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ABSTRACT

Latent Diffusion Models (LDMs) rely on image tokenizers, typically implemented
as Variational Autoencoders (VAEs), to compress high-dimensional images into
compact latent space, facilitating efficient generative modeling. We contend that
VAEs trained solely on pixel-level reconstruction objective struggle to capture
rich semantic information, which poses challenges for the modeling of down-
stream diffusion models. In this paper, we propose that a generation-friendly VAE
should have the ability of semantic disentanglement, which means it can encode
attribute-level semantic information more effectively. To address this, we intro-
duce Semantic-disentangled VAE (Send-VAE), which leverages the rich seman-
tic knowledge from pre-trained vision foundation models to improve the VAE’s
ability to disentangle semantics. Specifically, we employ a sophisticated non-
linear mapper network to transform VAE’s latent representations, then align them
with the representations from vision foundation models. The mapper network is
designed to bridge the representation gap between VAE and vision foundation
models, thus facilitating effective guidance for VAE learning. Additionally, we
implement linear probing on attribute prediction tasks to assess the VAE’s seman-
tic disentanglement ability, demonstrating a strong correlation with downstream
generation performance. Finally, utilizing on the proposed Send-VAE, we train
popular flow-based transformers SiTs, and experimental results indicate that our
proposed Send-VAE can significantly speed up SiT training and achieves a new
state-of-the-art FID score of 1.21 and 1.75 with and without classifier free guid-
ance on ImageNet 256 × 256 resolution.
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Figure 1: Our Send-VAE aligns the latent representation of VAEs with the semantically rich repre-
sentation from pre-trained vision foundation models through a specialized mapper network. Unlike
the direct alignment employed during diffusion model training, the mapper network can effectively
bridge the representation gap, facilitating seamless injection of semantic information. Notably, the
usage of Send-VAE results in significantly more efficient and effective training of diffusion models.
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1 INTRODUCTION

Latent diffusion models (LDMs) Albergo & Vanden-Eijnden (2023); Rombach et al. (2022); Pee-
bles & Xie (2023); Ma et al. (2024) have recently achieved remarkable success in high-resolution
image synthesis, establishing new benchmarks in visual fidelity and detail. A critical component
of these models is the image tokenizer, which is often implemented using a variational autoen-
coder (VAE) Kingma & Welling (2013). The VAE compresses input images into structured latent
space, thereby reducing the computational demands associated with generating high-resolution im-
ages. The performance of the VAE directly influences both the training efficiency and the quality
of the output from downstream generation models. Despite its importance, the characteristics of a
generation-friendly VAE, which can facilitate effective learning of downstream generation models,
remain underexplored.

Traditionally, VAE training emphasizes pixel-level reconstruction, often neglecting alignment with
generation objectives. Inspired by REPA Yu et al. (2025), recent studies on VAE Yao et al. (2025);
Chen et al. (2025a); Zha et al. (2025) primarily focusing on explicitly aligning the VAE’s latent rep-
resentation with the representation from large-scale, pre-trained visual foundation models such as
CLIP Radford et al. (2021) or DINOv2 Oquab et al. (2024). In contrast, REPA-E Leng et al. (2025)
extends REPA to an end-to-end joint training strategy through backpropagating the representation
alignment loss of diffusion transformers to VAE. Although these approaches have demonstrated
significant performance improvements in downstream generation tasks, there is still a lack of expla-
nation regarding what attributes make a VAE generation-friendly.

Inspired by the analysis of 1D tokenizers in Beyer et al. (2025), we hypothesize that the semantic
disentanglement ability of VAE is the key factor, which makes the VAE can better encoder attribute-
level semantic information. To verify this hypothesis, we first conduct linear probing experiments on
attribute prediction benchmarks to measure the semantic disentanglement ability of various VAEs.
Strikingly, we observe a strong positive correlation between the linear separability of these attributes
within the VAE latent space and the generation quality achieved by the downstream diffusion model.
This compelling evidence suggests that the richness and accessibility of attribute-level semantic
information is a more fundamental characteristic of a VAE’s latent space, conducive to effective
diffusion modeling. Consequently, we advocate for the performance on these low-level attribute
prediction tasks via linear probing as a novel, more intrinsic metric for evaluating quality of VAE’s
latent space.

Based on this observation, we propose semantic-disentangled VAE (Send-VAE), which leverages
the semantically rich representation from pre-trained vision foundation models to guide the learning
of VAE. Unlike previous attempts that directly align the VAE’s latent representation with those
from vision foundation models, we incorporate a sophisticated non-linear mapper network between
VAE and vision foundation models. Such a mapper network targets at bridging the representation
gap between VAE and vision foundation models, thus facilitating effective semantic injection to
enhance the semantic disentanglement ability of VAE. As shown in Fig. 1 right, when training
with flow-based transformers SiTs Ma et al. (2024), Send-VAE can significantly accelerate the SiT
training compared with REPA and achieves a new state-of-the-art FID score of 1.21 and 1.75 with
and without classifier-free guidance on ImageNet 256 × 256 generation.

In summary, this paper makes the following key contributions:

• We propose a VAE with stronger semantic disentanglement ability tends to be a generation-
friendly VAE, which can be verified by the strong correlation between linear probing performance
on low-level attribute prediction tasks and downstream generation performance.

• To enhance the semantic disentanglement ability of VAE, we propose Send-VAE, a simple yet
effective VAE training mechanism through aligning VAE’s latent space with vision foundation
models using a sophisticated non-linear mapper network.

• Our Send-VAE can significantly accelerate the convergence of diffusion models and achieves a
new state-of-the-art FID score on ImageNet 256x256 generation.
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2 RELATED WORK

Tokenizers for Image Generation Image tokenizers are designed to transform high-dimension im-
age inputs into more compact and structured latent representations, facilitating modeling by down-
stream generative models. These tokenizers can be broadly categorized into continuous and discrete
types. Continuous tokenizers, exemplified by Variational Autoencoders (VAEs) Kingma & Welling
(2013), are widely adopted in diffusion-based generation models Rombach et al. (2022); Peebles
& Xie (2023); Ma et al. (2024); whereas discrete tokenizers, represented by VQGAN Esser et al.
(2021), are commonly used in autoregressive (AR) generation models. However, as these tokenizers
are typically trained with a pixel-level reconstruction objective, their latent spaces may not be well
aligned with the requirements of generation tasks. To address this limitation, recent researches begin
to incorporate semantic information into the training of image tokenizers, with the goal of learning
latent spaces that are more suitable for generation. For instance, VA-VAE Yao et al. (2025) aligns the
latent representations of VAE with pre-trained vision foundation models, significantly improving the
generation performance of high-dimensional tokenizers while preserving their original reconstruc-
tion capabilities. Inspired by MAE He et al. (2022), MAETok Chen et al. (2025a) incorporates
masked image modeling into tokenizer training and leverages multiple target features to learn a se-
mantically rich latent space. Similar strategies have also been explored in discrete tokenizers Xiong
et al. (2025); Li et al. (2025). Unlike these explicit alignment-based methods, REPA-E Leng et al.
(2025) introduces a end-to-end joint training framework through backpropagating the representation
alignment loss of diffusion transformers to VAE. Although REPA-E achieves notable performance
gains, its straightforward joint training strategy leaves a fundamental question unanswered: what
properties make a VAE well-suited for generation tasks? We propose that a generation-friendly
VAE should possess strong semantic disentanglement ability. To this end, we leverage the semanti-
cally rich representation from pre-trained vision foundation models to guide the learning process of
VAE.

Diffusion models for image generation. Diffusion models have emerged as a powerful class of
generative models, formulating image synthesis as a progressive denoising process that transforms
Gaussian noise into realistic images. Early methods such as DDPM Ho et al. (2020) and DDIM Song
et al. (2021) operate directly in the pixel space, requiring numerous iterative steps for high-fidelity
generation. To improve efficiency, latent diffusion models (LDMs)Rombach et al. (2022) compress
images into a lower-dimensional latent space using pre-trained autoencoders, enabling faster and
more scalable training. Most early diffusion modelsNichol & Dhariwal (2021); Rombach et al.
(2022) adopt U-Net architectures for noise prediction, while recent advances explore transformer-
based designs Peebles & Xie (2023); Ma et al. (2024) to better capture long-range dependencies.
In addition to architectural improvements, recent studies have explored leveraging pretrained vi-
sual representations to enhance the efficiency and performance of diffusion models, enabling better
feature representation and faster convergence. For instance, MaskDiT Zheng et al. (2024) and SD-
DiT Zhu et al. (2024) adopt training paradigms from MAE He et al. (2022) and iBOT Zhou et al. to
enhance feature learning within the Diffusion Transformer (DiT) framework. REPA Yu et al. (2025)
aligns the latent features of a diffusion model with those from a frozen, high-capacity encoder pre-
trained on large-scale external data, thereby regularizing the generative process. Building upon this
idea, SARA Chen et al. (2025b) further introduces structural and adversarial alignment objectives,
while SoftREPA Lee et al. (2025) extends the framework to multimodal settings by aligning noisy
image representations with soft text embeddings. To avoid reliance on additional pretrained visual
models, Dispersive Loss Wang & He (2025) encourages internal representations to disperse in the
hidden space, and demonstrates that representation regularization alone can effectively enhance gen-
erative modeling. These works explore representation learning of the denoising network within a
fixed latent space, while overlooking the representation learning of the VAE.

3 METHOD

In this section, we provide a comprehensive introduction to the design of Send-VAE. We begin
by analyzing the behavior of three publicly available VAEs including VA-VAE (f16d32) Yao et al.
(2025), E2E-VAE Leng et al. (2025), and IN-VAE Leng et al. (2025). We observe that there is
a strong correlation between the performance of linear probing on attribute prediction tasks and
the downstream generation performance. Based on the analysis, we hypothesize that a generative-
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Figure 2: We conduct experiments with three recently proposed evaluation methods for VAE latent
space, and show their correlation with down stream generation performance (g-FID). Experimental
results on four VAEs with identical specifications indicate that these metrics do not accurately reflect
the impact of VAEs on downstream generative performance. Conversely, we find that the ability of
VAEs regarding low-level attributes is the key factor.

friendly VAE necessitates a strong semantic disentanglement capability. Thus, we propose Send-
VAE, which injects semantic information into VAE through the use of pre-trained vision foundation
models. Finally, we regard linear probing on attribute prediction tasks as a measurement of the
VAE’s semantic disentanglement capability and verify the effectiveness of our Send-VAE.

3.1 OBSERVATIONS

To answer the question of what characteristics should a generative-friendly VAE possess, we first
investigate the behavior of VAE latent space using three recently proposed evaluation methods,
including semantic gap Yu et al. (2025), latent space uniformity Yao et al. (2025), and latent space
discrimination Chen et al. (2025a). For semantic gap, the linear probing on ImageNet classification
is adopted following REPA Yu et al. (2025). Next, for latent space uniformity, we calculate Gini
coefficients of data point distribution using kernel density estimation (KDE) as done in VA-VAE Yao
et al. (2025). As for latent space discrimination, we fit a Gaussian mixture model (GMM) into the
latent space following MAETok Chen et al. (2025a). We include three publicly available VAEs:
VA-VAE (f16d32) Yao et al. (2025), E2E-VAE Leng et al. (2025), IN-VAE Leng et al. (2025) and
our Send-VAE, with the final results shown in Fig 2.

The uniformity and discrimination of latent space are not directly correlated with generation
performance. As shown in Fig 2, we observe that while VA-VAE shows improved uniformity
and enhanced downstream generation performance compared with IN-VAE, such a conclusion does
not hold true for E2E-VAE. A similar situation also occurs in the evaluation of latent space dis-
crimination. We argue that these metrics only partially reflect the impact of VAEs on generation
performance, and cannot accurately describe the characteristics of a generation-friendly VAE.

The semantic disentanglement ability is the key factor. Aligning the hidden states of a diffusion
model with pretrained vision foundation models is first proposed in REPA Yu et al. (2025) to reduce
the semantic gap between them, which has been proven to accelerate the convergence of diffusion
models. As for VAEs, we can observe that while directly injecting semantic information can improve
generation performance partially (VA-VAE achieves significant performance gains compared with
IN-VAE), it is not a necessary requirement for a generation-friendly VAE considering the further
performance gains achieved by E2E-VAE. Motivated by the observation in Beyer et al. (2025),
we hypothesize that the semantic disentanglement ability of VAE is the key factor and conduct
linear probing on attribute prediction tasks to verify it. As show in Fig 2 right, strong correlation
between generation performance and the linear probing performance can be observed, which verifies
our hypothesis. Meanwhile, our Send-VAE can achieve more powerful semantic disentanglement
ability, thus resulting in better generation performance.

3.2 SEMANTIC DISENTANGLED VAE

Based on the above hypothesis, we try to enhance the semantic disentanglement ability of VAE and
propose our Send-VAE. Specifically, Send-VAE utilizes a sophisticated non-linear mapper network
to transform the latent representations of VAE, and aligns the patch-wise transformed representa-
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tions with pre-trained vision foundation models. Different from the simple multilayer perceptron
(MLP) used in VA-VAE and REPA, our mapper network consists of a patch embedding layer, a
stack of vision transformer (ViT) Dosovitskiy et al. (2021) layers, and the final MLP projector. The
reason for this is the difference between the training objectives of vision foundation models and
VAEs, which leads to a substantial representation gap. Therefore, compared with direct alignment,
a sophisticated non-linear mapper network is designed to mitigate the representation gap and enable
effective knowledge distillation from semantically rich visual representations to VAE. The overall
framework is shown in Fig 1.

Formally, given a clean image x, let z be the latent representation of x output by VAE Vθ, f be a
frozen vision foundation model, and y = f(x) ∈ RN×D is the encoded representation of x, where
N,D are the number of patches and the embedding dimension of f , respectively. Following the
noise injection mechanism of SiT Ma et al. (2024), PE-VAE first inject random Gaussian noise into
z and get zt, where t is the time step. Then, the mapper network hϕ is applied to transform zt into
hϕ(zt), and the alignment loss can be calculated using patch-wise cosine similarity between hϕ(zt)
and f(x):

Lalign =
1

N

N∑
n=1

(1− hϕ(zt)
[n] · f(x)[n]

∥hϕ(zt)[n]∥∥f(x)[n]∥
), (1)

where n is the patch index.

In practice, we use Lalign to finetune a pre-trained VAE for fast convergence. And the original VAE
training loss function LVAE used in AI (n.d.), is also included, which consists of reconstruction losses
(LMSE, LLPIPS), GAN loss (LGAN ) and KL divergence loss LKL. Thus, the overall training objective
can be formulated as:

L(θ, ϕ) = λalignLalign + LVAE, (2)

where θ and ϕ refer to the parameters of VAE and mapper network.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments on the ImageNet dataset Deng et al. (2009)
at 256×256 resolution to validate the design choices of Send-VAE, and benchmark its generation
performance to demonstrate its superiority over existing approaches.

4.1 IMPLEMENTATION DETAILS

We follow the same set up as in REPA-E Leng et al. (2025) unless otherwise specified. All training
is conducted on the training split of ImageNet Deng et al. (2009). The data preprocessing proto-
col is same as in ADM Dhariwal & Nichol (2021) including center-crop and resizing to 256x256
resolution.

For VAE training, we train 80 epoch with a global batch size of 1024, AdamW Loshchilov & Hutter
(2019) optimizer is adopted and the learning rate is set to 3.0×10−4. As for the initialization, we ex-
periment with publicly available VAEs, including SD-VAE (f8d4) Rombach et al. (2022), VA-VAE
(f16d32) Yao et al. (2025), and IN-VAE (f16d32), which is trained on ImageNet following Rombach
et al. (2022). Experimentally, we choose VA-VAE as the default setting. As for alignment loss Lalign,
we use DINOv2 Oquab et al. (2024) as the vision foundation model, and λalign is set to 1.0.

For diffusion models, we choose SiT-XL/1 and SiT-XL/2 for VAEs with 4× and 16× downsampling
rates, respectively, where 1 and 2 denote the patch sizes in the transformer embedding layer. We train
either 80 epoch or 800 epoch with a global batch size of 256, and gradient clipping and exponential
moving average (EMA) are applied stable optimization. The learning rate is set to 1.0 × 10−4 and
AdamW optimizer is used. REPA loss is also included following the setting in Yu et al. (2025).

For sampling, the SDE Euler-Maruyama sampler is used, the number of function evaluations (NFE)
is set to 250 by default and the cfg scale is set to 2.5
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Figure 3: Qualitative comparisons among VA-VAE, E2E-VAE, and Send-VAE. Results for both
methods are sampled using the same seed, noise and class label. The classifier-free guidance scale
is set to 4.0.

4.2 EVALUATION METRICS

For image generation evaluation, we strictly follow the ADM setup Dhariwal & Nichol (2021).
Generation quality is assessed using Fréchet Inception Distance (gFID) Heusel et al. (2017), Struc-
tural FID (sFID) Nash et al. (2021), Inception Score (IS) Salimans et al. (2016), Precision, and
Recall Kynkäänniemi et al. (2019), computed on 50K generated samples. For sampling, we adopt
the SDE Euler–Maruyama solver with 250 steps, following the protocols of REPA Yu et al. (2025)
and REPA-E Leng et al. (2025). For VAE evaluation, we report reconstruction FID (rFID) on 50K
validation images from ImageNet at 256×256 resolution.

4.3 SYSTEM-LEVEL COMPARISON ON IMAGENET 256X256 GENERATION

To verify the effectiveness of Send-VAE, we conduct system-level comparison on ImageNet
256x256 conditional and unconditional generation and present the results in Table 1. As we can
see, using the same vision foundation model DINOV2, Send-VAE can achieve notable performance
gains compared with E2E-VAE and set a new state-of-the-art generation FID score of 1.21 and 1.75
with and without classifier free guidance on ImageNet 256x256 generation. These results highly
demonstrate the effectiveness of enhance the semantic disentanglement ability of VAE. Meanwhile,
we can notice that Send-VAE can significantly speed up the convergence of diffusion models, ev-
idenced by the superior generation performance (narrowing the gFID score from 3.46 to 2.88 for
unconditional generation) when training with only 80 epoch. These results demonstrate that Send-
VAE is a generation-friendly VAE, which can facilitate the learning of diffusion models. Meanwhile,
some qualitative results are shown in Fig.1 using Send-VAE and SiT-XL/1.

As for reconstruction, we observe that the reconstruction performance of Send-VAE is slightly in-
ferior to that of VA-VAE. We attribute this to the semantic disentangled latent space of Send-VAE,
which prevents it from capturing excessive fine-grained low-level details.
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Table 1: System-level comparison on ImageNet 256x256 conditional and unconditional generation.
Our Send-VAE can significant accelerate the convergence of diffusion models, which achieves a
gFID socre of 2.88/1.41 wo/w classifier-free guidance for only 80 epoch of training. Although the
performance gap between Send-VAE and E2E-VAE is narrowing when training longer, Send-VAE
still achieves further improvements.

Tokenizer Method
Training

Epoch
#params rFID

Generation w/o CFG Generation w/ CFG

gFID sFID IS Prec. Rec. gFID sFID IS Prec. Rec.

AutoRegressive (AR)

MaskGiT MaskGIT Chang et al. (2022) 555 227M 2.28 6.18 - 182.1 0.80 0.51 - - - - -

VQGAN LlamaGen Sun et al. (2024) 300 3.1B 0.59 9.38 8.24 112.9 0.69 0.67 2.18 5.97 263.3 0.81 0.58

VQVAE VAR Tian et al. (2024) 350 2.0B - - - - - - 1.80 - 365.4 0.83 0.57

LFQ tokenizers MagViT-v2 Yu et al. (2024) 1080 307M 1.50 3.65 - 200.5 - - 1.78 - 319.4 - -

LDM MAR Li et al. (2024) 800 945M 0.53 2.35 - 227.8 0.79 0.62 1.55 - 303.7 0.81 0.62

Latent Diffusion Models (LDM)

SD-VAE Rombach et al. (2022)

MaskDiT Zheng et al. (2024) 1600 675M

0.61

5.69 10.34 177.9 0.74 0.60 2.28 5.67 276.6 0.80 0.61

DiT Peebles & Xie (2023) 1400 675M 9.62 6.85 121.5 0.67 0.67 2.27 4.60 278.2 0.83 0.57

SiT Ma et al. (2024) 1400 675M 8.61 6.32 131.7 0.68 0.67 2.06 4.50 270.3 0.82 0.59

FastDiT Yao et al. (2024) 400 675M 7.91 5.45 131.3 0.67 0.69 2.03 4.63 264.0 0.81 0.60

MDT Gao et al. (2023a) 1300 675M 6.23 5.23 143.0 0.71 0.65 1.79 4.57 283.0 0.81 0.61

MDTv2 Gao et al. (2023b) 1080 675M - - - - - 1.58 4.52 314.7 0.79 0.65

REPA Yu et al. (2025) 800 675M 5.90 5.73 157.8 0.70 0.69 1.42 4.70 305.7 0.80 0.65

VA-VAE Yao et al. (2025) LightingDiT Yao et al. (2025)
80 675M 0.28 4.29 - - - - - - - - -

800 675M 0.28 2.17 4.36 205.6 0.77 0.65 1.35 4.15 295.3 0.79 0.65

MAETok Chen et al. (2025a) LightingDiT Yao et al. (2025) 800 675M 0.48 2.21 - 208.3 - - 1.73 - 308.4 - -

E2E-VAE Leng et al. (2025) REPA Yu et al. (2025)
80 675M

0.28
3.46 4.17 159.8 0.77 0.63 1.67 4.12 266.3 0.80 0.63

800 675M 1.83 4.22 217.3 0.77 0.66 1.26 4.11 314.9 0.79 0.66

Send-VAE REPA Yu et al. (2025)
80 675M

0.31
2.88 4.67 175.3 0.78 0.62 1.41 4.41 301.7 0.79 0.65

800 675M 1.75 4.41 218.57 0.79 0.64 1.21 4.10 315.1 0.79 0.66

Table 2: Ablation on the depth of mapper network.

Depth gFID↓ sFID↓ IS↑ Prec.↑ Rec.↑

0 9.20 7.06 104.2 0.73 0.57

1 8.42 5.05 108.3 0.74 0.60

2 9.47 5.33 100.4 0.73 0.60

Table 3: Ablation on noise injection.

Noise
Injection gFID↓ sFID↓ IS↑ Prec.↑ Rec.↑

✗ 8.42 5.05 108.3 0.74 0.60

✓ 7.57 5.37 115.3 0.74 0.60

Besides, we also provide qualitative comparisons among VA-VAE, E2E-VAE and Send-VAE in Fig 3
We generates images from the same label and initial noise using checkpoints trained by 10 epoch,
20 epoch, and 80 epoch, respectively. As we can see, training diffusion models using Send-VAE
demonstrate superior image generation quality compared to VA-VAE and E2E-VAE. Meanwhile,
Send-VAE can significantly speed up the training process of diffusion models, evidenced by the
more structurally meaningful images during early stages of training process. Some visualization
results are presented in Fig 4 to show that training diffusion models with Send-VAE can generate
high-quality images.

4.4 ABLATION STUDIES

In this section, we provide detailed ablation studies to demonstrate the effectiveness of each design
in Send-VAE. Unless otherwise specified, we train a SiT-B/1 with REPA loss for 80 epoch, and
report the downstream unconditional generation performance.

Ablation on Depth of Mapper Network. We ablate the depth of our proposed mapper network to
analyze its impact on downstream generation performance. As shown in Table 3, a mapper with one
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Figure 4: Qualitative Results on ImageNet 256 × 256 using Send-VAE and SiT-XL.

Table 4: Ablation on different vision foundation models (VFMs)

VFMs gFID↓ sFID↓ IS↑ Prec.↑ Rec.↑

CLIP 9.85 5.59 100.8 0.71 0.62

I-JEPA 9.70 5.40 102.9 0.72 0.60

DINOv2 7.57 5.37 115.3 0.74 0.60

DINOv3 7.16 5.57 125.3 0.75 0.58

layer of ViT achieves the best performance (gFID=8.42), outperforming both shallower (0 layer) and
deeper (2 layer) configurations. We argue that the insufficient capacity of shallow mapper fails to
bridge the representation gap between VAE and visual foundation models, resulting in a decrease in
the semantic disentanglement ability of VAE. While for the deeper one, it weaken the foundational
model’s impacts on VAE due to the stronger fitting capability. Such experimental results demonstrate
the necessity of employing a mapper network to bridge representation gap, which can facilitate
effective semantic injection.

Ablation on Injecting Noise to Latent Representations. Table 3 presents the ablation results
of injecting noise to latent representations. As we can see, injecting noise during the alignment
process can bring significant performance gains. We attribute its effectiveness to a form of data
augmentation, which ensures that even with noise injected, the latent representation extracted by
the VAE retains rich disentangled semantic information, making it better suited for the denoising
process of the downstream diffusion model.

Ablation on Vision Foundation Models. We also investigate the influence of vision foundation
models and present the ablation results in Table 2. Specifically, we include four types of vision foun-
dation models, including CLIP Radford et al. (2021), I-JEPA Assran et al. (2023), DINOv2 Oquab
et al. (2024), and DINOv3 Siméoni et al. (2025). As we can see, regardless of the type of vision
foundation models, adding Lalign consistently improve the generation performance of diffusion mod-
els. Among them, the DINO family (DINOv2 and DINOv3) achieves the best performance, which
is consistent with the findings of REPA and REPA-E. We argue that the object-centric features of
DINO can more effectively facilitate the VAE in learning a semantic disentangled latent space, thus
resulting in superior generation performance.

Ablation on the Initialization of VAE. To demonstrate the generalization of our method to vari-
ous VAE initialization, we conducted experiments on three commonly used VAEs, including SD-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Ablation on the Initialization of VAE.

VAE Initialization gFID↓ sFID↓ IS↑ Prec.↑ Rec.↑

SD-VAE 21.41 5.30 65.0 0.62 0.63

+Lalign 11.86 5.25 95.2 0.73 0.58

IN-VAE 17.43 5.93 72.7 0.64 0.63

+Lalign 8.25 4.68 105.2 0.74 0.60

VA-VAE 11.40 6.58 93.5 0.71 0.59

+Lalign 7.57 5.37 115.3 0.74 0.60

VAE AI (n.d.), IN-VAE Leng et al. (2025) and VA-VAE Yao et al. (2025). The results are shown in
Table. 1. As we can see, across all variations, our Lalign can consistently improves final generation
performance, which demonstrates that insensitiveness of our method to the VAE initialization.

4.5 MEASUREMENT OF SEMANTIC DISENTANGLEMENT ABILITY

To give a system-level measurement of semantic disentanglement capability, we adopt linear prob-
ing on attribute prediction benchmarks across distinct domains to measure the semantic disentangle-
ment ability of various VAEs. Specifically, three attribute prediction benchmarks are used to ensure
a comprehensive evaluation, including CelebA Liu et al. (2015), DeepFashion Liu et al. (2016) and
AwA Lampert et al. (2013). We conduct linear probing on the flattened latent representation from
VAE encoder and show the results in Table 6. As we can see, among all benchmarks, the perfor-
mance of attribute prediction is positively correlated with the down-stream generation performance.
These results strongly support our hypothesis, and making the linear probing on attribute prediction
task a suitable metric to evaluate the goodness of a VAE for diffusion. Meanwhile, we observe
that Send-VAE can significantly enhance the semantic disentanglement ability of VAE and achieve
superior generation performance.

Table 6: System-level measurement of semantic disentanglement ability of various VAEs. F1 score
is adopted for all benchmarks.

Benchmarks IN-VAE VA-VAE E2E-VAE Send-VAE

CelebA 0.6222 0.6347 0.6439 0.6647

DeepFasion 0.0786 0.1094 0.1177 0.1385

AwA 0.5567 0.5948 0.6441 0.6623

gFID 17.43 11.40 8.96 7.57

5 CONCLUSION

In this paper, we try to answer the question: what properties make a VAE generation-friendly. We
hypothesize that the semantic disentanglement ability of VAE is the key factor, which is verified by
the strong correlation between the linear separability of low-level attributes within VAE latent space
and the generation performance. This prompts us to utilize the rich semantic representation from
pre-trained vision foundation models to enhance the semantic disentanglement ability of VAE. In
detail, we propose Send-VAE through aligning the VAE latent representations with those from pre-
trained vision foundation models with the use of a sophisticated non-linear mapper network. Such
a mapper can bridge the representation gap between VAE and foundation models, thus facilitating
effective semantic injection. Experimental results on ImageNet 256x256 generation indicate that
our Send-VAE can significantly speed up the training of diffusion models and achieve a new state-
of-the-art generation performance.
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A APPENDIX

A.1 LLM USAGE

LLMs are only used to meticulously refine the draft by correcting grammatical errors and improving
sentence fluency. During the conceptualization and research design phases of the paper, we do not
rely on LLMs; all research ideas and innovations are independently developed by our team.
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