

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BOOSTING LATENT DIFFUSION MODELS VIA SEMANTIC-DISENTANGLED VAE

Anonymous authors

Paper under double-blind review

ABSTRACT

Latent Diffusion Models (LDMs) rely on image tokenizers, typically implemented as Variational Autoencoders (VAEs), to compress high-dimensional images into compact latent space, facilitating efficient generative modeling. We contend that VAEs trained solely on pixel-level reconstruction objective struggle to capture rich semantic information, which poses challenges for the modeling of downstream diffusion models. In this paper, we propose that a generation-friendly VAE should have the ability of semantic disentanglement, which means it can encode attribute-level semantic information more effectively. To address this, we introduce **Semantic-disentangled VAE** (Send-VAE), which leverages the rich semantic knowledge from pre-trained vision foundation models to improve the VAE’s ability to disentangle semantics. Specifically, we employ a sophisticated non-linear mapper network to transform VAE’s latent representations, then align them with the representations from vision foundation models. The mapper network is designed to bridge the representation gap between VAE and vision foundation models, thus facilitating effective guidance for VAE learning. Additionally, we implement linear probing on attribute prediction tasks to assess the VAE’s semantic disentanglement ability, demonstrating a strong correlation with downstream generation performance. Finally, utilizing on the proposed Send-VAE, we train popular flow-based transformers SiTs, and experimental results indicate that our proposed Send-VAE can significantly speed up SiT training and achieves a new state-of-the-art FID score of 1.21 and 1.75 with and without classifier free guidance on ImageNet 256 × 256 resolution.

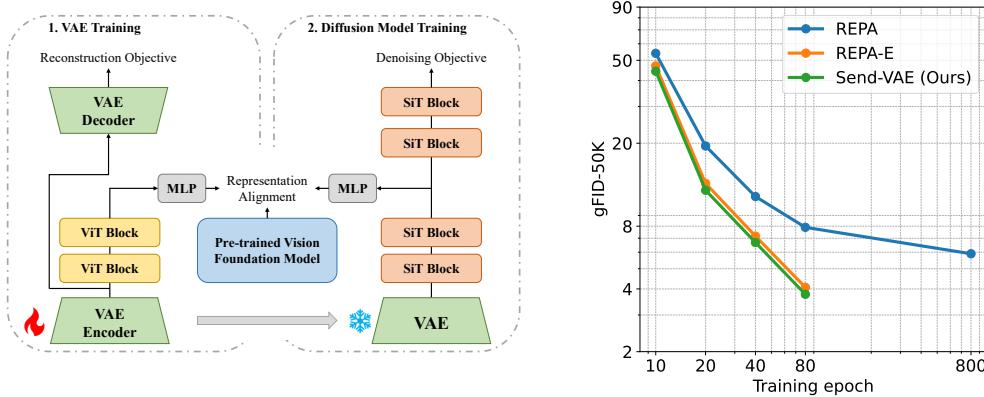


Figure 1: Our Send-VAE aligns the latent representation of VAEs with the semantically rich representation from pre-trained vision foundation models through a specialized mapper network. Unlike the direct alignment employed during diffusion model training, the mapper network can effectively bridge the representation gap, facilitating seamless injection of semantic information. Notably, the usage of Send-VAE results in significantly more efficient and effective training of diffusion models.

054
055
056
057

1 INTRODUCTION

058 Latent diffusion models (LDMs) Albergo & Vanden-Eijnden (2023); Rombach et al. (2022); Pee-
059 bles & Xie (2023); Ma et al. (2024) have recently achieved remarkable success in high-resolution
060 image synthesis, establishing new benchmarks in visual fidelity and detail. A critical component
061 of these models is the image tokenizer, which is often implemented using a variational autoen-
062 coder (VAE) Kingma & Welling (2013). The VAE compresses input images into structured latent
063 space, thereby reducing the computational demands associated with generating high-resolution im-
064 ages. The performance of the VAE directly influences both the training efficiency and the quality
065 of the output from downstream generation models. Despite its importance, the characteristics of a
066 generation-friendly VAE, which can facilitate effective learning of downstream generation models,
067 remain underexplored.068 Traditionally, VAE training emphasizes pixel-level reconstruction, often neglecting alignment with
069 generation objectives. Inspired by REPA Yu et al. (2025), recent studies on VAE Yao et al. (2025);
070 Chen et al. (2025a); Zha et al. (2025) primarily focusing on explicitly aligning the VAE’s latent rep-
071 resentation with the representation from large-scale, pre-trained visual foundation models such as
072 CLIP Radford et al. (2021) or DINOv2 Oquab et al. (2024). In contrast, REPA-E Leng et al. (2025)
073 extends REPA to an end-to-end joint training strategy through backpropagating the representation
074 alignment loss of diffusion transformers to VAE. Although these approaches have demonstrated
075 significant performance improvements in downstream generation tasks, there is still a lack of expla-
076 nation regarding what attributes make a VAE generation-friendly.077 Inspired by the analysis of 1D tokenizers in Beyer et al. (2025), we hypothesize that the semantic
078 disentanglement ability of VAE is the key factor, which makes the VAE can better encoder attribute-
079 level semantic information. To verify this hypothesis, we first conduct linear probing experiments on
080 attribute prediction benchmarks to measure the semantic disentanglement ability of various VAEs.
081 Strikingly, we observe a strong positive correlation between the linear separability of these attributes
082 within the VAE latent space and the generation quality achieved by the downstream diffusion model.
083 This compelling evidence suggests that the richness and accessibility of attribute-level semantic
084 information is a more fundamental characteristic of a VAE’s latent space, conducive to effective
085 diffusion modeling. Consequently, we advocate for the performance on these low-level attribute
086 prediction tasks via linear probing as a novel, more intrinsic metric for evaluating quality of VAE’s
087 latent space.088 Based on this observation, we propose semantic-disentangled VAE (Send-VAE), which leverages
089 the semantically rich representation from pre-trained vision foundation models to guide the learning
090 of VAE. Unlike previous attempts that directly align the VAE’s latent representation with those
091 from vision foundation models, we incorporate a sophisticated non-linear mapper network between
092 VAE and vision foundation models. Such a mapper network targets at bridging the representation
093 gap between VAE and vision foundation models, thus facilitating effective semantic injection to
094 enhance the semantic disentanglement ability of VAE. As shown in Fig. 1 right, when training
095 with flow-based transformers SiTs Ma et al. (2024), Send-VAE can significantly accelerate the SiT
096 training compared with REPA and achieves a new state-of-the-art FID score of 1.21 and 1.75 with
097 and without classifier-free guidance on ImageNet 256 \times 256 generation.

098 In summary, this paper makes the following key contributions:

099
100
101
102
103
104
105
106
107

- We propose a VAE with stronger semantic disentanglement ability tends to be a generation-friendly VAE, which can be verified by the strong correlation between linear probing performance on low-level attribute prediction tasks and downstream generation performance.
- To enhance the semantic disentanglement ability of VAE, we propose Send-VAE, a simple yet effective VAE training mechanism through aligning VAE’s latent space with vision foundation models using a sophisticated non-linear mapper network.
- Our Send-VAE can significantly accelerate the convergence of diffusion models and achieves a new state-of-the-art FID score on ImageNet 256x256 generation.

2 RELATED WORK

Tokenizers for Image Generation Image tokenizers are designed to transform high-dimension image inputs into more compact and structured latent representations, facilitating modeling by downstream generative models. These tokenizers can be broadly categorized into continuous and discrete types. Continuous tokenizers, exemplified by Variational Autoencoders (VAEs) Kingma & Welling (2013), are widely adopted in diffusion-based generation models Rombach et al. (2022); Peebles & Xie (2023); Ma et al. (2024); whereas discrete tokenizers, represented by VQGAN Esser et al. (2021), are commonly used in autoregressive (AR) generation models. However, as these tokenizers are typically trained with a pixel-level reconstruction objective, their latent spaces may not be well aligned with the requirements of generation tasks. To address this limitation, recent researches begin to incorporate semantic information into the training of image tokenizers, with the goal of learning latent spaces that are more suitable for generation. For instance, VA-VAE Yao et al. (2025) aligns the latent representations of VAE with pre-trained vision foundation models, significantly improving the generation performance of high-dimensional tokenizers while preserving their original reconstruction capabilities. Inspired by MAE He et al. (2022), MAETok Chen et al. (2025a) incorporates masked image modeling into tokenizer training and leverages multiple target features to learn a semantically rich latent space. Similar strategies have also been explored in discrete tokenizers Xiong et al. (2025); Li et al. (2025). Unlike these explicit alignment-based methods, REPA-E Leng et al. (2025) introduces a end-to-end joint training framework through backpropagating the representation alignment loss of diffusion transformers to VAE. Although REPA-E achieves notable performance gains, its straightforward joint training strategy leaves a fundamental question unanswered: what properties make a VAE well-suited for generation tasks? We propose that a generation-friendly VAE should possess strong semantic disentanglement ability. To this end, we leverage the semantically rich representation from pre-trained vision foundation models to guide the learning process of VAE.

Diffusion models for image generation. Diffusion models have emerged as a powerful class of generative models, formulating image synthesis as a progressive denoising process that transforms Gaussian noise into realistic images. Early methods such as DDPM Ho et al. (2020) and DDIM Song et al. (2021) operate directly in the pixel space, requiring numerous iterative steps for high-fidelity generation. To improve efficiency, latent diffusion models (LDMs) Rombach et al. (2022) compress images into a lower-dimensional latent space using pre-trained autoencoders, enabling faster and more scalable training. Most early diffusion models Nichol & Dhariwal (2021); Rombach et al. (2022) adopt U-Net architectures for noise prediction, while recent advances explore transformer-based designs Peebles & Xie (2023); Ma et al. (2024) to better capture long-range dependencies. In addition to architectural improvements, recent studies have explored leveraging pretrained visual representations to enhance the efficiency and performance of diffusion models, enabling better feature representation and faster convergence. For instance, MaskDiT Zheng et al. (2024) and SD-DiT Zhu et al. (2024) adopt training paradigms from MAE He et al. (2022) and iBOT Zhou et al. to enhance feature learning within the Diffusion Transformer (DiT) framework. REPA Yu et al. (2025) aligns the latent features of a diffusion model with those from a frozen, high-capacity encoder pretrained on large-scale external data, thereby regularizing the generative process. Building upon this idea, SARA Chen et al. (2025b) further introduces structural and adversarial alignment objectives, while SoftREPA Lee et al. (2025) extends the framework to multimodal settings by aligning noisy image representations with soft text embeddings. To avoid reliance on additional pretrained visual models, Dispersive Loss Wang & He (2025) encourages internal representations to disperse in the hidden space, and demonstrates that representation regularization alone can effectively enhance generative modeling. These works explore representation learning of the denoising network within a fixed latent space, while overlooking the representation learning of the VAE.

3 METHOD

In this section, we provide a comprehensive introduction to the design of Send-VAE. We begin by analyzing the behavior of three publicly available VAEs including VA-VAE (f16d32) Yao et al. (2025), E2E-VAE Leng et al. (2025), and IN-VAE Leng et al. (2025). We observe that there is a strong correlation between the performance of linear probing on attribute prediction tasks and the downstream generation performance. Based on the analysis, we hypothesize that a generative-

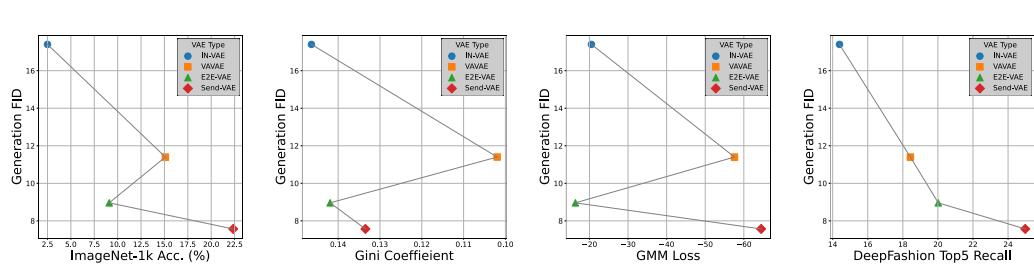


Figure 2: We conduct experiments with three recently proposed evaluation methods for VAE latent space, and show their correlation with down stream generation performance (g-FID). Experimental results on four VAEs with identical specifications indicate that these metrics do not accurately reflect the impact of VAEs on downstream generative performance. Conversely, we find that the ability of VAEs regarding low-level attributes is the key factor.

friendly VAE necessitates a strong semantic disentanglement capability. Thus, we propose Send-VAE, which injects semantic information into VAE through the use of pre-trained vision foundation models. Finally, we regard linear probing on attribute prediction tasks as a measurement of the VAE’s semantic disentanglement capability and verify the effectiveness of our Send-VAE.

3.1 OBSERVATIONS

To answer the question of what characteristics should a generative-friendly VAE possess, we first investigate the behavior of VAE latent space using three recently proposed evaluation methods, including semantic gap Yu et al. (2025), latent space uniformity Yao et al. (2025), and latent space discrimination Chen et al. (2025a). For semantic gap, the linear probing on ImageNet classification is adopted following REPA Yu et al. (2025). Next, for latent space uniformity, we calculate Gini coefficients of data point distribution using kernel density estimation (KDE) as done in VA-VAE Yao et al. (2025). As for latent space discrimination, we fit a Gaussian mixture model (GMM) into the latent space following MAETok Chen et al. (2025a). We include three publicly available VAEs: VA-VAE (f16d32) Yao et al. (2025), E2E-VAE Leng et al. (2025), IN-VAE Leng et al. (2025) and our Send-VAE, with the final results shown in Fig 2.

The uniformity and discrimination of latent space are not directly correlated with generation performance. As shown in Fig 2, we observe that while VA-VAE shows improved uniformity and enhanced downstream generation performance compared with IN-VAE, such a conclusion does not hold true for E2E-VAE. A similar situation also occurs in the evaluation of latent space discrimination. We argue that these metrics only partially reflect the impact of VAEs on generation performance, and cannot accurately describe the characteristics of a generation-friendly VAE.

The semantic disentanglement ability is the key factor. Aligning the hidden states of a diffusion model with pretrained vision foundation models is first proposed in REPA Yu et al. (2025) to reduce the semantic gap between them, which has been proven to accelerate the convergence of diffusion models. As for VAEs, we can observe that while directly injecting semantic information can improve generation performance partially (VA-VAE achieves significant performance gains compared with IN-VAE), it is not a necessary requirement for a generation-friendly VAE considering the further performance gains achieved by E2E-VAE. Motivated by the observation in Beyer et al. (2025), we hypothesize that the semantic disentanglement ability of VAE is the key factor and conduct linear probing on attribute prediction tasks to verify it. As show in Fig 2 right, strong correlation between generation performance and the linear probing performance can be observed, which verifies our hypothesis. Meanwhile, our Send-VAE can achieve more powerful semantic disentanglement ability, thus resulting in better generation performance.

3.2 SEMANTIC DISENTANGLED VAE

Based on the above hypothesis, we try to enhance the semantic disentanglement ability of VAE and propose our Send-VAE. Specifically, Send-VAE utilizes a sophisticated non-linear mapper network to transform the latent representations of VAE, and aligns the patch-wise transformed representa-

216 tions with pre-trained vision foundation models. Different from the simple multilayer perceptron
 217 (MLP) used in VA-VAE and REPA, our mapper network consists of a patch embedding layer, a
 218 stack of vision transformer (ViT) Dosovitskiy et al. (2021) layers, and the final MLP projector. The
 219 reason for this is the difference between the training objectives of vision foundation models and
 220 VAEs, which leads to a substantial representation gap. Therefore, compared with direct alignment,
 221 a sophisticated non-linear mapper network is designed to mitigate the representation gap and enable
 222 effective knowledge distillation from semantically rich visual representations to VAE. The overall
 223 framework is shown in Fig 1.

224 Formally, given a clean image \mathbf{x} , let \mathbf{z} be the latent representation of \mathbf{x} output by VAE \mathcal{V}_θ , f be a
 225 frozen vision foundation model, and $\mathbf{y} = f(\mathbf{x}) \in \mathbb{R}^{N \times D}$ is the encoded representation of \mathbf{x} , where
 226 N, D are the number of patches and the embedding dimension of f , respectively. Following the
 227 noise injection mechanism of SiT Ma et al. (2024), PE-VAE first inject random Gaussian noise into
 228 \mathbf{z} and get \mathbf{z}_t , where t is the time step. Then, the mapper network h_ϕ is applied to transform \mathbf{z}_t into
 229 $h_\phi(\mathbf{z}_t)$, and the alignment loss can be calculated using patch-wise cosine similarity between $h_\phi(\mathbf{z}_t)$
 230 and $f(\mathbf{x})$:

$$231 \quad \mathcal{L}_{\text{align}} = \frac{1}{N} \sum_{n=1}^N \left(1 - \frac{h_\phi(\mathbf{z}_t)^{[n]} \cdot f(\mathbf{x})^{[n]}}{\|h_\phi(\mathbf{z}_t)^{[n]}\| \|f(\mathbf{x})^{[n]}\|} \right), \quad (1)$$

234 where n is the patch index.

235 In practice, we use $\mathcal{L}_{\text{align}}$ to finetune a pre-trained VAE for fast convergence. And the original VAE
 236 training loss function \mathcal{L}_{VAE} used in AI (n.d.), is also included, which consists of reconstruction losses
 237 (\mathcal{L}_{MSE} , $\mathcal{L}_{\text{LPIPS}}$), GAN loss (\mathcal{L}_{GAN}) and KL divergence loss \mathcal{L}_{KL} . Thus, the overall training objective
 238 can be formulated as:

$$240 \quad \mathcal{L}(\theta, \phi) = \lambda_{\text{align}} \mathcal{L}_{\text{align}} + \mathcal{L}_{\text{VAE}}, \quad (2)$$

242 where θ and ϕ refer to the parameters of VAE and mapper network.

245 4 EXPERIMENTS

247 In this section, we conduct comprehensive experiments on the ImageNet dataset Deng et al. (2009)
 248 at 256x256 resolution to validate the design choices of Send-VAE, and benchmark its generation
 249 performance to demonstrate its superiority over existing approaches.

252 4.1 IMPLEMENTATION DETAILS

253 We follow the same set up as in REPA-E Leng et al. (2025) unless otherwise specified. All training
 254 is conducted on the training split of ImageNet Deng et al. (2009). The data preprocessing proto-
 255 col is same as in ADM Dhariwal & Nichol (2021) including center-crop and resizing to 256x256
 256 resolution.

257 **For VAE training**, we train 80 epoch with a global batch size of 1024, AdamW Loshchilov & Hutter
 259 (2019) optimizer is adopted and the learning rate is set to 3.0×10^{-4} . As for the initialization, we ex-
 260 periment with publicly available VAEs, including SD-VAE (f8d4) Rombach et al. (2022), VA-VAE
 261 (f16d32) Yao et al. (2025), and IN-VAE (f16d32), which is trained on ImageNet following Rombach
 262 et al. (2022). Experimentally, we choose VA-VAE as the default setting. As for alignment loss $\mathcal{L}_{\text{align}}$,
 263 we use DINOv2 Oquab et al. (2024) as the vision foundation model, and λ_{align} is set to 1.0.

264 **For diffusion models**, we choose SiT-XL/1 and SiT-XL/2 for VAEs with 4x and 16x downsampling
 265 rates, respectively, where 1 and 2 denote the patch sizes in the transformer embedding layer. We train
 266 either 80 epoch or 800 epoch with a global batch size of 256, and gradient clipping and exponential
 267 moving average (EMA) are applied stable optimization. The learning rate is set to 1.0×10^{-4} and
 268 AdamW optimizer is used. REPA loss is also included following the setting in Yu et al. (2025).

269 **For sampling**, the SDE Euler-Maruyama sampler is used, the number of function evaluations (NFE)
 270 is set to 250 by default and the cfg scale is set to 2.5

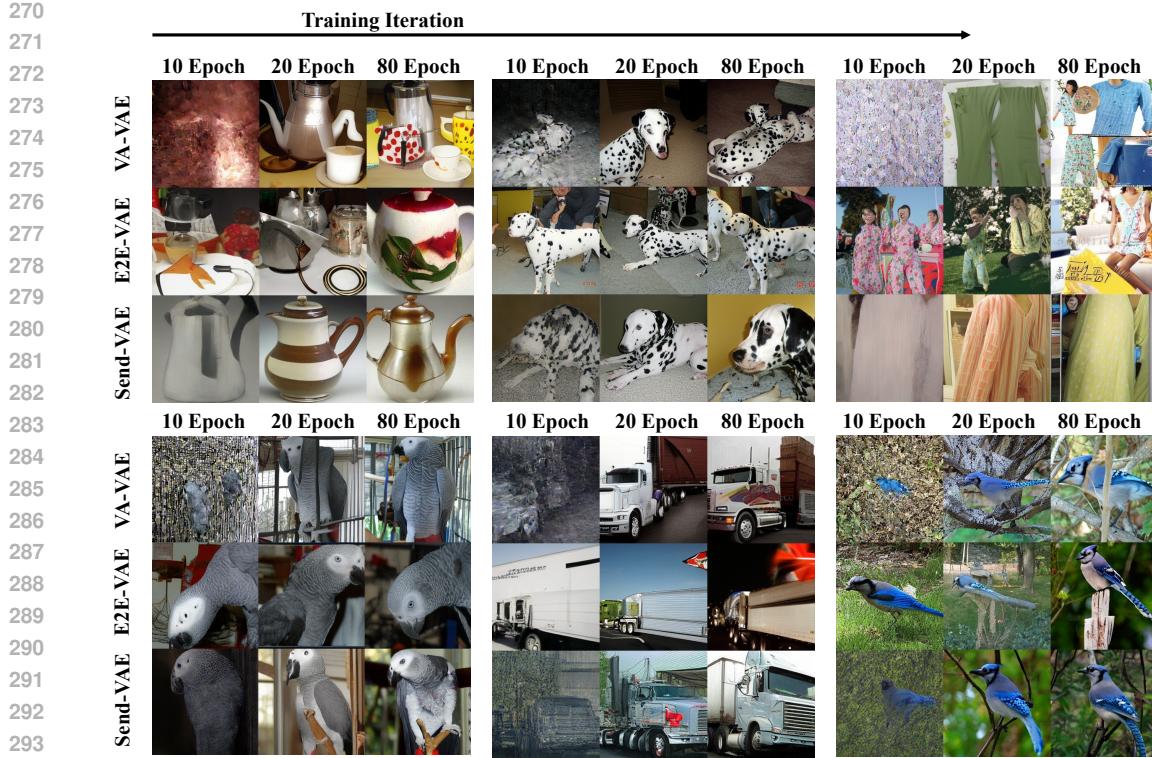


Figure 3: Qualitative comparisons among VA-VAE, E2E-VAE, and Send-VAE. Results for both methods are sampled using the same seed, noise and class label. The classifier-free guidance scale is set to 4.0.

4.2 EVALUATION METRICS

For image generation evaluation, we strictly follow the ADM setup Dhariwal & Nichol (2021). Generation quality is assessed using Fréchet Inception Distance (gFID) Heusel et al. (2017), Structural FID (sFID) Nash et al. (2021), Inception Score (IS) Salimans et al. (2016), Precision, and Recall Kynkäanniemi et al. (2019), computed on 50K generated samples. For sampling, we adopt the SDE Euler–Maruyama solver with 250 steps, following the protocols of REPA Yu et al. (2025) and REPA-E Leng et al. (2025). For VAE evaluation, we report reconstruction FID (rFID) on 50K validation images from ImageNet at 256×256 resolution.

4.3 SYSTEM-LEVEL COMPARISON ON IMAGENET 256x256 GENERATION

To verify the effectiveness of Send-VAE, we conduct system-level comparison on ImageNet 256x256 conditional and unconditional generation and present the results in Table 1. As we can see, using the same vision foundation model DINOv2, Send-VAE can achieve notable performance gains compared with E2E-VAE and set a new state-of-the-art generation FID score of 1.21 and 1.75 with and without classifier free guidance on ImageNet 256x256 generation. These results highly demonstrate the effectiveness of enhance the semantic disentanglement ability of VAE. Meanwhile, we can notice that Send-VAE can significantly speed up the convergence of diffusion models, evidenced by the superior generation performance (narrowing the gFID score from 3.46 to 2.88 for unconditional generation) when training with only 80 epoch. These results demonstrate that Send-VAE is a generation-friendly VAE, which can facilitate the learning of diffusion models. Meanwhile, some qualitative results are shown in Fig.1 using Send-VAE and SiT-XL/1.

As for reconstruction, we observe that the reconstruction performance of Send-VAE is slightly inferior to that of VA-VAE. We attribute this to the semantic disentangled latent space of Send-VAE, which prevents it from capturing excessive fine-grained low-level details.

324
 325 Table 1: System-level comparison on ImageNet 256x256 conditional and unconditional generation.
 326 Our Send-VAE can significant accelerate the convergence of diffusion models, which achieves a
 327 gFID socre of 2.88/1.41 wo/w classifier-free guidance for only 80 epoch of training. Although the
 328 performance gap between Send-VAE and E2E-VAE is narrowing when training longer, Send-VAE
 329 still achieves further improvements.

Tokenizer	Method	Training Epoch	#params	rFID	Generation w/o CFG			Generation w/ CFG		
					gFID	sFID	IS	Prec. Rec.	gFID	sFID
AutoRegressive (AR)										
MaskGiT	MaskGIT Chang et al. (2022)	555	227M	2.28	6.18	-	182.1	0.80	0.51	-
VQGAN	LlamaGen Sun et al. (2024)	300	3.1B	0.59	9.38	8.24	112.9	0.69	0.67	2.18
VQVAE	VAR Tian et al. (2024)	350	2.0B	-	-	-	-	-	-	1.80
LFQ tokenizers	MagViT-v2 Yu et al. (2024)	1080	307M	1.50	3.65	-	200.5	-	-	1.78
LDM	MAR Li et al. (2024)	800	945M	0.53	2.35	-	227.8	0.79	0.62	1.55
Latent Diffusion Models (LDM)										
SD-VAE Rombach et al. (2022)	MaskDiT Zheng et al. (2024)	1600	675M		5.69	10.34	177.9	0.74	0.60	2.28
	DiT Peebles & Xie (2023)	1400	675M		9.62	6.85	121.5	0.67	0.67	2.27
	SiT Ma et al. (2024)	1400	675M		8.61	6.32	131.7	0.68	0.67	2.06
	FastDiT Yao et al. (2024)	400	675M	0.61	7.91	5.45	131.3	0.67	0.69	2.03
	MDT Gao et al. (2023a)	1300	675M		6.23	5.23	143.0	0.71	0.65	1.79
	MDTv2 Gao et al. (2023b)	1080	675M		-	-	-	-	-	1.58
	REPA Yu et al. (2025)	800	675M		5.90	5.73	157.8	0.70	0.69	1.42
VA-VAE Yao et al. (2025)	LightingDiT Yao et al. (2025)	80	675M	0.28	4.29	-	-	-	-	-
		800	675M	0.28	2.17	4.36	205.6	0.77	0.65	1.35
MAETok Chen et al. (2025a)	LightingDiT Yao et al. (2025)	800	675M	0.48	2.21	-	208.3	-	-	1.73
E2E-VAE Leng et al. (2025)	REPA Yu et al. (2025)	80	675M	0.28	3.46	4.17	159.8	0.77	0.63	1.67
		800	675M	0.28	1.83	4.22	217.3	0.77	0.66	1.26
Send-VAE	REPA Yu et al. (2025)	80	675M	0.31	2.88	4.67	175.3	0.78	0.62	1.41
		800	675M	0.31	1.75	4.41	218.57	0.79	0.64	1.21
										4.10
										315.1
										0.79
										0.66

352
 353 Table 2: Ablation on the depth of mapper network.

Depth	gFID↓	sFID↓	IS↑	Prec.↑	Rec.↑
0	9.20	7.06	104.2	0.73	0.57
1	8.42	5.05	108.3	0.74	0.60
2	9.47	5.33	100.4	0.73	0.60

363 Besides, we also provide qualitative comparisons among VA-VAE, E2E-VAE and Send-VAE in Fig 3
 364 We generates images from the same label and initial noise using checkpoints trained by 10 epoch,
 365 20 epoch, and 80 epoch, respectively. As we can see, training diffusion models using Send-VAE
 366 demonstrate superior image generation quality compared to VA-VAE and E2E-VAE. Meanwhile,
 367 Send-VAE can significantly speed up the training process of diffusion models, evidenced by the
 368 more structurally meaningful images during early stages of training process. Some visualization
 369 results are presented in Fig 4 to show that training diffusion models with Send-VAE can generate
 370 high-quality images.

371
 372 4.4 ABLATION STUDIES

373 In this section, we provide detailed ablation studies to demonstrate the effectiveness of each design
 374 in Send-VAE. Unless otherwise specified, we train a SiT-B/1 with REPA loss for 80 epoch, and
 375 report the downstream unconditional generation performance.

376 **Ablation on Depth of Mapper Network.** We ablate the depth of our proposed mapper network to
 377 analyze its impact on downstream generation performance. As shown in Table 3, a mapper with one

354
 355 Table 3: Ablation on noise injection.

Noise Injection	gFID↓	sFID↓	IS↑	Prec.↑	Rec.↑
✗	8.42	5.05	108.3	0.74	0.60
✓	7.57	5.37	115.3	0.74	0.60

395 Figure 4: Qualitative Results on ImageNet 256 × 256 using Send-VAE and SiT-XL.
396397 Table 4: Ablation on different vision foundation models (VFM)
398

VFM	gFID \downarrow	sFID \downarrow	IS \uparrow	Prec. \uparrow	Rec. \uparrow
CLIP	9.85	5.59	100.8	0.71	0.62
I-JEPA	9.70	5.40	102.9	0.72	0.60
DINOv2	7.57	5.37	115.3	0.74	0.60
DINOv3	7.16	5.57	125.3	0.75	0.58

409 layer of ViT achieves the best performance (gFID=8.42), outperforming both shallower (0 layer) and
410 deeper (2 layer) configurations. We argue that the insufficient capacity of shallow mapper fails to
411 bridge the representation gap between VAE and visual foundation models, resulting in a decrease in
412 the semantic disentanglement ability of VAE. While for the deeper one, it weaken the foundational
413 model’s impacts on VAE due to the stronger fitting capability. Such experimental results demonstrate
414 the necessity of employing a mapper network to bridge representation gap, which can facilitate
415 effective semantic injection.

416 **Ablation on Injecting Noise to Latent Representations.** Table 3 presents the ablation results
417 of injecting noise to latent representations. As we can see, injecting noise during the alignment
418 process can bring significant performance gains. We attribute its effectiveness to a form of data
419 augmentation, which ensures that even with noise injected, the latent representation extracted by
420 the VAE retains rich disentangled semantic information, making it better suited for the denoising
421 process of the downstream diffusion model.

422 **Ablation on Vision Foundation Models.** We also investigate the influence of vision foundation
423 models and present the ablation results in Table 2. Specifically, we include four types of vision foun-
424 dation models, including CLIP Radford et al. (2021), I-JEPA Assran et al. (2023), DINOv2 Oquab
425 et al. (2024), and DINOv3 Siméoni et al. (2025). As we can see, regardless of the type of vision
426 foundation models, adding $\mathcal{L}_{\text{align}}$ consistently improve the generation performance of diffusion mod-
427 els. Among them, the DINO family (DINOv2 and DINOv3) achieves the best performance, which
428 is consistent with the findings of REPA and REPA-E. We argue that the object-centric features of
429 DINO can more effectively facilitate the VAE in learning a semantic disentangled latent space, thus
430 resulting in superior generation performance.

431 **Ablation on the Initialization of VAE.** To demonstrate the generalization of our method to vari-
432 ous VAE initialization, we conducted experiments on three commonly used VAEs, including SD-

432
433
434
435
436
437
438
439
440
441
442
443
444
445
Table 5: Ablation on the Initialization of VAE.

VAE Initialization	gFID \downarrow	sFID \downarrow	IS \uparrow	Prec. \uparrow	Rec. \uparrow
SD-VAE	21.41	5.30	65.0	0.62	0.63
+ $\mathcal{L}_{\text{align}}$	11.86	5.25	95.2	0.73	0.58
IN-VAE	17.43	5.93	72.7	0.64	0.63
+ $\mathcal{L}_{\text{align}}$	8.25	4.68	105.2	0.74	0.60
VA-VAE	11.40	6.58	93.5	0.71	0.59
+ $\mathcal{L}_{\text{align}}$	7.57	5.37	115.3	0.74	0.60

VAE AI (n.d.), IN-VAE Leng et al. (2025) and VA-VAE Yao et al. (2025). The results are shown in Table. 1. As we can see, across all variations, our $\mathcal{L}_{\text{align}}$ can consistently improves final generation performance, which demonstrates that insensitivity of our method to the VAE initialization.

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1

486 REFERENCES
487488 Stability AI. Improved autoencoders ... <https://huggingface.co/stabilityai/sd-vae-ft-mse>, n.d. Accessed: April 11, 2025.
489490 Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
491 interpolants. In *The Eleventh International Conference on Learning Representations*, 2023. URL
492 <https://openreview.net/forum?id=li7qeBbCR1t>.
493494 Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
495 Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
496 predictive architecture. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
497 *Pattern Recognition*, pp. 15619–15629, 2023.498 L Lao Beyer, Tianhong Li, Xinlei Chen, Sertac Karaman, and Kaiming He. Highly compressed
499 tokenizer can generate without training. *arXiv preprint arXiv:2506.08257*, 2025.
500501 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
502 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
503 *recognition*, pp. 11315–11325, 2022.504 Hao Chen, Yujin Han, Fangyi Chen, Xiang Li, Yidong Wang, Jindong Wang, Ze Wang, Zicheng Liu,
505 Difan Zou, and Bhiksha Raj. Masked autoencoders are effective tokenizers for diffusion models.
506 In *Forty-second International Conference on Machine Learning*, 2025a.
507508 Hesen Chen, Junyan Wang, Zhiyu Tan, and Hao Li. Sara: Structural and adversarial representation
509 alignment for training-efficient diffusion models. *arXiv preprint arXiv:2503.08253*, 2025b.
510511 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
512 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
513 pp. 248–255. Ieee, 2009.514 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
515 *in neural information processing systems*, 34:8780–8794, 2021.
516517 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
518 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
519 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
520 tion at scale. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.
521522 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
523 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
524 tion*, pp. 12873–12883, 2021.
525526 Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer
527 is a strong image synthesizer. In *Proceedings of the IEEE/CVF international conference on com-
528 puter vision*, pp. 23164–23173, 2023a.529 Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Mdtv2: Masked diffusion trans-
530 former is a strong image synthesizer. *arXiv preprint arXiv:2303.14389*, 2023b.
531532 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
533 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
534 *vision and pattern recognition*, pp. 16000–16009, 2022.535 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
536 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
537 *neural information processing systems*, 30, 2017.
538539 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
540 *neural information processing systems*, 33:6840–6851, 2020.

540 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 541 *arXiv:1312.6114*, 2013.

542

543 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 544 precision and recall metric for assessing generative models. *Advances in neural information*
 545 *processing systems*, 32, 2019.

546

547 Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Attribute-based classification for
 548 zero-shot visual object categorization. *IEEE transactions on pattern analysis and machine intel-*
 549 *ligence*, 36(3):453–465, 2013.

549

550 Jaa-Yeon Lee, Byunghee Cha, Jeongsol Kim, and Jong Chul Ye. Aligning text to image in diffusion
 551 models is easier than you think. *arXiv preprint arXiv:2503.08250*, 2025.

552

553 Xingjian Leng, Jaskirat Singh, Yunzhong Hou, Zhenchang Xing, Saining Xie, and Liang Zheng.
 554 Repa-e: Unlocking vae for end-to-end tuning with latent diffusion transformers. *arXiv preprint*
 555 *arXiv:2504.10483*, 2025.

555

556 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
 557 generation without vector quantization. *Advances in Neural Information Processing Systems*, 37:
 558 56424–56445, 2024.

559

560 Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Jiuxiang Gu, Bhiksha Raj, and Zhe Lin. Imagefolder:
 561 Autoregressive image generation with folded tokens. In *The Thirteenth International Confer-*
 562 *ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=QE1LFzXQPL>.

563

564 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 565 In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.

566

567 Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. Deepfashion: Powering robust
 568 clothes recognition and retrieval with rich annotations. In *Proceedings of IEEE Conference on*
569 Computer Vision and Pattern Recognition (CVPR), June 2016.

570

571 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-*
572 ence on Learning Representations, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

572

573 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
 574 ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 575 transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer, 2024.

576

577 Charlie Nash, Jacob Menick, Sander Dieleman, and Peter Battaglia. Generating images with sparse
 578 representations. In *International Conference on Machine Learning*, pp. 7958–7968. PMLR, 2021.

579

580 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 581 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

582

583 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
 584 dov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran,
 585 Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
 586 Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick
 587 Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features with-
 588 out supervision. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 589 <https://openreview.net/forum?id=a68SUt6zFt>. Featured Certification.

590

591 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
592 the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

593

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 594 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 595 models from natural language supervision. In *International conference on machine learning*, pp.
 596 8748–8763. PMLR, 2021.

594 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 595 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 596 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

597

598 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 599 Improved techniques for training gans. *Advances in neural information processing systems*, 29,
 600 2016.

601 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 602 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamorjisoa, et al. Dinov3. *arXiv
 603 preprint arXiv:2508.10104*, 2025.

604 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 605 national Conference on Learning Representations*, 2021. URL [https://openreview.net/
 606 forum?id=St1giarCHLP](https://openreview.net/forum?id=St1giarCHLP).

607

608 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 609 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint
 610 arXiv:2406.06525*, 2024.

611 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 612 Scalable image generation via next-scale prediction. *Advances in neural information processing
 613 systems*, 37:84839–84865, 2024.

614 Runqian Wang and Kaiming He. Diffuse and disperse: Image generation with representation regu-
 615 larization. *arXiv preprint arXiv:2506.09027*, 2025.

616

617 Tianwei Xiong, Jun Hao Liew, Zilong Huang, Jiashi Feng, and Xihui Liu. Gigatok: Scaling
 618 visual tokenizers to 3 billion parameters for autoregressive image generation. *arXiv preprint
 619 arXiv:2504.08736*, 2025.

620 Jingfeng Yao, Cheng Wang, Wenyu Liu, and Xinggang Wang. Fasterdit: Towards faster diffusion
 621 transformers training without architecture modification. *Advances in Neural Information Pro-
 622 cessing Systems*, 37:56166–56189, 2024.

623 Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization
 624 dilemma in latent diffusion models. In *Proceedings of the Computer Vision and Pattern Recog-
 625 nition Conference*, pp. 15703–15712, 2025.

626

627 Lijun Yu, Jose Lezama, Nitesh Bharadwaj Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen,
 628 Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, Boqing Gong, Ming-Hsuan
 629 Yang, Irfan Essa, David A Ross, and Lu Jiang. Language model beats diffusion - tokenizer is
 630 key to visual generation. In *The Twelfth International Conference on Learning Representations*,
 631 2024. URL <https://openreview.net/forum?id=gzqrANCF4g>.

632 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
 633 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
 634 than you think. In *The Thirteenth International Conference on Learning Representations*, 2025.
 635 URL <https://openreview.net/forum?id=DJSZGGZYVi>.

636

637 Kaiwen Zha, Lijun Yu, Alireza Fathi, David A Ross, Cordelia Schmid, Dina Katabi, and Xiuye Gu.
 638 Language-guided image tokenization for generation. In *Proceedings of the Computer Vision and
 639 Pattern Recognition Conference*, pp. 15713–15722, 2025.

640 Hongkai Zheng, Weili Nie, Arash Vahdat, and Anima Anandkumar. Fast training of diffusion models
 641 with masked transformers. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856.
 642 URL <https://openreview.net/forum?id=VTBjBtGioE>.

643 Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. Image
 644 bert pre-training with online tokenizer. In *International Conference on Learning Representations*.

645 Rui Zhu, Yingwei Pan, Yehao Li, Ting Yao, Zhenglong Sun, Tao Mei, and Chang Wen Chen. Sd-dit:
 646 Unleashing the power of self-supervised discrimination in diffusion transformer. In *Proceedings
 647 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8435–8445, 2024.

648
649

A APPENDIX

650
651

A.1 LLM USAGE

652
653
654

LLMs are only used to meticulously refine the draft by correcting grammatical errors and improving sentence fluency. During the conceptualization and research design phases of the paper, we do not rely on LLMs; all research ideas and innovations are independently developed by our team.

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701