, γ). In the next step, we characterize this
structure piecewise by regime.

Step 3: Identifying structural regimes via γ-thresholds. Remarkably, our next result shows that
only four of the sixteen case pairs (I–IV × I’–IV’) arise in equilibrium, and that each occurs over a
contiguous sub-interval of [0, 1] characterized by three values 0 ≤ γ1 ≤ γ2 ≤ γ3 ≤ 1.

Theorem 3.1 (γ-thresholds). For any fixed β ≥ 1− c, there exist unique values γ1 ≤ γ2 ≤ γ3 ∈
[0, 1] such that: (i) s⋆2(γ)/β ≤ 1 − γ if and only if γ ≤ γ1; (ii) s⋆2(γ) ≤ 1 − γ if and only if
γ ≤ γ2; (iii) s⋆2(γ) ≥ γs⋆1 if and only if γ ≤ γ3. Moreover, these thresholds are given by: (i)
γ1 =

2s⋆1(β+1/β)−4(1−c)
2s⋆1(β+1/β)−4(1−c)+(s⋆1)

2(1+1/β2) ; (ii) γ2 = x
x+1 , where x is the unique root in (γ1, γ3) of(

1 + 1
β2

)
x2(s⋆1)

2

2 + x
(

s⋆1
β − s⋆1

β2 − c
)
+ 1

2

(
1− 1

β

)2
= 0; (iii) γ3 = 1

1+c .

At a high level, the reason why only four out of the possible sixteen cases arise is as follows. When
γ = 0, L(γ, s2) is horizontal and hence, we are in Case III (see Figure 1). We show that s⋆2(γ)/1− γ
and s⋆2(γ)/γ are monotonically increasing and decreasing functions of γ respectively. Thus, as we
raise γ, the y-intercept of L(γ, s2) increases and its x-intercepts decreases. Therefore, we transition
from case III to case II and eventually to case IV (when γ = 1, L(γ, s2) is vertical) – note that
case I never happens because in this case, the relevant area above L(γ, s2) is more than 1/2, but the
capacity at Institution 2 is at most 1/2. The line Lβ(γ, s2) also goes through these transitions as we
raise γ. Since these two lines remain parallel (and Lβ lies above L) as we change γ, their transitions
happen in a coordinated manner. Theorem 3.1 shows that the pair of cases corresponding to these two
lines goes through the following transitions: (III, III’), (III, II’), (II, II’), (IV, IV’), and these regimes
are separated by three critical thresholds—γ1, γ2, and γ3.

These thresholds also mark qualitative changes in how the institutions evaluate candidates and balance
the two attributes. For instance, when γ < γ1, disadvantaged candidates can qualify based solely on
their second attribute vi2, but for γ > γ1, they must also meet performance on vi1, making admission
more stringent. Likewise, above γ3, both groups may qualify based on vi1 alone. Between these
values, the selection regime reflects blended dependence on both attributes, with differential effects
across groups due to bias.

The proof of the first part of Theorem 3.1 relies on monotonicity of the scaled thresholds s⋆2(γ)
γ and

s⋆2(γ)
1−γ that arises due to the structure of the equilibrium condition and the convex combination of

attributes. The values of the γ-thresholds are derived as follows: for each i ∈ {1, 2, 3}, the definition
of γi also yields an expression for s⋆2(γi). For example, s⋆2(γ1) = β(1 − γ1). Since the threshold
s⋆2(γ) also satisfies the capacity constraint (2), we get equations for solving γi.

Note that, while γ3 = 1
1+c remains fixed for all β, we show in Proposition D.1 that the threshold

functions γ1(β) and γ2(β) are strictly increasing and decreasing in β, respectively, and both converge
to a common limit as β → 1. In particular, limβ→1 γ1(β) = limβ→1 γ2(β) = c

1+c/2+c2/4 < γ3.
This implies that even in the absence of bias (β = 1), structural phase transitions in the equilibrium
threshold s⋆2 (and hence the representation ratio R) still occur as evaluator alignment γ increases. Our
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framework thus provides insights not only into the compounding effects of bias and misalignment,
but also into the residual impact of evaluator disagreement in the fully unbiased regime.

Finally, when β < 1− c, the equilibrium admits a richer structure: there is an additional threshold
γ4 where γ4 = s⋆2(γ4)/β. Further, there is a critical value βc ∈ [0, 1 − c] such that if β < βc, the
relative ordering of these thresholds is γ1, γ3, γ2, γ4; otherwise it is γ1, γ2, γ3, γ4. At this critical
value of β, γ2 equals γ3, i.e., both the groups never satisfy the conditions in case II for a given value
of γ. We defer a full treatment of that regime to Appendix K. We now use the threshold structure
above to derive explicit expressions for s⋆2(γ) in each regime.

Step 4: Solving for s⋆2(γ) in each regime. The thresholds γ1, γ2, γ3 partition [0, 1] into four
intervals, each corresponding to a fixed pair of geometric cases for groups G1 and G2, namely
(III, III ′), (III, II ′), (II, II ′), (IV, IV ′). In each such regime, the expression for Pr[ûi2 ≥
s2 ∧ ûi1 < s1] is known from Step 2, and we can solve equation (2) to obtain s⋆2(γ).
Theorem 3.2 (Equations for s⋆2(γ)). Assume β ≥ 1− c and c < 1

2 . Then s⋆2(γ) satisfies:

• [0, γ1]: s⋆1 −
2s⋆1s

⋆
2−γ(s⋆1)

2

2(1−γ) +
s⋆1
β − 2s⋆1s

⋆
2−γ(s⋆1)

2

2β2(1−γ) = c

• [γ1, γ2]: s⋆1 −
2s⋆1s

⋆
2−γ(s⋆1)

2

2(1−γ) +
(1−γ−s⋆2/β+γs⋆1/β)

2

2γ(1−γ) = c

• [γ2, γ3]:
(1−γ−s⋆2+γs⋆1)

2

2γ(1−γ) +
(1−γ−s⋆2/β+γs⋆1/β)

2

2γ(1−γ) = c

• [γ3, 1]: s⋆1(1 + 1/β)− s⋆2
γ − s⋆2

βγ + 1−γ
γ = c

The piecewise equations above yield a unique value of s⋆2 for each γ. In particular, even when the
defining equation is quadratic, the interval-specific constraints on s⋆2 (e.g., bounds derived from
geometry or feasibility) ensure a single consistent solution. As γ varies, s⋆2 transitions through
qualitatively distinct behaviors—decreasing, convex, and increasing—reflecting a subtle interplay
between evaluator alignment and group-based access. We show in Theorem E.1 that s⋆2(γ) is unimodal
(and, hence, non-monotone w.r.t. γ) and continuous, with matching slopes at regime boundaries. Note
that when β < 1− c, due to the emergence of an additional threshold γ4, Theorem K.5 shows that
s⋆2(γ) can now have several local minima or maxima (see Appendix K.3). These characterizations of
s⋆2 now allow us to derive the representation ratio R(β, γ), which we analyze in the next step.

Step 5: Closed-form expression for representation ratio R(β, γ). Using the expressions for s⋆2
derived in Step 4, we now give piecewise closed-form expressions for R(β, γ).
Theorem 3.3 (Representation ratio). Fix c < 1

2 and β ≥ 1− c.

Define ∆(β, γ) := −βs⋆1 +
√
(s⋆1)

2(β2 + 1)− 2(1−γ)((1−β)s⋆1−c)
γ , and θ(β, γ) :=

−β(1−β)+

√
−(1−β)2+

2cγ(1+β2)
1−γ

1+β2 . Then:

R(β, γ) =


(β−(1−c))(β+1−c)+c2

1−β2(1−2c) if γ ∈ [0, γ1],
1− s⋆1

β +
γ∆2(β,γ)
2(1−γ)

1−s⋆1+c− γ∆2(β,γ)
2(1−γ)

if γ ∈ [γ1, γ2],

1− s⋆1
β +

(1−γ)θ2(β,γ)
2γ

1−s⋆1+c− (1−γ)θ2(β,γ)
2γ

if γ ∈ [γ2, γ3],
−(1−β)(1+γ)+4γc
(1+γ)(1−β)+4γβc if γ ∈ [γ3, 1].

The proof of this theorem uses the expression (3) for R(β, γ) in terms of s⋆1 and s⋆2. For each of the
regimes defined by γ1, γ2, γ3, we use (3.2) to eliminate the explicit dependence of this expression
on s⋆2. The monotonicity of R(β, γ) with respect to γ follows from analyzing these closed-form
expressions. Details are given in Appendix F. As an example, consider the regime γ ∈ [γ2, γ3]. Using
the equation for s⋆2 in this interval (Step 4), we define ∆ :=

s⋆2−γs⋆1
1−γ , and observe that the mass of

group G1 candidates selected by Institution 2 is (1−γ)∆2

2γ . This expression, together with its analog
for group G2, yields an explicit formula for R(β, γ) in each regime.

We present a summary of the results in this section in Table 1. While our main focus is on representa-
tion, the framework also supports closed-form expressions of institutional utilities (see Appendix H).
In the next section, we leverage these results to examine how R(β, γ) behaves jointly with β and γ,
and explore design strategies that mitigate bias while maintaining institutional efficiency.
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Structural property Result and location
Closed-form expression for s⋆1 s⋆1 = 2−c

1+1/β
(Eq. (4))

Monotonicity of s⋆1 w.r.t. β increasing in β (follows directly from Eq. (4))

Four regimes of γ γ1, γ2, γ3 (Theorem 3.1)

piecewise expression for s⋆2 via characterization via γ1, γ2, γ3 (Theorem 3.2)

Unimodality of s⋆2 w.r.t. γ s⋆2 is continuous with at most 1 minimum (Theorem E.1)

Monotonicity of s⋆2 w.r.t. β increasing in β (Proposition C.1)

piecewise expression for R 4-case formula (Theorem 3.3)

Monotonicity of R in β increasing in β for fixed γ (Proposition F.1)

Table 1: Summary of structural properties of thresholds and representation metrics for β ≥ 1− c.

Extension to general preferences. We also extend our analysis to the general preference setting,
where candidates prefer Institution 1 with probability p ∈ [0, 1], as described in Appendix L. In this
setting, the equilibrium thresholds s⋆1 and s⋆2 satisfy coupled nonlinear equations that lack closed-form
solutions. In Appendix L.1, we derive these equilibrium conditions and prove the existence and
uniqueness of the solution, ensuring that the model remains well-posed for all p. Using the probability
expressions developed earlier, we show in Appendix L.2 that these thresholds can be computed
efficiently through numerical evaluation. Building on these results, Appendix L.3 provides closed-
form formulas for key outcome metrics—the representation ratio and institutional utilities—expressed
directly in terms of s⋆1 and s⋆2. Analytically, we establish in Appendix L.4 that both thresholds vary
monotonically with p, although not necessarily strictly: s⋆1(p) remains constant up to a critical
point p⋆ and increases thereafter, corresponding to a regime where the selection probability Pr[ui1 <
s⋆1(p) ∧ ui2 ≥ s⋆2(p)] is zero. We formalize this structural break in Appendix L.4.1 and confirm
it numerically. Consequently, both R and N decrease with p and exhibit a clear phase transition:
they remain constant for p ≤ p⋆ and decline sharply thereafter. Finally, numerical experiments
in Appendix L.5 and Figures 8–14 reveal how thresholds, representation ratios, and utilities co-evolve
as p and the correlation parameter γ vary. The qualitative behavior of R(β, γ) and N (β, γ) remains
monotone in β and γ even under general preferences, while varying p introduces the new structural
effects described above—monotone yet piecewise regimes and distinct phase transitions that extend
the continuum-limit analysis.

4 Analysis and intervention

A central goal of this work is to guide interventions that improve representation for disadvantaged
groups. Toward this, we study how fairness metrics vary with two systemic levers: evaluator bias
(β) and institutional correlation (γ). While our main structural result yields closed-form expressions
for the representation ratio R(β, γ) (Theorem 3.3), its policy relevance depends on understanding
how R and its normalized counterpart N evolve with these parameters. This section is organized
into four parts. We begin by analyzing how R(β, γ) varies with β and γ, highlighting regimes of
monotonicity, sharp transitions, and diminishing returns. We then study the variation of normalized
ratio N (β, γ) with respect to β and γ. Building on these insights, we formulate a framework for
intervention planning under fairness targets and show how to use it.

Monotonicity, transitions, and concavity of the representation ratio. We begin by asking: How
does R(β, γ) vary with the bias level β and evaluator correlation γ? For any fixed γ, the dependence
on β is predictable: as bias decreases (i.e., β increases), selection thresholds s⋆1 and s⋆2 become
stricter for the advantaged group, yielding a higher representation ratio (see Appendix F.2). The
variation of R(β, γ) with γ (for a fixed β ≥ 1− c), however, is more subtle. Since γ controls how
correlated the two institutions are in their evaluation criteria, one might expect that decreasing γ
allows for more diverse evaluation and improves access for disadvantaged candidates. While s⋆1 does
not change with γ, s⋆2(γ) can increase or decrease with γ : it follows a U-shaped trajectory as γ
increases (see Theorem E.1). This raises a natural question: can R(β, γ) be non-monotonic with γ as
well? The answer is no in the regime c < 1/2 and β ≥ 1− c.

Corollary 4.1. Fix c < 1/2 and β ≥ 1− c. Then R(β, γ) increases monotonically in γ.

In particular, R(β, γ) is maximized when γ = 1: R(β, γ) ≤ R(β, 1) for all γ ∈ [0, 1]. The proof
heavily relies on the piecewise formulas derived in Theorem 3.3 and is deferred to Appendix F.1.
Figure 2 illustrates the contrast: while s⋆2 dips and then rises with γ, the representation ratio R(β, γ)
increases steadily—more sharply so for larger values of β. Note, however, that this monotonicity
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may not hold outside the (less relevant) regime β ≥ 1 − c. In particular, when β < 1 − c, no one
from G2 can be admitted to Institution 1, and this equilibrium structure can reverse the fairness trend
with increasing γ; see Proposition K.8 for details.

Importantly, using the piecewise characterization from Theorem 3.3, we can generalize prior results
by [15] on representation ratio. [15] considered the case γ = 1 and showed that R(β, 1) varies
approximately linearly with β. Theorem 3.3 shows that the behavior of R w.r.t. β can be highly
non-linear in the presence of γ. We highlight this with phenomena with two examples.

Example 1 (Quadratic decay). Let c = 1/2 − ε. On the one hand, when γ = 1, the last case of
Theorem 3.3 implies R(β, 1) = −(1−β)(1+1)+4(1)(1/2−ε)

(1+1)(1−β)+4(1)β(1/2−ε) = β−2ε
1−2βε , which scales like β for small

enough ε. On the other hand, when γ ≤ γ1, from the first case in Theorem 3.3, we obtain that
R(β, γ) = β2+2ε

1+2εβ2 ≈ β2 for small enough ε. Thus, R degrades from being linear in β when γ ≈ 1

to quadratic in β when γ ≈ 0.

Example 2 (Amplification in low-selectivity regime). Consider a highly selective regime, where c
is small and β ≈ 1− c. For γ ≤ γ1, Theorem 3.3 yields: R(1− c, γ) = c2

1−(1−c)2(1−2c) ≈ c/4. In
contrast, when γ = 1, using Theorem 3.3, we obtain: R(1− c, 1) = −2c+4c

2c+4c(1−c) =
c

3c−2c2 ≈ 1
3 for

small enough c. Thus, while R(1, γ) = 1 for all γ, a slight decrease in β (from 1 to 1− c) results in
a huge gap in representation ratio near the two extremes of γ in a highly-selective setup.

To summarize, Theorem 3.3 and Corollary 4.1 imply that R(β, γ) is piecewise-defined across four
structural regimes, separated by thresholds γ1, γ2, γ3. It remains flat in the low-γ regime (γ ≤ γ1),
non-linearly increases through [γ1, 1]. Taken together, these insights underscore that the representation
ratio may not be uniformly responsive to interventions changing β and γ due to the compounding
effect of these parameters on R.

Figure 2: Variation of (left) selection threshold s⋆2 and (right) representation ratio R(β, γ) as a
function of γ, for fixed c = 0.2.

Measuring fairness loss: Normalized representation and its response to interventions. Re-
call that the normalized representation ratio is defined as N (β, γ) := R(β,γ)

maxγ′∈[0,1] R(β,γ′) . Since
R(β, γ) ≤ R(β, 1) for γ ∈ [0, 1], this simplifies to R(β, γ)/R(β, 1). Note that 0 ≤ N (β, γ) ≤ 1
quantifies the fraction of the maximum achievable fairness retained for a fixed β. There are two
key intervention levers: increasing β (reducing bias) and increasing correlation (γ) to increase N .
However, these interventions, in the least, require that N is monotonically non-decreasing in β and
γ. From Corollary 4.1, we already know that R(β, γ), and hence N (β, γ), increases monotonically
with γ. What is less obvious—but follows from the closed-form expressions in Theorem 3.3 is that
N (β, γ) is also monotonically increasing in β when c ≤ 1/2; see Theorem F.2. Figure 3 (left)
illustrates this trend. The growth of N (β, γ) is phase-dependent: flat in the low-alignment regime
(γ ≤ γ1), sharp in intermediate phases, and nearly linear for γ ∈ [γ3, 1]. The most severe degradation
occurs when both β and γ are small—highlighting the importance of addressing both alignment
and bias in fairness interventions. Extending Example 1 above (the case c ≈ 1/2. When γ = 1,
we have N (β, γ) = 1 by definition. But as γ → 0, R(β, γ) ≈ β2, while R(β, 1) ≈ β, implying
N (β, γ) ≈ β. In summary, even after normalization, fairness never deteriorates when bias is reduced
or alignment improves, and β and γ jointly exert a compounded effect on N . These properties
imply that the normalized representation ratio is both stable and directionally reliable—ensuring that
interventions targeting either parameter will monotonically improve fairness.
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Target-based intervention planning. We can now leverage the structure of N (β, γ) to design
and evaluate intervention strategies that improve representation. One may consider two classes of
interventions: (1) continuous interventions that incrementally reduce bias or increase correlation,
and (2) structural interventions such as capacity reservations. In the fully aligned setting (γ = 1),
[16] shows that reserving seats in each institution proportional to group sizes, and applying stable
matching within each group, guarantees perfect representation. A similar strategy can be shown (by
extending their approach) to achieve a representation ratio of exactly 1 for arbitrary values of β and
γ. This yields a non-parametric, structure-based intervention that ensures fairness independently of
bias mitigation or evaluator alignment.

In contrast, interventions that modify the evaluation process, by increasing (β) or increasing (γ), may
provide additional flexibility in real-world selection systems. For instance, in AI-mediated settings, β
can be increased through debiasing or anonymized scoring; γ can be increased using standardized
models, calibration protocols, or shared training data. In human-mediated settings, increasing β
might involve structured rubrics, blind evaluation, or bias training; increasing γ could be achieved by
coordinated evaluation guidelines, common score sheets, or centralized vetting frameworks.

We now show how a system designer, given current parameters (β0, γ0) and a fairness target τ ∈ [0, 1],
can use our framework to plan interventions. Since N (β, γ) is increasing in both β and γ, any target
τ ≤ 1 is attainable by increasing either parameter. We compute the Pareto frontier—the set of
minimal (β, γ) pairs that just achieve N (β, γ) ≥ τ , using Theorem 3.3. This frontier reveals all
efficient tradeoffs between bias mitigation and evaluator alignment that meet the target. Figure 3
(right) illustrates this frontier for τ = 0.8, with a heatmap of N (β, γ). The red contour shows the
threshold N = τ ; points above meet the goal, while those below do not. The shape of the frontier
reveals which direction—β or γ—yields more efficient gains. Notably, the frontier becomes vertical
when γ ≤ γ1(β), reflecting the fact that N is flat in this region. Since γ1 increases with β, this
insensitivity band widens as bias decreases. Overall, the frontier offers practical guidance: starting
from (β0, γ0), one can locate the nearest feasible point above the contour to meet the fairness target.

We illustrate this with a concrete example (Appendix G). Fix β0 = 0.85, γ0 = 0.40, and c = 0.20.
We first compute s⋆1 ≈ 0.8276 using Equation (4), and then use Theorem 3.1 to identify the applicable
regime for γ. Applying Theorem 3.3, we obtain the values R(β0, γ0) ≈ 0.329, R(β0, 1) ≈ 0.510,
and N (β0, γ0) ≈ 0.644. From Figure 3 (right), we observe that achieving a fairness target of
τ = 0.80 requires either γ ≈ 0.640 or β ≈ 0.911. This demonstrates that modest improvements in
either evaluator alignment or bias reduction are sufficient to meet the desired fairness level.

Finally, note that the baseline parameters (β0, γ0) may be estimated directly from observed data.
The bias parameter β can be recovered from the observed threshold used by Institution 1 via
β̂0 =

ŝ⋆1
2−c−ŝ⋆1

as follows from Equation (4). Holding β = β̂0 fixed, the correlation parameter γ can

be estimated by numerically inverting the monotone relation γ 7→ R(β̂0, γ) (or equivalently N ):
γ̂0 = argminγ∈[0,1] |R(β̂0, γ)− R̂| which admits a unique solution by Theorem 3.3.

Figure 3: (Left) N (β, γ) and (right) Pareto frontier of (β, γ) pairs achieving N (β, γ) ≥ τ = 0.8, for
c = 0.2. Starting from (β0 = 0.85, γ0 = 0.4), the minimum interventions required to exceed the
threshold are: β ≥ 0.911 (with γ0 = 0.4) or γ ≥ 0.640 (with β0 = 0.85).
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5 Conclusion, extensions, limitations, and future work

We introduced a mathematical framework to study the structure of stable matchings in a two-institution
setting where candidate evaluations are partially correlated and one group experiences group-level bias.
Our focus was on how fairness—measured via the representation ratio—evolves with evaluator bias
(β) and correlation (γ). Our key technical contributions include: (i) a closed-form characterization of
the equilibrium thresholds s⋆1 and s⋆2(γ) that govern the stable matching (Equation (4), Theorem 3.2);
(ii) a piecewise expression for the representation ratio R(β, γ) (Theorem 3.3); and (iii) an analytic
description of the structural γ-thresholds γ1, γ2, γ3 that govern transitions in selection (Theorem 3.1).

Despite the non-monotonicity of s⋆2(γ), we show that R(β, γ) and its normalized variant N (β, γ)
increase monotonically in γ (Corollary 4.1). These findings support the design of fairness interven-
tions: we use N (β, γ) to compute the Pareto frontier of bias–correlation combinations that achieve a
target representation level τ . Our main analysis focuses on the regime β ≥ 1− c and full candidate
preference for Institution 1. In Appendices K and L, we extend the model to handle stronger bias
(β < 1− c) and partial preferences, and show that several key structural properties persist.

The model makes several simplifying assumptions to ensure analytical tractability. Candidate
attributes are drawn independently and uniformly from [0, 1], following standard assumptions in prior
work on fairness in matching and screening [19, 30, 16]. While this enables clean derivations and
actionable intervention design, it does not capture the full heterogeneity or noise present in real-world
evaluations. Some generalizations are straightforward. For example, our techniques extend naturally
to settings with asymmetric capacities (c1 ̸= c2) or candidate masses (ν1 ̸= ν2). Additionally,
results from [4] can be used to transfer our continuum-based analysis to finite n, with approximation
error O(1/

√
n); see Appendix B. The framework and techniques also extend to several richer

settings beyond the symmetric, independent case. First, allowing asymmetric bias across institutions
(β1 ̸= β2) shows that greater evaluator alignment (γ) continues to improve representation, as less-
biased institutions can “rescue” disadvantaged candidates who narrowly miss selection elsewhere
(Appendix I). Second, in the additive-bias formulation (Appendix J), where disadvantaged candidates
face a fixed evaluation penalty rather than a multiplicative discount, the equilibrium structure and
existence of γ-thresholds persist with only quantitative changes to the cutoff equations. Third,
when candidate attributes are drawn from a smooth but non-uniform distribution with cumulative
distribution function Φ, the equilibrium thresholds satisfy Φ(s⋆1)+Φ

(
s⋆1
β

)
= 2(1− c1), generalizing

the uniform case (4). Although closed-form expressions are no longer available, the expressions
used to compute probabilities such as Pr[ui1 < s1, ui2 ≥ s2] can be written in terms of Φ, and the
resulting thresholds and fairness metrics remain numerically tractable. We omit the details. That said,
if candidate attributes exhibit strong dependence—for example, if all candidates have identical or
highly similar profiles—the concentration results needed for the finite-to-infinite reduction may not
apply. In such cases, convergence to a deterministic limit could fail, and our monotonicity guarantees
may no longer hold. Nonetheless, we expect the qualitative trend—that increasing γ improves
R—to persist under weaker assumptions, such as mild correlations or clustered attribute structures.
Extending the convergence analysis to such settings remains an open and valuable direction for future
work.

Several directions remain open for future work. First, incorporating strategic behavior—such as
candidates adjusting effort or signaling based on perceived bias—would enable a game-theoretic
analysis of incentives. Second, extending the evaluation model to include multi-attribute correlation,
group-dependent score distributions, or asymmetric institutional preferences could better capture
practical complexity. Beyond the static analysis presented here, a natural next step is to examine
how the representation ratio R might evolve over time in systems that repeat or adapt across
cycles—such as admissions, hiring, or promotions. In such dynamic environments, past matching
outcomes could shape future candidate preferences, group participation, or institutional strategies.
This feedback could lead to rich temporal effects: higher representation might enhance perceived
fairness or institutional reputation, creating a virtuous cycle, whereas persistent underrepresentation
might discourage participation and reinforce disparities. Capturing these dynamics would require
an explicitly game-theoretic or behavioral model with endogenous feedback, a direction we see
as particularly promising for future work. Finally, integrating this framework with empirical data
to estimate or learn (β, γ), and adapting interventions based on observed outcomes, could support
adaptive fairness mechanisms in real-world deployments.
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A Detailed related work

The game-theoretic study of assignment and selection problems, initiated by [25], has expanded into
a broad literature exploring stability, truthfulness, incomplete information, and machine learning
approaches to preference inference [50, 51, 52, 22, 47, 36, 8, 34, 35, 41]. Comprehensive overviews
are provided in [53, 39].

Several empirical studies examine biases in algorithmic assignment and selection systems across
real-world contexts, including centralized admissions and online labor markets [58, 27, 32, 31].

Our work builds on and extends the framework of [16], which studies a centralized multi-institution
matching model where a single entity evaluates candidates. Their model assumes a uniform evaluation
process across institutions and systematic bias against disadvantaged candidates, leading to unfair
and inefficient outcomes. They propose fairness-aware selection algorithms to mitigate these issues.
We generalize this setting by introducing correlated institutional evaluations and analyzing how bias
and correlation jointly shape fairness and representation.

A related line of research examines the role of correlation in candidate evaluations (e.g., [6, 5, 3,
12]). [12] studies a model where institutions assign correlated scores while maintaining unchanged
marginal distributions. Unlike their work, which focuses on emergent statistical discrimination due to
varying correlation across demographic groups, we analyze explicit biases in evaluations and their
compounded effect with correlation on stable matching

A parallel and complementary line of work studies correlated evaluations in continuum matching
markets using stylized models of noisy signal generation. In particular, [59] and [60] analyze how
shared or idiosyncratic noise across institutions shapes diversity, efficiency, and learning dynamics.
While their models abstract away from institutional selection rules and stability constraints, they
highlight how evaluation noise and correlation can lead to monoculture outcomes or suppress
informative distinctions between candidates. Our work differs in modeling two-sided stable matchings
with explicit score-based thresholds, but shares a broader motivation: understanding how evaluation
design influences representational and welfare outcomes.

Other studies explore decentralized selection systems where institutions evaluate candidates using
multiple criteria. [19] examines decentralized matching but focus on institution-specific fit measures
and strategic behavior, whereas our model incorporates both correlated evaluations and biases.
Despite these differences, both approaches highlight inefficiencies in decentralized allocation.

Our work also connects to research using a continuum model of students and institutions, which
simplifies analysis by treating admissions as a supply-and-demand problem. [18] study noisy
priorities, while [7] develop a framework for characterizing stable matchings. [4] refine these models
to improve approximations in finite markets. We apply similar techniques to analyze equilibrium
thresholds under bias and correlation.

The role of correlation in student priorities has been examined in school choice, particularly regarding
tie-breaking lotteries and welfare outcomes. [1, 4] compare settings where institutions share a
common lottery versus independent lotteries, corresponding to γ = 1 (fully correlated) and γ = 0
(independent evaluations) in our model.

Beyond school choice, other studies analyze the correlation between student preferences and priorities.
[11] examines one-to-one matching mechanisms that avoid systematic disadvantages, while [20, 33]
study how correlation affects the stability-efficiency trade-off when comparing Deferred Acceptance
and Top Trading Cycles.

Our work also relates to empirical studies on biases in real-world allocation systems, including school
admissions and online labor markets [58, 27, 32, 31]. [13] theoretically analyzes selection under
differential noise, showing that increased noise for disadvantaged groups can harm both groups by
reducing the probability of securing a preferred match. In contrast, we model bias as a systematic
downscaling of scores and analyze its effect on representation and fairness metrics.

Finally, we discuss related work on bias in algorithmic decision-making and corresponding interven-
tions. Several studies investigate core algorithmic problems when inputs are subject to bias, including
subset selection [30, 24, 54, 14, 26, 40], ranking [17], and classification [9]. Another line of research
focuses on fairness constraints in selection problems, such as ensuring proportional representation
[30, 21, 28], with the goal of mitigating bias through explicit constraints.
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B From finite to infinite: A continuum stable matching game

Equations for thresholds. We consider a two-institution matching setting, where the institutions
have capacities c1n and c2n, respectively. Candidates belong to either an advantaged group G1 or
a disadvantaged group G2, with group sizes |G1| = ν1n and |G2| = ν2n. Here, c1, c2, ν1, ν2 are
constants. Recall that every candidate prefers Institution 1 to Institution 2, and that the observed
utilities ûi1 and ûi2 are generated as described in Section 2. In a deterministic setting, the following
result holds. The proof appears in Appendix B.1.
Proposition B.1 (Thresholds in the deterministic case). Consider a deterministic setting with
two institutions and two groups such that the observed utilities ûiℓ are all distinct. Then, there
is a unique stable matching M that can be described by two thresholds s1 and s2 as follows:
M−1(1) = {i : ûi1 ≥ s1}, and M−1(2) = {i : ûi1 < s1 and ûi2 ≥ s2}.

The key intuition behind the proof is that since all candidates strictly prefer Institution 1, any stable
assignment must first allocate the top c1n candidates—ranked by ûi1—to Institution 1. Among the
remaining candidates, Institution 2 then selects the top c2n candidates based on their ûi2 values.
The thresholds s1 and s2 correspond to the lowest ûi1 and ûi2 values among candidates assigned to
Institution 1 and Institution 2, respectively.

In the stochastic setting, the observed utilities are random, and so are the thresholds S1 and S2

that determine the matching. The stability conditions in the finite setting require that exactly c2n
candidates are assigned to Institution 1 and c2n candidates to Institution 2. That is, conditioning on
the thresholds S1 and S2, we have∑

i∈G1
1(ûi1 ≥ S1) +

∑
i∈G2

1(ûi1 ≥ S1) = c1n, (5)∑
i∈G1

1(ûi2 ≥ S2, ûi1 < S1) +
∑

i∈G2
1(ûi2 ≥ S2, ûi1 < S1) = c2n. (6)

Taking expectations conditioned on S1,S2 (and then over the joint distribution of (S1, S2)), we obtain

E
[∑

i∈G1
Pr[ûi1 ≥ S1 | S1, S2] +

∑
i∈G2

Pr[ûi1 ≥ S1 | S1, S2]
]
= c1n,

(7)

E
[∑

i∈G1
Pr[ûi2 ≥ S2, ûi1 < S1 | S1, S2] +

∑
i∈G2

Pr[ûi2 ≥ S2, ûi1 < S1 | S1, S2]
]
= c2n.

(8)

Dividing by n, we have

ν1E [Pr[ûi1 ≥ S1 | S1, S2]] + ν2E [Pr[ûi′1 ≥ S1 | S1, S2]] = c1, (9)
ν1E [Pr[ûi2 ≥ S2, ûi1 < S1 | S1, S2]] + ν2E [Pr[ûi′2 ≥ S2, ûi′1 < S1 | S1, S2]] = c2, (10)

where i ∈ G1, i
′ ∈ G2. [7] show that as n→ ∞ the random thresholds S1 and S2 concentrate and

converge almost surely to deterministic limits s1 and s2 respectively. Therefore, in the large-market
(mean-field) limit, the conditional probabilities can be replaced by the probabilities evaluated at the
limits, so that the above equations reduce to

ν1 Pr[ûi1 ≥ s1] + ν2 Pr[ûi′1 ≥ s1] = c1, (11)
ν1 Pr[ûi2 ≥ s2, ûi1 < s1] + ν2 Pr[ûi′2 ≥ s2, ûi′1 < s1] = c2. (12)

Equations (1) and (12) are the continuum or mean-field equations for the thresholds s1 and s2. [4]
extends the mean-field analysis by establishing finite-sample concentration bounds for the thresholds.
From his result, one can deduce that for finite n the random thresholds S1 and S2 approximate the
deterministic limits s1 and s2 with high probability, with all errors being of order 1/

√
n. We now

give the conditions under which these equations have a unique solution.
Proposition B.2 (Existence and uniqueness of thresholds). Assume that c1 + c2 ≤ ν1 + ν2. Then,
a solution (s⋆1, s

⋆
2) satisfying (11)-(12) exists. Moreover, the solution is unique, provided that the

probability distributions of ûi1 and ûi2 are strictly decreasing and continuous.

The conditions of this proposition hold when the underlying distribution is uniform on [0, 1], ensuring
the existence of a unique solution s⋆1, s

⋆
2 as functions of the model parameters. The proof appears in

Appendix B.2. For a fixed β, we also define s⋆1,β = min(1, s⋆1/β) and s⋆2,β = min(1, s⋆2/β).

Expressions for metrics in terms of thresholds. Given thresholds s⋆1 and s⋆2 for the two institutions
respectively, the ratio of the measure of candidates from G1 that are assigned to one of these
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institutions to the measure of G1 is given by (here i ∈ G1): Pr[ûi1 ≥ s⋆1] + Pr[ûi2 ≥ s⋆2, ûi1 < s⋆1].
The corresponding quantity for G2 can be expressed similarly. Thus, if i ∈ G1, i

′ ∈ G2, then
representation ratio is equal to

R =
Pr[ûi′1≥s⋆1 ]+Pr[ûi′2≥s⋆2 ,ûi′1<s⋆1 ]
Pr[ûi1≥s⋆1 ]+Pr[ûi2≥s⋆2 ,ûi1<s⋆1 ]

. (13)

Given the threshold s⋆1, the (observed) utility derived by Institution 1 from a candidate i is 0 if
ûi1 < s⋆1; ûi1 otherwise. Therefore, the utility of Institution 1 is given by (here i ∈ G1, i

′ ∈ G2):

U1 = ν1
∫ 1

0
s1[s ≥ s⋆1]dµs + ν2

∫ 1

0
s1[s ≥ s⋆1]dµ

′
s, (14)

where µs is the measure induced by the distribution of ûi1 for i ∈ G1 (and similarly for µ′
s). The

utility of Institution 2 can be expressed similarly.

Continuum game interpretation. We end this section by interpreting equations (11) and (12) as
stability conditions in an infinite matching game, where G1 and G2 represent continuous populations
rather than discrete candidates. Consider a setting where candidates belong to two groups, G1 and
G2, with population measures ν1 and ν2, respectively, so that the total population is ν1 + ν2 = 1.
Institutions 1 and 2 have fractional capacities c1 and c2, satisfying the feasibility constraint: c1+c2 ≤
ν1 + ν2 = 1. Admissions follow a threshold-based rule:

• Candidates with ûi1 ≥ s1 are assigned to Institution 1.

• Among the remaining candidates, those with ûi2 ≥ s2 are assigned to Institution 2.

• All others remain unmatched.

The thresholds (s1, s2) must satisfy Equations (11) and (12). Equation (11) ensures Institution 1
selects exactly c1 candidates, while Equation (12) ensures Institution 2 fills exactly c2 positions from
candidates not admitted to Institution 1.

In finite matching models, stability requires that no candidate–institution pair forms a blocking
coalition, where both would prefer to be matched to each other over their current assignment.
In the continuum setting, stability is implicitly enforced by the threshold structure and capacity
constraints. Candidates assigned to Institution 2 or left unmatched cannot move to Institution 1
unless s1 decreases. However, decreasing s1 would admit more than c1 candidates, violating capacity
constraints. Similarly, Institution 1 cannot replace a lower-ranked candidate with a higher-ranked one
without exceeding c1 or displacing an admitted candidate, contradicting its ranking rule. Candidates
assigned to Institution 1 or left unmatched cannot move to Institution 2 unless s2 decreases, which
would admit more than c2 candidates, again violating capacity constraints. Since each institution
fills to capacity with the highest-ranked available candidates, and no candidate can move to a more
preferred institution without violating constraints, the resulting assignment is stable by construction.
The equilibrium equations (11)–(12) thus encode the continuum equivalent of a stable matching.

B.1 Proof of Proposition B.1

Proof. Since the number of candidates is more than the total available capacity, it is easy to check
that any stable assignment must fill all the available capacity, i.e., it must assign c1n candidates to
Institution 1 and c2n candidates to Institution 2. Let S1 be the top c1n candidates according to the
utility value ûi1 (observe that we are using the fact that observed utilities are distinct and hence this
set is well defined). We first argue that any stable assignment M must assign S1 to Institution 1.
Indeed, suppose i ∈ S1 is not assigned to Institution 1 by M . Then there must be a candidate i′ /∈ S1

that gets assigned to Institution 1. This creates an instability: Institution 1 prefers i to i′, and i prefers
its assignment in M (which could be Institution 2 or unassigned) to Institution 1. Thus, M must
assign exactly S1 to Institution 2.

Similarly, if G denotes the set of all candidates and S2 is the subset of G \ S1 containing the top c2n
candidates according to ûi2 values, then any stable assignment must assign S2 to Institution 2. This
establishes the uniqueness of a stable assignment. The thresholds s1 is the minimum ûi1 value of a
candidate in S1, and similarly for s2.
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B.2 Proof of Proposition B.2

Proof. Step 1: Continuity and monotonicity of allocation functions. Define the allocation
functions:

A1(s1) = ν1 Pr[ûi1 ≥ s1] + ν2 Pr[ûi′1 ≥ s1],

A2(s1, s2) = ν1 Pr[ûi2 ≥ s2, ûi1 < s1] + ν2 Pr[ûi′2 ≥ s2, ûi′1 < s1].

Since Pr[ûij ≥ s] is the survival function 1 − Fij(s), where Fij(s) is the cumulative distribution
function (CDF), it follows that:

• A1(s1) is a continuous, strictly decreasing function of s1.

• A2(s1, s2) is continuous in both s1 and s2.

Step 2: Boundary conditions. Consider the extreme cases:

• If s1 = 1, then Pr[ûi1 ≥ 1] = 0, so A1(1) = 0.

• If s1 = 0, then Pr[ûi1 ≥ 0] = 1, so A1(0) = ν1 + ν2.

• If s2 = 1, then A2(s1, 1) = 0.

• If s2 = 0, then A2(s1, 0) reaches its maximum possible value ν1 + ν2.

Thus, for any feasible capacities c1, c2 satisfying c1 + c2 ≤ ν1 + ν2, the thresholds s1, s2 can be
adjusted to ensure feasibility.

Step 3: Existence of a solution. Define the function:
F (s1, s2) = (A1(s1)− c1, A2(s1, s2)− c2).

SinceA1(s1) is strictly decreasing and continuous, andA2(s1, s2) is continuous in both variables, the
Intermediate Value Theorem (applied in R2) guarantees the existence of a solution (s⋆1, s

⋆
2) satisfying

F (s⋆1, s
⋆
2) = (0, 0).

Step 4: Uniqueness of the solution. To prove uniqueness, assume two solutions (s′1, s
′
2) and (s′′1 , s

′′
2).

Since A1(s1) is strictly decreasing, it follows that:
A1(s

′
1) = A1(s

′′
1) ⇒ s′1 = s′′1 .

Similarly, for a fixed s⋆1, A2(s
⋆
1, s2) is strictly decreasing in s2, implying that:
A2(s

⋆
1, s

′
2) = A2(s

⋆
1, s

′′
2) ⇒ s′2 = s′′2 .

Thus, (s⋆1, s
⋆
2) is unique.

B.3 Thresholds in the finite-population setting

In the finite model, each candidate i in a group Gj , where j ∈ {1, 2}, has latent attributes (vi1, vi2)
drawn independently and uniformly from [0, 1]2. These attributes are transformed into observed
utilities ûij , which determine candidate preferences and institutional choices. A realization ω
corresponds to a specific draw of all (vi1, vi2) pairs in the population. Once ω is fixed, the utilities
ûij are fixed as well, and the resulting stable matching is deterministic.

In this setting, Proposition B.1 establishes that for every realization ω, the stable matching is
characterized by thresholds S⋆

1 (ω) and S⋆
2 (ω), such that Institution 1 selects candidates with ûi1 ≥

S⋆
1 (ω) and Institution 2 selects those with ûi2 ≥ S⋆

2 (ω).

Assuming candidate attributes are i.i.d., the fraction of candidates in each group satisfying these
threshold conditions concentrates around their expectations by standard concentration inequalities
(e.g., Chernoff bounds). Consequently, the empirical thresholds S⋆

1 (ω) and S⋆
2 (ω) converge to

deterministic limits s⋆1 and s⋆2 as n→ ∞, satisfying the equations derived in the infinite-population
model.

While our main analysis characterizes the equilibrium thresholds (s⋆1, s
⋆
2) in the continuum limit, it is

natural to ask how close the thresholds in a finite population are to their limiting values. The following
result shows that these thresholds concentrate sharply around their deterministic counterparts.
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γ Representation Ratio (mean ± std)

0.0 0.48± 0.16
0.1 0.44± 0.14
0.2 0.44± 0.15
0.3 0.49± 0.16
0.4 0.53± 0.25
0.5 0.55± 0.19
0.6 0.61± 0.19
0.7 0.64± 0.28
0.8 0.64± 0.16
0.9 0.62± 0.17
1.0 0.73± 0.42

n = 100, c = 0.2, β = 0.9, |G1| = |G2| =
100.

γ Representation Ratio (mean ± std)

0.0 0.44± 0.10
0.1 0.45± 0.10
0.2 0.41± 0.10
0.3 0.44± 0.06
0.4 0.53± 0.09
0.5 0.56± 0.10
0.6 0.58± 0.10
0.7 0.58± 0.12
0.8 0.63± 0.12
0.9 0.67± 0.16
1.0 0.63± 0.13

n = 250, c = 0.2, β = 0.9, |G1| = |G2| =
250.

Table 2: Representation ratios for different values of γ and finite n. The standard deviation decreases
as n increases, indicating closer agreement with the continuum predictions.

Proposition B.3 (Concentration of finite-population thresholds). Given parameters c, β, and
γ, let (s⋆1, s

⋆
2) denote the unique solution to (11)–(12). Consider a finite stochastic instance I with

|G1| = |G2| = n, and two institutions of capacities cn each, bias parameter β, and correlation
parameter γ. Then, with high probability, there exist thresholds s1, s2 governing the stable assignment
in I such that

|sℓ − s⋆ℓ | = O

(√
logn
n

)
for each ℓ ∈ {1, 2}.

Proof. The proof follows by a standard Chernoff-bound argument. Given c, β, γ, Proposition B.2
ensures a unique solution (s⋆1, s

⋆
2) to (11)–(12). In the finite instance I, random thresholds s1, s2

define the unique stable assignment as in Proposition B.1.

For each candidate i ∈ G1 ∪G2, define the indicator Xi = 1{ûi1 ≥ s⋆1 − ε}, where ε > 0 is small
enough that s⋆1 − ε ≥ 0. Let X =

∑
iXi. If i ∈ G1, then E[Xi] = Pr[ui1 ≥ s⋆1]− ε, and if i ∈ G2,

then E[Xi] ≥ Pr[ui1 ≥ s⋆1]. Hence,

E[X] ≥ n(Pr[ûi1 ≥ s⋆1] + Pr[ûi′1 ≥ s⋆1])− nε = nc1 − nε,

where i ∈ G1, i
′ ∈ G2, and the last equality follows from (11). Let E denote the event that X < nc1.

By the Chernoff bound, Pr[E ] ≤ e−ε2n/4. Setting ε = O(
√

logn
n ) gives Pr[E ] ≤ n−a for some

constant a > 0. If E does not occur, then s1 ≥ s⋆1 − ε; otherwise, s1 < s⋆1 − ε would violate the
capacity constraint at Institution 1. A symmetric argument yields s1 ≤ s⋆1 + ε.

An analogous argument for s2 (using expressions for Pr[ûi2 ≥ s2 ∧ ûi1 < s1] from Section 3) shows
that |s2 − s⋆2| ≤ cε with high probability, for some constant c depending on c, β, γ. This completes
the proof.

Finite-sample validation. To corroborate the theoretical results and illustrate their practical rel-
evance, we implemented our model for finite sample sizes (n = 100 and n = 250 per group) and
conducted 30 independent trials for each value of γ. The results, summarized in Table 2, show that
even for moderately sized systems (100–250 candidates per group), the continuum thresholds provide
an excellent approximation to the empirical representation ratios. As expected, the standard deviation
of the observed representation ratios decreases with increasing n, indicating convergence toward the
continuum-limit predictions.

21



C Monotonicity of thresholds with respect to β

In this section, we prove the monotonicity of s⋆1 and s⋆2 with respect to the bias parameter β. This
also implies that the representation ratio is monotone with respect to β (Proposition F.1). We restrict
the discussion to the symmetric setting ν1 = ν2 = 1 and c1 = c2 = c. We further prove a useful
result showing that the threshold s⋆2 always remains at most s⋆1.

Proposition C.1 (Monotonicity of s⋆1 and s⋆2 w.r.t. β). For any fixed value of γ, the thresholds s⋆1
and s⋆2 are non-decreasing functions of the bias parameter β.

An easy proof of the monotonicity of s⋆1 with respect to β considers the expression for s⋆1. Recall from
Section 3 that s⋆1 = 2−c

1+1/β if β ≥ 1− c, and 1− c otherwise. This expression is clearly monotone in
β. However, we provide a more intuitive proof that also extends to the monotonicity of s⋆2.

Suppose we increase β while keeping s⋆1 fixed. The measure of selected candidates fromG2 increases
(while that for G1 remains unchanged). Since the capacity of Institution 1 is fixed, s⋆1 must also
increase. The argument for the monotonicity of s⋆2 is a more involved version of this idea. As a
corollary, we find that the representation ratio is monotone in β: increasing β raises both thresholds,
thereby reducing the admission probability for candidates in G1.

Proof. Given a value β and threshold s1, let f(β, s1) denote Pr[ûi1 ≥ s1] + Pr[ûi′1 ≥ s1], where
i ∈ G1, i′ ∈ G2. Then f(β, s1) is a non-decreasing function of β and a decreasing function of s1.
Further, Equation (11) implies that f(β, s⋆1(β)) = c.

Now consider two values β1 < β2, and assume for contradiction that s⋆1(β1) > s⋆1(β2). Then:

c = f(β1, s
⋆
1(β1)) ≤ f(β2, s

⋆
1(β1)) < f(β2, s

⋆
1(β2)) = c,

which is a contradiction. Therefore, s⋆1(β2) ≥ s⋆1(β1).

We now prove the monotonicity of s⋆2(β). Rewriting Equation (12), we have:

Pr[γX+(1−γ)Y ≥ s⋆2 | X < s⋆1] Pr[X < s⋆1]+Pr[γβX+β(1−γ)Y ≥ s⋆2 | βX < s⋆1] Pr[βX < s⋆1] = c,

where X,Y are independent and uniformly distributed on [0, 1].

Let Zβ be a uniform random variable on [0, s⋆1]. Then we can rewrite the equation as:

Pr[γZβ + (1− γ)Y ≥ s⋆2] Pr[X < s⋆1] + Pr[γZβ + β(1− γ)Y ≥ s⋆2] Pr[βX < s⋆1] = c.

Let: A(β) := Pr[γZβ+(1−γ)Y ≥ s⋆2],B(β) := Pr[γZβ+β(1−γ)Y ≥ s⋆2], p(β) := Pr[X < s⋆1],
q(β) := Pr[βX < s⋆1].

Suppose β1 < β2 and assume s⋆2(β1) > s⋆2(β2). Then using monotonicity of s⋆1(β), we verify: (i)
A(β1) < A(β2), (ii) B(β1) < B(β2), (iii) p(β1) < p(β2), (iv) A(β) ≥ B(β) for all β ∈ [0, 1].

Since A(β)p(β) +B(β)q(β) = c, the difference becomes:

A(β1)p(β1) +B(β1)q(β1)−A(β2)p(β2)−B(β2)q(β2) = 0.

This difference can be rewritten as:

A(β1)(p(β1)− p(β2)) + p(β2)(A(β1)−A(β2)) +B(β1)(q(β1)− q(β2)) + q(β2)(B(β1)−B(β2)).

From Equation (11), we have p(β) + q(β) = c, so p(β1)− p(β2) = q(β2)− q(β1). Substituting and
simplifying, we get:

(A(β1)−B(β1))(p(β1)− p(β2)) + p(β2)(A(β1)−A(β2)) + q(β2)(B(β1)−B(β2)) < 0,

which contradicts the assumption. Therefore, s⋆2(β1) ≤ s⋆2(β2).

The following result shows that when the two groups have equal size and the capacities at both
institutions are equal, the threshold s⋆2 is always at most s⋆1. The proof follows from the observation
that if s⋆2 > s⋆1, then a candidate inG1 must satisfy vi2 ≥ s⋆2 to be assigned to Institution 2, effectively
reducing the problem to a single-institution setting, which leads to a contradiction.
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Proposition C.2 (s⋆1 dominates s⋆2 in the symmetric case). Suppose ν1 = ν2 = ν and c1 = c2 = cν.
Then, for any fixed β, c, and γ, we have s⋆2 ≤ s⋆1.

Proof. Let X and Y be i.i.d. uniform random variables on [0, 1]. The threshold s⋆1 satisfies:

Pr[X ≥ s⋆1] + Pr[X ≥ s⋆1,β ] = c,

where s⋆1,β := min(1, s⋆1/β).

The threshold s⋆2 satisfies:

Pr[γX + (1− γ)Y ≥ s⋆2, X < s⋆1] + Pr[γX + (1− γ)Y ≥ s⋆2,β , X < s⋆1,β ] = c,

where s⋆2,β := min(1, s⋆2/β).

Assume for contradiction that s⋆2 > s⋆1. Then:

Pr[Y > s⋆2] ≥ Pr[γX + (1− γ)Y ≥ s⋆2, X < s⋆1],

and similarly for s⋆2,β . Adding both terms yields:

Pr[Y > s⋆2] + Pr[Y > s⋆2,β ] ≥ c.

But since s⋆1 < s⋆2, this implies:

Pr[Y > s⋆1] + Pr[Y > s⋆1,β ] > c,

contradicting the definition of s⋆1. Therefore, s⋆2 ≤ s⋆1.

D Proofs of results for γ-thresholds

In this section, we present the proof of Theorem 3.1 that establishes the existence of the γ-thresholds
γ1, γ2, and γ3 when β ≥ 1 − c. By definition, these thresholds characterize the transitions in the
evaluation probabilities Pr[γX + (1− γ)Y ≥ s2] and Pr[γX + (1− γ)Y ≥ s2/β] as γ increases
from 0 to 1. Specifically, the system passes through the regime transitions: (III,III’), (III,II’), (II,II’),
and (IV,IV’).

We also describe how to compute the values of γ1, γ2, and γ3, and establish monotonicity properties
of these thresholds with respect to the bias parameter β. We restate the theorem here for convenience.
Theorem 3.1 (γ-thresholds). For any fixed β ≥ 1− c, there exist unique values γ1 ≤ γ2 ≤ γ3 ∈
[0, 1] such that: (i) s⋆2(γ)/β ≤ 1 − γ if and only if γ ≤ γ1; (ii) s⋆2(γ) ≤ 1 − γ if and only if
γ ≤ γ2; (iii) s⋆2(γ) ≥ γs⋆1 if and only if γ ≤ γ3. Moreover, these thresholds are given by: (i)
γ1 =

2s⋆1(β+1/β)−4(1−c)
2s⋆1(β+1/β)−4(1−c)+(s⋆1)

2(1+1/β2) ; (ii) γ2 = x
x+1 , where x is the unique root in (γ1, γ3) of(

1 + 1
β2

)
x2(s⋆1)

2

2 + x
(

s⋆1
β − s⋆1

β2 − c
)
+ 1

2

(
1− 1

β

)2
= 0; (iii) γ3 = 1

1+c .

We break the proof into two parts. In the first part, we show the existence of thresholds. Subsequently,
we derive expressions for them.

Proof of existence of γ-thresholds. We show that s⋆2(γ)
γ is a decreasing function of γ. Consider values

γ1 < γ2 where γ1, γ1 ∈ (0, 1). Our goal is to show that s⋆2(γ2)
γ2

<
s⋆2(γ1)

γ1
. By definition of s⋆2(γ1),

Pr[γ1X + (1− γ1)Y ≥ s⋆2(γ1), X < s⋆1] + Pr[γ1X + (1− γ1)Y ≥ s⋆2,β(γ), X < s⋆1,β ] = c,

where X and Y are independent random variables with values in [0, 1]. The above condition can be
equivalently written as

Pr

[
X + (1/γ1 − 1)Y ≥ s⋆2(γ1)

γ1
, X < s⋆1

]
+Pr

[
X + (1/γ1 − 1)Y ≥

s⋆2,β(γ1)

γ1
, X < s⋆1,β

]
= c.

Now observe that x+(1/γ1 − 1)y > x+(1/γ2 − 1)y for any x, y ∈ (0, 1). Thus, a simple coupling
argument shows that

Pr

[
X + (1/γ2 − 1)Y ≥ s⋆2(γ1)

γ1
, X < s⋆1

]
+Pr

[
X + (1/γ2 − 1)Y ≥

s⋆2,β(γ1)

γ1
, X < s⋆1,β

]
< c.
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Assume for the sake of contradiction that s⋆2(γ1)
γ1

≤ s⋆2(γ2)
γ2

. Then,
s⋆2,β(γ1)

γ1
≤ s⋆2,β(γ2)

γ2
as well.

Therefore, the above inequality implies that

Pr

[
X + (1/γ2 − 1)Y ≥ s⋆2(γ2)

γ2
, X < s⋆1

]
+Pr

[
X + (1/γ2 − 1)Y ≥

s⋆2,β(γ2)

γ2
, X < s⋆1,β

]
< c.

Rearranging terms, we get

Pr [γ2X + (1− γ2)Y ≥ s⋆2(γ2), X < s⋆1] + Pr
[
γ2X + (1− γ2)Y ≥ s⋆2,β(γ2), X < s⋆1,β

]
< c.

But this contradicts the definition of s⋆2(γ2). Thus, we see that s⋆2(γ)
γ is a decreasing function of γ. In

a similar manner, we can show that
s⋆2,β(γ)

γ is a decreasing function of γ, and s⋆2(γ)
1−γ and

s⋆2,β(γ)

1−γ are
increasing functions of γ. Since the distribution from which the attributes of a candidate are drawn
(in this case, the uniform distribution on [0, 1]) is continuous, it follows that s⋆2(γ) is a continuous
function of γ.

When γ approaches 0,
s⋆2,β(γ)

1−γ approaches 0 and when γ approaches 1,
s⋆2,β(γ)

1−γ approaches ∞. Since
s⋆2,β(γ)

1−γ is a monotonically increasing continuous function of γ, there is a unique value γ, call it γ1,

such that
s⋆2,β(γ1)

1−γ1
= 1. This first statement in the lemma now follows from this observation and the

monotonicity of
s⋆2,β(γ)

1−γ . Other statements in the lemma can be shown similarly.

Proof of expressions for γ-thresholds. In the regime β ≤ 1− c, we know that s⋆1 ≤ β. We also know
that s⋆2 ≤ s⋆1 (Proposition C.2). Thus, s⋆1, s

⋆
2 ≤ β for all γ ∈ [0, 1]. Hence, s⋆j,β =

s⋆j
β for j ∈ {1, 2}.

It now follows from the definition of γ3 and γ4 that γ3 = γ4. The monotonicity of s⋆2
1−γ shows that

γ1 < γ2. We now show that γ2 ≤ γ3.

We first argue that γ1 ≤ γ3. Suppose not, i.e., γ3 < γ1. For γ ∈ [0, γ3], we are in case III and III ′.
Therefore, s⋆2 satisfies:

s⋆1 −
2s⋆1s

⋆
2 − γ(s⋆1)

2

2(1− γ)
+
s⋆1
β

− 2s⋆1s
⋆
2 − γ(s⋆1)

2

2β2(1− γ)
= c. (15)

By definition of γ3, s⋆2 = γ3s
⋆
1 when γ = γ3. Substituting this above, we see that

s⋆1(1 + 1/β)− γ3(s
⋆
1)

2

2(1− γ3)

(
1 + 1/β2

)
= c.

Since γ3 ≤ γ1, we know by monotonicity of s⋆2(γ)
1−γ that s⋆1γ3 = s⋆2 ≤ β(1− γ3). Thus, we get

c ≥ s⋆1(1 + 1/β)− βs⋆1
2

(
1 + 1/β2

)
= s⋆1

(
1− β

2
+

1

2β

)
≥ s⋆1,

where the last inequality follows from the fact that β ≤ 1. But we know that s⋆1 = 2−c
1+1/β ≥ 2−c

2 > c,
if c < 1/2. Thus, we cannot have γ3 ≤ γ1. Thus γ1 = min(γ1, γ2, γ3) and hence, (15) holds for all
γ ∈ [0, γ1]. Substitution s⋆2 = β(1− γ1) for γ = γ1 in (15) yields the desired expression for γ1.

Now we show that γ2 ≤ γ3. Suppose not, i.e., γ3 ∈ (γ1, γ2). We are in cases III and II ′ in [γ1, γ3].
Therefore, s⋆2 satisfies:

s⋆1 −
2s⋆1s

⋆
2 − γ(s⋆1)

2

2(1− γ)
+

(1− γ − s⋆2/β + γs⋆1/β)
2

2γ(1− γ)
= c. (16)

For γ = γ3, we know that s⋆2 = γ3s
⋆
1. Substituting this above, we get:

s⋆1 −
γ3(s

⋆
1)

2

2(1− γ3)
+

1− γ3
2γ3

= c.

Since γ3 < γ2, s⋆1γ3 = s⋆2 < (1− γ3). Using this, we see that c > s⋆1, which is a contradiction (as
argued in the previous case above). Thus, γ2 ≤ γ3. The expression for evaluating γ2 in the statement
of the lemma follows from substituting s⋆2 = 1− γ2 for γ = γ2 in (16).
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Finally, we show the desired expression for γ3. In the interval γ ∈ [γ2, γ3], we are in case II and II ′.
Thus, s⋆2 satisfies:

(1− γ − s⋆2 + γs⋆1)
2 + (1− γ − s⋆2/β + γs⋆1/β)

2 = 2cγ(1− γ).

At γ = γ3, s⋆2 = γ3s
⋆
1. Substituting this above, we get the desired expression for γ3.

Figure 4: Variation of thresholds γ1, . . . , γ3 with β for a fixed value of c (Left) and with c for a fixed
value of β (Right). Note that β ≥ 1− c.

We now show monotonicity of γ1 and γ2 with respect to β – observe that γ3 is independent of β.
Proposition D.1 (Monotonicity of γ-thresholds w.r.t. β). Assume c < 1/2. Then γ1(β) is
monotonically increasing and γ2(β) is a monotonically decreasing function of β as β varies from
1− c to 1.

Proof. We first consider γ1. Using Theorem 3.1, we know that γ1 is equal to

2s⋆1(β + 1/β)− 4(1− c)

2s⋆1(β + 1/β)− 4(1− c)︸ ︷︷ ︸
a(β)

+(s⋆1)
2(1 + 1/β2)︸ ︷︷ ︸

b(β)

.

The above can be written as a(β)
a(β)+b(β) . The sign of the derivative of γ1 is given by a′(β)b(β) −

a(β)b′(β),where a′(β) and b′(β) denote the derivative of a(β) and b(β) with respect to β respectively.
It is easy to verify that a(β) ≥ 0: indeed, this is same as verifying 2s⋆1(β + 1/β) ≥ 2(1− c). Using
s⋆1 = 2−c

1+1/β , this is same as verifying

(2− c)(β + 1/β)− 2(1− c)(1 + 1/β) ≥ 0.

Simplifying, the above is the same as verifying

2(c+ β − 1) + c/β − cβ ≥ 0,

which is true because β + c ≥ 1 and β ≤ 1.

Now recall that the sign of the derivative of γ1 with respect to β is same as that of a′(β)b(β) −
a(β)b′(β). Since a(β), b(β) ≥ 0, it suffices to show that a′(β) > 0 and b′(β) < 0. Using the
definition of s⋆1, a′(β) is 2(2− c) times

d

dβ

(
β + 1/β

1 + 1/β

)
=
β2 + 2β − 1

(1 + β)2
=

(1 + β)2 − 2

(1 + β)2
> 0,

because 1 + β ≥
√
2 (recall that β ≥ 1 − c ≥ 1/2). Thus, a′(β) > 0. We consider b′(β). Now,

b′(β) = 2s⋆1
ds⋆1
dβ − 2(s⋆1)

2/β3. Thus, b′(β) < 0 if ds⋆1(β)
dβ <

s⋆1
β3 . Using s⋆1 = 2−c

1+1/β , this inequality is
equivalent to 1/β < 1 + 1/β, which is clearly true. Thus, γ1(β) is an increasing function of β.

We now show the monotonicity of γ2(β). Suppose for the sake of contradiction that there are values
β < β′ such that γ2(β) ≥ γ2(β

′). Now, by definition of γ2, we know that s⋆2(γ2)
1−γ2

= 1. Now, we have
the following sequence of inequalities:

1 =
s⋆2(γ2(β), β))

1− γ2(β)
≤ s⋆2(γ2(β

′), β)

1− γ2(β′)
<
s⋆2(γ2(β

′), β′)

1− γ2(β′)
= 1.
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Here the first inequality follows from the fact that for a fixed β, s⋆2(γ)
1−γ is an increasing function of γ,

and the second inequality follows from the fact that for a fixed γ, s⋆2(β) is a monotonically increasing
function of β. This leads to a contradiction, and hence γ2(β) is a monotonically decreasing function
of β.

E Proofs of results for s⋆2

In this section, we present the proof of Theorem 3.2 and analyze the behavior of the selection
threshold s⋆2 as γ varies. Our approach is to examine the governing equation for s⋆2 in each sub-
interval of [0, 1] defined by γ1, γ2, γ3, where the selection dynamics transition. Using these equations,
we then study the non-monotonic variation of s⋆2 with γ: as γ increases, s⋆2 initially decreases but
eventually starts to rise again. The proof of this result relies on analyzing the equations governing s⋆2
from Theorem 3.2. Unless this turns out to be a linear equation, analyzing a closed-form solution for
s⋆2 is highly non-trivial. Our approach involves studying the equations satisfied by the first and second
derivatives of s⋆2 with respect to γ. This enables us to infer its behavior across different regions of γ.
We now prove Theorem 3.2. We restate it here for convenience.

Theorem 3.2 (Equations for s⋆2(γ)). Assume β ≥ 1− c and c < 1
2 . Then s⋆2(γ) satisfies:

• [0, γ1]: s⋆1 −
2s⋆1s

⋆
2−γ(s⋆1)

2

2(1−γ) +
s⋆1
β − 2s⋆1s

⋆
2−γ(s⋆1)

2

2β2(1−γ) = c

• [γ1, γ2]: s⋆1 −
2s⋆1s

⋆
2−γ(s⋆1)

2

2(1−γ) +
(1−γ−s⋆2/β+γs⋆1/β)

2

2γ(1−γ) = c

• [γ2, γ3]:
(1−γ−s⋆2+γs⋆1)

2

2γ(1−γ) +
(1−γ−s⋆2/β+γs⋆1/β)

2

2γ(1−γ) = c

• [γ3, 1]: s⋆1(1 + 1/β)− s⋆2
γ − s⋆2

βγ + 1−γ
γ = c

Proof. These equations follow by definition of γ1, . . . , γ4 and the corresponding cases described
in Section 3. For instance, when γ ∈ [0, γ1], we are in case III and III ′. Other cases can be argued
similarly.

We now show that s⋆2(γ) varies in a non-monotone manner, but has only one local minimum.

Theorem E.1 (Variation of s⋆2 with γ). Assume that the bias parameter β satisfies β ≥ 1− c and
c < 1/2. Then, s⋆2 exhibits the following behavior as γ varies from 0 to 1:

(i) For γ ∈ [0, γ1], s⋆2 decreases linearly with γ.

(ii) For γ ∈ [γ1, γ2], s⋆2 is unimodal: it initially decreases and may subsequently increase.

(iii) For γ ∈ [γ2, γ3], s⋆2 is convex.

(iv) For γ ∈ [γ3, 1], s⋆2 is increasing.

Furthermore, the slope of s⋆2 at γ−2 matches that at γ+2 . Thus, s⋆2 is unimodal.

Proof. Case γ ∈ [0, γ1]: Here, Theorem 3.2 shows that s⋆2 varies linearly with γ. In fact, s⋆2 is
equal to

1

2(s⋆1 + s⋆1/β
2)

(
2s⋆1(1 + 1/β)(1− γ)− 2c(1− γ) + γ(s⋆1)

2(1 + 1/β2)
)
.

The coefficient of γ is equal to 1
2s⋆1(1+1/β2) times

2c+(s⋆1)
2(1+1/β2)− 2s⋆1(1+1/β) = 4c− 4+

(
2− c

1 + 1/β

)2(
1 +

1

β2

)
≤ 4c− 4+ (2− c)2/2.

The above is negative if c < 1/2. Thus, s⋆2 is a decreasing function of γ in [0, γ1].
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Case γ ∈ [γ1, γ2]: We rewrite the constraint in Theorem 3.2 for this case as follows:

2γ(1− γ)(s⋆1 − c)− 2γs⋆1s
⋆
2 + γ2(s⋆1)

2 + (1− γ − s⋆2/β + γs⋆1/β)
2 = 0. (17)

Differentiating this, we get (here (s⋆2)
′ denotes the derivative of s⋆2 w.r.t. γ):

2(1− 2γ)(s⋆1 − c)− 2s⋆1s
⋆
2 + 2γ(s⋆1)

2

− 2

(
1− γ − s⋆2

β
+
γs⋆1
β

)(
1− s⋆1

β

)
− (s⋆2)

′
(
2γs⋆1 +

2

β

(
1− γ − s⋆2

β
+
γs⋆1
β

))
= 0.

We first show that (s⋆2)
′ < 0 at γ = γ1. For this, we substitute s⋆2 = β(1− γ1) in the equation above.

Since the coefficient of (s⋆2)
′ is negative, it suffices to show that the remaining terms not involving

(s⋆2)
′ is negative, i.e., we need to show:

(1− 2γ1)(s
⋆
1 − c)− 2s⋆1β(1− γ1) + 2γ(s⋆1)

2 − 2γs⋆1
β

< 0.

The l.h.s. is a linear function of γ1. Since γ1 ≥ 0 and β(1−γ1) ≥ s⋆1γ1 (because γ1 ≤ γ3), it suffices
to check the above condition for γ1 = 0 and γ1 = β

β+s⋆1
. For γ1 = 0, the above condition holds

because s⋆1 ≤ β. When γ1 = β
β+s⋆1

, γ1 ≥ 1/2 because s⋆1 ≤ β. Therefore, (1− 2γ1)(s
⋆
1 − c) < 0.

Using this value of γ1, β(1 − γ1) = γs⋆1. Thus, the above condition holds here as well. Thus, we
have shown that s⋆2 < 0 at γ = γ1. It remains to show that s⋆2 is unimodal. This follows from the
following general fact:

Fact E.2. Let f(γ) be a twice differentiable function of γ on a closed interval [γ1, γ2] such that the
following condition holds:

A(γ)f ′′(γ) +B(f ′(γ))2 + Cf ′(γ) +D = 0,

where B,C,D are independent of γ, C ̸= 0, and A(γ) is a continuous function of γ and there is
a positive constant E such that A(γ) ≥ E. Then f(γ) is unimodal on [γ1, γ2], i.e., if f ′(γa) =
f ′(γb) = 0, then f ′(γ) = 0 for all γ ∈ [γa, γb].

Proof. First, consider the case whenD > 0 (the caseD < 0 is analogous). Let u(γ) denote the f ′(γ).
Assume that there are two distinct values γa, γb ∈ [γ1, γ2], γa < γb such that u(γa) = u(γb) = 0,
but u(γ0) ̸= 0 for some γ0 ∈ [γa, γb]. Since u(γ) is continuous, we can assume, by suitably selecting
γa and γb, that u(γ) is non-negative in [γa, γb]. By the equation stated in the condition above, we see
that there is a constant ε > 0 such that if |u(γ)| < ε, then u′(γ) < 0. By continuity of u(γ), there
exists a δ > 0 such that for all points γ ∈ I := [γa,min(γa + δ, γ0)], 0 < u(γ) < ε. Now, consider
a value γ ∈ I , where γ ̸= γa. By mean value theorem, there exists a value γc ∈ [γa, γ] such that
u′(γc) =

u(γ)−u(γa)
γ−γa

= u(γ)
γ−γa

> 0. But this is a contradiction, because u(γc) < ε and hence, u′(γc)
must be negative.

Finally, consider the case where D = 0. Assume that C > 0; the other case can be handled similarly.
It follows that there is a constant ε such that if 0 < u(γ) ≤ ε, then u′(γ) < 0. The above argument
now carries over analogously.

Let us verify that the conditions stated in the above fact hold in our setting. Differentiating (17) twice
and grouping terms, we get (here (s⋆2)

′ and (s⋆2)
′′ denote the derivative and the second derivative of

s⋆2 w.r.t. γ respectively):(
2∆

β
+ 2s⋆1γ

)
(s⋆2)

′′− 2

β2
((s⋆2)

′)2+

(
4s⋆1 −

4

β
(1− s⋆1/β)

)
s⋆1−2(s⋆1−c)+2(s⋆1)

2+2(1−s⋆1/β)2 = 0.

Here ∆ denotes 1− γ +
γs⋆1
β − s⋆2

β . Note that ∆ ≥ 0 because s⋆2 ≤ s⋆1, and hence,

∆ ≥ 1− γ +
γs⋆1
β

− s⋆1
β

= (1− γ)(1− s⋆1/β) ≥ 0.
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We also note that
4s⋆1 −

4

β
(1− s⋆1/β) ̸= 0.

Indeed, if the l.h.s. is equal to 0, then βs⋆1 = 1− s⋆1/β, i.e., s⋆1(β + 1/β) = 1. Now, β + 1/β ≥ 2
and s⋆1 > 1/2. Therefore, this cannot happen. Thus, the conditions stated in Fact E.2 hold with f(γ)
denoting s⋆2(γ), a(γ) = 2∆

β + 2s⋆1γ, b = −2
β2 , c =

(
4s⋆1 − 4

β (1− s⋆1/β)
)

and d = −2(s⋆1 − c) +

2(s⋆1)
2 + 2(1− s⋆1/β)

2.

We now claim that (s⋆2(γ))
′ can be 0 for at most one γ ∈ [γ1, γ2]. Indeed, suppose it is 0 at two

distinct points γa and γb, where γa < γb. Then, Fact E.2 shows that s⋆2(γ) is a constant during the
entire interval [γa, γb]. But we argue that this cannot happen. Indeed, suppose s⋆2(γ) = K during
this interval. Substituting this value in (35) and multiplying both sides by 2γ(1− γ), we see that γ
satisfies a non-zero quadratic polynomial with constant coefficients. But this can have at most two
roots. This is a contradiction because all γ ∈ [γa, γb] satisfy this equation. Thus, we see that s⋆2(γ)
has at most one local maximum or local minimum in [γ1, γ2]. Since (s⋆2)

′ < 0 at γ1, we conclude
that s⋆2 can have at most one local minimum and no local maximum in [γ1, γ2].

Case γ ∈ [γ2, γ3]: We rewrite the equation for this case in Theorem 3.2 as:

(1− γ − s⋆2 + γs⋆1)
2 + (1− γ − s⋆2/β + γs⋆1/β)

2 = 2cγ(1− γ).

Differentiating the above equation twice with respect to γ, we get:
2(f ′(γ))2 + 2f(γ)f ′′(γ) + 2(f ′β(γ))

2 + 2fβ(γ)f
′′
β (γ) = −4c,

where f(γ) denotes (1− γ − s⋆2 + γs⋆1) and fβ(γ) denotes (1− γ − s⋆2/β + γs⋆1/β). Since s⋆2 ≤ s⋆1,
f(γ) = 1− γ − s⋆2 + γs⋆1 ≥ 1− γ − s⋆1 + γs⋆1 = (1− s⋆1)(1− γ) > 0.

Similarly, fβ(γ) > 0. Finally,
f ′′(γ) = −(s⋆2)

′′, f ′′β (γ) = −(s⋆2)
′′/β.

It follows that (s⋆2)
′′ > 0 when γ ∈ (γ2, γ3). This shows that s⋆2 is convex.

Case γ ∈ [γ3, 1]: Solving for s⋆2 in the last case mentioned in Theorem 3.2, we get:

s⋆2 =
s⋆1γ(1 + β) + β(1− γ)− cβγ

1 + β
.

The coefficient of γ is equal to 1
1+β times

s⋆1(1 + β)− β − cβ = β(2− c)− β − cβ = β − 2cβ.

If c < 1/2, we see that this is an increasing function of γ. Thus, we have shown the desired behavior
of s⋆2 in each of the given intervals. It remains to argue that s⋆2 is unimodal. The only case to check is
if s⋆2 has a local minimum in both [γ1, γ2] (where it has been shown to be unimodal) and in [γ2, γ3]
(where it has been shown to be convex). We can directly check by differentiating the equations for
the second and the third cases in Theorem 3.2 that (s⋆2)

′ at γ = γ2 in both the intervals is the same.
Thus, if s⋆2 has a local minimum in [γ1, γ2], then it is an increasing function at γ = γ2. Thus, it will
remain an increasing function in [γ2, γ3] (because it is convex in this range).

It remains to check that (s⋆2)
′ at γ = γ2 is the same according to the second and the third equations

in Theorem 3.2. We consider the second equation first. Let g(γ) denote (1−γ−s⋆2/β+γs⋆1/β)
2

2γ(1−γ) .

Differentiating both sides and substitution s⋆2 = 1− γ2, we get:

−2s⋆1(s
⋆
2)

′ − (s⋆1)
2

2(1− γ2)
− 2s⋆1(1− γ2)− γ(s⋆1)

2

2(1− γ2)2
+ g′(γ2) = 0.

After simplifying, the above becomes:

g′(γ2) +
−2s⋆1(1− γ2)(s

⋆
2)

′ + (s⋆1)
2 − 2s⋆1(1− γ2)

2(1− γ2)2
= 0. (18)

Similarly, differentiating both sides of the third equation in Theorem 3.2 and substituting s⋆2 = 1−γ2,
we get the same equation as above. This shows that (s⋆2)

′ at γ = γ2 according to either of the two
equations in Theorem 3.2 is the same. This completes the proof of the theorem.
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F Proofs of results for the representation ratio

In this section, we prove Theorem 3.3 that presents explicit formulas for the representation ratio
R(β, γ) across the four regimes determined by the threshold values γ1, γ2, γ3, under the assumption
that β ≥ 1 − c. These expressions are based on the governing equations for the thresholds s⋆1
(Equation (4)) and s⋆2 (Theorem 3.2), and are used to establish both correctness and monotonicity
results. Specifically, we analyze how the formula for R(β, γ) evolves as γ increases, showing that in
all four regimes the representation ratio is either constant or strictly increasing in γ. These results
culminate in the proofs of Theorem 3.3 and Corollary 4.1.

In Appendix F.2, we also show that for fixed γ, R(β, γ) is monotone in β, and prove that the
normalized representation ratio N (β, γ) := R(β, γ)/R(β, 1) is non-decreasing in β over the interval
[1− c, 1].

Throughout, we evaluate the representation ratio via

R(β, γ) =
Pr[ûi′1 ≥ s⋆1] + Pr[ûi′1 < s⋆1, ûi′2 ≥ s⋆2]

Pr[ûi1 ≥ s⋆1] + Pr[ûi1 < s⋆1, ûi2 ≥ s⋆2]
.

We recall Theorem 3.3 and Corollary 4.1 here.
Theorem 3.3 (Representation ratio). Fix c < 1

2 and β ≥ 1− c.

Define ∆(β, γ) := −βs⋆1 +
√
(s⋆1)

2(β2 + 1)− 2(1−γ)((1−β)s⋆1−c)
γ , and θ(β, γ) :=

−β(1−β)+

√
−(1−β)2+

2cγ(1+β2)
1−γ

1+β2 . Then:

R(β, γ) =


(β−(1−c))(β+1−c)+c2

1−β2(1−2c) if γ ∈ [0, γ1],
1− s⋆1

β +
γ∆2(β,γ)
2(1−γ)

1−s⋆1+c− γ∆2(β,γ)
2(1−γ)

if γ ∈ [γ1, γ2],

1− s⋆1
β +

(1−γ)θ2(β,γ)
2γ

1−s⋆1+c− (1−γ)θ2(β,γ)
2γ

if γ ∈ [γ2, γ3],
−(1−β)(1+γ)+4γc
(1+γ)(1−β)+4γβc if γ ∈ [γ3, 1].

Corollary 4.1. Fix c < 1/2 and β ≥ 1− c. Then R(β, γ) increases monotonically in γ.

F.1 Proof of Theorem 3.3 and Corollary 4.1

We derive closed-form expressions for the representation ratio R(β, γ) using the equations governing
s⋆2 (Theorem 3.2), and use them to prove Theorem 3.3 and Corollary 4.1. The expressions are
defined piecewise over the intervals determined by the thresholds γ1, γ2, γ3, and also yield the desired
monotonicity in γ.

Representation ratio for γ ≤ γ1. We know that
Pr[ui2 ≥ s⋆2 ∧ ui1 < s⋆1] + Pr[ui′2 ≥ s⋆2,β ∧ ui′1 < s⋆1,β ] = c,

and for γ ≤ γ1, we are in Cases I and I’. Hence,

Pr[ui2 ≥ s⋆2 ∧ ui1 < s⋆1] = s⋆1 −
2s⋆1s

⋆
2 − γ(s⋆1)

2

2(1− γ)
,

and

Pr[ui′2 ≥ s⋆2,β ∧ ui′1 < s⋆1,β ] =
s⋆1
β

− 2s⋆1s
⋆
2 − γ(s⋆1)

2

2β2(1− γ)
.

For sake of brevity, let ψ denote 2s⋆1s
⋆
2−γ(s⋆1)

2

2(1−γ) . Then we get:

s⋆1(1 + 1/β)− ψ(1 + 1/β2) = c.

Using s⋆1 = 2−c
1+1/β , we see that

ψ =
2(1− c)

1 + 1/β2
.

Therefore,

R(β, γ) =
1− ψ/β2

1− ψ
=

β2 − 1 + 2c

1− β2 + 2cβ2
.

Monotonicity. It is clear from the expression above that R(β, γ) does not vary with γ.
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Representation ratio for γ1 ≤ γ ≤ γ2. When γ ∈ (γ1, γ2), Theorem 3.2 shows that:

s⋆1 −
2s⋆1s

⋆
2 − γ(s⋆1)

2

2(1− γ)
+

(1− γ − s⋆2/β + γs⋆1/β)
2

2γ(1− γ)
= c. (19)

Further, the representation ratio is given by

R(β, γ) =
1− s⋆1/β +

(1−γ−s⋆2/β+γs⋆1/β)
2

2γ(1−γ)

1− 2s⋆1s
⋆
2−γ(s⋆1)

2

2(1−γ)

. (20)

Let ∆ denote s⋆2−γs⋆1
1−γ . Then, Equation (19) can be written as:

s⋆1 −
γ(s⋆1)

2

2(1− γ)
− s⋆1∆+

1− γ

2γ
(1−∆/β)

2
= c. (21)

Let u denote 1−∆/β. Then the above can be written:

1− γ

2γ
u2 + s⋆1βu+ (1− β)s⋆1 − c− γ(s⋆1)

2

2(1− γ)
= 0. (22)

The positive root of this equation is:

u =
−βs⋆1 +

√
(βs⋆1)

2 − 2(1−γ)((−β+1)s⋆1−c)
γ + (s⋆1)

2

(1− γ)/γ
.

Observe that the fraction of selected candidates from G2 is

1− s⋆1/β +
1− γ

2γ
u2,

which can be written as:
1− s⋆1/β +

γ

2(1− γ)
∆2,

where

∆(β, γ) := −βs⋆1 +

√
(s⋆1)

2(β2 + 1)− 2(1− γ)((−β + 1)s⋆1 − c)

γ
.

Monotonicity. In (22), we let v denote
√

1−γ
γ u. Then this equation can be written as:

v2

2
+ s⋆1β

√
γ

1− γ
v + (1− β)s⋆1 − c− γ(s⋆1)

2

2(1− γ)
= 0.

Differentiating both sides with respect to γ, we see that the sign of v′(γ) is same as that of

−vβs⋆1

√
1− γ

γ
+ (s⋆1)

2 = −us⋆1β
1− γ

γ
+ (s⋆1)

2.

Using the fact that u = 1−∆/β, the above expression is positive iff β(1− γ)(1−∆/β) ≤ (s⋆1)γ,
which using the definition of ∆, is same as s⋆2 ≥ β(1−γ). This fact holds true because γ ≥ γ1. Thus
we see that v′(γ) > 0. Since the fraction of selected candidates from G2 is given by v2/2+1−s⋆1/β,
we see that as we raise γ, this fraction increases. Hence R(β, γ) increases with increasing γ.

Representation ratio for γ2 ≤ γ ≤ γ3. In this range of γ, we have the equation:

(1− γ − s⋆2 + γs⋆1)
2

2γ(1− γ)
+

(1− γ − s⋆2/β + γs⋆1/β)
2

2γ(1− γ)
= c.

The representation ratio is given by

R(γ) =
1− s⋆1/β +

(1−γ−s⋆2/β+γs⋆1/β)
2

2γ(1−γ)

1− s⋆1 +
(1−γ−s⋆2+γs⋆1)

2

2γ(1−γ)

.
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Let ∆ denote s⋆2−γs⋆1
1−γ . Then the above equation can be written as:

(1−∆)2 + (1−∆/β)2 =
2cγ

1− γ
.

Let u denote 1−∆/β. Then, the above equation becomes:

u2 + (1− β + βu)2 − 2cγ

1− γ
= 0.

The non-negative root of u is given by:

θ(β, γ) :=
−β(1− β) +

√
−(1− β)2 + 2cγ(1+β2)

1−γ

1 + β2
.

Note that the fraction of selected candidates from G2 is given by

1− s⋆1/β +
(1− γ)θ2(β, γ)

2γ
.

Monotonicity. We shall show that θ(β, γ) ·
√

1−γ
γ is an increasing function of γ. This, along with

the expression for the fraction of selected candidates from G2, will show that the latter fraction is an

increasing function of γ. Notice that θ(β, γ) ·
√

1−γ
γ is given by

(1 + β2)θ(β, γ)

√
1− γ

γ
= −β(1− β)

√
1− γ

γ
+

√
−(1− β)2

√
1− γ

γ
+ 2c(1 + β2).

It is easy to check by inspection that the above increases as we increase γ.

Representation ratio for γ ≥ γ3. When γ ≥ γ3,

Pr[ui2 ≥ s⋆2 ∧ ui1 < s⋆1] = s⋆1 −
s⋆2
γ

+
1− γ

2γ
,

and

Pr[ui′2 ≥ s⋆2,β ∧ ui′1 < s⋆1,β ] = s⋆1,β −
s⋆2,β
γ

+
1− γ

2γ
.

Thus, we have the equation:

s⋆1(1 + 1/β)− s⋆2(1 + 1/β)

γ
+

1− γ

γ
= c.

Using s⋆1 = 2−c
1+1/β in the above equation, we get:

s⋆2
γ

=
γ(1− 2c) + 1

γ(1 + 1/β)
.

Therefore,

R(β, γ) =

1+γ
2γ − γ(1−2c)+1

γβ(1+1/β)

1+γ
2γ − γ(1−2c)+1

γ(1+1/β)

=
β − 1 + γ(β − 1 + 4c)

1− β + γ(1− β + 4βc)
.

Monotonicity. Differentiating the expression for R(β, γ) with respect to γ, we see that its sign is the
same as the sign of

(1− β + γ(1− β + 4βc))(β − 1 + 4c)− (β − 1 + γ(β − 1 + 4c))(1− β + 4βc),

which is the same as 4c(1− β)2 > 0. This shows the monotonicity of the representation ratio in this
case.

This completes the proofs of Theorem 3.3 and Corollary 4.1.
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F.2 Monotonicity of representation ratios with respect to β

We now analyze how the representation ratio R(β, γ) varies with the bias parameter β, for fixed γ.
We show that R(β, γ) is non-decreasing in β, and further establish that the normalized representation
ratio N (β, γ) is also non-decreasing over the interval β ∈ [1 − c, 1], under mild assumptions on
c. The first result follows from the structural monotonicity of the selection thresholds, as shown in
Appendix C. The second result relies on a case analysis based on Theorem 3.3.

Proposition F.1 (Monotonicity of representation ratio w.r.t. β). For any fixed γ, the representation
ratio R(β, γ) is a non-decreasing function of the bias parameter β.

Proof. Adding (11) and (12), we obtain

Pr[(X ≥ s⋆1) ∨ (γX + (1− γ)Y ≥ s⋆2)] + Pr[(βX ≥ s⋆1) ∨ (γβX + (1− γ)βY ≥ s⋆2)] = 2c.

As shown in Proposition C.1, both s⋆1 and s⋆2 are non-decreasing in β. Therefore, the first term on
the left-hand side is non-increasing in β, implying that the second term must be non-decreasing.
Since the representation ratio is the ratio of the second term to the first, it follows that R(β, γ) is a
non-decreasing function of β. Formally, since A(β, γ)+B(β, γ) = 2c and s⋆1, s

⋆
2 are non-decreasing

in β, A(β, γ) is non-increasing and B(β, γ) non-decreasing in β. Hence for β1 < β2,

B(β2)

A(β2)
− B(β1)

A(β1)
=
A(β1)

(
B(β2)−B(β1)

)
+B(β1)

(
A(β1)−A(β2)

)
A(β1)A(β2)

≥ 0,

so R(β, γ) is non-decreasing.

Theorem F.2 (Monotonicity of normalized representation ratio for β ≥ 1 − c). For c ≤ 1/2, if
β ≥ 1− c, then for every fixed γ, the map β 7→ N (β, γ) is non-decreasing.

Proof. Our goal is to show that the normalized representation ratio N (β, γ) := R(β, γ)/R(β, 1) is
non-decreasing in β over the interval [1− c, 1]. Since c ≤ 1

2 and β ∈ [1− c, 1], B(β, γ) ≤ A(β, γ)
and hence B(β, γ) ≤ c.

The strategy is as follows: We consider the logarithmic derivative ∂β lnN (β, γ), and aim to show
that it is non-negative throughout the interval β ∈ [1− c, 1].

Let A(β, γ) and B(β, γ) denote the fractions of candidates selected from groups G1 and G2, respec-
tively. By definition, the representation ratio is given by

R(β, γ) =
B(β, γ)

A(β, γ)
.

To establish the desired monotonicity, it suffices to show that ∂βB(β, γ) decreases with increasing γ:

Fact F.3. If ∂βB(β, γ) ≥ ∂βB(β, 1), then ∂β lnN (β, γ) ≥ 0.

Proof. By definition,

N (β, γ) =
B(β, γ)

A(β, γ)
· A(β, 1)
B(β, 1)

.

Observe that for any γ, A(β, γ) +B(β, γ) = 2c, the total capacity in the two institutions. Therefore,
the above can be expressed as:

N (β, γ) =
B(β, γ)

2c−B(β, γ)
· 2c−B(β, 1)

B(β, 1)
.

A direct calculation yields:

∂β lnN (β, γ) =
∂βB(β, γ)

B(β, γ)
+

∂βB(β, γ)

2c−B(β, γ)
− ∂βB(β, 1)

B(β, 1)
− ∂βB(β, 1)

2c−B(β, 1)
.
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Proposition F.1 implies that ∂βB(β, γ) ≥ 0 for all γ. Since B(β, γ) +A(β, γ) = 2c and B(β, γ) ≤
A(β, γ), we see that B(β, γ) ≤ c. Therefore, 1

2c−B(β,γ) > 0. Assuming ∂βB(β, γ) ≥ ∂βB(β, 1),
the r.h.s. above is at least ∂βB(β, 1) times

1

B(β, γ)
+

1

2c−B(β, γ)
−
(

1

B(β, 1)
+

1

2c−B(β, 1)

)
.

One can easily check that 1
x + 1

2c−x is a decreasing function of x when 0 ≤ x ≤ c. Therefore, the
above quantity is non-negative. Thus, we have shown that ∂β lnN (β, γ) > 0.

Thus, it is enough to check that ∂βB(β, γ) ≥ ∂βB(β, 1) for all 0 ≤ γ ≤ 1. We now consider the
various regimes in which γ lies:

Case 4 (γ ≥ γ3 = 1/(1 + c)): The analysis for this case in Appendix F.1 shows that

B(β, γ) = 1−
s⋆2,β
γ

+
1− γ

2γ
= 1− γ(1− 2c) + 1

γ(1 + β)
+

1− γ

2γ
.

Differentiating with respect to β, we get:

∂βB(β, γ) =
(1− 2c) + 1/γ

(1 + β)2
.

Clearly ∂βB(β, γ) is a decreasing function of γ and hence, ∂βB(β, γ) ≥ ∂βB(β, 1) when γ ≥ γ3.
We also note the following for rest of the proof:

∂βB(β, 1) =
2(1− c)

(1 + β)2
(23)

Case 1 (γ ≤ γ1(β)): The argument for case 1 in Appendix F.1 shows that

B(β, γ) = 1− 2(1− c)

1 + β2
.

Therefore,

∂βB(β, γ) =
4β(1− c)

(1 + β2)2
.

Since β ∈ [1− c, 1] and hence β ≥ 1/2, we verify

4β(1− c)

(1 + β2)2
≥ 2(1− c)

(1 + β)2
,

because multiplying by positive denominators gives 2β(1 + β)2 ≥ (1 + β2)2, which holds for
β ≥ 1/2. Using (23), we see that ∂βB(β, γ) ≥ ∂βB(β, 1) when γ ≤ γ1.

Case 2
(
γ ∈ (γ1(β), γ2(β)]

)
: Recall the abbreviations

s⋆1(β) =
2− c

1 + 1/β
, ∆(β, γ) = −βs⋆1 +

√
(s⋆1)

2(β2 + 1)−
2(1− γ)

(
(1− β)s⋆1 − c

)
γ

.

The analysis in Appendix F.1 for case 2 shows that

B(β, γ) = 1− s⋆1
β

+
γ

2(1− γ)
∆2.

Recall that s⋆1 = 2−c
1+1/β . Using this fact in the equation above and differentiating with respect to β,

we get

∂βB(β, γ) =
2− c

(1 + β)2
+

2γ∆(β, γ)

2(1− γ)
∂β∆(β, γ). (24)
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The argument in Appendix F.1 shows that that ∆(β, γ) is a positive multiple of 1− s⋆2−γs⋆1
β(1−γ) . Since

s⋆2 ≤ s⋆1 ≤ β, we have

∆(β, γ) = 1− s⋆2 − γs⋆1
β(1− γ)

≥ 1− s⋆1 − γs⋆1
β(1− γ)

= 1− s⋆1
β

≥ 0, (25)

and the same argument shows θ(β, γ) ≥ 0, where θ(β, γ) is defined in the case γ2 ≤ γ ≤ γ3. We
show in Lemma F.4 that ∂β∆(β, γ) ≥ 0. Thus, it follows from (24) that

∂βB(β, γ) ≥ 2− c

(1 + β)2
.

Comparing with (23), we see that ∂βB(β, γ) ≥ ∂βB(β, 1) when γ ∈ (γ1(β), γ2(β)).

Case 3 (γ ∈
(
γ2(β), γ3

)
): In this regime Theorem 3.3 shows that

B(β, γ) = 1− s⋆1
β

+
1− γ

2γ
θ2(β, γ) = 1− 2− c

1 + β
+

1− γ

2γ
θ2(β, γ) (26)

where

θ(β, γ) :=

−β(1− β) +

√
−(1− β)2 +

2cγ(1 + β2)

1− γ

1 + β2
.

Since θ(β, γ) = 1 − s⋆2−γs⋆1
1−γ , the argument as in case 2 above shows that θ(β, γ) ≥ 0. We show

in Lemma F.4 that ∂βθ(β, γ) ≥ 0. It follows from the expression in equation 26 that ∂βB(β, γ) ≥
2−c

(1+β)2 . Comparing with (23) that ∂βB(β, γ) ≥ ∂βB(β, 1). Thus, for all the values of γ lying in the
range [0, 1], ∂βB(β, γ) ≥ ∂βB(β, 1). Since B(β, γ) is continuous and piecewise differentiable in
γ, the inequality ∂βB(β, γ) ≥ ∂βB(β, 1) extends to all boundary values of γ, completing the proof.
Theorem F.2 now follows from Fact F.3.

Lemma F.4 (Monotonicity of ∆ and θ in β). Fix c ∈
(
0, 12

)
and γ ∈ (0, 1). For β ∈ [1 − c, 1]

define

s⋆1(β) :=
2− c

1 + 1/β
, ∆(β, γ) := −βs⋆1(β) +

√
s⋆1(β)

2
(
β2 + 1

)
−

2(1− γ)
(
(1− β)s⋆1(β)− c

)
γ

,

θ(β, γ) :=

−β(1− β) +

√
−(1− β)2 +

2cγ(1 + β2)

1− γ

1 + β2
.

Then both ∆(β, γ) and θ(β, γ) are strictly increasing in β on the interval [ 1− c, 1].

Proof. 1. s⋆1(β) is increasing. Write s(β) := s⋆1(β) =
(2− c)β

1 + β
. A direct derivative gives

s′(β) =
2− c

(1 + β)2
> 0.

Using the above expressions for s⋆1(β) and its derivative, we note that

ds⋆1(β)

dβ
=

s⋆1(β)

β + β2
. (27)

2. Monotonicity of ∆(β, γ). Put

Ψ(β) := s(β)2
(
β2 + 1

)
−

2(1− γ)
(
(1− β)s(β)− c

)
γ

.

We show Ψ′(β) > 0.
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(i) The first term. Because both s(β) and β2 + 1 increase, their product s(β)2(β2 + 1) has positive
derivative.

(ii) The second term. Define h(β) := (1− β)s(β)− c. Since s(β) is increasing but multiplied by
(1− β), we have h′(β) = −(1− β)s′(β)− s(β) < 0 on [1− c, 1]. Hence −(2(1− γ)/γ)h(β) has
positive derivative. Combining (i) and (ii) yields Ψ′(β) > 0.

Therefore
√

Ψ(β) is increasing. The linear term −βs(β) decreases (its derivative −s− βs′ < 0),
but the growth of

√
Ψ(β) dominates because Ψ′(β) > s2 + 2βss′ (Appendix F.2.1). Hence

d

dβ
∆(β, γ) = −s(β)− βs′(β) +

Ψ′(β)

2
√
Ψ(β)

> 0.

3. Monotonicity of θ(β, γ). Let

Φ(β) := −(1− β)2 +
2cγ(1 + β2)

1− γ
, T (β) :=

√
Φ(β).

Since (1− β)2 decreases and (1 + β2) increases, Φ′(β) = 2(β + cγ
1−γβ) > 0, so T ′(β) > 0. Write

θ(β, γ) =
g(β)

1 + β2
, g(β) := −β(1− β) + T (β). Then

g′(β) = −(1− 2β) + T ′(β) > 0 (because T ′(β) >1− 2β on [1− c, 1]).

Finally

θ′(β) =
(1 + β2) g′(β)− 2β g(β)

(1 + β2)2
> 0,

since g(β) and g′(β) are positive.

Thus, both ∆(β, γ) and θ(β, γ) are strictly increasing for β ∈ [1− c, 1].

F.2.1 A lower bound on Ψ′(β)

For completeness, we record the derivative computation used in Lemma F.4. Recall

s(β) =
(2− c)β

1 + β
, Ψ(β) = s(β)2(β2 + 1)−

2(1− γ)
(
(1− β)s(β)− c

)
γ

,

with c < 1
2 , γ ∈ (0, 1) and β ∈ [ 1− c, 1].

Step 1: derivative of s(β).

s′(β) =
2− c

(1 + β)2
> 0.

Step 2: derivative of Ψ. Split Ψ(β) = Ψ1(β)−Ψ2(β) with Ψ1 = s2(β2+1),Ψ2 = 2(1−γ)
γ

(
(1−

β)s− c
)
.

Ψ′
1(β) = 2ss′(β)(β2 + 1) + 2βs2, Ψ′

2(β) =
2(1− γ)

γ

(
s− βs′(β)

)
< 0,

because the bracketed factor is positive. Hence

Ψ′(β) = Ψ′
1(β)−Ψ′

2(β) > 2ss′(β)(β2 + 1) + 2βs2.

Step 3: comparison with s2 + 2βss′. Since (β2 + 1) ≥ 1 and s′(β) > 0,

2ss′(β)(β2 + 1) ≥ 2ss′(β),

so
Ψ′(β) ≥ 2ss′(β) + 2βs2 = s2 + 2βss′ +

[
s2 + 2ss′(β)− s2

]
.

Because the bracket is non-negative, the inequality follows.
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G Details of worked example in Section 4

This appendix elaborates on the example presented in Section 4, providing a step-by-step derivation
of the representation ratio and minimal interventions using our analytical framework.

Step 1: Set parameters. Fix:
β0 = 0.85, γ0 = 0.40, c = 0.20.

We begin by computing the threshold for Institution 1:

s⋆1 =
2− c

1 + 1/β0
=

1.8

1 + 1/0.85
≈ 1.8

2.176
≈ 0.8276.

Step 2: Identify regime. Using Theorem 3.1, we compute the relevant thresholds:

γ1 ≈ 0.084, γ2 ≈ 0.2904, γ3 =
1

1 + c
=

1

1.2
≈ 0.833.

Since γ2 < γ0 = 0.40 < γ3, this falls into Case 3 of Theorem 3.3.

Step 3: Compute R(β0, γ0). In Case 3, we define:

θ(γ) :=
−β(1− β) +

√
−(1− β)2 + 2cγ(1+β2)

1−γ

1 + β2
.

Substituting β0 = 0.85, c = 0.2, and γ0 = 0.40, we get:
θ(γ0) ≈ 0.3096.

Then:

R(β0, γ0) =
1− s⋆1/β0 +

θ2(1−γ0)
2γ0

1− s⋆1 + c− θ2(1−γ0)
2γ0

≈ 0.1044

0.3170
≈ 0.329.

Step 4: Compute R(β0, 1) and normalize. When γ = 1, we use Case 4 of Theorem 3.3:

R(β0, 1) =
−2(1− β0) + 4c

2(1− β0) + 4β0c
=

−2(0.15) + 0.8

0.3 + 0.68
=

0.5

0.98
≈ 0.510.

Hence, the normalized representation ratio is:

N (β0, γ0) =
R(β0, γ0)

R(β0, 1)
≈ 0.329

0.510
≈ 0.644.

Step 5: Determine minimal interventions. To reach a fairness target of τ = 0.80, we solve for
the minimal interventions (β′, γ′) that yield N (β′, γ0) ≥ 0.80 or N (β0, γ

′) ≥ 0.80.

We find:
If γ0 = 0.40, β′ ≈ 0.911, If β0 = 0.85, γ′ ≈ 0.640.

Thus, either reducing bias to β′ ≈ 0.911 or improving evaluator alignment to γ′ ≈ 0.640 suffices to
meet the target N ≥ 0.80.

H Observed utilities

In this section, we consider the observed utility Uℓ received by each institution ℓ ∈ {1, 2}, defined
as the total utility from the candidates assigned to it. Let M denote the deterministic assignment
function that maps each candidate i to an institution ℓ, based on whether their observed scores cross
the respective selection thresholds. Then the observed utility is given by:

Uℓ :=
∑

i∈M−1(ℓ)

ûiℓ.

We derive explicit expressions for U1 and U2, analyzing how they depend on the parameters β and γ.
For Institution 1, the utility can be expressed in closed form using the threshold s⋆1. For Institution 2,
the utility depends on the geometry of the selection region defined by the stochastic evaluation rule,
and we provide piecewise expressions across different γ-regimes. Finally, we show that both U1 and
U2 are non-decreasing functions of β, complementing our fairness analysis.
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H.1 Observed utility of Institution 1

Given the threshold s⋆1, the (observed) utility derived by Institution 1 from a candidate i is 0 if
ûi1 < s⋆1; ûi1 otherwise. Therefore, the utility of Institution 1 is given by (here i ∈ G1, i

′ ∈ G2):

U1 = ν1
∫ 1

0
s1[s ≥ s⋆1]dµs + ν2

∫ 1

0
s1[s ≥ s⋆1]dµ

′
s, (28)

where µs is the measure induced by the distribution of ûi1 for i ∈ G1 (and similarly for µ′
s).

Theorem H.1 (Observed utility of Institution 1). Assume ν1 = ν2 = 1 and c1 = c2 = 1. Then the
observed utility of Institution 1 is given by

U1 =
1− (s⋆1)

2

2
+ β ·

1− (s⋆1,β)
2

2
.

Proof. From Equation (28), the utility is computed as the sum of two integrals over the observed
scores for candidates in G1 and G2, respectively. The first term is:∫ 1

0

x · 1[x ≥ s⋆1] dx =

∫ 1

s⋆1

x dx =

[
x2

2

]1
s⋆1

=
1− (s⋆1)

2

2
.

For candidates in G2, the observed utility is down-scaled by β, and the integral becomes:

β ·
∫ 1

0

x · 1[x ≥ s⋆1,β ] dx = β ·
1− (s⋆1,β)

2

2
.

Summing these two terms yields the result.

H.2 Observed utility of Institution 2

We now turn to the observed utility U2(γ) derived by Institution 2 from the candidates it selects.
Recall that the observed utility from a candidate is zero unless they are selected, in which case it
equals their score ûi2. Thus, the total utility can be written as

U2 := ν1 · E[ûi2 · 1{ûi1 < s⋆1, ûi2 ≥ s⋆2}] + ν2 · E[ûi′2 · 1{ûi′1 < s⋆1,β , ûi′2 ≥ s⋆2,β}],

where i ∈ G1, i′ ∈ G2, and the first term represents candidates from G1 assigned to Institution 2,
and the second term represents candidates from G2 assigned to Institution 2.

To evaluate these expectations, we consider the geometry of the selection region under the
stochastic evaluation rule. Given γ, define Aγ as the region within the rectangle with cor-
ners (0, 0), (s⋆1, 0), (s

⋆
1, 1), (1, 0) that lies above the line γx + (1 − γ)y = s⋆2(γ) (as illustrated

in Figure 1). Similarly, let Bγ denote the corresponding region for group G2, bounded by
(0, 0), (s⋆1/β, 0), (s

⋆
1/β, 1), (1, 0) and the line γx+ (1− γ)y = s⋆2(γ)/β.

Let (xAγ , y
A
γ ) and (xBγ , y

B
γ ) denote the centroids of Aγ and Bγ , respectively. Then, the total observed

utility U2(γ) can be expressed as:

U2(γ) = Area(Aγ) · (γxAγ + (1− γ)yAγ ) + β · Area(Bγ) · (γxBγ + (1− γ)yBγ ).

It is useful to observe the following result:

Lemma H.2. Let T be the triangle with vertices (0, 0),
(
0, s

1−γ

)
, and

(
s
γ , 0
)
, where s > 0 and

γ ∈ (0, 1). Then ∫∫
T

(
γx+ (1− γ)y

)
dx dy =

s3

3 γ (1− γ)
.
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Proof. Because γx+ (1− γ)y is an affine (degree-one) function, its integral over a triangle equals
its value at the triangle’s centroid multiplied by the triangle’s area.

1. Centroid. The centroid CT = (x̄, ȳ) of a triangle with vertices (0, 0),
(
0, s

1−γ

)
,
(
s
γ , 0
)

is the
average of the vertices:

x̄ =
1

3

s

γ
, ȳ =

1

3

s

1− γ
.

Evaluating the integrand at the centroid gives

f(CT ) = γx̄+ (1− γ)ȳ = γ
( s

3γ

)
+ (1− γ)

( s

3(1− γ)

)
=
s

3
+
s

3
=

2s

3
.

2. Area. The base of the triangle is s
γ and its height is s

1−γ , so

Area(T ) =
1

2
· s
γ
· s

1− γ
=

s2

2 γ (1− γ)
.

3. Integral. Multiplying the centroid value by the area,∫∫
T

(
γx+ (1− γ)y

)
dx dy = f(CT )Area(T ) =

2s

3
· s2

2 γ (1− γ)
=

s3

3 γ (1− γ)
.

We now use Lemma H.2 to evaluate U2 for various cases.

Case I (s⋆2 ≤ min(s⋆1γ, 1 − γ)): In this case, the line intersects y-axis at s⋆2
1−γ ≤ 1 and the x-axis

at s⋆2
γ ≤ s⋆1. The integral of the utility over the entire rectangle [0, s⋆1]× [0, 1] can be given as follows:

area of the rectangle is s⋆1 and its centroid is at ( s
⋆
1

2 ,
1
2 ). Therefore, the integral of γx+ (1− γ)y over

the entire rectangle is

s⋆1 ·
(
γs⋆1
2

+
1− γ

2

)
.

Subtracting out the integral of the utility over the triangle formed by (0, 0),
(
0,

s⋆2
1−γ

)
,
(

s⋆2
γ , 0

)
, we

see that the observed utility (for Institution 2) of the selected candidates from G2 is

s⋆1(γs
⋆
1 + 1− γ)

2
− (s⋆2)

3

3γ(1− γ)
.

Case II (s⋆2 ≥ max(s⋆1γ, 1 − γ): In this case, the line intersects the y-axis at s⋆2
1−γ > 1 and the

x-axis at s⋆2
γ > s⋆1. Thus, its intersection point with the line y = 1 is at s⋆2−(1−γ)

γ and its intersection

point with the line x = s⋆1 is at s⋆2−γs⋆1
1−γ . The centroid of the triangle is

1

3

(
s⋆2 − (1− γ) + 2γs⋆1

γ
,
2− 2γ + s⋆2 − γs⋆1

1− γ

)
.

Evaluated on the line γx+ (1− γ)y, we get the value 1
3 (1− γ + 2s⋆2 + γs⋆1). Thus, the utility of

institute 2 from G1 is:
1

3
(1− γ + 2s⋆2 + γs⋆1) ·

(1− γ − s⋆2 + γs⋆1)
2

2γ(1− γ)
.

Case III (s⋆1γ < s⋆2 < 1−γ): In this case, the line intersects y-axis at s⋆2
1−γ ≤ 1 and the line x = s⋆1

at s⋆2−γs⋆1
1−γ . We break the area into two parts, the upper rectangle whose centroid is 1

2

(
s⋆1,

1−γ+s⋆2
1−γ

)
.

The area of this rectangle is s⋆1 ·
(
1− s⋆2

1−γ

)
. The centroid of the lower triangle is 1

3

(
2s⋆1,

3s⋆2−γs1
1−γ

)
.

The area of this triangle is s⋆1
2 · γs⋆1

1−γ . Thus, the total utility is

s⋆1 ·
(
1− s⋆2

1− γ

)(
γs⋆1
2

+
1− γ + s⋆2

2

)
+
s⋆1
2

· γs⋆1
1− γ

·
(
2γs⋆1
3

+
3s⋆2 − γs⋆1

3

)
.
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Case IV (1− γ < s⋆2 < s⋆1γ): In this case, the line intersects the y-axis at s⋆2
1−γ > 1 and the x-axis

at s⋆2
γ ≤ s⋆1.

We break the area into two parts, the right rectangle whose centroid is 1
2

(
s⋆1 +

s⋆2
γ , 1

)
. The area

of this rectangle is s⋆1 −
s⋆2
γ . The centroid of the left triangle is 1

3

(
3s⋆2−(1−γ)

γ , 2
)

. The area of this

triangle is 1
2 · 1−γ

γ . Thus, the total utility is(
s⋆1 −

s⋆2
γ

)
·
(
γs⋆1 + s⋆2

2
+

1− γ

2

)
+

(1− γ)

2γ
·
(
3s⋆2 − (1− γ)

3
+

2(1− γ)

3

)
.

The above quantities can be evaluated for G2 in an analogous manner (by replacing s⋆1 and s⋆2 by s⋆1,β
and s⋆2,β respectively, and multiplying the resulting expression by β). We can now write down the
total (observed) utility of Institution 2.
Theorem H.3 (Characterizing U2(γ)). Assume that β ≥ 1− c and c < 1/2. Then, U2(γ) is:

• For γ ∈ [0, γ1]: s⋆1 ·
(
1− s⋆2

1−γ

)(
γs⋆1
2 +

1−γ+s⋆2
2

)
+

s⋆1
2 · γs⋆1

1−γ ·
(

2γs⋆1
3 +

3s⋆2−γs⋆1
3

)
+ s⋆1 ·

(
1− s⋆2

β(1−γ)

)(
γs⋆1
2β +

1−γ+s⋆2/β
2

)
+

s⋆1
2β · γs⋆1

1−γ ·
(

2γs⋆1
3β +

3s⋆2−γs⋆1
3β

)
.

• For γ ∈ [γ1, γ2]: s⋆1 ·
(
1− s⋆2

1−γ

)(
γs⋆1
2 +

1−γ+s⋆2
2

)
+

s⋆1
2 · γs⋆1

1−γ ·
(

2γs⋆1
3 +

3s⋆2−γs⋆1
3

)
+ β

3 (1−

γ + 2s⋆2/β + γs⋆1/β) ·
(1−γ−s⋆2/β+γs⋆1/β)

2

2γ(1−γ) .

• For γ ∈ [γ2, γ3]: 1
3 (1− γ + 2s⋆2 + γs⋆1) ·

(1−γ−s⋆2+γs⋆1)
2

2γ(1−γ) + β
3 (1− γ + 2s⋆2/β + γs⋆1/β) ·

(1−γ−s⋆2/β+γs⋆1/β)
2

2γ(1−γ) .

• For γ ∈ [γ3, 1]:
(
s⋆1 −

s⋆2
γ

)
·
(

γs⋆1+s⋆2
2 + 1−γ

2

)
+ (1−γ)

2γ ·
(

3s⋆2−(1−γ)
3 + 2(1−γ)

3

)
+
(
s⋆1 −

s⋆2
γ

)
·
(

γs⋆1/β+s⋆2/β
2 + 1−γ

2

)
+ β(1−γ)

2γ ·
(

3s⋆2/β−(1−γ)
3 + 2(1−γ)

3

)
.

Proof. When γ ∈ (0, γ1), we are in cases III and III’. When γ ∈ [γ1, γ2), we are in cases III and II’.
When γ ∈ [γ2, γ3), we are in cases II and II’. Finally, for γ ∈ [γ3, 1), we are in cases IV and IV’.

Plugging in the values of s⋆1 and s⋆2 into the utility expressions, one can carry out an analysis analogous
to that for s⋆2 and the representation ratio. We omit the details and instead present a plot in Figure 6,
which shows how U2 varies with γ. We observe that the behavior of U2 mirrors that of s⋆2, which is
expected since increasing the selection threshold typically results in a higher utility.

Specifically, U2 is larger for smaller values of γ. An intuitive explanation is that the area
Area(Aγ)—which corresponds to the fraction of G2 candidates selected by Institution 2—is a
decreasing function of γ. Likewise, the threshold s⋆2 increases as γ decreases. This stands in contrast
to the behavior of the representation ratio R, which increases with γ. Thus, increasing γ induces two
opposing effects: it improves representational fairness (as measured by R) but decreases the total
observed utility of Institution 2 (as measured by U2).

H.3 Monotonicity of utilities with respect to β

We now show that the observed utility of each institution is a non-decreasing function of the bias
parameter β, for fixed γ; see also Figure 5.
Proposition H.4 (Monotonicity of U1). For any fixed γ, the observed utility of Institution 1 is a
non-decreasing function of the bias parameter β.

Proof. For simplicity, we assume c1 = c2 = c; the argument generalizes to arbitrary capacities.
From Theorem H.1, the utility of Institution 1 is given by

U1 =
1− (s⋆1)

2

2
+ β ·

1− (s⋆1,β)
2

2
.
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Differentiating with respect to β, we obtain:

dU1

dβ
=

1− (s⋆1,β)
2

2
− s⋆1 ·

ds⋆1
dβ

− βs⋆1,β ·
ds⋆1,β
dβ

.

It suffices to show that this derivative is non-negative. From the threshold constraint (see Equa-
tion (11)),

(1− s⋆1) + (1− s⋆1,β) = c,

and hence,
ds⋆1
dβ

+
ds⋆1,β
dβ

= 0.

Using this, the sum of the last two terms becomes

−s⋆1 ·
ds⋆1
dβ

− s⋆1,β ·
ds⋆1,β
dβ

= (s⋆1,β − s⋆1) ·
ds⋆1
dβ

.

This expression is non-negative because s⋆1,β ≥ s⋆1 and ds⋆1
dβ ≥ 0 by Proposition C.1. Therefore, U1 is

non-decreasing in β.

Proposition H.5 (Monotonicity of U2). For any fixed γ, the observed utility of Institution 2 is a
non-decreasing function of the bias parameter β.

Proof. Let Uj denote the utility contribution to Institution 2 from a candidate in group Gj . Since
the expectation of a non-negative random variable Z can be written as E[Z] =

∫ 1

0
Pr[Z ≥ u] du, we

have:

E[Uj ] =

∫ s⋆2

0

Pr[Uj ≥ s⋆2] du+

∫ 1

s⋆2

Pr[Uj ≥ u] du

= s⋆2 · Pr[Uj ≥ s⋆2] +

∫ 1

s⋆2

Pr[Uj ≥ u] du,

since Pr[Uj ≥ u] = Pr[Uj ≥ s⋆2] for all 0 < u ≤ s⋆2.

Differentiating with respect to β, and applying the Leibniz rule, we obtain:

d

dβ
E[Uj ] =

ds⋆2
dβ

·Pr[Uj ≥ s⋆2]+s
⋆
2 ·

d

dβ
Pr[Uj ≥ s⋆2]+

∫ 1

s⋆2

d

dβ
Pr[Uj ≥ u] du− ds⋆2

dβ
·Pr[Uj ≥ s⋆2].

The first and last terms cancel, leaving:

d

dβ
E[Uj ] = s⋆2 ·

d

dβ
Pr[Uj ≥ s⋆2] +

∫ 1

s⋆2

d

dβ
Pr[Uj ≥ u] du.

Since an increase in β increases the effective score of group G2 candidates and thus the probability
that they are selected, both terms on the right-hand side are non-negative. Hence, the expected utility
E[Uj ] — and therefore U2 — is a non-decreasing function of β.

H.4 Variation of U2 with respect to γ

We investigate how the observed utilities of institutions vary with respect to the correlation parameter
γ. As shown in Figure 6, the utility of Institution 2 exhibits a non-monotonic relationship with γ,
displaying a U-shaped pattern across all tested values of β. This arises due to competing effects:
higher γ increases alignment between institutional rankings, reducing the chance of cross-institution
gains, while also increasing selectivity.
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Figure 5: (Left) Utility of Institution 1 as a function of β for fixed γ = 0.5 and c = 0.2. (Right)
Utility of Institution 2 as a function of β for fixed c = 0.2 and varying γ ∈ {0.2, 0.5, 0.8}.

Figure 6: Utility of Institution 2 as a function of γ for various β at fixed c = 0.2, showing non-
monotonic behavior.

I Extension to distinct bias parameters for two institutions

Our main analysis assumes a common bias parameter β applied uniformly across both institutions. In
practice, however, evaluation standards may differ—one institution may adopt more rigorous fairness
safeguards or use a less biased scoring process than the other. To capture this asymmetry, we extend
the model to allow distinct bias parameters (β12, β22) with respect to Institutions 1 and 2 for the
candidates in group G2 respectively. Analogous to the β ≥ 1− c assumption, we assume that both
the parameters β12, β22 are at least 1− c. For the sake of concreteness, we also assume β22 ≥ β12.
In Section I.1, we show that the thresholds and representation ratio can be computed numerically.
In Section I.2, we demonstrate numerically that the qualitative properties of these metrics remain
unchanged, and we further verify this analytically in an extreme parameter regime.

I.1 Computing thresholds and representation ratio

The expression for s⋆1 remains same as in (4) with β replaced by β12:

s⋆1 = 2−c
1+1/β . (29)

We now outline the steps for computing s⋆2 and R(γ). Given values s1, s2, γ, let P (s1, s2, γ) denote
Pr[γvi1 + (1 − γ)vi2 ≥ s2 ∧ ui1 < s1]. This can be evaluated using the four cases mentioned
in Section 3.

Since β12 ≥ 1− c, it follows that s⋆1 ≤ β12. However, unlike Proposition C.2, it may not happen that
s⋆2 ≤ β22. We first check if s⋆2 ≤ β22. For this, we evaluate P (s⋆1, β22, γ). If P (s⋆1, β22, γ) ≥ c, then
we know that s⋆2 has to be at least β22 – otherwise the fraction of candidates assigned to institution 2
would exceed its capacity. Similarly, if P (s⋆1, β22, γ) < c, then s⋆2 ≤ β22.

Case s⋆2 > β22: In this case, all the candidates selected by institution 2 are from G1. Therefore,
s⋆2 is obtained by solving the equation:

P (s⋆1, s
⋆
2, γ) = c.

Further, R(γ) =
1−s⋆1/β12

c+(1−s⋆1)
.
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Case s⋆2 ≤ β22: To evaluate s⋆2, we need to solve for the following equation:
P (s⋆1, s

⋆
2, γ) + P (s⋆1/β12, s

⋆
2/β22, γ) = c.

Note that there will be four cases for each of the terms on the l.h.s. above. More precisely, while
evaluating P (s⋆1, s

⋆
2, γ), we will have to guess one of the following cases:

(i) s2 ≤ min(s1γ, 1− γ)

(ii) s2 ≥ max(s1γ, 1− γ)

(iii) s1γ < s2 < 1− γ

(iv) 1− γ < s2 < s1γ.

Similarly, while evaluating P (s⋆1/β12, s
⋆
2/β22, γ), we have to guess one of the following four cases.

Let s⋆1,β denote s⋆1/β12 and s⋆2,β denote s⋆2/β22

(i)’ s2,β ≤ min(s1,βγ, 1− γ)

(ii)’ s2,β ≥ max(s1,βγ, 1− γ)

(iii)’ s1,βγ < s2,β < 1− γ

(iv)’ 1− γ < s2,β < s1,βγ.

For each combination of 16 possibilities, we solve for s⋆2 and then take the solution that is consistent
with the corresponding guess. After solving for s⋆2, the representation ratio is given by:

1− s⋆1,β + P (s⋆1,β , s
⋆
2,β , γ)

1− s⋆1 + P (s⋆1, s
⋆
2, γ)

.

I.2 Numerical evaluation

Numerical experiments in this setting indicate that, across a wide range of asymmetric configurations,
s⋆2 is unimodal in γ, while R(γ) increases consistently. For example, the plots in Figure 7 show this
behavior for different values of β12 and β22.

To illustrate this phenomenon analytically, we show that even in an extreme asymmetric setting, the
representation ratio R(γ) is strictly higher when the institutions are fully aligned (γ = 1) than when
they evaluate candidates independently (γ = 0).
Proposition I.1. Consider a setting where 1 > β12 > 1 − c and β22 = 1. Then, R(γ) = 1 when
γ = 1, and R(γ) = 2c+β12−1

2cβ12−β12+1 < 1 when γ = 0.

Proof. When γ = 1, the two institutions are fully aligned in their evaluations. A candidate i is
selected if either ûi1 ≥ s⋆1 or ûi2 ≥ s⋆2. We first claim that s⋆2 ≤ s⋆1. Suppose not. The fraction
of candidates from G1 admitted to Institution 1 is 1− s⋆1, which must be at most c by the capacity
constraint. If s⋆2 > s⋆1, then no candidate from G1 would be assigned to Institution 1. Moreover, the
fraction of candidates from G2 admitted to Institution 2 is less than 1− s⋆1 ≤ c, violating the capacity
condition at Institution 2. Hence, s⋆2 ≤ s⋆1. Consequently, any candidate with ûi2 ≥ s⋆2 is selected.
Since β22 = 1, an equal fraction of candidates from both groups satisfy ûi2 ≥ s⋆2, implying that
R(γ) = 1.

We now consider the case γ = 0. In this regime, the institutions evaluate candidates independently.
Institution 1 admits candidates based on the threshold s⋆1 = 2−c

1+1/β12
. The fraction of candidates from

G1 not admitted to Institution 1 is s⋆1, while that for G2 is s⋆1/β12. Since β22 = 1 and the attribute vi2
is i.i.d. across groups, the fraction of candidates from G1 admitted to Institution 2 is cs⋆1

s⋆1+s⋆1/β12
, and

the corresponding fraction for G2 is cs⋆1/β12

s⋆1+s⋆1/β12
. Hence, the overall representation ratio is given by

cs⋆1/β12

s⋆1+s⋆1/β12
+ (1− s⋆1/β12)

cs⋆1
s⋆1+s⋆1/β12

+ (1− s⋆1)
.

Substituting the expression for s⋆1 from above and simplifying yields the desired result.
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Figure 7: Variation of thresholds s⋆1 and s⋆2 and representation ratio R with γ when c = 0.2, β12 =
0.9, β22 = 1.

J Thresholds and representation ratio computation for the setting of additive
bias

We now consider the additive-bias model in which the observed utility of a candidate i ∈ G2 for
institution j is ûij = uij − β, where uij is the true utility and β ∈ [0, 1] is an additive bias parameter
(observe that, unlike the multiplicative bias parameter setting, smaller values of β imply less bias).
Under the natural assumption β ≤ c — the analogue of the multiplicative regime β ≥ 1 − c that
ensures Institution 1 continues to admit some candidates from G2 — the admission threshold s⋆1 at
Institution 1 satisfies the equation:

1− s⋆1 + (1− s⋆1 − β) = c.

Thus, we get

s⋆1 = 1− c+ β

2
. (30)

The geometric structure of the selection regions remains unchanged up to a translation by β, and the
γ-threshold framework developed in Section 3 continues to apply. Thus, the expression for Pr[ûi1 <
s1, ûi2 ≥ s2] in the four cases I, . . . , IV corresponding to group G1 remain unchanged. Similarly,
we have the corresponding cases I ′, . . . .IV ′ for G2, where we redefine s⋆1,β = min(1, s⋆1 + β) and
s⋆2,β = min(1, s⋆2 + β).

Similarly, the proof of Proposition C.2 showing s⋆2 ≤ s⋆1 extends directly. We now establish the
existence of the γ thresholds. As in Theorem 3.1, we show that there is a constant c0 < 1 such that if
the available capacity c ≤ c0, the relative ordering of the γ thresholds is fixed.

Theorem J.1. Assume c < c0 = 0.36, and β ≤ c. There exist thresholds 0 ≤ γ1 ≤ γ2 ≤ γ3 ≤
γ4 ≤ 1 such that:

(1) s⋆2 + β ≤ 1− γ ⇐⇒ γ ≤ γ1,

(2) s⋆2 ≤ 1− γ ⇐⇒ γ ≤ γ2,

(3) s⋆2 ≥ γ s⋆1 ⇐⇒ γ ≤ γ3,

(4) s⋆2 + β ≥ γ (s⋆1 + β) ⇐⇒ γ ≤ γ4.

Proof. We first show the existence of the thresholds γ1, . . . , γ4. Arguing as in the proof of Theo-
rem 3.1, we can show that s⋆2(γ)

γ is a decreasing function of γ and s⋆2(γ)
1−γ is an increasing function of

γ: the argument follows verbatim with s⋆1,β and s⋆2,β denoting min(1, s⋆1 + β) and min(1, s⋆2 + β)
respectively. Since β ≤ c, s⋆1 ≤ 1 − β. Therefore, s⋆1,β = s⋆1 + β. Since s⋆2 ≤ s⋆1, it follows that
s⋆2,β = s⋆2 + β as well.

Since s⋆2(γ)
1−γ is an increasing function of γ, s⋆2(γ)+β

1−γ is also an increasing function of γ. When γ = 0,
this ratio is s⋆2(γ) + β ≤ s⋆1 + β ≤ 1; and when γ approaches 1, this ratio approaches infinity. Thus,
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there is a unique value γ1 ∈ [0, 1] such that s⋆2(γ1)+β
1−γ1

= 1. Further, s⋆2(γ)+β
1−γ < 1 iff γ < γ1. The

existence of the thresholds γ2, . . . , γ4 can be shown similarly.

At γ = γ1, s⋆2(γ1)
1−γ1

= 1− β
1−γ1

< 1. Therefore, the definition of γ2 implies that γ1 ≤ γ2. Similarly,
γ3 ≤ γ4. It remains to show that γ2 ≤ γ3. The proof proceeds in two steps: (i) we first show that
γ2 /∈ [γ4, 1], and (ii) then we show that γ2 /∈ (γ3, γ4). This will prove that γ2 ≤ γ3, and hence,
γ1 ≤ γ2 ≤ γ3 ≤ γ4.

Proving γ2 /∈ [γ4, 1]. Assume for the sake of contradiction that γ2 ∈ [γ4, 1]. Then, at γ = γ2,
s⋆2(γ) = 1 − γ and s⋆2(γ) ≤ γs⋆1(γ) (because γ2 ≥ γ4 ≥ γ3). Thus we are in case IV for G1.
Similarly, we are in case IV’ for G2. Therefore, constraint (2) implies that

s⋆1 −
s⋆2
γ

+
1− γ

2γ
+ s⋆1 + β − s⋆2 + β

γ
+

1− γ

2γ
= c.

Substituting s⋆2 = 1− γ above, we get

2s⋆1 − (1 + β)

(
1− γ

γ

)
= c.

When γ = γ2, 1− γ = s⋆2(γ) ≤ γs⋆1. Thus, 1−γ
γ ≤ s⋆1. Using this fact and (30), we get:(

1− c+ β

2

)
(1− β) ≤ c.

The l.h.s. above is a decreasing function of β. Since β ≤ c, we get

(1− c)2 ≤ c.

But this contradicts the fact that c < c0 = 0.36. Therefore, γ2 /∈ [γ4, 1].

Proving γ2 /∈ (γ3, γ4). Assume for the sake of contradiction that γ2 ∈ (γ3, γ4). Then we are in
case IV and II’ when γ = γ2. Thus, constraint (2) implies

s⋆1 −
s⋆2
γ

+
1− γ

2γ
+

(1− γ − s⋆2 − β + (s⋆1 + β)γ))2

2γ(1− γ)
= c.

Substituting s⋆2 = 1− γ above, we get:

s⋆1 −
1− γ

2γ
+

((s⋆1 + β)γ − β)2

2γ(1− γ)
= c.

At γ = γ2, 1−γ
γ ≤ s⋆1. Therefore,

s⋆1
2

+
((s⋆1 + β)γ)− β)2

2γ(1− γ)
≤ c.

Now observe that (s⋆1 + β)γ − β ≥ (s⋆2(γ) + β)γ − β = (1− γ + β)γ − β = (1− β)(1− γ) > 0.
Keeping c fixed, as we raise β, s⋆1 decreases. Thus, the l.h.s. above is a decreasing function of β.
Since β ≤ c, and s⋆1 = 1− c when β = c, we get:

1− c

2
+

(γ − c)2

2γ(1− γ)
≤ c.

Simplifying the above, we get:

3cγ2 − γ(5c+ 1) + c2 ≤ 0.

When γ = γ2, 1− γ ≤ s⋆1γ ≤ γ. This implies that γ ≥ 1/2. It is easy to verify that the l.h.s. above
is an increasing function of γ when γ ∈ [1/2, 1]. Indeed, the derivative w.r.t. γ of the l.h.s. above is
6cγ − 5c+ 1 ≥ 3c− 5c+ 1 = 1− 2c > 0 because c < 1/2. Therefore, substituting γ = 1/2 above,
we get

c2 − 7c

4
+

1

2
≤ 0,

which is not possible if c < 0.36. Thus, we see that γ2 /∈ (γ3, γ4). This shows that γ2 ≤ γ3, and
completes the proof of the theorem.
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Using these regime-characterizations together with the probability computations from Section 3 for
Pr[γvi1 + (1− γ)vi2 ≥ s2 ∧ vi1 < s1], we obtain a piecewise set of equations that determine s⋆2
under additive bias:
Theorem J.2 (Equations for s⋆2(γ)). Assume β ≤ c and c < c0 = 0.36. Then s⋆2(γ) satisfies:

• [0, γ1]: s⋆1 −
2s⋆1s

⋆
2−γ(s⋆1)

2

2(1−γ) + s⋆1 + β − 2(s⋆1+β)(s⋆2+β)−γ(s⋆1+β)2

2(1−γ) = c

• [γ1, γ2]: s⋆1 −
2s⋆1s

⋆
2−γ(s⋆1)

2

2(1−γ) +
(1−γ−(s⋆2+β)+γ(s⋆1+β))2

2γ(1−γ) = c

• [γ2, γ3]:
(1−γ−s⋆2+γs⋆1)

2

2γ(1−γ) +
(1−γ−(s⋆2+β)+γ(s⋆1+β))2

2γ(1−γ) = c

• [γ3, γ4]: s⋆1 −
s⋆2
γ + 1−γ

2γ +
(1−γ−(s⋆2+β)+γ(s⋆1+β))2

2γ(1−γ) = c

• [γ4, 1]: 2s⋆1 + β − 2s⋆2+β
γ + 1−γ

γ = c

Proof. The proof follows along the same lines as that of Theorem 3.2. For example, when γ ≤
γ1, Theorem J.1 shows that we are in cases III and III’. Therefore, for a candidate i ∈ G1,

Pr[ûi1 < s⋆1, ûi2 ≥ s⋆2] =
s⋆1
2

(
2− 2s⋆2 − γs⋆1

1− γ

)
.

Similarly, for a candidate i ∈ G2,

Pr[ûi1 < s⋆1, ûi2 ≥ s⋆2] =
s⋆1 + β

2

(
2− 2(s⋆2 + β)− γ(s⋆1 + β)

1− γ

)
.

The equation for s⋆2(γ) now follows from (2). Other cases can be handled similarly.

We can use the equations in Theorem J.2 to solve for the threshold s⋆2. Once s⋆1 and s⋆2 are determined,
expression (3) yields the representation ratio R. We omit the details.

These results show that the geometric and analytical structure underlying the multiplicative-bias
model extends naturally to the additive setting, providing a unified framework for quantifying how
evaluator bias influences equilibrium thresholds and representation outcomes.

K The setting where β < 1 − c

In Section 3, we analyzed the setting where the bias parameter satisfies β ≥ 1− c. This condition
ensures that Institution 1 admits at least some candidates from the disadvantaged group G2, and the
analysis led to a clean three-phase structure characterized by the thresholds γ1, γ2, γ3 with a fixed
ordering.

In this section, we depart from that setting and study the regime where β < 1 − c. This regime
is qualitatively distinct and exhibits complex structural behavior in the equilibrium thresholds and
selection dynamics. To analyze this, we again use a finite-to-infinite reduction framework analogous
to Appendix B, deriving mean-field equations for thresholds and examining their qualitative behavior
as a function of the correlation parameter γ.

Our main findings in the β < 1− c regime are summarized above and contrasted with the β ≥ 1− c
case in Table 3.

• The number of γ-thresholds increases from three to four: γ1, γ2, γ3, γ4. Moreover, unlike
the β ≥ 1− c case, the ordering of these thresholds is no longer fixed, but instead depends
sensitively on the value of β.

• We establish the existence of a critical value βc such that for β < βc, the thresholds follow
the order γ1 < γ3 < γ2 < γ4, whereas for β > βc, the order is γ1 < γ2 < γ3 < γ4.

• The threshold s⋆2(γ) may no longer be unimodal. Unlike the earlier regime where s⋆2(γ)
had a single minimum, we show that it may have multiple local minima and maxima. This
non-monotonicity also manifests in the representation ratio R(β, γ), which need not be
monotonic in γ.

45



Structural property Result for β < 1 − c Result for β ≥ 1 − c

Closed-form expression for s⋆1 s⋆1 = 1 − c (Eq. (31)) s⋆1 = 2−c
1+1/β

(Eq. (4))

Monotonicity of s⋆1 w.r.t. β Independent of β (Eq. (31)) Increasing in β (follows from Eq. (4))

Regimes of γ γ1 ≤ γ2 ≤ γ3 ≤ γ4 or γ1 ≤ γ3 ≤
γ2 ≤ γ4 (Theorem K.1, Proposition K.3)

γ1 ≤ γ2 ≤ γ3 (Theorem 3.1)

Piecewise expression for s⋆2 Characterized via γ1, . . . , γ4 (Theo-
rem K.5)

Characterized via γ1, γ2, γ3 (Theo-
rem 3.2)

Variation of s⋆2 w.r.t. γ Continuous, possibly with multiple local
extrema (Theorem K.6)

Continuous, with at most one minimum
(Theorem E.1)

Monotonicity of s⋆2 w.r.t. β Increasing in β (Proposition C.1) Increasing in β (Proposition C.1)

Monotonicity of R w.r.t. β Increasing in β for fixed γ (Proposition F.1) Increasing in β for fixed γ (Proposition F.1)

Monotonicity of R w.r.t. γ Non-monotonic in γ for fixed β (Proposi-
tion K.8)

Non-decreasing in γ for fixed β (Corol-
lary 4.1)

Table 3: Comparison of structural properties of thresholds and representation metrics between the
regimes β < 1− c and β ≥ 1− c.

This section is organized as follows:

• In Appendix K.2, we generalize the notion of γ-thresholds and formally state the structural
result as Theorem K.1 and Proposition K.2. We also define and characterize the critical
value βc in Proposition K.3 and provide lower bounds on its value in Proposition K.4.

• In Appendix K.3, we characterize the piecewise structure of s⋆2(γ) using Theorem K.5,
and show how it varies across the threshold intervals. We also prove in Theorem K.6 that
s⋆2(γ) exhibits multiple local extrema. Finally, we demonstrate in Proposition K.8 that
the representation ratio R(γ) can decrease with increasing γ, in contrast to the monotonic
increase observed in the β ≥ 1− c regime.

K.1 Expression for s⋆1

When β < 1 − c, then s⋆1 ≥ β. Indeed, otherwise the fraction of candidates from G1 selected by
institution 1 would be at least 1 − s⋆1 ≥ 1 − β ≥ c, which is a contradiction. Thus, s⋆1 ≥ β, and
hence, s⋆1,β = 1. This implies that no candidate from G2 gets selected. Thus, we have the following
equation for institution 1: 1− s⋆1 = c, which implies

s⋆1 = 1− c. (31)

K.2 Existence of γ-thresholds

We first show the existence of γ thresholds.
Theorem K.1 (Existence of four γ-thresholds). Assume c < 1/2 and β > 1−2c

1−c . Then, there exist
unique values γ1, γ2, γ3, γ4 ∈ [0, 1] such that for any γ ∈ [0, 1], the following hold:

(i) s⋆2,β(γ) ≤ (1− γ) if and only if γ ≤ γ1.

(ii) s⋆2(γ) ≤ (1− γ) if and only if γ ≤ γ2.

(iii) s⋆2(γ) ≥ γs⋆1 if and only if γ ≤ γ3.

(iv) s⋆2,β(γ) ≥ γs⋆1,β if and only if γ ≤ γ4.

In case 1 − 2c ≤ β < 1−2c
1−c , the thresholds γ2, . . . , γ4 exist with the above mentioned properties.

When β < 1− 2c, the thresholds γ2, γ3 with the above-mentioned properties exist.

Proof. Monotonicity of
s⋆2,β
1−γ ,

s⋆2
γ ,

s⋆2,β
γ and

s⋆2,β
γ follows from the same arguments as in the proof

of Theorem 3.1. However, we need to now show that these ratios achieve the desired values.

When γ = 0,
s⋆2,β(0)

1−γ = s⋆2,β(0) =
s⋆2(0)
β ≤ 1 if γ ≥ 1−2c

1−c . As γ approaches 1,
s⋆2,β(0)

1−γ approaches

infinity. Therefore, intermediate value theorem and monotonicity of
s⋆2,β
1−γ shows that this ratio equals
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1 for a unique γ, which we denote γ1. In case β < 1−2c
1−c , s⋆2,β(0) = 1, and hence the ratio

s⋆2,β
1−γ stays

above 1 for all γ ∈ [0, 1].

Since s⋆2(0) ≤ 1, the ratio s⋆2
1−γ is at most 1 at γ = 0. Therefore, γ2 exists for the entire range

of β. Similarly, the ratio s⋆2
γ approaches infinity as γ approaches 0, and is equal to s⋆2(1) ≤ s⋆1

(using Proposition C.2) when γ = 1. Thus, the threshold γ3 also exists for the entire range of β.

When β ≥ 1 − c, the condition for γ3 is the same as that for γ4. Hence, assume β < 1 − c. In
this case, s⋆1,β = 1. If β ≥ 1 − 2c, s⋆2(1) ≤ β. Thus, the condition for γ4 becomes: s⋆2(γ) ≥ βγ.

Since s⋆2
γ ≤ β at γ = 1 and approaches infinity at γ = 0, existence of γ4 follows. Observe that when

β < 1 − 2c, the only value of γ satisfying (iv) is γ = 1, and hence, γ4 does not reveal any useful
information.

For sake of completeness, we shall set γ1 to 0 when β < 1−2c
1−c and γ4 to 1 when β < 1− 2c. We now

show that the only possible orderings of these thresholds are (i) γ1, γ2, γ3, γ4, or (ii) γ1, γ3, γ2, γ4.
Monotonicity properties of s⋆2(γ)

γ and s⋆2(γ)
1−γ show that γ1 ≤ γ2 and γ3 ≤ γ4. We now show that γ1 is

the smallest and γ4 is the largest among γ1, . . . , γ4.
Proposition K.2 (Extremal ordering of thresholds). Assume c < 1/2 and β < 1−c. Then γ1 ≤ γj
for all j ∈ {1, . . . , 4} and γ4 ≥ γj for all j ∈ {1, . . . , 4}.

Proof. Assume for the sake of contradiction that γ1 is not the smallest among these thresholds. Then,
the only other choice is γ3 is the smallest, i.e., γ3 < γ1. It follows that β > 1− 2c, otherwise γ1 = 0.
For any γ ∈ [0, γ3],

γs⋆1 ≤ s⋆2(γ) ≤ β(1− γ),

because γ3 < γ1 (and hence, s⋆2,β =
s⋆2
β ). Substitution γ = γ3 above, we get

γ3 ≤ β

β + s⋆1
. (32)

Now for γ ∈ [0, γ3], we are in case III and III ′. Therefore, s⋆2 satisfies:

s⋆1 −
s⋆1(2s

⋆
2 − γs⋆1)

2(1− γ)
+ 1− 2s⋆2/β − γ

2(1− γ)
= c. (33)

Substituting γ = γ3 and s⋆2 = s⋆1γ3 in the equation above, we get:

s⋆1 −
(s⋆1)

2γ3
2(1− γ3)

+ 1− 2γ3s
⋆
1/β − γ3

2(1− γ3)
= c.

Solving for γ3 and using the fact that c = 1− s⋆1, we get

γ3 =
4s⋆1

4s⋆1 + (s⋆1)
2 + 2s⋆1/β − 1

≤ β

s⋆1 + β
,

where the second inequality follows from (32). Simplifying the above, we get:

4(s⋆1)
2 − 2s⋆1 ≤ β((s⋆1)

2 − 1).

Now, the r.h.s. above is negative, but the l.h.s. is positive because s⋆1 = 1− c ≥ 1/2. This leads to a
contradiction, and hence, it must be the case that γ1 ≤ γ3.

Now we proceed to show that γ4 is the largest among γ1, . . . , γ4. Suppose not. Then, γ2 must be the
largest value (since γ3 ≤ γ4). Thus, the ordering of these thresholds would be γ1, γ3, γ4, γ2. In the
interval γ ∈ [γ4, γ2], we are in the case I, IV ′ (and s⋆2 ≤ γβ ≤ β). Thus, s⋆2 satisfies:

s⋆1 −
(s⋆2)

2

2γ(1− γ)
+ 1− s⋆2

βγ
+

1− γ

2γ
= c.

When γ = γ2, s⋆2 = 1− γ2. Substituting this fact above and solving for γ2, we get

γ2 =
1

1 + 2s⋆1β
.
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Since γ4 < γ2, we know that 1 − γ2 < βγ2, i.e., γ2 > 1
1+β . Using this fact above, we see that

s⋆1 < 1/2, which is a contradiction because s⋆1 = 1 − c ≥ 1/2. Thus, we see that γ2 ≤ γ4. This
completes the proof of the desired result

It remains to decide between the orderings γ1, γ2, γ3, γ4 and γ1, γ3, γ2, γ4. It turns out that for a
fixed c, both of these orderings can emerge as we vary β from 1− 2c to 1− c, but there is a critical
value of β, denoted βc, such that for all β < βc, the latter ordering occurs; and we get the former
ordering when β > βc.
Proposition K.3 (Existence of a critical βc where the threshold order changes). Assume c < 1/2.
Then there exists a value βc ∈ [0, 1− c] such that for 1− 2c ≤ β < βc, γ1(β) ≤ γ3(β) ≤ γ2(β) ≤
γ4(β); and for all βc ≤ β ≤ 1− c, γ1(β) ≤ γ2(β) ≤ γ3(β) ≤ γ4(β).

Observe that if βc = 0 above, the ordering remains γ1, γ2, γ3, γ4 for the entire interval [0, 1− c] (and
hence for the interval [0, 1]).

Proof. The proposition follows from the monotonicity of γ2(β) and γ3(β) as functions of β. We
shall show that γ2(β) is a non-increasing function and γ3(β) is a non-decreasing function of β. The
result now follows from the observation and the fact that when β = 1 − c, γ1 ≤ γ2 ≤ γ3 ≤ γ4
(Theorem 3.1).

We shall treat s⋆2 as a function of both β and γ. Now observe that the ratio s⋆2(β,γ)
1−γ is monotonically

increasing if we fix β and increase γ and monotonically non-decreasing if we fix γ and increase β.
Now, suppose there are values β < β′ such that γ2(β) < γ2(β

′). By definition of γ2,

s⋆2(β, γ2(β))

1− γ2(β)
=
s⋆2(β

′, γ2(β
′))

1− γ2(β′)
.

Since γ2(β) < γ2(β
′), monotonicity of s⋆2(β,γ)

1−γ in γ implies that

s⋆2(β, γ2(β))

1− γ2(β)
<
s⋆2(β, γ2(β

′))

1− γ2(β′)
.

Since β < β′, the monotonicity of s⋆2(β,γ)
1−γ in β yields:

s⋆2(β, γ2(β))

1− γ2(β)
<
s⋆2(β

′, γ2(β
′))

1− γ2(β′)
,

which is a contradiction.

We can prove monotonicity of γ3(β) in a similar manner (note that s⋆1 = 1 − c, and hence, is
independent of β when β ≤ 1− c).

We now show that for βc to be strictly larger than 0, c must be at least 1/3. In other words, if c < 1/3,
then the ordering will be γ1, γ2, γ3, γ4 for all β ∈ [0, 1− c].
Proposition K.4 (Lower bound on βc). Assume c < 1/2 and βc > 0. Then c ≥ 1/3.

Proof. Suppose c < 1/3 and βc > 0. Then consider the setting where β = βc. Here, γ2(βc) =
γ3(βc). We consider the equation satisfied by s⋆2 in the interval [γ1, γ3]. If s⋆2(γ) ≤ β, it satisfies:

s⋆1 −
2s⋆1s

⋆
2 − γ(s⋆1)

2

2(1− γ)
+

(1− s⋆2/β)
2

2γ(1− γ)
= c.

Otherwise, it satisfies:

s⋆1 −
2s⋆1s

⋆
2 − γ(s⋆1)

2

2(1− γ)
= c.

In any case, we have

c ≥ s⋆1 −
2s⋆1s

⋆
2 − γ(s⋆1)

2

2(1− γ)
.
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Now, γ = γ2, which is also equal to γ3, we have s⋆2 = 1 − γ and s⋆2 = γs⋆1. Using both these
conditions in the inequality above, we get:

c ≥ s⋆1 − s⋆1 +
(1− γ)s⋆1
2(1− γ)

=
s⋆1
2

=
1− c

2
.

This shows that c ≥ 1/3.

We make a few observations:

• Unlike the β > 1− c case, we can have four distinct thresholds. As we decrease β, some
of these thresholds may not exist. In fact when β goes below 1−2c

1−c , threshold γ1 does
not appear. Intuitively, this means that for such small values of β, a candidate from G2

cannot get admission in institute 2 based on vi2 score alone, irrespective of the correlation
parameter. Similarly γ4 does not appear when β goes below 1− 2c.

• The relative order of the thresholds may depend on the value of β. This is again different
from the β ≥ 1− c setting, where there was no such dependence on β.

K.3 Variation of s⋆2 with γ

In this section, we consider the variation of s⋆2 with γ. In Theorem E.1, we had shown that s⋆2 can
vary in a non-monotone manner. We consider whether such a non-monotone behavior exists in the
β < 1− c regime.

Since the relative order of the γ-thresholds depend on whether β < βc, our results (and their analysis)
split into two corresponding cases. The following proposition follows analogously as Theorem 3.2.
Theorem K.5 (Characterization of s⋆2 for low β). Assume that β ≤ 1− c, β < βc and c < 1/2.
Then, assuming s⋆2(γ) ≤ β, it satisfies the following equations as γ varies from 0 to 1:

(i) [0, γ1]:
s⋆1 −

2s⋆1s
⋆
2−γ(s⋆1)

2

2(1−γ) + 1− 2s⋆2/β−γ
2(1−γ) = c. (34)

(ii) [γ1, γ3]:
s⋆1 −

2s⋆1s
⋆
2−γ(s⋆1)

2

2(1−γ) +
(1−s⋆2/β)

2

2γ(1−γ) = c. (35)

(iii) [γ3, γ2]:
s⋆1 −

(s⋆2)
2

2γ(1−γ) +
(1−s⋆2/β)

2

2γ(1−γ) = c. (36)

(iv) [γ2, γ4]:
s⋆1 −

s⋆2
γ + 1−γ

2γ +
(1−s⋆2/β)

2

2γ(1−γ) = c. (37)

(v) [γ4, 1]: s⋆1 −
s⋆2
γ + 1−γ

γ + 1− s⋆2
βγ = c (38)

When β ≤ 1 − c and β ≥ βc, c < 1/2, the equations satisfied in the intervals [0, γ1] and [γ4, 1]
remain as above. For the remaining cases, we have:

(i) [γ1, γ2]:
s⋆1 −

2s⋆1s
⋆
2−γ(s⋆1)

2

2(1−γ) +
(1−s⋆2/β)

2

2γ(1−γ) = c. (39)

(ii) [γ2, γ3]: (1−γ−s⋆2+γs⋆1)
2

2γ(1−γ) +
(1−s⋆2/β)

2

2γ(1−γ) = c. (40)

(iii) [γ3, γ4]:
s⋆1 −

s⋆2
γ + 1−γ

2γ +
(1−s⋆2/β)

2

2γ(1−γ) = c. (41)

The above equations only consider the case when s⋆2(γ) ≤ β. In case s⋆2(γ) > β, we need to remove
the terms corresponding to G2 in the corresponding equation above. The following result shows that
as we vary γ, s⋆2(γ) can have several local minima or maxima. This is in contrast to the β > 1− c
setting, where there was only one local minimum.
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Theorem K.6 (Threshold in low β regime). Let c ∈ [0, 1/2). Assume that the bias parameter β
lies in the range [0, 1− c]. When β ≤ βc, s⋆2 varies as follows as we vary γ from 0 to 1:

(i) [0, γ1]: s⋆2 is a linearly decreasing function of γ.

(ii) [γ1, γ3]: s⋆2 is a unimodal function of γ: it has no local maxima and has at most one local
minimum.

(iii) [γ3, γ2] : s
⋆
2 is a unimodal function of γ: it has no local minima and at most one local

maximum.

(iv) [γ2, γ4]: s⋆2 is a unimodal function; it has no local maximum and at most one local minimum.

(v) [γ4, 1]: s⋆2 is a linearly increasing function of γ.

When β > βc, s⋆2 behaves as in the above case for the intervals [0, γ1], [γ4, 1]. For the remaining
three intervals, s⋆2 varies as follows:

(i) [γ1, γ2]: s⋆2 is a unimodal function of γ: it has no local maxima and has at most one local
minimum.

(ii) [γ2, γ3]: s⋆2 is a convex function, and hence, has at most one local minimum and no local
maximum.

(iii) [γ3, γ4]: s⋆2 is a unimodal function. If c > 1/4, it has no local maximum and at most one
local minimum. If c ≤ 1/4, it has no local minimum and at most one local maximum.

Proof. First, consider the case when β < βc. We consider various cases:

Case γ ∈ [0, γ1]: Since γ ≤ γ1, s⋆2 ≤ β. Further, (34) shows that s⋆2 is a linear function of γ
with the slope given by 1

2s⋆1+2/β times −4s⋆1 + (s⋆1)
2 + 1. The latter quantity is negative if s⋆1 ≥ 1/2

(which is the case when c < 1/2).

Case γ ∈ [γ1, γ3]: We know that s⋆2(γ1) ≤ β. If s⋆2(γ) ≥ β, then s⋆2(γ) satisfies the following
truncated version of (35):

s⋆1 −
2s⋆1s

⋆
2 − γ(s⋆1)

2

2(1− γ)
= c.

This becomes a linear function in s⋆2 with slope proportional to (s⋆1)
2 − 4(s⋆1) + 2, which is positive

iff c >
√
2 − 1. In case c >

√
2 − 1, and if s⋆2 exceeds β, it will remain above β (and increase

linearly) for the rest of the interval. However if c <
√
2− 1, s⋆2 remains below β during this interval.

Thus, there is a value γ′3 ≤ γ3, such that s⋆2 remains at most β during [γ1, γ
′
3], and remains above β

during (γ′3, γ3]. Note that γ′3 may equal γ3, in which case the latter interval is empty. We now study
the behavior of s⋆2 in [γ1, γ

′
3]. We know that it satisfies (35).

Using c = 1− s⋆1, we rewrite (35) as

2(2s⋆1 − 1)γ(1− γ)− 2s⋆1s
⋆
2γ + γ2(s⋆1)

2 + (1− s⋆2/β)
2 = 0.

Differentiating with respect to γ, we get

2(1− 2γ)(2s⋆1 − 1)− 2s⋆1s
⋆
2 + 2γ(s⋆1)

2 − 2(s⋆1γ + 1/β(1− s⋆2/β))(s
⋆
2)

′ = 0.

Differentiating again, we get

2(s⋆2)
′′(s⋆1γ + 1/β(1− s⋆2/β)−

2

β2
((s⋆2)

′)2 + 4s⋆1(s
⋆
2)

′ + 8s⋆1 − 4(s⋆1)
2 − 4 = 0.

Note that 8s⋆1 − 4(s⋆1)
2 − 4 < 0. It follows that when |(s⋆2)′| is close to 0, (s⋆2)

′′ becomes positive.
Thus, once the slope (s⋆2)

′ becomes positive, it does not become 0 again. Therefore, there can only
be a local minimum in [γ1, γ3].

Case γ ∈ [γ3, γ2]: We know that if s⋆2 ≤ β, it satisfies (36). In case, s⋆2 > β, it would satisfy:

s⋆1 −
(s⋆2)

2

2γ(1− γ)
= c.
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If γ < 1/2, s⋆2 will be an increasing function. At γ = γ3, we know that s⋆1γ3 = 1−γ3, which implies
that γ3 < 1/2. Thus, if s⋆2(γ3) ≥ β, there would be an initial sub-interval [γ3, γ′2] of [γ3, γ2] where
s⋆2 will be above β and would subsequently stay below β.

Now, we consider those values of γ where s⋆2 ≤ β. Multiplying both sides of (36) by 2γ(1 − γ)
and differentiating, we see that (s⋆2)

′ is equal to a positive quantity times (s⋆1 − c)(1 − 2γ). Since
c < 1/2, s⋆1 = 1− c > c. Thus, (s2)⋆ is an increasing function till γ = 1/2 and then it becomes a
decreasing function. Combining the above observations, we see that s⋆2 will be initially increasing,
and then will become decreasing – note that γ2 > 1/2 because 1− γ2 = s⋆2(γ2) ≤ s⋆1γ2 < γ2.

Case γ ∈ [γ2, γ4]: If s⋆2 ≤ β, then s⋆2 satisfies (37). Otherwise, it would satisfy:

s⋆1 −
s⋆2
γ

+
1− γ

2γ
= c, (42)

In this case, we multiply both sides of (42) by 2γ and differentiate w.r.t. β to get:

2(s⋆2)
′ = 2(s⋆1 − c)− 1 = 1− 4c < 0,

because c > 1/4 (Proposition K.4). Thus, s⋆2 would be a decreasing function till it becomes at
most β. Hence we get: there is a value γ′2 ∈ [γ2, γ4] such that s⋆2(γ) ≥ β for all γ ∈ (γ2, γ

′
2] and

is a decreasing function of γ during this interval. Note that γ′2 could be same as γ2 in which case
s⋆2(γ2) ≤ β.

Now we consider the remaining interval [γ′2, γ4]. When s⋆2 ≤ β, it satisfies (37). Multiplying both
sides by 2γ(1− γ) and differentiating (and using c = 1− s⋆1), we get:

2(s⋆1 − c)(1− 2γ) + 2s⋆2 − 2(1− γ)− 2

β
(1− s⋆2/β)(s

⋆
2)

′ − (1− γ)(s⋆2)
′ = 0.

Differentiating the above equation again, we get:

A(γ)(s⋆2)
′′ − 2

β
((s⋆2)

′)2 −
(
3 +

2

β2

)
(s⋆2)

′ + 4(s⋆1 − c)− 2 = 0,

whereA(γ) = (1−γ)+ 2
β (1−s

⋆
2/β) > 1−γ4. Further, 4(s⋆1−c)−2 = 4(1−2c)−2 = 2−8c < 0

because c ≥ 1/3 (Proposition K.4). Thus, when (s⋆2)
′ becomes small enough, (s⋆2)

′′ becomes positive.
Therefore, s⋆2 does not have a local maximum in [γ′2, γ4]. Further, s⋆2(γ4) = βγ4 < β. Therefore,
s⋆2 ≤ β throughout the interval [γ′2, γ4]. Combining the observations about [γ2, γ′2) and [γ′2, γ4], we
see that s⋆2 initially decreases and does not have a local maximum in [γ2, γ4].

Case γ ∈ [γ4, γ1]: Since s⋆2 ≤ βγ < β throughout this interval, it satisfies (38) for all γ ∈ [γ4, 1].
It follows from (38) that

s⋆2 =
2s⋆1βγ + (1− γ)β

β + 1
.

Since s⋆1 > 1/2, s⋆2 is an increasing function of γ.

This completes the discussion on various cases when β < βc. It is also worth noting from the
discussion for intervals [γ1, γ3] and [γ3, γ2] the set of γ values where s⋆2(γ) ≥ β forms an interval.

Now we consider the case when β > βc. Clearly the cases [0, γ1] and [γ4, 1] follow as above. We
now consider the remaining settings:

Case γ ∈ [γ1, γ2]: In this interval, s⋆2 satisfies (39) which is identical to (35). Thus, the arguments
used in the case γ ∈ [γ1, γ3] when β < βc apply in the same manner here.

Case γ ∈ [γ2, γ3]: In this case, s⋆2 satisfies (40) if assuming s⋆2 ≤ β. In case, s⋆2 > β, it satisfies:

(1− γ − s⋆2 + γs⋆1)
2

2γ(1− γ)
= c. (43)

Multiplying both sides by 2γ(1 − γ) and differentiating twice, we see that (s⋆2)
′′ > 0. When

s⋆2(γ) ≤ β, it satisfies (40). Again, multiplying both sides of this equation by 2γ(1 − γ) and
differentiating twice, we see that (s⋆2)

′′ > 0. Thus (s⋆2)
′′ > 0 at all points in [γ2, γ3] (one can check
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that if s⋆2(γ) = β, then the slope (s⋆2(γ))
′ given by the two equation (40) and (42) are identical).

Hence, s⋆2 is convex in this interval.

Case γ ∈ [γ3, γ4]: In this case, s⋆2 satisfies (41) which is identical to (37). Thus, the arguments
used in the case for the case β ∈ [γ2, γ4] when β < βc apply in a similar manner as long as c > 1/4.

We complete the argument when c < 1/4. In case s⋆2(γ3) > β, it would satisfy (42). Multiplying
both sides by 2γ and differentiating, we see that s⋆2 will be a non-decreasing linear function (and
hence, remain above β throughout this interval).

Now consider the case when s⋆2(γ3) ≤ β. As in the case β ∈ [γ2, γ4] for β < βc, we get the equation:

A(γ)(s⋆2)
′′ − 2

β
((s⋆2)

′)2 −
(
3 +

2

β2

)
(s⋆2)

′ + 4(s⋆1 − c)− 2 = 0,

where A(γ) = (1− γ) + 2
β (1− s⋆2/β) > 1− γ4. Now, if c > 1/4, 4(s⋆1 − c)− 2 > 0, and rest of

the arguments in the β < βc case hold.

We have shown that s⋆2(γ2) ≤ β. If c < 1/4, we see that 4(s⋆1 − c)− 2 < 0. This shows that if (s⋆)′
is close enough to 0, then (s⋆2)

′′ < 0. Thus, it does not achieve a local minimum, though it may be a
local maximum. This completes the discussion on all the cases.

The result above shows that when β < 1− c, s⋆2(γ) can behave in a highly non-monotone manner as
we vary γ. Similar observations hold for the representation ratio:

Variation of representation ratio with γ. In Theorem 3.3, we showed that when β ≥ 1− c, R(γ)
is a monotonically non-decreasing function of γ. However, when β < 1 − c, it is possible that
R(γ) is a decreasing function of γ in a sub-interval of [0, 1] and is an increasing function of γ in
another sub-interval. Thus, R(γ) may not be a monotone function of γ. We now show that unlike the
β > 1− c case, R(γ) can decrease with γ. We shall first need a useful result:
Fact K.7 (Monotonicity under an implicit constraint). Let f, g : R2 → R be functions of two
variables, and z : [0, 1] → R be a real valued function defined on the interval [0, 1]. Suppose the
following relation holds for all γ ∈ [a, b] for some 0 ≤ a ≤ b ≤ 1:

f(γ, z(γ)) + g(γ, z(γ)) = c,

where c is a constant. Let fγ , fz denote the partial derivatives of f with respect to the two coordinates
(and define gγ , gz similarly). Suppose fz, gz > 0 and

fγ
fz

≤ gγ
gz

(44)

for all γ ∈ [0, 1]. Then f(γ, z(γ)) is a non-increasing function of γ ∈ [a, b]. Similarly, if fz, gz < 0
and

fγ
fz

≥ gγ
gz

(45)

for all γ ∈ [a, b]. Then f(γ, z(γ)) is a non-increasing function of γ ∈ [a, b].

Proof. First assume fz, gz > 0. Differentiating

f(γ, z(γ)) + g(γ, z(γ)) = c

with respect to γ (and using z′ to denote dz
dγ ), we get

fγ + fzz
′ + gγ + gzz

′ = 0.

Therefore,

z′ = −fγ + gγ
fz + gz

.

Since fz, gz > 0, (44) implies that
fγ + gγ
fz + gz

≥ fγ
fz
.
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Therefore, z′ ≤ − fγ
fz
. Now,

df(γ, z(γ))

dγ
= fzz

′ + fγ ≤ −fγ + fγ ≤ 0.

This proves the desired result. The argument when fz, gz < 0 is similar.

We now show that the representation ratio may decrease with increasing γ:
Proposition K.8 (Representation ratio decreases in mid-bias range). Assume c < 1/2 and
1−2c
1−c < β < 1− c. Then representation ratio decreases monotonically with γ for γ ∈ [0, γ1].

Note that the condition 1−2c
1−c < β is needed to ensure that γ1 > 0 (Proposition K.2).

Proof. For γ ∈ [0, γ1], s⋆2 ≤ β and hence, s⋆2 satisfies Equation (34). We show that the representation
ratio is decreasing using the notation in (44). Here, we define z = − s⋆2

(1−γ) (the negative sign is
needed because we want fz, gz to be positive). Then, the terms in the l.h.s. of (34) corresponding to
G1 and G2 can be expressed as:

f(γ, z) = s⋆1(1 + z) +
γ(s⋆1)

2

2(1− γ)
, g(γ, z) = 1 + z/β +

γ

2(1− γ)
.

A routine calculation shows that
fγ
fz

=
s⋆1

2(1− γ)2
,

gγ
gz

=
β

2(1− γ)2
.

Since s⋆1 ≥ β, the reverse of (44) holds. This shows that f(γ, z), which represents the fraction of
selected candidates from G1, is an increasing function of γ. Thus R(γ) is a decreasing function of
γ.

L The general preferences case

In this section, we extend our analysis to the general preference setting, where candidates prefer
Institution 1 with probability p ∈ (0, 1). Unlike the case when Institution 1 is always preferred,
the equilibrium thresholds s⋆1 and s⋆2 now satisfy nonlinear equations that do not admit closed-form
solutions. Nevertheless, this generality reveals rich structural behavior.

• In Appendix L.1, we derive the equilibrium conditions that implicitly define s⋆1 and s⋆2 for
arbitrary p. We further prove the existence and uniqueness of these thresholds.

• In Appendix L.2, we show how to compute these thresholds using closed-form probability
expressions developed earlier, enabling efficient numerical evaluation.

• In Appendix L.3, we provide formulas for computing key outcome metrics in terms of the
thresholds: the representation ratio and each institution’s observed utility.

• In Appendix L.4, we prove that the thresholds vary monotonically with p, holding other
parameters fixed. However, this variation is not necessarily strictly monotonic, as illustrated
in Figure 8. In particular, the threshold s⋆1 remains constant for values of p up to a critical
point p⋆, beyond which it increases strictly with p.
This behavior arises because, for small values of p, the threshold s⋆1(p) is sufficiently low
while s⋆2(p) is relatively high, resulting in the probability Pr[ui1 < s⋆1(p) ∧ ui2 ≥ s⋆2(p)]
being zero. Consequently, all candidates with ui1 ≥ s⋆1(p) are selected by one of the two
institutions, regardless of the value of p. Since this selection condition does not depend on
p, the threshold s⋆1(p) remains unchanged for p ≤ p⋆. We formalize this argument—along
with a similar statement for s⋆2(p)—in Appendix L.4.1.

• In Appendix L.5, we numerically examine how thresholds, fairness metrics, and utilities
evolve as p and the correlation parameter γ vary. A key contribution of this section lies in
the comprehensive set of plots (Figures 8–14) that reveal monotonicity, phase transitions,
and other emergent behaviors, offering insights that go beyond what closed-form analysis
can capture.
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L.1 Equations for the thresholds and existence/uniqueness of solution

L.1.1 Equations for the thresholds

We now derive the threshold equations for the two-group model, where each candidate independently
prefers Institution 1 over Institution 2 with probability p ∈ [0, 1], and belongs to either group G1 or
G2. Candidates in group G2 face a multiplicative bias β ∈ (0, 1] in their evaluations. Let i ∈ G1,
i′ ∈ G2, and define the bias-adjusted thresholds:

s1,β = min(1, s1/β), s2,β = min(1, s2/β).

We assume uniform group sizes (ν1 = ν2 = 1) and symmetric capacities (c1 = c2 = c). Our
approach follows a finite-to-infinite reduction analogous to that in Section B, transitioning from
random threshold behavior in the finite setting to deterministic thresholds in the continuum limit. The
capacity constraints reduce to the following pair of equations:

p ((1− s1) + (1− s1,β)) + (1− p) (Pr[ui1 ≥ s1 ∧ ui2 < s2] + Pr[ui′1 ≥ s1,β ∧ ui′2 < s2,β ]) = c,
(46)

(1− p) (Pr[ui2 ≥ s2] + Pr[ui′2 ≥ s2,β ]) + p (Pr[ui1 < s1 ∧ ui2 ≥ s2] + Pr[ui′1 < s1,β ∧ ui′2 ≥ s2,β ]) = c.
(47)

L.1.2 Existence and uniqueness of (s⋆1, s
⋆
2) for general p

The proof of existence and uniqueness also follows the p = 1 setting closely (see the proof of
Proposition B.2). Define the residuals

F1(s1, s2) = p
[
(1− s1) + (1− s1,β)

]
+ (1− p)

[
Φ10(s1, s2) + Φ10,β(s1, s2)

]
− c,

F2(s1, s2) = (1− p)
[
Ψ0(s2) + Ψ0,β(s2)

]
+ p
[
Φ01(s1, s2) + Φ01,β(s1, s2)

]
− c,

where, for example, Φ10(s1, s2) = Pr[ui1 ≥ s1, ui2 < s2], Ψ0(s2) = Pr[ui2 ≥ s2], and the
“β”–variants are defined analogously.
Proposition L.1 (Existence and uniqueness). The system

F1(s1, s2) = 0, F2(s1, s2) = 0, (s1, s2) ∈ (0, 1)2

admits a unique solution (s⋆1, s
⋆
2). Moreover, the map p 7→ (s⋆1, s

⋆
2) is continuous on (0, 1).

Proof. 1. Monotonicity of each equation. By the uniform noise formulas, one checks that

∂F1

∂s1
< 0,

∂F1

∂s2
> 0,

∂F2

∂s1
> 0,

∂F2

∂s2
< 0,

throughout (0, 1)2. In particular, each residual is strictly monotone in each variable.

2. Existence via one-dimensional roots. - For each fixed s2 ∈ [0, 1], the function s1 7→ F1(s1, s2)
is continuous, strictly decreasing, and one verifies

F1(0, s2) > 0, F1(1, s2) < 0.

Hence there is a unique root s1 = Λ(s2) ∈ (0, 1) with F1

(
Λ(s2), s2

)
= 0. By strict monotonicity in

s1, Λ is continuous and strictly increasing in s2.

Likewise, for each fixed s1 ∈ [0, 1], the function s2 7→ F2(s1, s2) is continuous, strictly decreasing,
and satisfies

F2

(
s1, 0

)
> 0, F2

(
s1, 1

)
< 0,

so there is a unique root s2 = Γ(s1) ∈ (0, 1). Again by strict monotonicity, Γ is continuous and
strictly decreasing in s1.

3. Uniqueness by graph intersection. The solution (s⋆1, s
⋆
2) must satisfy both

s1 = Λ(s2), s2 = Γ(s1).
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Equivalently, the continuous curve s2 7→ Λ(s2) (in the s1-direction) and the graph of the inverse
Γ−1 meet. Since Λ is strictly increasing and Γ strictly decreasing, there is exactly one intersection in
(0, 1)2. This proves uniqueness.

4. Continuity in p. One checks that the Jacobian detD(s1,s2)(F1, F2) is strictly negative on (0, 1)2

(it is ∂s1F1 · ∂s2F2 − ∂s2F1 · ∂s1F2 < 0), so by the Implicit Function Theorem, the unique solution
(s⋆1, s

⋆
2) depends C1-smoothly on p. In particular, it is continuous.

L.2 Computing the thresholds

In this section, we describe our approach for computing the thresholds s⋆1 and s⋆2. Specifically, we
show how the probability expressions in equations (46) and (47) can be evaluated using the analytical
results developed in Section 3. Unlike the special case when p = 1, it is now possible that s⋆2 > s⋆1,
which necessitates careful treatment of events such as {ui2 ≥ s2 ∧ ui1 < s1}. In particular, when

s2 ≥ s1γ + (1− γ),

this event has zero probability due to the structure of the support, i.e., Pr[ui2 ≥ s2 ∧ ui1 < s1] = 0.
A similar observation applies when evaluating the corresponding bias-adjusted probabilities for
candidates in group G2.

Our procedure consists of the following steps:

• Rewriting probability expressions. We express the probability terms in (46) and (47) using
quantities of the form

Pr[ui1 < s1 ∧ ui2 ≥ s2]− Pr[ui2 ≥ s2],

and Pr[ui2 ≥ s2] for candidates i ∈ G1, and analogously for i′ ∈ G2. These forms simplify
the evaluation using the results from Section 3.

• Case identification. The expression Pr[ui1 < s1,β ∧ ui2 ≥ s2,β ] depends on the relative
positioning of s2 with respect to s1γ and 1− γ. Section 3 identifies four distinct cases under
the assumption that s⋆2 ≤ s⋆1, but this assumption may not hold in the general setting. For
instance, if s⋆2 ≥ s1γ+(1−γ), then the probability is zero. Geometrically, this corresponds
to the line L(γ, s2) not intersecting the rectangle [0, s1]× [0, 1].
Similar logic applies to Pr[ui2 ≥ s2]. Overall, we identify seven mutually exclusive cases
for computing Pr[ui1 < s1 ∧ ui2 ≥ s2]− Pr[ui2 ≥ s2] and Pr[ui2 ≥ s2]. For candidates
in G1, only seven cases are feasible. For candidates in G2, we must consider twenty-eight
total configurations, accounting for the seven cases above along with independent binary
assumptions on whether s1 ≤ β and whether s2 ≤ β.

• Solving and verifying. For each guess of the applicable case(s), we substitute the corre-
sponding closed-form expressions into equations (46) and (47), resulting in a system of two
equations in the unknowns s1 and s2. We solve this system and verify whether the solution
satisfies all assumptions made in the guess. Since the solution to the threshold equations
is unique, exactly one of the constant number of guesses will yield a consistent and valid
threshold pair (s⋆1, s

⋆
2).

We now elaborate on each of the steps above:

Rewriting probability expressions. We first consider (46). We apply the identity:
Pr[ui1 ≥ s1 ∧ ui2 < s2] = (1− s1)− Pr[ui2 ≥ s2] + Pr[ui1 < s1 ∧ ui2 ≥ s2],

and similarly for i′. This yields:
(1− s1) + (1− s1,β) + (1− p)

(
Pr[ui1 < s1 ∧ ui2 ≥ s2]− Pr[ui2 ≥ s2] (48)

+ Pr[ui′1 < s1,β ∧ ui′2 ≥ s2,β ]− Pr[ui′2 ≥ s2,β ]
)
= c.

Note that Pr[ui1 ≥ s2] can be expressed as Pr[ui1 ≥ s2 ∧ ui1 ≤ 1].

The second equation (47) remains unchanged – the probability terms are already expressed in terms
of the desired events.

Case identification. Both the equations (48) and (47) involve Pr[ui1 < s1∧ui2 ≥ s2]−Pr[ui2 ≥ s2]
and Pr[ui1 ≥ s2] for a candidate i ∈ G1 and similarly for a candidate i′ ∈ G2. We now show the
possibilities for a candidate i ∈ G1:

55



(i) s2 ≤ max(1 − γ, γs1): we are in Case I while computing both Pr[ui1 < s1 ∧ ui2 ≥ s2]
and Pr[ui2 ≥ s2]. Thus,

Pr[ui1 < s1 ∧ ui2 ≥ s2]− Pr[ui2 ≥ s2] = s1 − 1,

and

Pr[ui2 ≥ s2] = 1− s22
2γ(1− γ)

.

(ii) 1 − γ < s2 ≤ max(1 − γ, γs1): we are in Case IV for the both the probability events.
Hence,

Pr[ui1 < s1 ∧ ui2 ≥ s2]− Pr[ui2 ≥ s2] = s1 − 1,

and
Pr[ui2 ≥ s2] = 1− s2

γ
+

1− γ

2γ
.

(iii) s2
γ ∈ [s1, 1],

s2−γs1
1−γ ∈ [0, 1] : Observe that γs1 ≤ s2 ≤ 1 − γ and s2 ≤ min(γ, 1 − γ).

Thus, we are in Case III for Pr[ui1 < s1 ∧ ui2 ≥ s2], but in Case I for Pr[ui2 ≥ s2].
Therefore,

Pr[ui1 < s1 ∧ ui2 ≥ s2]− Pr[ui2 ≥ s2] =
s22

2γ(1− γ)
− s1(2s2 − γs1)

2(1− γ)
,

and

Pr[ui2 ≥ s2] = 1− s22
2γ(1− γ)

.

(iv) s2
γ ∈ [s1, 1],

s2−γs1
1−γ > 1 : Observe that s2 ≥ γs1 + (1 − γ) and 1 − γ ≤ s2 ≤ γ. Thus,

Pr[ui1 < s1 ∧ ui2 ≥ s2] = 0, but we are in Case IV for Pr[ui2 ≥ s2]. Therefore,

Pr[ui1 < s1 ∧ ui2 ≥ s2]− Pr[ui2 ≥ s2] = −1 +
s2
γ

− 1− γ

2γ
,

and
Pr[ui2 ≥ s2] = 1− s2

γ
+

1− γ

2γ
.

(v) s2
γ > 1, s2−γs1

1−γ > 1 : Observe that s2 ≥ γs1 + (1 − γ) and s2 ≥ max(γ, 1 − γ). Thus,
Pr[ui1 < s1 ∧ ui2 ≥ s2] = 0, but we are in Case II for Pr[ui2 ≥ s2]. Therefore,

Pr[ui1 < s1 ∧ ui2 ≥ s2]− Pr[ui2 ≥ s2] = − (1− s2)
2

2γ(1− γ)
,

and

Pr[ui2 ≥ s2] =
(1− s2)

2

2γ(1− γ)
.

(vi) s2
γ > 1, s2−γs1

1−γ ∈ [0, 1], s2 ≤ 1− γ : In this Case, s1γ ≤ s2 ≤ 1− γ and γ ≤ s2 ≤ 1− γ.
Thus, we are in Case III for both probability events. Hence,

Pr[ui1 < s1 ∧ ui2 ≥ s2]− Pr[ui2 ≥ s2] = s1 −
s1(2s2 − γs1)

2(1− γ)
− 1 +

2s2 − γ

1− γ
,

and
Pr[ui2 ≥ s2] = 1− 2s2 − γ

2(1− γ)

(vii) s2
γ > 1, s2−γs1

1−γ ∈ [0, 1], s2 ≥ 1 − γ : Here s2 ≥ max(γ, 1 − γ) and s2 ≥ max(γ, s1γ).
Thus, we are in Case II for both the probability expressions. Thus,

Pr[ui1 < s1 ∧ ui2 ≥ s2]− Pr[ui2 ≥ s2] =
1− γ − s2 + γs1)

2

2γ(1− γ)
− (1− s2)

2

2γ(1− γ)
,

and

Pr[ui2 ≥ s2] =
(1− s2)

2

2γ(1− γ)
.
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Similarly, we can express Pr[ui′1 < s1,β ∧ ui′2 ≥ s2]− Pr[ui′2 ≥ s2,β ].

Formulation of system of equations for s⋆1 and s⋆2. We now illustrate an example of the system
of equations that arises from specific guesses made in the previous step. Suppose, we consider
Case (v) for G1 and Case (vi) for G2. Further, we also assume that s⋆1 ≤ β but s⋆2 ≥ β. Under these
assumptions, we have

Pr[ui1 < s1 ∧ ui2 ≥ s2]− Pr[ui2 ≥ s2] = − (1− s2)
2

2γ(1− γ)

for a candidate i ∈ G1 and

Pr[ui′1 < s1,β ∧ ui′2 ≥ s2,β ]− Pr[ui2 ≥ s2,β ] =
s1
β

− s1(2− γs1/β)

2β(1− γ)
− 1 +

2− γ

1− γ
.

Thus, Equation (48) can be written as:

(1− s1)− p(s1/β − 1)− (1− p)
(1− s2)

2

2γ(1− γ)
− (1− p)

s1(2− γs1/β)

2β(1− γ)
+ (1− p)

2− γ

1− γ
= c.

The second equation obtained from (47) is:
(1− s2)

2

2γ(1− γ)
+

2− γ

2(1− γ)
+ p

(
− (1− s2)

2

2γ(1− γ)
+
s1
β

− s1(2− γs1/β)

2β(1− γ)
− 1 +

2− γ

1− γ

)
= c.

Together, these yield a system of two equations in the unknowns s1 and s2, whose solution gives
a candidate threshold pair (s⋆1, s

⋆
2). We then verify whether this solution satisfies the following

consistency conditions:

1. s⋆1 ≤ β and s⋆2 > β,

2. Case (v) applies to (s⋆1, s
⋆
2), i.e., s⋆2 > γ and s⋆2−γs⋆1

1−γ > 1,

3. Case (vi) applies to (s⋆1/β, 1), i.e., 1−γs1
1−γ ∈ [0, 1].

If all conditions are met, the thresholds (s⋆1, s
⋆
2) are valid. Otherwise, we proceed to test one of the

remaining possibilities.

Unlike the p = 1 case, where the equations admit a closed-form solution for s⋆1 and a piecewise
formula for s⋆2, the general p ∈ (0, 1) case yields a coupled nonlinear system that typically does not
admit a closed-form solution. Even in the symmetric case p = 1/2, the equations remain analytically
intractable due to the interaction between the thresholds and regime-specific probability expressions.
Numerical solutions for various parameter settings are provided in Appendix L.5.

L.3 Expressions for metrics

In this section, we give expressions for computing the representation ratio and the observed utility of
each of the two institutions.

L.3.1 Representation ratio

The representation ratio is defined as the ratio A/B, where the numerator A corresponds to the
fraction of candidates from the disadvantaged group G2 who are selected, and the denominator B is
the corresponding quantity for the advantaged group G1.

The numerator can be written as:
A = (1− s1,β) + (1− p) (Pr[ui′1 < s1,β ∧ ui′2 ≥ s2,β ]− Pr[ui′2 ≥ s2,β ])

+ (1− p) Pr[ui′2 ≥ s2,β ] + p Pr[ui′1 < s1,β ∧ ui′2 ≥ s2,β ]

= (1− s1,β) + Pr[ui′1 < s1,β ∧ ui′2 ≥ s2,β ],

where the final simplification follows by cancellation of terms.

Similarly, the denominator is:
B = (1− s1) + Pr[ui1 < s1 ∧ ui2 ≥ s2].

Hence, the representation ratio is given by:

R(p, β, γ) =
(1− s1,β) + Pr[ui′1 < s1,β ∧ ui′2 ≥ s2,β ]

(1− s1) + Pr[ui1 < s1 ∧ ui2 ≥ s2]
.
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Special case: γ = 1. We now analyze a simplified setting where γ = 1 and p ≥ 1/2 (the case
p < 1/2 is symmetric). Since more candidates prefer Institution 1, it follows that s⋆1(p) ≥ s⋆2(p).
Under full correlation (γ = 1), the observed utilities are deterministic functions of the true values, so:

• A candidate is selected if their utility to either institution exceeds the corresponding thresh-
old.

• In this case, both groups face the same selection criterion: being above s⋆2(p).

Thus, the capacity constraint becomes:

(1− s⋆2(p)) +

(
1− s⋆2(p)

β

)
= 2c,

which yields:

s⋆2(p) =
2(1− c)

1 + 1/β
.

Note that s⋆2(p) is independent of p.

Now consider the assignment to Institution 1. A candidate from G1 is assigned to Institution 1 if:

1. They prefer Institution 1 (which happens with probability p), and

2. Their utility exceeds s⋆1(p). Otherwise, they go to Institution 2 (if their utility exceeds
s⋆2(p)).

The capacity constraint for Institution 1 becomes:

p(1− s⋆1(p)) + p (1− s⋆1(p)β) = c,

which simplifies to:

s⋆1(p) =
2− c/p

1 + 1/β
.

Since selection depends on whether the candidate’s value exceeds s⋆2(p), the representation ratio
becomes:

R =
1− s⋆2(p)/β

1− s⋆2(p)
.

This reflects the differential in admission likelihood due to the biased utility scaling between the two
groups.

L.3.2 Observed utility of institutions

In the general preference setting, the observed utility of Institution 1 (assuming ν1 = ν2 = 1) is given
by:

U1 = pEG11
[ûi1 · 1[ûi1 ≥ s⋆1]] + (1− p)EG12

[ûi1 · 1[ûi1 ≥ s⋆1 ∧ ûi2 < s⋆2]]

+ pEG21
[ûi′1 · 1[ûi′1 ≥ s⋆1,β ]] + (1− p)EG22

[ûi′1 · 1[ûi′1 ≥ s⋆1,β ∧ ûi′2 < s⋆2,β ]], (49)

where Giℓ denotes the subset of candidates in group Gi who prefer Institution ℓ.

To simplify the utility calculation, we define the following integral:

I1(γ, s1, s2) :=

∫ 1

0

∫ 1

0

x · 1[γx+ (1− γ)y < s2 ∧ x ≥ s1] dx dy.

Proposition L.2 (Observed utility of Institution 1 in the general preference setting). The utility
of institution 1, U1 is given by:

p

(
1− s21

2
+
β(1− s21,β)

2

)
+ (1− p) (I1(γ, s1, s2) + βI1(γ, s1,β , s2,β)) .
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Proof. For a candidate i ∈ G11,

E[ûi11[ûi1 ≥ s1]] =

∫ 1

s1

sds =
(1− s21)

2
.

For a candidate i ∈ G12, For a candidate i ∈ G12, the definition of the integral I1 shows that
E[ûi11[ûi1 ≥ s⋆1 ∧ ûi2 < s⋆2]] is equal to I1(γ, s1, s2). Arguing similarly for the two sub-groups of
G2 and using (49) implies the desired result.

It remains to evaluate I1(γ, s1, s2). This integral can be evaluated based on the following cases:

• Case I (s2 < γs1): In this case, I1(γ, s1, s2) = 0. For a given y, x varies from s1 to
s2−(1−γ)y

γ ≤ s2
γ < s1. Thus, the range of x is empty for any y ∈ [0, 1].

• Case II (s2

γ
∈ [s1, 1],

s2−γs1

1−γ
∈ [0, 1]): Note that x varies from s1 to 1. For a given x, y

varies from 0 to min(1, s2−γx
1−γ ). Since x ≥ s1, s2−γx

1−γ ≤ s2−γs1
1−γ ≤ 1. However, s2−γx

1−γ ≥ 0

only if x ≤ s2/γ ∈ [s1, 1]. Thus, the integral is∫ s2/γ

s1

s2 − γx

1− γ
xdx =

1

1− γ

(
s32
6γ2

− s2s
2
1

2
+
γs31
3

)
.

• Case III (s2

γ
∈ [s1, 1],

s2−γs1

1−γ
> 1): The argument here is similar to case II above, s2−γx

1−γ

may not remain at most 1 for all x ∈ [s1, 1]. In fact, when x ≤ s2−(1−γ)
γ , min(1, s2−γx

1−γ ) =

1, and then y varies from 0 to 1. Thus, the integral is∫ s2−(1−γ)
γ

s1

xdx+

∫ s2/γ

s2−(1−γ)
γ

s2 − γx

1− γ
xdx =

1

2

((
s2 − (1− γ)

γ

)2

− s21

)

+
1

1− γ

[
s32
6γ2

−
(
s2 − (1− γ)

γ

)2(
s2
6

+
1− γ

3

)]
.

• Case IV (s2

γ
> 1, s2−γs1

1−γ
∈ [0, 1]): The argument is again similar to case II, except for

the fact that s2 − γx remains non-negative for all x ∈ [s1, 1]. Therefore, the desired integral
is ∫ 1

s1

s2 − γx

1− γ
xdx =

1

1− γ

[s2
2
(1− s21)−

γ

3
(1− s31)

]
.

• Case V (s2

γ
> 1, s2−γs1

1−γ
> 1): As x varies from s1 to 1, s2−γs1

1−γ remains non-negative

because s2 ≥ γ, but this expression exceeds 1 when x exceeds s2−(1−γ)
γ . Thus, the desired

integral is∫ s2−(1−γ)
γ

s1

xdx+

∫ 1

s2−(1−γ)
γ

s2 − γx

1− γ
xdx =

1

2

((
s2 − (1− γ)

γ

)2

− s21

)

+
1

1− γ

[(s2
2

− γ

3

)
−
(
s2 − (1− γ)

γ

)2(
s2
6

+
1− γ

3

)]

We now give the expression for the expected utility of Institution 2. Define the integral:

I2(γ, s1, s2) :=

∫ 1

0

∫ 1

0

(γx+ (1− γ)y)1[γx+ (1− γ)y ≥ s2 ∧ x < s1]dxdy.

Arguing as in the proof of Proposition L.2, we get
Proposition L.3 (Observed utility of Institution 2 in the general preference setting). The utility
of Institution 2, U2 is given by:

(1− p) (I2(γ, 1, s2) + βI2(γ, 1, s2)) + p (I2(γ, s1, s2) + βI2(γ, s1,β , s2,β)) .

59



Finally, observe that the integral I2(γ, s1, s2) is exactly the integral computed in the four cases stated
in Appendix H.2. We also need to take care of a fifth possibility when s⋆2 exceeds s⋆1γ + (1− γ) – in
this case, I2(γ, s1, s2) = 0. Thus, we have:

• Case I (s⋆2 ≤ min(s⋆1γ, 1 − γ) ): In this case, the integral is

s⋆1(γs
⋆
1 + 1− γ)

2
− (s⋆2)

3

3γ(1− γ)
.

• Case II (1 − γ + s⋆1γ ≥ s⋆2 ≥ max(s⋆1γ, 1 − γ)): The integral is

1

3
(1− γ + 2s⋆2 + γs⋆1) ·

(1− γ − s⋆2 + γs⋆1)
2

2γ(1− γ)
.

• Case III (s⋆1γ < s⋆2 < 1 − γ): The integral is

s⋆1 ·
(
1− s⋆2

1− γ

)(
γs⋆1
2

+
1− γ + s⋆2

2

)
+
s⋆1
2

· γs⋆1
1− γ

·
(
2γs⋆1
3

+
3s⋆2 − γs⋆1

3

)
.

• Case IV (1 − γ < s⋆2 < s⋆1γ): The integral is(
s⋆1 −

s⋆2
γ

)
·
(
γs⋆1 + s⋆2

2
+

1− γ

2

)
+

(1− γ)

2γ
·
(
3s⋆2 − (1− γ)

3
+

2(1− γ)

3

)
.

• Case V (s⋆2 > s⋆1γ + (1 − γ)): In this case, the integral is 0.

L.4 Monotonicity properties of s⋆1 and s⋆2 with respect to p

In this section, we show that for any fixed values of the parameters c, β, and γ, the thresholds s⋆1 and
s⋆2 are monotone functions of the parameter p. More formally, we show:
Theorem L.4 (Monotonicity of thresholds w.r.t. p). For any fixed values of c, β, γ, the thresholds
s⋆1(p) and s⋆2(p) are non-decreasing and non-increasing functions of p respectively.

Proof. The equations for solving s⋆1(p) and s⋆2(p) can be written as follows:

p(Pr[ui1 ≥ s1] + Pr[ui′1 ≥ s1,β ]) + (1− p)(Pr[ui1 ≥ s1 ∧ ui2 < s2]

+ Pr[ui′1 ≥ s1,β ∧ ui′2 < s2,β ]) = c1, (50)
p(Pr[ui1 < s1 ∧ ui2 ≥ s2] + Pr[ui′1 < s1,β ∧ ui′2 ≥ s2,β ])

+ (1− p)(Pr[ui2 ≥ s2] + Pr[ui′2 ≥ s2,β ]) = c2. (51)

Since the set of selected candidates from G1 is exactly those for which ui1 ≥ s1 or ui2 ≥ s2 and
similarly for G2, we get

Pr[ui1 ≥ s1 ∨ ui2 ≥ s2] + Pr[ui′1 ≥ s1,β ∨ ui′2 ≥ s2,β ] = c1 + c2 (52)

Note that the l.h.s. of the above equation does not depend on p explicitly. A formal proof of the above
statement can be given by adding (50) and (51). Indeed, the sum of the terms involving candidate i in
the two equations is:

pPr[ui1 ≥ s1] + (1− p) Pr[ui1 ≥ s1 ∧ ui2 < s2] + pPr[ui1 < s1 ∧ ui2 ≥ s2] + (1− p) Pr[ui2 ≥ s2]

= Pr[ui1 ≥ s1]− (1− p) Pr[ui1 ≥ s1 ∧ ui2 ≥ s2] + Pr[ui2 ≥ s2]− pPr[ui1 ≥ s1 ∧ ui2 ≥ s2]

= Pr[ui1 ≥ s1] + Pr[ui2 ≥ s2]− Pr[ui1 ≥ s1 ∧ ui2 ≥ s2] = Pr[ui1 ≥ s1 ∨ ui2 ≥ s2].

Arguing similarly for i′, we get (52). Given values p, s1, s2, let f(p, s1, s2) and g(s1, s2) denote the
l.h.s. of (50) and (52) respectively, i.e., f(p, s1, s2) :=

p(Pr[ui1 ≥ s1]+Pr[ui′1 ≥ s1,β ])+(1−p)(Pr[ui1 ≥ s1∧ui2 < s2]+Pr[ui′1 ≥ s1,β∧ui′2 < s2,β ]),

and
g(s1, s2) := Pr[ui1 ≥ s1 ∨ ui2 ≥ s2] + Pr[ui′1 ≥ s1,β ∨ ui′2 ≥ s2,β ].

We now show monotonicity properties of these functions.
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Fact L.5. Let s1, s′1, s2, s
′
2 ∈ [0, 1] such that s1 ≤ s′1 and s2 ≤ s′2. Then, g(s1, s2) ≤ g(s′1, s

′
2).

Further, g(s1, s2) < g(s′1, s
′
2) if s1 < s′1 and s2 < s′2.

Proof. The first statement follows from the fact that Pr[ui1 ≥ s1 ∨ ui2 ≥ s2] and Pr[ui′1 ≥
s1,β ∨ ui′2 ≥ s2,β ] are non-increasing functions of s1 and s2.

For the second statement, assume s1 < s′1 and s2 < s′2. Observe that

Pr[ui1 ≥ s1 ∨ ui2 ≥ s2]− Pr[ui1 ≥ s′1 ∨ ui2 ≥ s′2]

= Pr[s1 ≤ ui1 ≤ s′1 ∧ ui2 ≤ s′2] + Pr[ui1 ≤ s′1 ∧ s2 ≤ ui2 ≤ s′2].

Now, if Pr[ui1 ≤ s′1∧s2 ≤ ui2 ≤ s′2] = 0, then it must be the case that ui2 ≤ s2 whenever ui1 ≤ s′1,
i.e., s2 ≥ s′1γ + (1− γ). But then, ui2 ≤ s′2 whenever ui1 ≤ s′1. Thus,

Pr[s1 ≤ ui1 ≤ s′1 ∧ ui2 ≤ s′2] = Pr[s1 ≤ ui1 ≤ s′1] > 0.

This shows that g(s1, s2) < g(s′1, s
′
2).

Now we show the monotonicity properties of the function f .

Fact L.6. Let s1, s′1, s2, s
′
2, p, p

′ ∈ [0, 1) such that s1 ≥ s′1, s2 ≤ s′2, p ≤ p′. Then, f(p, s1, s2) ≤
f(p′, s′1, s

′
2). Further,

(i) f(p, s1, s2) < f(p′, s′1, s
′
2) if p < p′.

(ii) f(p, s1, s2) < f(p′, s′1, s
′
2) if s1 > s′1.

Proof. We first show monotonicity with respect to p. Note that

pPr[ui1 ≥ s1] + (1− p) (Pr[ui1 ≥ s1]− Pr[ui1 ≥ s1, ui2 ≥ s2])

= Pr[ui1 ≥ s1]− (1− p) Pr[ui1 ≥ s1, ui2 ≥ s2]

Similarly,

pPr[ui′1 ≥ s1,β ] + (1− p) (Pr[ui′1 ≥ s1,β ]− Pr[ui′1 ≥ s1,β , ui′2 ≥ s2,β ])

= Pr[ui′1 ≥ s1,β ]− (1− p) Pr[ui′1 ≥ s1,β , ui′2 ≥ s2,β ]

Thus,

f(p′, s1, s2)− f(p, s1, s2) ≥ (p′ − p) Pr[ui1 ≥ s1 ∧ ui2 ≥ s2] > 0. (53)

Now we show monotonicity with respect to s1: since Pr[ui1 ≥ s1], Pr[ui1 ≥ s1, ui2 < s2],
Pr[ui′1 ≥ s1,β ], Pr[ui′1 ≥ s1,β , ui′2 < s2,β ], are non-increasing functions of s1 (and the first one is
strictly increasing), we see (using the definition of f ) that

f(p′, s′1, s2) ≥ f(p′, s1, s2), (54)

with the inequality being strict if s′1 < s1. The monotonicity with respect to s2 follows similarly:
Pr[ui1 ≥ s1, ui2 < s2], Pr[ui′1 ≥ s1,β , ui′2 < s2,β ] are non-decreasing functions of s2, and hence,

f(p′, s′1, s
′
2) ≥ f(p′, s′1, s2). (55)

The desired statements now follow by combining (53), (54) and (55).

We are now ready to show the monotonicity property of s⋆1. Let 0 ≤ p < p′ ≤ 1, and assume for the
sake of contradiction that s⋆1(p) < s⋆1(p

′). Two cases arise:

(i) s⋆2(p) < s⋆2(p
′): It follows by Fact L.5 that g(s⋆1(p), s

⋆
2(p)) < g(s⋆1(p

′), s⋆2(p
′)), which is a

contradiction because both of these quantities must be equal to c1 + c2 (using (52)).
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(ii) s⋆2(p) ≥ s⋆2(p
′): Using Fact L.6 (and part (ii) of result),

f(p, s⋆1(p), s
⋆
2(p)) < f(p′, s⋆1(p

′), s⋆2(p
′)),

which is again a contradiction because both of the above expressions should be equal to c1
(using (50)).

Thus, we see that neither of the two cases above can happen and hence, s⋆1(p) ≥ s⋆1(p
′). The

monotonicity property of s⋆2(p) can be shown similarly by analyzing the properties of the function
h(p, s1, s2) that denotes the l.h.s. of (51).

We note a useful corollary of this result:

Corollary L.7. Given parameters c, β, γ and p, p′ ∈ [0, 1], it cannot happen that s⋆1(p) = s⋆1(p
′)

and s⋆2(p) = s⋆2(p
′).

Proof. Assume w.l.o.g. that p < p′. Assume for the sake of contradiction that s⋆1(p) = s⋆1(p
′) and

s⋆2(p) = s⋆2(p
′). Then, Fact L.6 shows that

f(p′, s⋆1(p
′), s⋆2(p

′)) > f(p, s⋆1(p
′), s⋆2(p

′)) = f(p, s⋆1(p), s
⋆
2(p)),

which is a contradiction because both f(p, s⋆1(p), s
⋆
2(p)) and f(p′, s⋆1(p

′), s⋆2(p
′)) are equal to c1.

L.4.1 Strict monotonicity properties of the thresholds with respect to p

Theorem L.4 showed that s⋆1(p) and s⋆2(p) are non-decreasing and non-increasing functions of p
respectively. In this section, we show strict monotonicity properties of these thresholds.

Proposition L.8 (Strict monotonicity of s⋆1 w.r.t. p). For any fixed values of the parameters c, β, γ,
there exists a value p⋆ ∈ [0, 1] such that s⋆1(p) is strictly increasing for p ∈ [p⋆, 1] and does not vary
with p for p ∈ [0, p⋆). Assuming β ≥ 1− (c1 + c2), s

⋆
1(p) =

2−c1−c2
1+1/β for all p ∈ [0, p⋆) and s⋆2(p)

is strictly decreasing in [0, p⋆). Further, p⋆ > 0 iff s⋆2(0) > γs⋆1(0) + (1− γ).

We first prove an auxiliary result.

Fact L.9. For any fixed values of the parameters γ, s1, s2 ∈ (0, 1), Pr[ui1 ≤ s1 ∧ ui2 ≥ s2] = 0 iff
s2 ≥ γs1 + (1− γ).

Proof. Suppose Pr[ui1 ≤ s1 ∧ ui2 ≥ s2] = 0. Assume for the sake of contradiction that s2 <
γs1 + (1− γ. For the sake of concreteness, let ε := s1 + (1− γ)− s2. Recall that ui1 = vi1 and
ui2 = γvi1 + (1− γ)vi2 where vi1 and vi2 are independent and distributed uniformly in [0, 1]. Now
if vi1 ∈ [max(0, s1 − ε), s1] and vi2 ∈ [1− ε, 1], then

ui2 ≥ γ(s1 − ε) + (1− γ)(1− ε) = γs1 + (1− γ)− ε = s2.

Since s1 > 0, we see that Pr[ui1 ≤ s1 ∧ ui2 ≥ s2] = 0, a contradiction.

For the converse, suppose s2 ≥ s1γ+(1− γ). If ui1 ≤ s1, then ui2 = γvi1 +(1− γ)vi2 can exceed
s2 only when vi2 ≥ 1, which is a zero probability event.

We now complete the proof of Proposition L.8. Define

I := {p ∈ [0, 1] : s⋆2(p) ≥ γs⋆1(p) + 1− γ}.

Theorem L.4 shows that if I is non-empty, then it is a closed interval of [0, 1]. Assuming I is
non-empty, let it be of the form [0, p⋆] (in case I is empty, let p⋆ = 0). We now show that s⋆1(p) does
not vary with p when p < p⋆.

Fact L.10. Assuming p⋆ > 0, s⋆1(p) does not vary with p for p ∈ [0, p⋆]. If β ≥ 1 − (c1 + c2),
s⋆1(p) =

2(1−c)
1+1/β for all p ∈ [0, p⋆]. Further, s⋆2(p) is a strictly decreasing function of p ∈ [0, p⋆].
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Proof. Suppose p < p⋆. Then Fact L.9 shows that Pr[ui1 ≤ s1 ∧ ui2 ≥ s2] = 0. We show that

s⋆2,β(p) ≥ γs⋆1,β(p) + 1− γ

as well. Indeed, if s⋆2,β(p) = 1, this follows trivially. Hence, assume s⋆2,β(p) =
s⋆2(p)
β . Then

s⋆2,β(p) ≥
γs⋆1(p) + 1− γ

β
≥ s⋆1,β(p) + 1− γ.

It follows by Fact L.9 that Pr[ui′1 ≤ s1,β ∧ ui′2 ≥ s2,β ] = 0 also. Thus, (52) becomes:

Pr[ui1 ≥ s⋆1(p)] + Pr[ui′1 ≥ s⋆1,β(p)] = c1 + c2.

In other words,
(1− s⋆1(p)) + (1− s⋆1,β(p)) = c1 + c2.

First assume that s⋆1(p) ≥ β. Then the above equation has the solution:

s⋆1(p) = 1− (c1 + c2).

Thus s⋆1(p) does not vary with p. If β ≥ 1 − (c1 + c2), this case cannot occur. Thus, the above
equation becomes:

(1− s⋆1(p)) + (1− s⋆1(p)/β) = c1 + c2,

which has the solution:

s⋆1(p) =
2− (c1 + c2)

1 + 1/β
.

Thus, s⋆1(p) does not vary with p in [0, p⋆]. The fact that s⋆2(p) strictly decreases in this interval
follows from Corollary L.7.

Thus we have shown the statements in Proposition L.8 when p ∈ [0, p⋆]. We now show that s⋆1(p) is
a strictly increasing function of p for p > p⋆. We first need the following extension of Fact L.9:
Fact L.11. Consider s1 ∈ [0, 1] and s2, s′2 ∈ [0, 1] such that s2 < s′2 ≤ s1γ + (1 − γ). Then,
Pr[ui1 < s1 ∧ s2 ≤ ui2 < s′2] > 0.

Proof. First, consider the case when s′2 ≤ 1 − γ. Let ε > 0 be a small enough positive constant
(whose value will be fixed later). Suppose vi1 ∈ [0, ε

γ ] and vi2 ∈ [
s′2−2ε
1−γ ,

s′2−ε
1−γ ). Here ε is such

that ε
γ < s1,

s′2−2ε
1−γ ≥ s2. It is easy to verify that ui2 = γvi1 + (1 − γ)vi2 ∈ [s2, s

′
2). Thus,

Pr[ui1 < s1 ∧ s2 ≤ ui2 < s′2] > 0.

Now consider the case when s′2 > 1− γ. Express s′2 as αγ + (1− γ) for some α ≤ s1. A similar
argument as above applies with vi1 ∈ [α− ε, α] and vi2 ∈ [1− ε, 1).

Fact L.12. The threshold s⋆1(p) is a strictly increasing function of p for p ∈ [p⋆, 1].

Proof. Consider values p, p′ ∈ [p⋆, 1] and assume p < p′. Assume for the sake of contradiction that
s⋆1(p) = s⋆1(p

′). Let s⋆1 denote this common value. Constraint (52) can be expressed as:

Pr[ui1 ≥ s1] + Pr[ui1 < s1 ∧ ui2 ≥ s2] + Pr[ui′1 ≥ s1,β ] + Pr[ui′1 < s1,β ∧ ui′2 ≥ s2,β ] = c1 + c2.

Substituting (s⋆1, s
⋆
2(p)) and (s⋆1, s

⋆
2(p

′)), and equating the two equations, we get (let s⋆1,β denote
min(1, s⋆1/β)):

Pr[ui1 < s⋆1 ∧ ui2 ≥ s⋆2(p)] + Pr[ui′1 < s⋆1,β ∧ ui′2 ≥ s⋆2,β(p)]

= Pr[ui1 < s⋆1 ∧ ui2 ≥ s⋆2(p
′)] + Pr[ui′1 < s⋆1,β ∧ ui′2 ≥ s⋆2,β(p

′)].

We know from Theorem L.4 and Corollary L.7 that s⋆2(p) > s⋆2(p
′). Therefore, the above can be

written as:

Pr[ui1 < s⋆1 ∧ s⋆2(p′) ≤ ui2 < s⋆2(p)] + Pr[ui′1 < s⋆1,β ∧ s⋆2,β(p′) ≤ ui′2 < s⋆2,β(p)] = 0.

This implies that Pr[ui1 < s⋆1 ∧ s⋆2(p′) ≤ ui2 < s⋆2(p)] = 0, but this is a contradiction because
of Fact L.11. Thus, s⋆1(p) < s⋆1(p

′).
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We now show the last statement in Proposition L.8:
Fact L.13. The quantity p⋆ is strictly positive iff s⋆2(0) > γs⋆1(0) + (1− γ).

Proof. Suppose p⋆ > 0. Then 0 ∈ I and hence, s⋆2(0) ≥ γs⋆1(0) + (1− γ). Assume for the sake of
contradiction that s⋆2(0) = γs⋆1(0)+(1−γ). Let p ∈ (0, p⋆). We know from Theorem L.4 that s⋆2(p) ≤
s⋆2(0) and s⋆1(p) ≥ s⋆1(0), and at least one of these inequalities must be strict (using Corollary L.7).
But then s⋆2(p) < γs⋆1(p) + (1− γ), a contradiction. Therefore, s⋆2(0) > γs⋆1(0) + (1− γ).

For the converse, assume s⋆2(0) > γs⋆1(0) + (1− γ). Then continuity of s⋆1(p) and s⋆1(p) shows that
p⋆ > 0.

This completes the proof of Proposition L.8.

Calculating p⋆. Assume that s⋆2(0) > γs⋆1(0) + (1− γ). Then monotonicity of s⋆1(p) and s⋆2(p)
(using Theorem L.4) shows that p⋆ satisfies:

s⋆2(p
⋆) = γs⋆1(p

⋆) + (1− γ).

Now, Proposition L.8 shows that

s⋆2(p
⋆) =

γ(2− c1 − c2)

1 + 1/β
+ (1− γ). (56)

Since Pr[ui2 ≥ s⋆2(p
⋆) ∧ ui1 < s⋆1(p

⋆)] = 0 and similarly for i′, we can express Equation (51) as:

(1− p⋆)(Pr[ui2 ≥ s⋆2(p
⋆)] + Pr[ui′2 ≥ s⋆2,β(p

⋆)]) = c2.

Equation (56) shows that s⋆2(p
⋆) > 1− γ and hence, s⋆2,β(p

⋆) > 1− γ. Now, three cases arise:

• Here, s⋆2(p
⋆) ≥ γ. Then s⋆2,β(p

⋆) ≥ γ as well. Then, p⋆ is given by

1− p⋆ =
2c2γ(1− γ)

(1− s⋆2(p
⋆))2 + (1− s⋆2,β(p

⋆))2
.

• Here s⋆2(p
⋆) < γ but s⋆2,β(p

⋆) ≥ γ. Then, p⋆ is given by

1− p⋆ =
c2

(1−s⋆2(p
⋆))2

2γ(1−γ) + 1− s⋆2,β(p
⋆)

γ + 1−γ
2γ

.

• Here s⋆2,β < γ and hence s⋆2(p
⋆) < γ as well. Then, p⋆ is given by

1− p⋆ =
c2

2− s⋆2,β(p
⋆)+s⋆2(p

⋆)

γ + 1−γ
γ

.

So far, we have discussed the strict monotonicity properties of s⋆1(p). One can analogously show the
following lemma regarding the strict monotonicity of s⋆2(p). We omit the proof.
Proposition L.14 (Strict monotonicity of s⋆2 w.r.t. p). For any fixed values of the parameters c, β, γ,
there exists a value q⋆ ∈ [0, 1] such that s⋆2(p) is strictly decreasing for p ∈ [0, q⋆] and does not
vary with p for p ∈ (q⋆, 1]. Assuming q⋆ < 1, s⋆2(p) , p ∈ (q⋆, 1], is given by the following equation:
Pr[ui2 ≥ s2] + Pr[ui′2 ≥ s2,β ] = c1 + c2. Further, q⋆ < 1 iff γs⋆1(1) > s⋆2(1).

L.5 Numerical results on behavior across preference and correlation parameters

This section numerically examines how equilibrium quantities respond to changes in the candidate
preference parameter p and the evaluator correlation parameter γ. Figures 8–12 present four key
quantities across varying parameter settings: (i) the equilibrium thresholds s⋆1 and s⋆2, (ii) the
representation ratio R, (iii) the normalized representation ratio N , and (iv) the utilities U1 and U2

achieved by the two institutions. In addition, Figure 14 explores how fairness metrics vary with
evaluator correlation γ, for a fixed preference weight p and varying levels of group bias β.
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Effect of preference alignment (p). Figures 8–11 fix c = 0.2 and vary p for different values of β
and γ.

• In Figure 8 (β = 0.8, γ = 0.9), increased preference alignment with Institution 1
leads to widening disparity: s⋆1 rises, s⋆2 falls (consistent with Theorem L.4, Proposi-
tion L.8,Proposition L.14), and both R and N drop significantly monotonically. Institu-
tion 1’s utility rises with p, while Institution 2’s utility declines (both monotonically).

• In Figure 9 (β = 1.0, γ = 0.9), evaluations are unbiased. Representation ratios remain
flat at 1, and utilities vary symmetrically with p, highlighting fairness preservation under
bias-free conditions.

• Figure 10 (β = 1.0, γ = 0.0) shows a similar fairness pattern: no correlation and no
bias yield uniform thresholds and balanced utilities, with representation unaffected by
preferences.

• Figure 11 (β = 0.8, γ = 0.8) exhibits gradual threshold divergence and monotonic decline
in R and N , indicating compounding effects of preference, bias, and correlation.

Effect of selectivity increase. Figure 12 repeats the previous setting with c = 0.5, revealing
sharper phase transitions: R,N fall rapidly beyond a critical value of p, and the utility gap between
institutions grows more pronounced. This demonstrates how institutional capacity amplifies the effect
of bias under correlated evaluations.

Effect of correlation (γ). Figure 13 (for β = 0.8, p = 0.6) highlights the non-monotonic impact
of increasing γ. As the correlation grows:

• The selection threshold s⋆2(γ) initially decreases and then increases, resulting in a convex-
shaped utility curve for Institution 2, consistent with the behavior described in Theorem E.1.

• Both the representation ratio R(γ) and the normalized selection share N (γ) increase
monotonically, as established in Corollary 4.1. In addition, Figure 14 shows that for any
fixed γ and p, the representation ratio R(γ) and the normalized selection share N (γ)
increase monotonically with β – this pattern closely mirrors the trend observed in Figure 2.

First-choice ratio parameter. When p < 1, we can further define a fairness metric called the
first-choice ratio, denoted by F , which measures the relative likelihood that candidates from the two
groups receive their first-choice institution. Formally, for given parameters p, c, β, γ, let fj denote
the fraction of candidates from group Gj who are assigned their first-choice institution under the
stable assignment, i.e., given the stable matching thresholds (s⋆1, s

⋆
2),

fj := pPr[ûij1 ≥ s⋆1] + (1− p) Pr[ûij2 ≥ s⋆2],

where ij denotes a candidate from group Gj . Then, F := f2/f1. This metric was also studied in the
centralized selection setting by [16].

Figure 15 illustrates how F varies with p for different values of β and γ when c = 0.3. We find that
F is typically unimodal, attaining its maximum when p is near 1/2. At this point, the top-ranking
candidates from G1 are evenly distributed across both institutions, allowing a larger fraction of G2

candidates to secure their most preferred institution. As expected, increasing β reduces the bias
against G2 and consequently increases F .
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Figure 8: Variation of thresholds, representation ratio, normalized representation ratio and utilities
with p for a fixed value of c = 0.2, β = 0.8, and γ = 0.9.

Figure 9: Variation of thresholds, representation ratio, normalized reference ratio, and utilities with p
for a fixed value of c = 0.2, β = 1, and γ = 0.9.
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Figure 10: Variation of thresholds, representation ratio, normalized representation ratio, and utilities
with p for a fixed value of c = 0.2, β = 1, and γ = 0.

Figure 11: Variation of thresholds, representation ratio, normalized representation ratio, and utilities
with p for a fixed value of c = 0.2, β = 0.8, and γ = 0.8.
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Figure 12: Variation of thresholds, representation ratio, normalized representation ratio, and utilities
with p for a fixed value of c = 0.5, β = 0.8, and γ = 0.8.

Figure 13: Variation of thresholds, representation ratio, normalized representation ratio, and utilities
with γ for a fixed value of c = 0.2, β = 0.8, and p = 0.6.
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Figure 14: Variation of representation ratio R and normalized representation ratio N with γ for
different values of β ∈ {0.8, 0.85, 0.9, 0.95, 1.0} at fixed c = 0.2 and p = 0.6.

Figure 15: Variation of first choice ratio F with p for varying values of β and γ. The left panel uses
c = 0.2 and β = 0.9. The right panel uses γ = 0.8 and c = 0.3.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA] .

Justification: The paper does not release any model or dataset with a high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: No external assets (code or data) are used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: No new datasets or pre-trained models are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: Not applicable, as no human subjects are involved.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: LLMs were not used for core methodology development. Any LLM assistance
was limited to minor editing and formatting.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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