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ABSTRACT

Current test- or compression-time adaptation image compression (TTA-IC) ap-
proaches, which leverage both latent and decoder refinements as a two-step adap-
tation scheme, have potentially enhanced the rate-distortion (R-D) performance
of learned image compression models on cross-domain compression tasks, e.g.,
from natural to screen content images. However, compared with the emergence
of various decoder refinement variants, the latent refinement, as an inseparable
ingredient, is barely tailored to cross-domain scenarios. To this end, we aim to
develop an advanced latent refinement method by extending the effective hybrid
latent refinement (HLR) method, which is designed for in-domain inference im-
provement but shows noticeable degradation of the rate cost in cross-domain tasks.
Specifically, we first provide theoretical analyses, in a cue of marginalization ap-
proximation from in- to cross-domain scenarios, to uncover that the vanilla HLR
suffers from an underlying mismatch between refined Gaussian conditional and
hyperprior distributions, leading to deteriorated joint probability approximation of
marginal distribution with increased rate consumption. To remedy this issue, we
introduce a simple Bayesian approximation-endowed distribution regularization
to encourage learning a better joint probability approximation in a plug-and-play
manner. Extensive experiments on six in- and cross-domain datasets demonstrate
that our proposed method not only improves the R-D performance compared with
other latent refinement counterparts, but also can be flexibly integrated into existing
TTA-IC methods with incremental benefits. Our code is available at

1 INTRODUCTION

With rapid developments in data streaming techniques, fruitful high-resolution images need to be
transmitted online between edge devices. It is therefore imperative to develop more efficient, effective,
and versatile image compression approaches for better storage and transmission. To this end, we have
witnessed learning-based image compression (LIC) methods (Ballé et al., 2016; 2018; Cheng et al.,
2020; Kim et al., 2024) significantly outperform conventional codecs, such as VVC (Bross et al.,
2021) and JPEG (Wallace, 1991) for rate-distortion (R-D) performance. Such gains mainly derive
from the unprecedented non-linear transform capacity of deep neural networks (DNN) and accurate
probability representations for entropy coding in an end-to-end R-D cost-guided learning framework.

Nevertheless, these DNN-based LIC approaches inevitably inherit the identically and independently
distributed (i.i.d.) assumption between the source (training data) and target (testing data) domains,
which may not always hold in versatile image compression scenarios, e.g., there is a significant
distribution gap between natural and screen content images. Compared with in-domain compression
(i.e., i.i.d. assumption holds), such domain shifts would deteriorate the R-D performance of DNN-
based codecs in cross-domain compression. For example, most advanced LIC models leverage a
hyperprior-based entropy framework (Ballé et al., 2018), where the hyperprior model extracts the
side information z of the latent variable y to capture Gaussian conditional probability p(y|z) for
coding, and the side information is coding by the hyperprior probability p(z) learned from entropy
bottleneck. In cross-domain scenarios, the discrepancy in statistical property between source and
target domains will cause inaccuracy or ineffectiveness of learned probability models (Ulhaq & Bajić,
2024), leading to suboptimal entropy coding with additional bit consumption. Moreover, it is difficult
for a source-trained decoder to render high-fidelity target images due to domain shifts.
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Figure 1: Comparison of various la-
tent refinement methods under cross-
domain tasks (SIQAD screen content
dataset). The Cheng20 (Cheng et al.,
2020) (quality= 0, pre-trained on nat-
ural images) model is used.

To this end, it is necessary to conduct a test- or compression-
time adaptation for image compression (TTA-IC). One ap-
proach (Zou et al., 2021) is to update the decoder of the
entropy model, which involves the transmission of adapted
parameters to the decoder side. Although recent parameter-
efficient transfer learning-based (Hu et al., 2021) exten-
sions (Shen et al., 2023) reduce the huge bitrate overhead
of parameter transmission to an acceptable level, the entropy
optimization of updated parameters and extra bit consumption
are still troublesome. Another promising approach (Djelouah
& Schroers, 2019) is to directly refine the latent variables
without altering any model parameters. Compared with the
first approach, such a branch is still effective for many special-
ized neural decoders, where model parameters are hard-coded
and non-modified (Dass et al., 2023).

Here, we focus on the second approach, i.e., latent refinement, due to its simple optimization, friendly
bitrate, and natural immunity to catastrophic forgetting. Some state-of-the-art (SOTA) TTA-IC
methods (Campos et al., 2019; Shen et al., 2023) actually have introduced basic latent refinement
(BLR) (Djelouah & Schroers, 2019) into their two-step adaptation framework including latent
and decoder refinements, e.g., updating the latent variable y by R-D objective. Yet, the Gaussian
conditional probability p(y|z) and hyperprior p(z) are still inaccurate without refining the side
information z, leading to suboptimal cross-domain R-D performance. A potential solution may be
hybrid latent refinement (HLR) (Yang et al., 2020) that conducts a joint update of latent variable y and
side information z. Although the vanilla HLR, tailored to in-domain inference improvement, exhibits
better R-D performance compared with BLR in in-domain TTA-IC tasks (Yang et al., 2020), it suffers
from a significant downside in rate cost while enhancing the reconstruction quality in cross-domain
scenarios, as depicted in Figure 1. This degradation in rate cost is, however, ignored by existing
two-step TTA-IC approaches (Lv et al., 2023; Tsubota et al., 2023; Shen et al., 2023) that directly
impose the vanilla HLR as their inseparable ingredient.

Motivated by the abovementioned analyses, this study aims to develop an advanced latent refinement
method that can be adaptive to cross-domain TTA-IC with consistent R-D gains. Such a scheme can
not only render better latent representations with zero model update and transmission but also enhance
the R-D performance of existing SOTA TTA-IC approaches as an effective alternative to existing
latent refinement. With these goals in mind, we propose to tailor the vanilla HLR method designed
for in-domain inference improvement to cross-domain cases. To achieve this, a theoretical analysis,
in a cue of marginalization approximation from in- to cross-domain scenarios, is provided to reveal
the degradation reasons of the vanilla HLR in the cross-domain scenario. In a nutshell, we uncover
that the underlying mismatch between refined Gaussian conditional and hyperprior distributions may
trigger the deteriorated joint probability approximation of marginal distribution, leading to increased
rate consumption. To remedy this issue, we introduce a novel distribution regularization to the
existing R-D objective, which encourages learning a better joint probability approximation from a
theoretical perspective. Moreover, we impose a Bayesian approximation of the proposed distribution
regularization to circumvent any model modification in a plug-and-play manner. Experiments on in-
and cross-domain tasks demonstrate that our proposed method surpasses other latent refinements
approaches and contributes to SOTA TTA-IC models. Our contributions are summarized as follows.

• To the best of our knowledge, we are the first to reveal the degradation reasons of advanced LIC
and corresponding latent refinement methods in a marginalization approximation perspective.

• We propose a Bayesian approximation-endowed distribution regularization to encourage learning a
better joint probability approximation in a plug-and-play manner.

• The experimental results demonstrate our proposed method not only surpasses existing latent
refinement counterparts but also can be integrated into SOTA TTA-IC methods.

2 RELATED WORKS

Various TTA approaches have been proposed to tackle distribution shifts at test time. For instance,
Wang et al. (2020) introduced TENT that updates normalization statistics and optimizes channel-wise
affine transformations. Niu et al. (2022) adapted models based on active sample selection and a Fisher
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regularize. Darestani et al. (2022) combined self-supervision during training with test-time training.
Recent works extend TTA to handle more challenging scenarios in image restoration tasks, such as
image supervision (Deng et al., 2023) and blind image quality assessment (Roy et al., 2023). Notably,
Xu et al. (2023) is the first attempt to optimize the downscaled representation instead of the model.

To address the domain gap in TTA-IC tasks, various studies have explored strategies like fine-tuning
the encoder during inference to refine latent variables without extra bit transmission. For example,
Djelouah & Schroers (2019) introduced BLR, which uses gradient descent on latent representations
guided by R-D cost, while Guo et al. (2020) extended BLR with a two-step approach optimizing
both latent variables and side information. Beyond BLR, Yang et al. (2020) proposed HLR, which
jointly refines latent variables and side information while eliminating discretization gaps. While
HLR improves R-D performance for in-domain tasks, its effectiveness in cross-domain scenarios
remains unclear. Decoder refinement is another popular approach, where decoder parameters are
updated and transmitted during test-time (Lam et al., 2020; Zou et al., 2021), though it often incurs
higher bit costs (Kim et al., 2024). Recent SOTA TTA-IC methods inspired by parameter-efficient
transfer learning (PETL) introduced decoder adaptors to improve reconstruction with lower bit
consumption (Shen et al., 2023; Lv et al., 2023; Tsubota et al., 2023), as well as combining either
BLR or HLR as the first step of their two-step framework. In a nutshell, compared with the emergence
of various PETL-based decoder refinement variants, the latent refinement is barely tailored to cross-
domain scenarios, thereby exhibiting underexplored space.
3 METHODOLOGY

We first explain existing learned image compression from a perspective of marginalization approx-
imation in the context of in-domain R-D cost-guided training. Then, we analyze the practical
marginalization approximation when applying the learned image codec to cross-domain image com-
pression. We further render a simple solution to achieve better R-D performance for cross-domain
image compression based on the analysis of practical marginalization approximation.

Preliminary. Existing advanced LIC approaches mainly adopt a hyperprior-based entropy frame-
work (Ballé et al., 2018). As illustrated in Figure 2(a), given an image x, an analysis transform ga can
compute a latent representation y=ga(x), which is then quantized and transmitted to the receiver in
the context of an entropy model p(y). A synthesis transform ge can finally render the reconstruction.
To enhance the bitrate, a hyperprior is typically introduced to approximate the entropy model p(y)
(marginal distribution) as a joint probability, which involves a hyper latent variable z = ha(y) (a.k.a.
side information) calculated by a hyper analysis transform ha, and a hyper synthesis he usually
output the mean and scale of a Gaussian distribution as the entropy model p(y|z) for the entropy
coding of latent representation y. One line of LIC works aims to achieve better joint probability
approximation of marginal distribution by various model elaborations (e.g., self-attention (Zou et al.,
2022) and autoregressive (Minnen & Singh, 2020)). Our work mainly analyzes the marginalization
approximation from in- to cross-domain and proposes a solution for better cross-domain performance.

3.1 IN-DOMAIN MARGINALIZATION APPROXIMATION

First, we introduce the marginalization approximation used by existing entropy models (Ballé et al.,
2018; Cheng et al., 2020; Zou et al., 2022). Specifically, in the context of hyperprior-based entropy
models, the following result holds,
Lemma 1 (Ballé et al. (2018)). Let p(y|z) and p(z) be accessed, a joint probability over y and z
can be constructed to approximate the true marginal probability over y,

p(y) =

∫
p(y, z)dz, p(y, z) = p(y|z) · p(z), s.t., y = ga(x), z = ha(y), (1)

Lemma 1 implies that the compression of the raw image involves the compression of z using the
learned prior distribution p(z) and further compression of y using the learned conditional distribution
p(y|z). Practically, we implement p(z) by a non-parametric, fully-factorized density model (a.k.a.,
entropy bottleneck) (Ballé et al., 2016), and implement p(y|z) by a mean-scale Gaussian model, i.e.,

p(z) = p(z|φ), p(y|z) = p(y|z, θhe
) = N (µ, σ), µ, σ = he(z; θhe

), (2)

where φ denotes the learnable parameters of the density model characterized by the univariate
distribution, and he(·) denotes a synthesis transform function of the hyperprior model parameterized
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by learnable θhe
. The learning of these parameterized probability models derives from training data,

which means that the i.i.d. assumption between training and testing data is implicitly needed. We
therefore call such marginalization approximation as the in-domain one.

The widely used R-D objective can also be formulated by maximizing the probability of joint
distribution p(y, z) and the posterior distribution p(x|y, θge), i.e., Lrd =

Ex∼p(x),y,z∼p(y,z)[− log[p(y|z) · p(z)] + λ(− log p(x|y))] = Ep[− log p(y|z)− log p(z)︸ ︷︷ ︸
Rate

+λ∥x− ge(y)∥22︸ ︷︷ ︸
Distortion

]. (3)

Minimizing Eq. (3) can contribute to an optimal joint probability p(y, z), which approximates the
marginal distribution p(y), i.e., Lemma 1 holds. Formally, the optimal probability representation is
defined as follows.
Definition 1. (Optimal Probability Representation). By minimizing Eq. 3, there exist learnable
parameters θ∗he

and φ∗ that achieve minimum rate cost for p(y|z) and p(z). According to Shannon’s
entropy theorem, the learned encoding distributions p(y|z) and p(z) thus converge to optimal
probability representations p(y∗|z∗) and p(z∗) that exactly match the true underlying distributions:

p(y | z) = p(y | z, θ∗he
) = p(y∗ | z∗) p(z) = p(z | φ∗) = p(z∗).

However, such marginalization approximation requires more information to be encoded (Townsend
et al., 2019). Theoretically, we can quantify extra encoding information of marginalization approxi-
mation using the entropy H(·) of distribution as the rate consumption, i.e.,
Proposition 1. Let y and z be the latent and hyper latent variables, and these variables with the
asterisk be their optimal representations. In the context of in-domain image compression, if an
optimal joint probability approximation of true marginal distribution can be achieved by minimizing
Eq. (3), the extra rate consumption of marginalization approximation is

∆H∗ = H(y, z)−H(y∗) = Ey,z∼p(y,z)[− log p(z|y)], (4)

Proof. On the one hand, with joint probability and the Bayesian rule p(y∗) = p(y∗|z∗)p(z∗)
p(z∗|y∗) , we have

H(y, z) = Ep[− log p(y|z)− log p(z)], H(y∗) = Ep[− log p(y∗|z∗)− log p(z∗) + log p(z∗|y∗)]. (5)

Then, we have
∆H∗ = Ep[− log p(y|z)− (− log p(y∗|z∗))] + Ep[− log p(z)− (− log p(z∗))] + Ep[− log p(z∗|y∗)]. (6)

On the other hand, as there exist optimal probability representations for p(y|z) and p(z) for in-domain
image compression by minimizing Eq. (3), we have

Ep[− log p(y|z)− (− log p(y∗|z∗))] = 0, s.t. p(y|z) = p(y∗|z∗)and p(z) = p(z∗), (7)
Ep[− log p(z)− (− log p(z∗))] = 0, s.t. p(z) = p(z∗) (8)

Thus,
∆H∗ = Ey∗,z∗∼p(y∗,z∗)[− log p(y∗|z∗)] = Ey,z∼p(y,z)[− log p(z|y)] (9)

For in-domain image compression, Eq. (7), Eq. (8), and Eq. (9) hold, as p(y|z), p(z), and p(z|y) are
close to optimal probability representations p(y∗|z∗), p(z∗), and p(z∗|y∗) due to the assumption of
the optimal joint probability approximation of true marginal distribution.

Lemma 1 and Prop. 1 are mainly adaptive to in-domain image compression. By this cue, we will
discuss practical marginalization approximation and its impact on extra rate consumption in the
context of cross-domain image compression.

3.2 GENERALIZE TO CROSS-DOMAIN MARGINALIZATION APPROXIMATION

When we apply the learned image codec to cross-domain scenarios, e.g., assuming the source-domain
image as xs and the target-domain image xt, the i.i.d. assumption between source and target domains
violates. We can derive that Lemma 1 may not hold due to the following insight:
Proposition 2. The practical joint probability p(yt, zt) on cross-domain images will deteriorate
to make it not equivalent to an optimal joint probability p(y∗t , z

∗
t ) (that exactly match the true

underlying distributions, in other words, p(y∗t |z∗t ) and p(z∗t ) are also optimal as in Definition 1) that
also corresponds to an optimal marginal approximation distribution p(y∗t ), leading to deteriorated
marginalization approximation, i.e.,

p(y∗t , z
∗
t ) ̸= p(yt, zt), p(y

∗
t ) ̸≈ p(yt, zt), p(yt, zt) = p(yt|zt, θshe

) · p(zt|φs), (10)
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Proof. It is straightforward to induce the proof of this proposition based on commonly used con-
clusions and existing observations. Specifically, the distribution shifts, i.e., p(xt) ̸= p(xs), would
result in the entropy bottleneck p(zt|φs) parameterized by φs (which replaces φ in Eq. (2) to em-
phasize its correlation with source-domain images xs) is quite poor at specializing and encoding
zt for cross-domain images (Ulhaq & Bajić, 2024). Also, p(yt|zt, θshe

) is inaccurate to encode yt
due to source image-correlated θshe

and unreliable zt(Campos et al., 2019). As the deterioration of
independent distributions results in the deterioration of the joint distribution, the joint probability
p(yt, zt) significantly deteriorates compared with the optimal one p(y∗t , z

∗
t ) and further causes an

unfavorable marginalization approximation p(y∗t ) ̸≈ p(yt, zt).

In light of Prop. 2, a cross-domain extension of Prop. 1 can be derived as follows,
Corollary 1. The extra rate consumption of cross-domain marginalization approximation ∆H will be
larger than that of in-domain marginalization approximation, i.e.,, ∆H > ∆H∗, due to deteriorated
joint probability.
Proof. Due to distribution shifts and suboptimal source-domain parameters (θshe

, φs), Eqs. (7) and
(8) in Prop. 1 can be further represented based on Prop. 2 as follows,

Ep[− log p(yt|zt, θshe
)− (− log p(y∗

t |z∗t ))] > 0, s.t. p(yt|zt, θshe
) ̸= p(y∗

t |z∗t ) and p(zt|φs) ̸= p(z∗t ),
(11)

Ep[− log p(zt|φs)− (− log p(z∗t )] > 0, s.t. p(zt|φs) ̸= p(z∗t ), (12)

where p(yt|zt, θshe
)̸=p(y∗t |z∗t ) holds due to source image-correlated θshe

and unreliable zt. p(zt|φs)
̸= p(z∗t ) holds due to poor specialization of entropy bottleneck φs. Let p(yt|zt, θshe

)=p(yt|zt) and
p(zt|φs)=p(zt) for brevity. We have ∆H =

Ep[− log p(yt|zt)− (− log p(y∗
t |z∗t ))] + Ep[− log p(zt)− (− log p(z∗t ))] + Ep[− log p(z∗t |y∗

t )] > ∆H∗ (13)

Since optimal probabilities always match the true underlying distributions from Prop. 2, p(z∗t |y∗t ) is
equivalent to p(z∗|y∗) in Eq. 9 for optimal posterior distributions. Thus, Eq.13 holds and implies
more rate consumption is potentially incurred in cross-domain scenarios.

Besides, distortion error is increased as the posterior probability p(xt|yt, θsge) correlated with source-
domain images xs is suboptimal for cross-domain images xt. To enhance the R-D performance on
cross-domain images xt, latent refinement is proposed to optimize latent variables while making
model parameters unchanged. We summarize existing latent refinement methods as below.

Assume that the initial latent representations yt obtained by analysis transform as y0t and the initial
latent representations zt obtained by hyperprior transform as z0t . The BLR scheme (refers to Figure
2) only updates the latent representation y0t with M > 1 steps, for each step m:

ym+1
t = ym

t −ϵ · ∂Lblr

∂yt
,Lblr = Ext∼pxt ,yt,zt∼pyt,zt

[− log p(ym
t |z0t , θshe

)+λ(− log p(xt|ym
t , θge))], (14)

where the R-D cost excludes − log p(z) in Eq. (3) as the latent representation z0t is unchanged. For
BLR, the gain of R-D performance is limited, as it is difficult to obtain an updated ymt that can
simultaneously lead to minimal rate cost and minimal distortion error in Eq. (14) due to fixed z0t .
Instead, the HLR in (Yang et al., 2020) not only conducts a joint amortization gap minimization but
also eliminates the discretization gap for latent representations using the following optimization step,

ym+1
t = ym

t − ϵ · ∂Lhlr

∂yt
, zm+1

t = zmt − ϵ · ∂Lhlr

∂zt
,

Lhlr = Ext∼pxt ,yt,zt∼pyt,zt
[− log p(ym

t |zmt , θshe
)− log p(zmt |φs) + λ(− log p(xt|ym

t ))]. (15)

By simultaneously optimizing yt and zt, Yang et al. (2020) reported significant R-D gains compared
with BLR for in-domain adaptive compression. However, when we impose the HLR scheme to cross-
domain adaptive compression, such gains are marginal as shown in Figure 1, where the reconstruction
quality of the HLR achieves significant gains compared with BLR, but the HLR consumes more bits.

Discussion – we provide the analyses of degradation reasons of the vanilla HLR in the cross-domain
scenario using Cor. 1 and Prop. 2. First, compared with in-domain compression, the biggest trouble
in the cross-domain scenario is that the static entropy bottleneck correlated with the distribution
property of source-domain images cannot well model the true distribution of cross-domain latent
variable zt as in Prop. 2. Second, although updating z0t to an appropriate zmt that can render a minimal
negative log-likelihood of p(zmt |φs) is possible, ensuring zmt as an appropriate Gaussian condition
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of ymt is questionable for a minimal negative log-likelihood of p(ymt |zmt , θshe
). Finally, by recalling

Porp. 2 and Cor. 1, more bit consumption by the HLR implies that the finally updated joint probability
p(yMt , zMt ) may be further away from the optimal (unknown) joint probability p(y∗t , z

∗
t ), and even

the initial joint probability p(y0t , z
0
t ). This can be directly reflected by more rate consumption of

marginal approximation by extending the result of Cor. 1 to specific update steps,

∆HM > ∆H0 > ∆H∗. (16)

To conclude, the underlying mismatch between p(zmt |φs) and p(ymt |zmt , θsh) (in the first two points)
triggers deteriorated joint probability approximation of true marginal distribution (in the third point).

3.3 DISTRIBUTION REGULARIZATION VIA BAYESIAN APPROXIMATION

Thus, we are interested in an advanced latent refinement method, which not only can significantly
improve the reconstruction quality but also can enjoy a mild rate cost after latent refinement. Motivated
by cross-domain joint probability approximation in Prop. 2 and corresponding impact for rate
consumption in Cor. 1, we propose to introduce a simple yet efficient distribution regularization into
the objective of vanilla HLR as follows, LDR =

Ext∼pxt ,yt,zt∼pyt,zt
[− log p(ym

t |zmt , θshe
)− log p(zmt |φs) + β(− log p(zmt |ym

t ))
::::::::::::::

+ λ(− log p(xt|ym
t ))],

(17)
where the third term is the distribution regularization, which serves as an empirical approximation
of optimal posterior distribution p(z∗t |y∗t ) that can be optimized directly using this objective. The
proposed distribution regularization has two advantages as follows.

(i) — If the balance coefficient β is 1, minimizing the entropy of probability estimates (i.e., the first
two terms in Eq. (17)) is equivalent to minimizing the distribution gap between estimated probability
p(y|z) or p(z) and (unknown) optimal probability p(y∗|z∗) or p(z∗) (MacKay, 2003). This coincides
with the objectives of the first two terms in Eq. (13) of Cor. 1. Thus, LDR can be derived as follows,

LDR ∝ ∆H + λ(− log p(xt|ymt )). (18)

By recalling Eq. (13) in Cor. 1 and Eq. (16), Eq. (18) implies that the minimiza-
tion of extra rate consumption of marginalization approximation corresponds to encouraging
the deteriorated joint probability approximation to approach the initial and even optimal ones.
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Figure 2: Architectures of different latent refinement TTA-IC methods.
U|Q represents the quantization and entropy coding.

In other words, ∆H∗ is
the lower bound of the first
term of Eq. (18), i.e., the
better joint probability ap-
proximation, the closer to
the lower bound. LDR can
potentially remedy the addi-
tional rate of consumption
of vanilla HLR.

(ii) — For the optimization
process in Eq. (15), there is
no explicit constraint to en-
sure that zmt can well match
its posterior distribution un-
der the condition of ymt , leading to deteriorated joint probability. As a practical implementation of
the ideal posterior distribution, the proposed distribution regularization can eliminate such an issue.

To implement the LDR, it is necessary to model the estimated posterior distribution p(zmt |ymt )
of zmt given ymt . However, for existing hyperpiror models, the practical ẑmt conditioned by ymt ,
i.e., ẑmt = ha(y

m
t ; θha

), is a deterministic output without distribution property. Although it is
feasible to approximate the ẑmt as the mean µ̂m

t of a Gaussian distribution (as the assumption of
posterior distribution) while constructing a variance branch from scratch (Vahdat & Kautz, 2020),
the optimization of the variance model may be difficult when model parameters are fixed during
latent refinement phase. To address these issues, we utilize the dropout variational inference (Gal
& Ghahramani, 2016) as a Bayesian approximation to existing hyperprior models for modeling
the posterior distribution. Specifically, without introducing any new network, the deterministic
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pre-trained model θha
can be formulated as a probabilistic one p(θha

), by treating the weights as
distributions. Thus, the estimated posterior estimation can be represented as follows,

p(zmt |ymt ) ≈ p̂(zmt |ymt ) = N (µ̂m
t , (σ̂m

t )2), (19)

where the posterior distribution is estimated and assumed as a fully factorized Gaussian distribution.
The estimated mean µ̂m

t and variance (σ̂m
t )2 can be represented as follows,

µ̂m
t =

1

T

T∑
i=1

ha(y
m
t ; θiha

), σ̂m
t =

1

T

T∑
i=1

[ha(y
m
t ; θiha

)− 1

T

T∑
i=1

ha(y
m
t ; θiha

)]2, θiha
∼ qϑ(θha) (20)

For the practical dropout variational inference (DVI) (Gal & Ghahramani, 2016), the dropout strat-
egy (Srivastava et al., 2014) is conducted to render approximate samples from the posterior dis-
tribution, which equals to use a Bernoulli variational distribution qϑ(θha), parameterized by ϑ, to
approximate the true model weight posterior p(θha). By conducting T times of Monte Carlo (MC)
sampling from qϑ(θha), we can estimate the mean and the variance of the posterior distribution
p(zmt |ymt ). The dropout probability related to the Bernoulli variational distribution is set to 0.5. The
computation consumption of the DVI is mild, as a single instance can parallelly sample T masked
weights by one inference in a batch of repeated instances. Moreover, it is flexible to degenerate to
vanilla deterministic networks when the dropout probability is 1. Finally, we compute the negative
log-likelihoods of the estimated posterior distribution given the current latent variable zmt .

Discussion – connection with Bit-back coding (BBC). Both BBC (Townsend et al., 2019; Ruan et al.,
2021; Ho et al., 2019) and our method derive from the joint probability approximation of marginal
distribution. However, BBC usually specializes in in-domain image compression to narrow the
marginalization gap, i.e., transforming learned optimal joint probability to true marginal probability
at compression time by minimizing the following objective, LBBC =

Ext∼pxt ,yt,zt∼pyt,zt
[− log p(ym

t |zmt , θshe
)−log p(zmt |φs)−(− log p(zmt |ym

t ))+λ(− log p(xt|ym
t ))]. (21)

For cross-domain scenarios, such optimal joint probability does not hold due to mismatched encoding
distribution as discussed in Eqs. (13) and (16). Instead, we focus on refining deteriorated joint
probability to potentially optimal (even initial) one by minimizing the extra rate consumption of
marginal approximation, as discussed in Eq. (18). More differences refer to Appendix.

4 EXPERIMENTS

Datasets. By following previous literature (Lv et al., 2023; Tsubota et al., 2023; Shen et al., 2023),
we collect six different datasets with four types of image styles to comprehensively evaluate the R-D
performance of different approaches on cross-domain TTA-IC tasks, including natural image (Kodak),
screen content image (SIQAD Yang et al. (2015), SCID (Ni et al., 2017), CCT (Min et al., 2017)),
pixel-style gaming image (Lv et al. (2023)’ self-collected), and painting image (DomainNet (Peng
et al., 2019)) datasets. The details of the used dataset can be found in the Appendix. Specifically, we
consider the natural image dataset as in-domain evaluations, and others as cross-domain evaluations.

Implementation Details. We use CompressAI (Bégaint et al., 2020) to implement our proposed and
baseline methods. Two widely-used backbone models are adopted, including the base hyperprior-
based entropy model proposed by Ballé et al. (2018), namely Hyperprior, and the autoregressive
context-based entropy model adopted by Cheng et al. (2020), namely AR-CM. Both are trained on
natural images with various λ settings. We use the pre-trained models provided by CompressAI. For
TTA-IC, we use the same value of hyperparameter λ = [0.0018, 0.0035, 0.0067, 0.013, 0.025, 0.048]
for latent refinement. The Adam optimizer is utilized to update the latent variables in a learning rate
of 1×10−3 with 2000 iterations. T is empirically set to 20 for MC sampling. We discuss different
implementations and hyperparameter settings (e.g., β) of dropout variational inference in sec. 4.3.

Baselines. For latent refinement methods, we adopt two common baselines: (i) BLR (Campos et al.,
2019), as formulated in Eq. (14). (ii) HLR (Yang et al., 2020), as formulated in Eq. (15). For HLR,
we follow Yang et al. (2020) to use a temperature annealing schedule with defaulted hyperparameters,
where τ0 = 0.5, c0 = 0.001, and t0 = 700.

Plug-and-play Validation. We also replace different latent refinement methods of existing SOTA
TTA-IC approaches (Tsubota et al., 2023; Shen et al., 2023) with our proposed latent refinement
counterpart in a plug-and-play manner. We follow their defaulted hyperparameter settings.
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Figure 3: R-D curves on six datasets using different latent refinement methods. Two different base
model architectures including AR-CM and Hyperprior are used.

Table 1: Comparison of our method with existing latent refinement approaches. The evaluation
is measured in terms of average BD-rate savings (% ↓) using the respective base models (without
test-time adaptation). Smaller values indicate superior performance.

Method In-domain dataset Cross-domain datasets
Kodak SIQAD SCID CCT Pixel DomainNet Average↓

AR-CM (Cheng et al., 2020) 0 0 0 0 0 0 0
+ BLR -6.75 -18.75 -18.31 -25.33 -26.22 -18.78 -21.41
+ HLR -12.73 -21.28 -15.11 -23.08 -31.76 -15.61 -21.36
+ Ours -16.11 -24.71 -22.63 -28.26 -35.89 -23.52 -27.00

Hyperprior (Ballé et al., 2018) 0 0 0 0 0 0 0
+ BLR -6.59 -13.16 -16.71 -18.91 -15.12 -22.99 -15.41
+ HLR -11.32 -13.94 -14.59 -13.82 -18.89 -16.68 -14.87
+ Ours -14.82 -20.95 -23.51 -23.58 -22.22 -23.32 -20.78

Table 2: Integration of our method with the SOTA TTA-IC approaches. The evaluation is measured
in terms of average BD-rate savings (% ↓) using the respective base models (without test-time
adaptation). Smaller values indicate superior performance. ‡ Matrix decomposition-based adaptor. ⋆

Entropy efficient adapter. Stages 1 and 2 denote the latent refinement and decoder adaptation phases.

Method Type ID
In-domain dataset Cross-domain datasets

Average↓
Kodak SIQAD SCID CCT Pixel DomainNet

Tsubota et al. (2023)

WACNN (Zou et al., 2022) 0 0 0 0 0 0 0

Stage 1
+ HLR† (a) -3.50 -13.20 -12.34 -17.15 -11.08 -2.94 -10.02

+ Ours (b) -5.45 -14.32 -14.62 -18.95 -13.01 -5.46 -12.01

Stage 2
(a) + Adaptor1‡ (c) -3.51 -20.98 -20.73 -24.90 -17.23 -2.09 -14.89

(b) +Adaptor1‡ (d) -5.48 -22.70 -22.65 -26.60 -19.37 -4.51 -16.95

Shen et al. (2023)

WACNN (Zou et al., 2022) 0 0 0 0 0 0 0

Stage 1
+ BLR (e) 3.83 -10.98 -9.96 -13.05 -3.13 4.83 -4.74

+ Ours (f) -5.45 -14.32 -14.62 -18.95 -13.01 -5.46 -12.01

Stage 2
(e) + Adaptor2⋆ (g) 2.63 -18.91 -18.74 -22.17 -11.88 3.41 -10.94

(f) + Adaptor2⋆ (h) -6.01 -20.23 -21.02 -24.23 -14.99 -5.59 -15.26

4.1 COMPARISON WITH LATENT REFINEMENT METHODS

R-D Performance. We compare our proposed method with BLR and HLR. Note that the model
without adaptation is also involved, namely No Adaptation. The peak signal-to-noise ratio (PSNR)
and the data rate in bits per pixel (bpp) on different quality levels (refers to different λ levels) are
calculated to evaluate the R-D performance of different methods. Then, the R-D curves can be plotted.
The results can be found in Figure 3. We can observe that all latent refinement methods achieve
comparable performance, which may be reasonable as the Kodak dataset can be regarded as the
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Figure 4: Entropy curves of different probabilities with the iteration m, including (a) − log p(ymt )
(b)− log p(zmt ) (c) − log p(zmt |ymt ) (d) validation loss as calculated in Eq. (3).
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Figure 7: R-D performance on medical images,
where pathological breast cancer images are used
for cross-domain compression.

Table 3: Ablation study of proposed distribution
regularization LDR in terms of BD-rate (% ↓) on
SIQAD. DL denotes the number of the dropout
layer. †: assume σ = 1 without Bayesian ap-
proximation. ‡: minimizing Eq. (21).

Baseline (HLR) 0: As an anchor

+ proposed LDR

DL
β 0.1 1 10

1 -10.01 -10.02 -7.07
2 -10.03 -9.62 -5.25
3 -10.06 -9.61 -4.95

+ Deterministic L†
DR -3.54

+ BBC (Yang et al., 2020)‡ 0.15

in-domain data without domain shifts. The gains of HLR and our proposed method mainly derive
from the minimization of the discretization gap compared with BLR. For out-of-domain images such
as SIQAD, SCID, CCT, Pixel, and DomainNet, our proposed method outperforms other approaches
with a clear margin regardless of different backbones.

Bjøntegaard Delta bit-rate (BD-rate). We compute the BD-rate (Bjøntegaard, 2001) for perfor-
mance evaluation. A lower BD rate demonstrates better performance. The baseline model without
adaptation is the anchor model for BD-rate calculation. The results are shown in Table 1. First, the
HLR and our proposed method outperform the BLR with a clear margin for the in-domain Kodak
dataset, which coincides with Yang et al. (2020)’ obervations. However, on the cross-domain tasks,
the HLR suffers from significant degradations compared with BLR, where HLR performs below the
HLR on three out of five tasks, e.g., SCID and CCT. This is reasonable, as the static entropy bottleneck
correlated with the distribution property of natural images cannot model the true distribution of latent
variable z well. Finally, our method can achieve obvious gains on all cross-domain tasks.

4.2 PLUGGING INTO SOTA TTA-IC
Moreover, we replace the existing latent refinement methods used by SOTA TTA-IC approaches with
our proposed method. The full R-D curves are in the Appendix. We present the BD-rate in Table 2. It
is obvious that our proposed method can improve the performance of these TTA-IC methods on all
tasks. Moreover, such gains are roughly maintained at a similar level when adopted by the decoder
adaptation. Due to the benefit of hybrid latent refinement, these gains are significantly enlarged for
Shen et al. (2023). Thus, our proposed method enjoys plug-and-play property, benefiting existing
TTA-IC methods.
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4.3 IN-DEPTH ANALYSES OF OUR PROPOSED METHOD

Table 4: Correlation between adaptation per-
formance and adaptation time (using a single
NVIDIA GeForce 3090 GPU) on SIQAD.

Steps 1 500 1000 1500 2000

Runtime
(Avg. Sec./Img.)

BLR 0.07s 13.96s 27.32s 41.52s 56.28s
HLR 0.07s 14.86s 28.52s 42.51s 57.58s
Ours 0.08s 15.48s 29.25s 44.85s 59.70s

BD-rate(%)↓
BLR -1.01 -19.23 -20.57 -21.04 -21.27
HLR -0.92 -12.75 -14.73 -19.32 -23.68
Ours -0.95 -24.33 -29.88 -33.15 -34.20

Why does the proposed distribution regulariza-
tion improve the R-D performance? (i) From the-
oretical analyses in section 3.2, the domain shifts
and the underlying mismatch between p(zmt |φs)
and p(ymt |zmt , θshe

) may trigger the deteriorated
joint probability approximation p(yMt , zMt ) of true
marginal distribution p(y∗t ) for vanilla HLR. By em-
pirical experiments in Figure 4, we observe that it
is indeed difficult to jointly optimize latent variable
yt and side information zt for vanilla HLR as shown in Figs. 4(a) and 4(b), where − log p(zmt )
converges first and degrades with the iterations while − log p(ymt ) converges well. In contrast, due to
the lack of optimization for slide information zt, there is limited convergence of − log p(ymt ) for the
BLR while − log p(zmt ) is unchanged. Thus, as shown in Figure 4(c), there is an obvious degradation
for vanilla HLR, i.e., ∆H0 < ∆HM, reflecting more rate consumption of marginal approximation.
This implies that the finally updated joint probability p(yMt , zMt ) is further away from the optimal joint
probability p(y∗t , z

∗
t ), and even the initial joint probability p(y0t , z

0
t ). (ii) By the proposed distribution

regularization (refers to Figure 4(c)), the degradation of joint probability approximation is alleviated
well (blue curve) compared with vanilla HLR. Even, our method can achieve good convergence, i.e.,
∆H0 > ∆HM, which is reasonable as we directly minimize ∆H as shown in Eq. (18).
In short, the distribution regularization encourages the deteriorated joint probability approximation
to approach the initial and even unknown optimal ones with a good convergence of rate consumption.

How about the effectiveness of Bayesian approximation for distribution regularization? First, we
ablate the number of DVI layers. Intuitively, more dropout layers facilitate a more accurate estimate of
posterior distribution. As shown in Table 3, there are marginal gains with the improvement of dropout
layers. Moreover, over-regularization, i.e., β = 10, will result in obviously negative effects. Thus,
to avoid performance degradation, it is better to construct more dropout layers with more accurate
probability representation and set a lower regularization coefficient (such as 0.1) to alleviate the
over-regularized downside. Second, we try a deterministic version of our distribution regularization
by removing the Bayesian approximation, i.e., assuming σ = 1 without the dropout layer. As we can
see, deterministic LDR performs significantly below that of the Bayesian approximation-based one,
which is reasonable as the over- or below-estimated variance of the posterior distribution is inaccurate
compared with the practical DVI in MC sampling. Finally, we observe negligible gains of the BBC
on cross-domain image compression, which coincides with our discussions in section 3.3.

How about the adaptation efficiency compared with baseline methods? As illustrated in Table 4,
our proposed method has obvious performance gains in different adaptation steps. In contrast, the
additional adaptation time taken by ours is mild in the same adaptation step which is reasonable as an
instance can parallelly sample T masked weights by one inference in a batch of repeated instances.

What is the ability to generalize for larger distribution discrepancy? We explore whether our
proposed method can be scalable to more challenging medical images, where the image distribution
of medical images is quite different from natural images. The qualitative and quantitative results in
Figures. 6 and 7 show our method can improve R-D performance with better texture preservation.

5 LIMITATION AND CONCLUSION

Limitation. Due to the introduction of the DVI, our proposed method has a minor increase in
adaptation cost compared with baseline methods, as illustrated in Table 4. developing a more efficient
solution and using a more powerful GPU on the server can reduce the adaptation time in the future.

We approach an advanced latent refinement method by tailoring the vanilla HLR designed for in-
domain inference improvement to cross-domain cases. Specifically, we provide a theoretical analysis
to uncover that the underlying mismatch between refined Gaussian conditional and hyperprior
distributions may trigger the deteriorated joint probability approximation of marginal distribution.
Then, we introduce a Bayesian approximation-endowed distribution regularization to encourage
learning better joint probability approximation in a plug-and-play manner. Extensive experiments
demonstrate that our proposed method can achieve promising performance.
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A FULL DERIVATIONS

Proposition 1. Let y and z be the latent and hyper latent variables, and these variables with the
asterisk be their optimal representations. In the context of in-domain image compression, if an
optimal joint probability approximation of true marginal distribution can be achieved by minimizing
Eq. (3), the extra rate consumption of marginalization approximation is

∆H∗ = H(y, z)−H(y∗) = Ey,z∼p(y,z)[− log p(z|y)], (22)

Proof. On the one hand, with joint probability and the Bayesian rule p(y∗) = p(y∗|z∗)p(z∗)
p(z∗|y∗) , we have

H(y, z) = Ey,z∼p(y|z)p(z)[− log p(y|z)] + Ez∼p(z)[− log p(z)], (23)

H(y∗) = Ey∗,z∗∼p(y∗|z∗)p(z∗)[− log p(y∗|z∗)] + Ez∗∼p(z∗)[− log p(z∗)]

− Ey∗,z∗∼p(y∗,z∗)[− log p(z∗|y∗)] (24)

Then, we have

∆H∗ = [Ey,z∼p(y|z)p(z)[− log p(y|z)]− Ey∗,z∗∼p(y∗|z∗)p(z∗)[(− log p(y∗|z∗))]]
+ [Ez∼p(z)[− log p(z)]− Ez∗∼p(z∗)[(− log p(z∗))]]

+ Ey∗,z∗∼p(y∗,z∗)[− log p(z∗|y∗)]. (25)

On the other hand, as there exist optimal probability representations for p(y|z) and p(z) for in-domain
image compression by minimizing Eq. (3), we have

Ey,z∼p(y|z)p(z)[− log p(y|z)]− Ey∗,z∗∼p(y∗|z∗)p(z∗)[(− log p(y∗|z∗))] = 0,

s.t. p(y|z) = p(y∗|z∗) and p(z) = p(z∗), (26)
Ez∼p(z)[− log p(z)]− Ez∗∼p(z∗)[(− log p(z∗))] = 0, s.t. p(z) = p(z∗) (27)

Thus,

∆H∗ = Ey∗,z∗∼p(y∗,z∗)[− log p(y∗|z∗)] = Ey,z∼p(y,z)[− log p(z|y)] (28)

For in-domain image compression, Eq. (26), Eq. (27), and Eq. (28) hold, as p(y|z), p(z), and p(z|y)
are close to optimal probability representations p(y∗|z∗), p(z∗), and p(z∗|y∗) due to the assumption
of the optimal joint probability approximation of true marginal distribution.

Corollary 1. The extra rate consumption of cross-domain marginalization approximation ∆H will be
larger than that of in-domain marginalization approximation, i.e.,, ∆H > ∆H∗, due to deteriorated
joint probability.

Proof. Due to distribution shifts and suboptimal source-domain parameters (θshe
, φs), Eqs. (26) and

(27) in Prop. 1 can be further represented based on Prop. 2 as follows,

Eyt,zt∼p(yt|zt,θs
he

)p(zt)[− log p(yt|zt, θshe
)− Ey∗

t ,z
∗
t ∼p(y∗

t |z∗
t ))p(z

∗
t )
[(− log p(y∗t |z∗t ))] > 0,

s.t. p(yt|zt, θshe
) ̸= p(y∗t |z∗t ) and p(zt|φs) ̸= p(z∗t ), (29)

Ezt∼p(zt|φs)[− log p(zt|φs)]− Ezt∼p(z∗
t )
[(− log p(z∗t )] > 0, s.t. p(zt|φs) ̸= p(z∗t ), (30)

where p(yt|zt, θshe
)̸=p(y∗t |z∗t ) holds due to source image-correlated θshe

and unreliable zt. p(zt|φs)
̸= p(z∗t ) holds due to poor specialization of entropy bottleneck φs. Let p(yt|zt, θshe

)=p(yt|zt) and
p(zt|φs)=p(zt) for brevity. We have

∆H = Ey,z∼p(y|z)p(z)[− log p(yt|zt)]− Ey∗,z∗∼p(y∗|z∗)p(z∗)[(− log p(y∗t |z∗t ))]
+ Ez∼p(z)[− log p(z)]− Ez∗∼p(z∗)[(− log p(z∗))]

+ Ey∗,z∗∼p(y∗,z∗)[− log p(z∗t |y∗t )] > ∆H∗ (31)

Since optimal probabilities always match the true underlying distributions from Prop. 2, p(z∗t |y∗t ) is
equivalent to p(z∗|y∗) in Eq. 28 for optimal posterior distributions. Thus, Eq.31 holds and implies
more rate consumption is potentially incurred in cross-domain scenarios.
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Here, we further explain why the Eqs. (29) and (30) hold as follows.

According to Shannon’s entropy theorem, the optimal probability distribution p(y∗t |z∗t ) achieves
the theoretical minimum coding length, which equals the entropy of the true data distribution. Any
non-optimal coding distribution (e.g., p(yt|zt, θshe

)) must have a higher expected code length than
the theoretical minimum. The entropy consumption of coding distribution can reflect this to make the
following inequality strictly hold:

Ey,z∼p(yt|zt)p(zt)[− log p(yt|zt, θshe
)] ≥ Ey∗,z∗∼p(y∗

t |z∗
t )p(z

∗
t )
[− log p(y∗t |z∗t )], (32)

where the equality holds only if p(y∗t |z∗t ) = p(yt|zt, θshe
) and p(zt|φs) = p(z∗t ).

Since we have assumed that p(yt|zt, θshe
) ̸= p(y∗t |z∗t ) holds due to source image-correlated θshe

and
unreliable p(zt|φs) ̸= p(z∗t ) on cross-domain scenarios. Thus,

Ey,z∼p(yt|zt)p(zt)[− log p(yt|zt, θshe
)] > Ey∗,z∗∼p(y∗

t |z∗
t )p(z

∗
t )
[− log p(y∗t |z∗t )] (33)

holds. Thus, the following inequality can be naturally derived,

Ey,z∼p(yt|zt)p(zt)[− log p(yt|zt, θshe
)]− Ey∗,z∗∼p(y∗

t |z∗
t )p(z

∗
t )
[− log p(y∗t |z∗t )] > 0. (34)

To summarize, it is clear Eq. (29) holds. The same applies to Eq. (30).

B DETAILS OF ADOPTED DATASETS

By following previous literature (Lv et al., 2023; Tsubota et al., 2023; Shen et al., 2023), we collect six
different datasets with four types of image styles to comprehensively evaluate the R-D performance
of different approaches on cross-domain TTA-IC tasks, including natural image (Kodak1), screen
content image (SIQAD Yang et al. (2015), SCID (Ni et al., 2017), CCT (Min et al., 2017)), pixel-style
gaming image (Lv et al. (2023)’ self-collected), and painting image (DomainNet (Peng et al., 2019))
datasets. The details of the used dataset can be found in the Table 5. Specifically, we consider the
natural image dataset as in-domain evaluations, and others as cross-domain evaluations.

C COMPARISON WITH SOTA TTA-IC METHODS

We provide the full R-D curves in Figure 8 when we compared our proposed method with SOTA
TTA-IC methods. Note that our proposed method is based on (Tsubota et al., 2023) with our proposed
distribution regularization. We can observe that all latent refinement methods achieve comparable
performance, which may be reasonable as the Kodak dataset can be regarded as the in-domain
data without domain shifts. The gains of HLR and our proposed method mainly derive from the
minimization of the discretization gap compared with BLR. For out-of-domain images such as
SIQAD, SCID, CCT, Pixel, and DomainNet, our proposed method outperforms other approaches
with a clear margin regardless of different backbones. Especially, a better R-D performance on the
low-bit conditions can be observed for AR-CM-based realizations on the Pixel dataset.

D CONNECTION WITH BIT-BACK CODING

1) In-domain v.s. Cross-domain: Both BBC (Townsend et al., 2019; Ruan et al., 2021; Ho et al., 2019)
and our proposed method derive from the joint probability approximation of marginal distribution.
However, BBC usually specializes in in-domain image compression to narrow the marginalization
gap, i.e., transforming learned optimal joint probability to true marginal probability at compression
time. Instead, in the context of cross-domain image compression, such optimal joint probability does

1https://r0k.us/graphics/kodak/
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Figure 8: R-D curves of test-time adaptation of different latent refinement approaches on six datasets
using different latent refinement methods. Two different base model architectures including AR-CM
and Hyperprior are used.

Table 5: The datasets for evaluation. The symbols ∗ and † denote in- and cross-domain datasets,
respectively.

Dataset Description # Num. Avg. Resolution
Kodak∗ Natural 24 576×704
SIQAD† Screen Content 24 685×739
SCID† Screen Content 40 720×1080
CCT† Screen Content 24 915×1627
Pixel† Gaming 25 746×850

DomainNet† Painting 25 492×640

not hold due to mismatched encoding distribution (e.g., entropy bottleneck), as discussed in Eqs. (13)
and (16).

2) Minimizing posterior probability v.s. Maximizing posterior probability: BBC minimizes the second
term of the first line of Eq. (22) as the true entropy of the marginal distribution, i.e.,

LBBC = − log p(ymt |zmt , θshe
)− log p(zmt |φs)− (− log p(zmt |ymt )) + λ(− log p(xt|ymt )), (35)

where the third term corresponds to minimizing the posterior probability based on the in-domain
optimal joint probability assumption of BBC. In contrast, our proposed method focuses on refining
deteriorated joint probability to optimal one by minimizing the extra rate consumption of marginal
approximation, as discussed in Eq. (18).

3) Performance and implementation differences: Our experiments in Table 3 observe negligible gains
of BBC on cross-domain image compression. More importantly, in order to acquire distribution prop-
erty, our proposed distribution regularization relies on more flexible variational Bayesian inference
rather than introducing additional networks like BBC (Yang et al., 2020).

E MORE PLUG-AND-PLAY VALIDATIONS

To further the effectiveness of this plug-and-play advantage, we have conducted additional experi-
ments on more baseline methods. The results can be observed in Table 6. As we can see, our proposed
method can improve the performance of these TTA-IC methods in a plug-and-play manner, which is
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Table 6: Integration of our method with the SOTA TTA-IC approaches. The evaluation is measured
in terms of average BD-rate savings (% ↓) using the respective base models (without test-time
adaptation). Smaller values indicate superior performance. ‡ Matrix decomposition-based adaptor. ⋆

Entropy efficient adapter. † dynamic low-rank adaptor. ‡‡: Only latent representation y is optimized.
Stages 1 and 2 denote the latent refinement and decoder adaptation phases.

Method Type ID In-domain dataset Cross-domain datasets Average↓
Kodak SIQAD SCID CCT Pixel DomainNet

Tsubota et al. (2023)

WACNN (Zou et al., 2022) 0 0 0 0 0 0 0

Stage 1 + HLR (a) -3.50 -13.20 -12.34 -17.15 -11.08 -2.94 -10.02
+ Ours (b) -5.45 -14.32 -14.62 -18.95 -13.01 -5.46 -12.01

Stage 2 (a) + Adaptor1‡ (c) -3.51 -20.98 -20.73 -24.90 -17.23 -2.09 -14.89
(b) +Adaptor1‡ (d) -5.48 -22.70 -22.65 -26.60 -19.37 -4.51 -16.95

Shen et al. (2023)

WACNN (Zou et al., 2022) 0 0 0 0 0 0 0

Stage 1 + BLR (e) 3.83 -10.98 -9.96 -13.05 -3.13 4.83 -4.74
+ Ours (f) -5.45 -14.32 -14.62 -18.95 -13.01 -5.46 -12.01

Stage 2 (e) + Adaptor2⋆ (g) 2.63 -18.91 -18.74 -22.17 -11.88 3.41 -10.94
(f) + Adaptor2⋆ (h) -6.01 -20.23 -21.02 -24.23 -14.99 -5.59 -15.26

Lv et al. (2023)

WACNN (Zou et al., 2022) 0 0 0 0 0 0 0

Stage 1 + HLR‡‡ (i) -2.25 -11.49 -10.26 -14.89 -7.87 -1.58 -9.66
+ Ours (j) -5.45 -14.32 -14.62 -18.95 -13.01 -5.46 -12.01

Stage 2 (i) + Adaptor3† (k) -3.45 -16.78 -17.05 -22.89 -18.01 -3.28 -13.57
(j) + Adaptor3† (m) -5.89 -18.59 -19.89 -25.68 -20.12 -6.21 -16.06

Table 7: Comparison of our method with existing latent refinement approaches. The evaluation
is measured in terms of average BD-rate savings (% ↓) using the base models (without test-time
adaptation). Smaller values indicate superior performance.

Method
In-domain datasets

Set5 Set14 BSD100 Urban100 Average↓

AR-CM (Cheng et al., 2020) 0 0 0 0 0
+ BLR -13.27 -15.32 -5.92 -16.25 -12.69
+ HLR -15.01 -18.29 -6.61 -21.42 -15.33
+ Ours -21.47 -24.88 -11.23 -26.68 -21.06

reasonable as our proposed method can alleviate deteriorated joint probability approximation, leading
to a better bitrate budget in a two-stage TTA-IC framework.

F MORE VALIDATIONS ON POPULAR DATASETS

We utilize Set5, Set14, BSD100, and Urban100 benchmark datasets for further evaluations, where
Set 5 and Set14 include 5 and 14 images, respectively, both BSD100 and Urban100 have 100 high-
resolution images. As illustrated in Table 7, our proposed method can surpass baseline methods in
terms of the BD-rate. Such performance gains show a good generalization ability of our proposed
method on diverse datasets, exhibiting its usability in the real world.

G ADAPTATION COST

We compute the adaptation cost of different methods in terms of GPU memory usage and GFLOPs.
As illustrated in Table 8, our proposed method has a minor increase in adaptation cost, which is
reasonable as the dropout variational inference is introduced during optimization for better R-D
performance.

Notably, although our proposed method increases the adaptation cost, such a latent refinement stage
is usually conducted on the encoding side of the server, which means that there is no effect on the
real-time decoding on edge devices, making our proposed method applicable to real-world scenarios.
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Table 8: Average adaptation cost of different methods on Kodak and CCT datasets.

BLR HLR Ours
GPU Memory (GB) 0.72/3.67 0.74/3.92 0.79/3.98

GFLOPs 98.98/525.81 101.23/563.24 110.58/587.47

Moreover, our proposed method has no model modification to obtain probability representation based
on dropout variational inference. This simplification also enhances its usability.

H MORE DISCUSSION ABOUT LEARNING MATCHED POSTERIOR DISTRIBUTION

Here, we discuss a potential method, namely direct inferring, which conducts a directly inferring
through a hyper analysis transform to address the mismatched problem. Although it is feasible to
conduct a direct inferring through a hyper analysis transform in out-of-distribution (OOD) scenarios,
we observe that the result is significantly behind the proposed distribution regularization. For
example, by using the ablation study in Table 3, the result achieved by direct inferring is -4.84, which
seems to be similar to the setting with DL=3 and β = 10 (-4.95) and the deterministic distribution
regularization (-3.54).

We conjecture that the direct inferring may be a deterministic over-regularization method. Since
the optimization of latent representation is directly affected by the reconstruction loss and rate
cost of latent representation, the usage of direct inferring result z still cannot be ensured to lead to
minimal rate cost of side information and appropriate conditional distribution p(y|z). Moreover, the
optimization of side information z uses the direct inferring result may result in a potential optimization
difficulty, due to continually variational z obtained by a hyper analysis transform.

Therefore, it seems that an appropriate regularization like the proposed distribution regularization is
necessary to alleviate the optimization difficulty between latent representation and side information,
leading to more matched joint probability.
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