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ABSTRACT

With face-recognition models now embedded in everyday authentication and
surveillance, recent works have pinpointed a critical weakness: these models re-
main acutely vulnerable to adversarial semantic edits. I.e., adversarially produced
semantic alterations to the input, such as slight aging or pose changes, can in-
duce misclassifications. Certain existing attacks are powerful, but they can be
computationally costly, rendering them inadequate for developing defenses (e.g.,
through adversarial training). To fill the gap, we introduce BOUNDSTYLE, a po-
tent semantic attack operating in StyleGAN’s rich latent space to maximize mis-
classification rates. Notably, BOUNDSTYLE is significantly more efficient than
equally powerful attacks, making it suitable for adversarial training. Building on
BOUNDSTYLE, we develop STYLEAT, an efficient adversarial training scheme
that incorporates low-budget attack variants yet defends against stronger and un-
seen semantic attacks. We evaluate on two datasets unseen during training (LFW
and VGG-Face) and five models, and find that STYLEAT boosts robust accuracy
against state-of-the-art attacks (DiffPrivate and BOUNDSTYLE) and outperforms
common defenses (DOA and classical filters) in various settings.

1 INTRODUCTION

Face-recognition (FR) technologies are employed in various security-critical applications, including
for surveillance and access control (Introna & Nissenbaum, 2009). Failures of such systems may be
pernicious; for instance, false negatives may enable criminals to avoid surveillance, whereas false
positives may provision unauthorized access to important resources protected by access control.
However, unfortunately, similar to other machine-learning (ML) models that can be evaded by ad-
versarial examples at inference time (Goodfellow et al., 2015; Szegedy et al., 2014), FR models are
vulnerable to general semantic attacks—a class of adversarial example attacks that introduce slight
semantic changes (e.g., addition of accessories or alterations of pose, expression, or age) to fool FR
despite preserving the identity of the subject in the image (Barattin et al., 2023; Jia et al., 2022; Le
& Carlsson, 2024; 2025; Liu et al., 2024).

Existing general semantic attacks mostly rely on generative models, such as StyleGAN (Le & Carls-
son, 2024) and latent diffusion models (Le & Carlsson, 2025), to discover adversarial semantic edits
through latent-space perturbations that mislead FR. However, these attacks suffer from certain limi-
tations: Some attacks such as StyleAdv achieve limited attack success (Le & Carlsson, 2025); other
attacks such as AMT-GAN produce edits with low visual fidelity (Le & Carlsson, 2024); and attacks
such as DiffPrivate are computationally heavy, requiring significant run time to attain high success
rates (see §6). Due to these limitations, existing attacks may fail to uncover weakness in FR or may
not lend themselves to being incorporated in training schemes for improving FR’s robustness.

For specific forms of adversarial examples, such as those created by adversarial perturbations with
bounded ℓp-norms, numerous defense types like adversarial training (Wong et al., 2020) and ran-
domized smoothing (Cohen et al., 2019) can help boost robustness. However, to our knowledge,
no established defenses have been proposed to mitigate general semantic attacks (Le & Carlsson,
2025). Particularly, adversarial training for defending against general semantic attacks remains in-
feasible due to the run-time overhead or limited success rates of existing attacks. Consequently, FR
remains vulnerable to general semantic attacks.
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To fill these gaps, this work presents a new general semantic attack, BOUNDSTYLE, and a defense,
STYLEAT. Our attack takes advantage of StyleGAN3’s rich latent space, among others, to produce
high-fidelity semantic edits to fool FR. Importantly, BOUNDSTYLE is tunable, enabling us to control
the magnitude of edits and run time, thus ensuring that identity is preserved w.r.t. human observer
and allowing us to execute time-efficient variants. Notably, we also find that BOUNDSTYLE is
highly successful, on par with the state-of-the-art DiffPrivate attack (Le & Carlsson, 2025), while
being significantly (≈ ×9.5) faster. Interestingly, while we find compelling evidence that DiffPri-
vate introduces imperceptible adversarial perturbations alongside visible semantic edits, we find no
clear signs that BOUNDSTYLE makes edits other than semantic ones. Altogether, BOUNDSTYLE’s
advantages render it suitable for measuring the susceptibility of FR models to attacks as well as for
adversarial training to help improve robustness against semantic attacks.

Our defense, STYLEAT, employs a time-efficient variant of BOUNDSTYLE to adversarially train FR
models and improve their adversarial robustness against general semantic attacks. Against BOUND-
STYLE, STYLEAT achieves up to 28.6% increase in robust accuracy (depending on the setting ex-
plored) compared to undefended models, markedly higher than defenses not tailored for general
semantic attacks that achieve ≤6.0% increase in robust accuracy. Crucially, STYLEAT also leads
to improvements against DiffPrivate, an attack not encountered during training, with up to 46.3%
higher robust accuracy than undefended models, showcasing that STYLEAT generalizes to unknown
general semantic attacks.

We next present related work (§2) and lay out our threat model (§3). Subsequently, we present the
technical approach behind BOUNDSTYLE and STYLEAT (§4) before presenting our experimental
results (§5–6) and concluding (§7).

2 RELATED WORK

Attacks on FR Prior work has demonstrated that ML models in general, and FR in particular, are
vulnerable to test-time evasion attacks that induce misclassifications via imperceptible adversarial
perturbations with bounded ℓp-norm (Szegedy et al., 2014). For instance, the fast gradient sign
method (FGSM) creates attacks by perturbing inputs in the gradient direction once (Goodfellow
et al., 2015), while projected gradient descent (PGD) does so through multiple, iterative perturba-
tions Madry et al. (2018). However, such attacks may be challenging to realize in real-world settings
due to difficulties in implementing norm-bounded noise and cameras’ sampling errors, among oth-
ers (Sharif et al., 2016). To this end, researchers have proposed semantic attacks—attacks that alter
inputs in minor, easy-to-realize, and semantically meaningful ways—to mislead FR models.

Semantic attacks consist of two families. The first family of attacks makes ad hoc changes to inputs,
for example, by introducing adversarial accessories like eyeglasses or hats to fool models (Komkov
& Petiushko, 2021; Sharif et al., 2016). These also include attacks that fool models via facial make-
up or spatial transformations applied in an adversarial manner (Hu et al., 2022; Xiao et al., 2018; Yin
et al., 2021). By contrast, the second family of attacks leverages general edits of inputs to induce
misclassifications, including, but not limited to, changes of expression, age, and accessories, or a
combination thereof (Barattin et al., 2023; Jia et al., 2022; Le & Carlsson, 2024; 2025; Liu et al.,
2024). Our work focuses on general semantic attacks, proposing a new attack and a defense.

General semantic attacks typically leverage generative models to produce adversarial edits of in-
puts. For instance, attacks such as StyleAdv (Le & Carlsson, 2024) and Adv-Attribute (Jia et al.,
2022) search for adversarial editing directions in the latent space of generative adversarial networks
(GANs) to produce misclassifications. By contrast, Adv-Diffusion (Liu et al., 2024) and DiffPri-
vate (Le & Carlsson, 2025) use latent diffusion models to find adversarial semantic edits of inputs.
DiffPrivate is the most recent and potent general semantic attack; we use it in our evaluation.

Defending FR A diversity of defenses against evasion attacks have been proposed, including, but
not limited to, ones that detect attacks (e.g., Metzen et al. (2017)); filter out adversarial perturbations
(e.g., Xu et al. (2018)); smoothen classification boundaries to reduce model vulnerability (e.g., Car-
lini et al. (2023); Cohen et al. (2019)); verify robustness against specific adversaries (e.g., Katz
et al. (2019)); and adversarial train of models by injecting correctly labeled adversarial inputs to
the training data to inherently increase model robustness (e.g., Kurakin et al. (2017); Madry et al.
(2018)). Due to its intuitive nature, its ability to improve adversarial robustness in a practical man-
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ner against different attack types, and absence of impact on model’s inference time, Adversarial
training is particularly appealing and was widely studied. Still, adversarial training may be compu-
tationally expensive due to the overhead of producing attacks during training, potentially rendering
training prohibitive. To this end, researchers have also explored efficient adversarial training variants
(e.g., Shafahi et al. (2019); Wong et al. (2020)). We take inspiration from Wong et al. (2020) who
showed how to leverage the efficient FGSM attack in training to induce robustness against much
more potent attacks at test time.

To the best of our knowledge, there are no established defenses for countering general seman-
tic attacks against FR. Nonetheless, several countermeasures have been proposed to counter ad
hoc semantic attacks. For example, defense through occlusion attack (DOA) adversarially trains
models with carefully positioned patches containing adversarial patterns to help counter eyeglass
attacks (Wu et al., 2020a). As another example, DiffPure utilizes forward diffusion followed by
image recovery to remove adversarial manipulations, helping counter spatial adversarial modifica-
tions (Nie et al., 2022). Prior work has also shown that input filters, such as JPEG compression
and blurring can hinder general semantic attacks to some degree when those attacks are agnostic
to the filters (Le & Carlsson, 2025). Related to our work, Laidlaw et al. (2020) adversarially train
ML models with imperceptible adversarial perturbations created using generative models. However,
they only evaluate robustness against imperceptible perturbations and spatial manipulations.

3 THREAT MODEL

We consider an adversary carrying out a general semantic attack against FR. Per standard practice,
we assume the FR system is tuned to an operating point where the false positive rate (FPR) is below a
target threshold, such as 0.01 FPR (Introna & Nissenbaum, 2009; Le & Carlsson, 2025). We consider
a powerful adversary aiming to produce arbitrary, untargeted misclassifications (primarily, false
negatives) rather than impersonations (i.e., targeted attacks), as, intuitively, this adversary would be
more challenging to defend against. Contrastively, our defender aims to hinder the adversary’s
attempts through keeping the robust true positive rate (TPR)—i.e., the TPR under attacks—high
while preserving the benign accuracy of standard FR models when ingesting clean inputs. In line
with Le & Carlsson (2025), We primarily focus on potent adversaries with white-box access to
both the FR model and the defense, but we also consider black-box adversaries without access to the
model or defense that seek to transfer attacks from surrogate models, as well as gray-box adversaries
that have access to the (undefended) model but not to the defense.

4 TECHNICAL APPROACH

We now present our proposed attack (BOUNDSTYLE) and defense (STYLEAT).

4.1 BOUNDSTYLE: A HIGH-FIDELITY, POTENT, TUNABLE GENERAL SEMANTIC ATTACK

We design BOUNDSTYLE as a general semantic attack against FR based on generative models with
three goals in mind: (1) We require that the attack produces evasive face images with high visual
fidelity through diverse and realistic edits; (2) We seek tunability such that we would be able to con-
trol the run time of the attack to later enable efficient adversarial training and bound the magnitude
of the edit so as the identity in the face image is unchanged (for a human observer); and (3) We
need the attack to be potent exposing the weaknesses of FR through achieving high success rates.
We next describe how our design of BOUNDSTYLE ensures high visual fidelity and tunability. Our
experiments (§5–6) evidence the attack’s potency.

A Tunable Attack Let F denote the feature extractor used for FR, C the preprocessing algorithm
(cropping and alignment), G a generative model, x the image to modify with an inverted latent code
l, and xe a face image of the same subject enrolled in the gallery. BOUNDSTYLE aims to edit
x through a slight modification of l such that the similarity (sim, usually cosine similarity) with
xe would become small. Formally, BOUNDSTYLE aims to minimize the following loss through a
perturbation δ of the latent code:

Latk = sim(F (C(G(l + δ), F (C(xe))).
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BOUNDSTYLE optimizes the loss through iterative gradient-based optimization, in the spirit of PGD,
and its performance is governed by two primary inputs T , the number of iterations, and β, the
magnitude (specifically, ℓ2-norm) of the perturbation δ. Initially, δ0 is randomly initialized inside
the β-ball, as random initialization is critical to the performance of evasion attacks in adversarial
training (Wong et al., 2020). Subsequently, in each iteration (up to T ), BOUNDSTYLE updates
δi = δi − α · g

∥g∥∞
where g = ∇δiLatk is the loss gradient and α is a step-size hyperparameter. At

any point, if the norm of δi exceeds the bound β, it is projected back to the β-ball via δi = β · δi
∥δi∥2

.

Both T and β are tunable parameters that enable achieving different trade-offs with BOUNDSTYLE.
Decreasing T may potentially harm the attack success, but also makes BOUNDSTYLE faster, ren-
dering it more suitable for (efficient) adversarial training. Moreover, setting β should balance two
goals—it should be large enough so that the attack is successful due to stronger edits in the latent
space, but small enough so that the identity of the subject is preserved w.r.t. human observers.

Ensuring High Fidelity We take several measures to ascertain that BOUNDSTYLE introduces high-
fidelity edits. First, we adopt the StyleGAN3 generator (Karras et al., 2021), which provides a rich
latent space with diverse editing directions and high quality outputs. Second, we invert x to a latent
code l that maps back almost precisely to x, thus preserving identity. To do so, we use a hybrid
combination of encoder-based projection to the latent space (Alaluf et al., 2022) followed by direct
gradient-based optimization for accurate reconstruction of the face image (Zhu et al., 2020). Last, we
use pivotal tuning, a method that tunes the generator G to enable better editability while preserving
identity (Roich et al., 2022).

4.2 STYLEAT: STYLE-AWARE ADVERSARIAL TRAINING

Building on BOUNDSTYLE, we design STYLEAT, a method for adversarially training FR models
to enhance their adversarial robustness against general semantic attacks. In particular, STYLEAT
fine-tunes pre-trained FR feature extractors while aiming to balance three different objectives: (1)
Preserving benign accuracy on clean images; (2) Improving robust accuracy against general se-
mantic attacks; and (3) Countering imperceptible perturbations inadvertently introduced by certain
established semantic attacks. To achieve each of these goals, STYLEAT minimizes the triplet losses
LCln, LAdvSem, and LAdvPix, respectively. These losses are balanced through non-negative hyperpa-
rameters that accumulate to one (i.e., λCln + λAdvSem + λAdvPix = 1). We next elaborate how each of
LAdvSem and LAdvPix are computed and optimized and how we select triplets for loss computation;
minimizing LCln is intuitive and follows standard practice (Wang et al., 2021). Alg. 1 in App. A
presents STYLEAT’s pseudocode.

Computing and Optimizing LAdvSem We leverage BOUNDSTYLE to produce general semantic
attacks for adversarial training. However, as executing the most potent attack variant during training
may make the training process infeasible, we incorporate “weakened” but efficient attack variants
into training. Specifically, we run fast variants of BOUNDSTYLE with a small number of iterations
T , analogously to fast adversarial training with FGSM (Wong et al., 2020). Here, we tune T and
the step size α such that training can be completed within a few days under our resource constraints,
while the attacks are sufficiently evasive to help enhance FR’s robustness against general semantic
attacks.

Computing and Optimizing LAdvPix Our evaluation of established semantic attacks shows that
certain attacks may introduce imperceptible perturbations alongside semantic edits to mislead FR.
This phenomenon is perhaps most clearly demonstrated when evaluating attacks against filter-based
defenses such as JPEG compression that primarily affect imperceptible, non-semantic perturbations.
Said differently, if such filters have a pronounced effect on an attack’s success, one may conclude
that misclassification did not occur due to a semantic edit, but rather due to imperceptible changes of
pixels. Indeed, our evaluation shows that DiffPrivate exhibits a significant decrease in their success
once JPEG compression and similar filters are employed (see Fig. 3). To account for these potential
perturbations, we also adversarially train our models against imperceptible ℓ∞-norm-bounded ad-
versarial perturbations. We find that doing so does not harm robustness against semantic attacks that
do not seem to introduce imperceptible adversarial perturbations (namely, BOUNDSTYLE; App. C).

Toward countering imperceptible adversarial perturbations, we integrate fast PGD attacks with few
iterations into training, in the spirit of Wong et al.’s (2020) work. Importantly, to avoid robust
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overfitting, we perform PGD with random initialization before each attack. Crucially, we apply PGD
to images already edited adversarially with BOUNDSTYLE, as we aim to counter the combination
of adversarial semantic edits and imperceptible perturbations.

Selection of Triplets For a given positive pair of samples depicting the same identity, we se-
lect the hardest negative sample from the batch to compute triplet losses. Doing so, as shown
in prior work on adversarially robust metric learning (Mao et al., 2019), is most conducive for
adversarial robustness. More precisely, to compute the triplet loss, for a positive pair of sam-
ples p and a (standing for positive and anchor, respectively), we select the negative sample n
from the batch such that it depicts a different identity and is most similar to a in the feature
space compared to other samples in the batch. Subsequently, the triplet loss is calculated by
(sim(F (C(n)), F (C(a)))− sim(F (C(p)), F (C(a))) + µ)

+, where µ is a small (non-negative)
constant. Moreover, in the interest of improving adversarial robustness, we adversarially perturb
the anchor sample a when computing LAdvSem and LAdvPix, and select the hardest negative sample
after applying the perturbations, per Li et al. (2019).

5 EXPERIMENTAL SETUP

FR Backbones We employ five popular and high-performing FR backbones, four convolutional
networks and one vision transformer: MobileFaceNet (MobileFace) (Chen et al., 2018); ResNet
(ResNet-152, IR-SE) (He et al., 2016); RepVGG (Ding et al., 2021); LightCNN (Wu et al., 2018;
2020b); and Swin Transformer (SwinT) (Liu et al., 2021). We use these models in two roles, both as
targets for attacks, and as surrogates (i.e., proxies) for producing transferable adversarial examples.
As part of STYLEAT, we create adversarially trained variants of ResNet through fine-tuning the
original pre-trained backbone. We obtain the initial weights from FaceX-Zoo (Wang et al., 2021).

Datasets Following FaceX-Zoo (Wang et al., 2021), we construct our training dataset from MS-
Celeb-1M-v1c (Guo et al., 2016), we use their randomly selected preprocessed positive image pairs
for training. We then run our preprocessing pipeline on all images and discard pairs where an image
fails face or landmark detection, yielding a final training set of 52,269 positive image pairs. (Note
that negative images are selected as hard negatives, independently for each batch during training.)
We evaluate on two widely used datasets: (1) Labeled Faces in the Wild (LFW) (Huang et al., 2007)
and (2) VGG-Face (Parkhi et al., 2015). Specifically, we select 216 and 156 positive pairs from
LFW and VGG-Face, respectively. When selecting these images, we ensure no overlap between the
selected identities and those appearing in the training (and pre-training) sets from MS-Celeb-1M-
v1c, by removing any image that has similarity with any training samples above the threshold where
the original ResNet backbone has an FPR of 10−4.

Attacks We evaluate BOUNDSTYLE, bounding the edit perturbation ℓ2-norms in StyleGAN3’s la-
tent space to β ∈ {1.0, 1.5, 2.0, 3.0}. We avoid perturbations of larger magnitude to help preserve
subject identities in images (see Fig. 4). For best performance, we set the step size α=β, and the num-
ber of iterations T=30, as more iterations show no improvements in attack success. As a baseline,
we evaluate DiffPrivate (Le & Carlsson, 2025), a state-of-the-art attack that edits images through
perturbations in the diffusion latent z-space. For a fair comparison with BOUNDSTYLE, we adopt a
norm-bounded variant of DiffPrivate by enforcing ∥∆z∥2 = ∥zadv − z0∥2 ∈ {1, 2, 3, 4, 5, 6}. We
avoid perturbations with norm >6 to preserve subject identities in images (see Fig. 5). Under this
bounded setup, we find that capping the optimization at 70 iterations for convergence to the highest
attack success.

Defenses We apply STYLEAT on the ResNet model, adversarially training it from the checkpoint
obtained from FaceX-Zoo. We use a low-cost variant of BOUNDSTYLE for adversarial training,
with T=3 attack iterations, β=3 ℓ2-norm for perturbations in the StyleGAN3 latent space, and α=3
as step size in the attack; we run PGD attacks for 2 iterations with ϵ=24/255 ℓ∞-norm for perturba-
tions in the pixel space and step size α = ϵ/2. We find that these parameters help attain reasonable
benign accuracy within feasible time under our resource constraints. For best performance, we set
λCln=0.35, λAdvSem=0.45, and λAdvPix=0.2 after hyperparameter search. Other parameters (e.g., for
the optimizer and triplet loss margin) are adopted from FaceX-Zoo. We run training on 8 NVIDIA
RTX A5000 GPUs with a batch size of 4 per GPU (global batch size 32). We run training for 8
epochs, completing it within 4 days. As baselines, we compare STYLEAT with DOA—a defense
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tailored for ad hoc semantic attacks using eyeglasses (see §2)—and standard filters considered in
prior work (Le & Carlsson, 2025), including Gaussian blur, denoising via total variation minimiza-
tion, JPEG compression, feature squeezing, spatial smoothing, and random noise injection.

Metrics and FR Operating Point We evaluate model robustness through accuracy (i.e., TPR) after
perturbing one of the samples from a positive pair. Following standard practice, we calibrate the
verification threshold to meet a target FPR on clean data (without attacks). Specifically, we perform
the calibration on LFW’s full (clean) validation set (containing negative and positive pairs) to obtain
an FPR of 0.01, similar to Le & Carlsson (2025).

6 EXPERIMENTAL RESULTS

We now evaluate the BOUNDSTYLE attack and STYLEAT defense.

6.1 BOUNDSTYLE IS POTENT AND FAST

White-box Attacks Tab. 1 reports the robust accuracy of the five (undefended) FR backbones
against BOUNDSTYLE and DiffPrivate on the LFW and VGG-Face datasets when varying the attack
budgets. The results show that both attacks are potent in the white-box setting—despite high be-
nign accuracy (>99%), the robust accuracy drops as the attack budgets increase. At their strongest
BOUNDSTYLE budgets (β=3 for BOUNDSTYLE and ∥∆z∥=6 for DiffPrivate), the average robust
accuracy against BOUNDSTYLE (∼45% on LFW and ∼37% on VGG-Face) is slightly higher than
against DiffPrivate (∼37.5% on LFW and ∼17% on VGG-Face).

LFW
BOUNDSTYLE — β DiffPrivate — ∥∆z∥

Model Clean 1 1.5 2 3 1 2 3 4 5 6

SwinT 99.1 94.9 88.0 78.7 52.6 99.5 98.6 98.6 85.6 50.5 49.1
LightCNN 99.1 90.3 84.7 72.7 40.5 99.1 97.7 89.4 62.0 32.9 28.7
MobileFace 99.1 91.7 88.0 75.0 50.2 98.6 98.1 96.3 79.2 53.7 38.0
RepVGG 99.1 92.6 83.3 69.4 40.5 99.1 99.1 96.3 72.7 43.5 38.0
ResNet 99.1 93.5 83.8 70.8 39.5 99.1 98.6 93.5 71.8 41.7 33.8

VGG-Face
BOUNDSTYLE — β DiffPrivate — ∥∆z∥

Model Clean 1 1.5 2 3 1 2 3 4 5 6

SwinT 100.0 85.3 80.8 65.4 45.5 83.9 76.8 64.5 41.9 26.5 19.4
LightCNN 98.7 84.0 72.4 60.3 34.0 69.7 58.7 45.8 25.2 18.1 14.8
MobileFace 97.4 78.8 72.4 62.2 38.5 70.3 66.5 47.7 34.2 21.9 16.1
RepVGG 100.0 80.8 71.2 60.3 32.0 77.4 69.7 53.5 32.3 22.6 17.4
ResNet 100.0 84.0 72.4 59.6 34.6 77.4 67.7 51.0 30.3 22.6 17.4

Table 1: Robust accuracy of models against white-box attacks (higher is better). We report results
on LFW and VGG-Face while varying the attack budgets of BOUNDSTYLE and DiffPrivate. The
second column from the left reports the benign accuracy (without attacks).

Black-box Attacks Fig. 1 presents the robust accuracy of models when transferring attacks be-
tween models at the highest attack budgets considered. In the heatmaps, off-diagonals show robust
accuracy in black-box settings (transfer from the rows to columns), while diagonals correspond to
white-box settings. BOUNDSTYLE exhibits strong transferability—on both datasets, the heatmaps
are near-uniform with off-diagonals typically within 5–15% of the diagonal. This indicates strong
transferability, where attacks crafted on one model substantially reduce accuracy on others. By con-
trast, DiffPrivate exhibits relatively weak transferability—off-diagonals are often 20–60% higher
than the diagonal, meaning attacks fail to carry over. For instance, on LFW, evaluating on SwinT
yields 49% robust accuracy in the white-box setting compared to 90–97% robust accuracy when
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transferring the attack from the convolutional networks to SwinT, suggesting that DiffPrivate is
architecture-specific.
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(a) LFW – BOUNDSTYLE (β = 3) (b) LFW – DiffPrivate (∥∆z∥ = 6)
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Figure 1: Robust accuracy of models against black-box attacks. Each heatmap reports the robust
accuracy of the model at the column, when transferring attacks from the model at the row. Diagonals
correspond to white-box attacks.

Attacks’ Run Times We benchmark attacks’ run times on an NVIDIA RTX A6000 GPU, executing
each attack 100 times and averaging the run time. For fair comparison, we use an equal batch size of
1 for both attacks. Under this setting, BOUNDSTYLE takes an average of 8,302 ms to complete per
image compared to an average of 79,094 ms attained by DiffPrivate, demonstrating approximately
×9.5 speedup. This result highlights BOUNDSTYLE’s better fit for adversarial training compared to
other state-of-the-art attacks: BOUNDSTYLE is not only roughly as powerful in inducing misclassi-
fications in white-box settings and more transferable in black-box settings, but it is also significantly
faster.

6.2 STYLEAT IMPROVES ADVERSARIAL ROBUSTNESS

White-box Setting We execute white-box attacks against STYLEAT and DOA as well as against
the undefended (ResNet) model at different attack budgets. Tab. 2 reports the results. Compared
to the undefended model, STYLEAT shows a 0.4–14.8% increase in robust accuracy on the dif-
ferent attack budgets against both BOUNDSTYLE and DiffPrivate, with the latter unseen during
training. The DOA defense, tailored for ad hoc semantic attacks, shows a 0.4% higher robust accu-
racy than STYLEAT for one attack budget on DiffPrivate, but otherwise trails behind STYLEAT’s
robust accuracy by 0.4–4.6% against the DiffPrivate attack. However, against BOUNDSTYLE, DOA
is counterproductive for most attack budgets, decreasing robust accuracy compared to the unde-
fended model by up to 5.7%. Altogether, these results show that STYLEAT reliably improves robust
accuracy against general semantic attacks while generalizing to attacks unseen during training. Im-
portantly, STYLEAT also maintains the benign accuracy on clean data as the undefended model or
even roughly improves it.

Gray-box Setting We also evaluate STYLEAT and filter-based defenses against gray-box attacks,
where the adversary produces attacks against the undefended model, in a manner agnostic to the
defense. Figs. 2–3 report the robust accuracy achieved against BOUNDSTYLE and DiffPrivate, re-
spectively. Against BOUNDSTYLE, it can be seen that filter-based defenses have little impact on
robustness, increasing robust accuracy by 6.0% in the best case compared to the undefended model.
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LFW
BOUNDSTYLE — budget β DiffPrivate — ∥∆z∥

Defense Clean 1 1.5 2 3 1 2 3 4 5 6

No Defense 99.1 93.5 83.8 70.8 39.5 99.1 98.6 93.5 71.8 41.7 33.8
DOA 99.1 94.9 80.6 69.4 35.4 99.1 98.6 96.8 85.6 54.6 42.6
STYLEAT 99.5 97.7 91.7 84.3 50.7 99.5 99.5 97.7 86.6 54.2 47.2

VGG-Face
BOUNDSTYLE — budget β DiffPrivate — ∥∆z∥

Defense Clean 1 1.5 2 3 1 2 3 4 5 6

No Defense 100.0 84.0 72.4 59.6 34.6 77.4 67.7 51.0 30.3 22.6 17.4
DOA 99.4 82.7 69.9 55.8 28.9 79.4 74.2 58.7 38.1 27.1 16.1
STYLEAT 100.0 88.5 81.4 65.4 35.3 81.3 76.1 63.2 41.9 27.7 18.1

Table 2: Evaluating defenses against white-box attacks. For each defense and undefended model,
we report benign accuracy and robust accuracy under varied attack budgets on the LFW and VGG-
Face datasets.

In comparison, STYLEAT results in up to 28.6% increase in robust accuracy. The filter-based de-
fenses are more useful against DiffPrivate, increasing robust accuracy by up to 31.5%. Nonetheless,
STYLEAT is also more effective than filter-based defenses against DiffPrivate, with an increase of
up to 46.3% in robust accuracy compared to the undefended model. These results further highlight
STYLEAT’s utility against defense-agnostic adversaries including against attacks not accounted for
during training (i.e., DiffPrivate).
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Figure 2: Evaluating defenses against gray-box BOUNDSTYLE attacks.
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Figure 3: Evaluating defenses against gray-box DiffPrivate attacks.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Our work studies general semantic attacks against FR, proposing a new attack and a defense. The
proposed attack, BOUNDSTYLE, produces high-fidelity images, attains high success rates, and is
tunable, lending itself to being integrated into adversarial training. We find that BOUNDSTYLE
achieves success rates on par with state-of-the-art attacks and even outperforms them in some set-
tings, while being almost ×9.5 more time-efficient. Our defense, STYLEAT, is, to the best of our
knowledge, the first defense tailored for general semantic attacks against FR. STYLEAT builds on
BOUNDSTYLE, augmenting the training data with evasive samples produced via a weakened but
efficient attack variant, leading to significant increases in robust accuracy in several settings we
consider.

While STYLEAT helps improve adversarial robustness of FR, thus improving security, it is important
to notice that it does not prevent attacks completely. Moreover, in line with other adversarial training
methods, STYLEAT is an empirical and practical defense, but it does not provide provable security
guarantees. Future work may seek to further increase adversarial robustness against general semantic
attacks and derive theoretical guarantees, for instance through randomized smoothing (Cohen et al.,
2019) in the latent space.

ETHICS STATEMENT

Our work lies in the general field of ML security. The two main innovations we make, BOUND-
STYLE and STYLEAT, can be used to challenge the security of FR and improve it, respectively.
While BOUNDSTYLE may be used to mislead existing deployment of FR, we argue that developing
it brings about more advantages than disadvantages. In particular, if not created by us, adversaries
may use methods similar to BOUNDSTYLE to fool FR systems without our knowledge. Crucially,
BOUNDSTYLE is a critical component in enabling STYLEAT, allowing us to enhance FR’s reliabil-
ity in the face of general semantic attacks.

REPRODUCIBILITY STATEMENT

As proponents of open science, we intend to release our code, data, and models upon paper accep-
tance to facilitate reproducibility and allow future work to build off of our contributions. Our code
release will be accompanied with detailed documentation and scripts that can be used to recreate all
our results. We also hope that our implementation would help practitioners improve FR’s reliability
in practice.
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A STYLEAT’S ALGORITHM

Alg. 1 presents the pseudocode of STYLEAT.
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Algorithm 1 STYLEAT (per minibatch)

Input: minibatch {(xi, x
+
i )}Bi=1; StyleGAN encoder E and generator G, feature extractor fθ, latent

attack steps K, step size α, attack strength β, triplet loss margin µ, pixel PGD steps S, αpix step,
PGD radius ε;
loss weights: λCln, λAdvSem, λAdvPix ≥ 0 with λCln + λAdvSem + λAdvPix = 1
Output: updated parameters θ

1: for i = 1 to B do
2: li ← OptimizeInv

(
E(xi), G

)
{inversion (offline cacheable)}

3: end for
4: for i = 1 to B do
5: Latent branch (BOUNDSTYLE):
6: Sample unit direction vi ∼ N (0, I); vi ← vi/∥vi∥2
7: Sample bi ∼ U(0, β);
8: δi ← bi vi
9: xi ← CropAlign(xi); x+

i ← CropAlign(x+
i )

10: for k = 1 to K do
11: xadv

i ← CropAlign
(
G(li + δi)

)
12: g ← ∇δ

[
− cos

(
fθ(x

adv
i ), fθ(xi)

)]
{dodging: reduce cosine}

13: δi ←
(
δi + α g

||g||∞

)
14: Project δi ← β · δi

∥δi∥2
15: end for
16: xadv

i ← CropAlign
(
G(li + δi)

)
17: Pixel branch (PGD under ℓ∞(ε), around xadv

i ):
18: x̂i

(0) ← Clip
(
xadv
i + U [−ε, ε]

)
{random init near xadv

i }
19: for s = 1 to S do
20: gx ← ∇x

[
cos

(
fθ(x̂i

(s−1)), fθ(x
+
i )

)]
21: x̂i

(s) ← x̂i
(s−1) − αpix · sign(gx)

22: x̂i
(s) ← ΠB∞(xadv

i ,ε)

(
x̂
(s)
i

)
{project to ℓ∞ ball around xadv

i }
23: x̂i

(s) ← Clip
(
x̂i

(s)
)

{valid pixel range}
24: end for
25: xpix

i ← x̂i
(S)

26: end for
27: for i = 1 to B do
28: e+i = fθ(x

+
i ); e

cln
i = fθ(xi); eadvSem

i = fθ(x
adv
i ); eadvPix

i = fθ(x
pix
i )

29: end for
30: LCln ← TripletLoss

(
{(ecln

i , e+i )}
B
i=1, µ, mine=batch-hardest-negative

)
31: LAdvSem ← TripletLoss

(
{(eadvSem

i , e+i )}
B
i=1, µ, mine=batch-hardest-negative

)
32: LAdvPix ← TripletLoss

(
{(epix

i , e+i )}
B
i=1, µ, mine=batch-hardest-negative

)
33: L← λCln LCln + λAdvSem LAdvSem + λAdvPix LAdvPix {λCln + λAdvSem + λAdvPix = 1}
34: θ ← θ − η∇θL
35: return θ

B SELECTION OF ATTACK PERTURBATION BUDGETS

Figs. 4–5 provide qualitative examples of BOUNDSTYLE and DiffPrivate semantic attacks at differ-
ent attack budgets. It can be seen that the original identities in the images become harder to identify
as the attack budgets increase, leading to more aggressive semantic edits.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

clean 1.0 1.5 2.0 3.0

Figure 4: Examples of edits produced by BOUNDSTYLE when varying the attack budget β ∈
{1.0, 1.5, 2.0, 3.0}.

clean 1 2 3 4 5 6

Figure 5: Examples of edits produced by DiffPrivate when varying the attack budget ∥∆z∥ ∈
{1, 2, 3, 4, 5, 6}.

C ABLATION STUDY

Effect of LAdvPix During Training Tab. 3 reports white-box robust accuracy on LFW for a ResNet
model adversarially trained with and without LAdvPix. Against DiffPrivate, enabling LAdvPix boosts
robust accuracy substantially for high attack budgets, by up to 9.3%. Against BOUNDSTYLE, the ef-
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fect of optimizing LAdvPix during training is minor and mixed, with -1.2–+0.93% difference in robust
accuracy in comparison to when LAdvPix is not optimized. Overall, LAdvPix primarily helps ameliorate
DiffPrivate at high attack budgets, while inducing only negligible changes against BOUNDSTYLE.
Thus, we include this term by default in our training objective.

Table 3: The effect of LAdvPix on robust accuracy against white-box attacks. We use LFW for
evaluation.

BoundStyle (β)
1 1.5 2 3

w/o LAdvPix 98.61 90.74 83.80 51.87
w/ LAdvPix 97.69 91.67 84.26 50.72
∆ −0.92 +0.93 +0.46 −1.15

DiffPrivate (∥∆z∥)
1 2 3 4 5 6

w/o LAdvPix 99.54 99.07 97.69 79.63 46.30 37.96
w/ LAdvPix 99.54 99.54 97.69 86.57 54.17 47.22
∆ 0 +0.46 0 +6.94 +7.87 +9.26

USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT to assist in polishing some text and help improve the quality of the presentation.
All outputs of the LLM have been manually verified and most have been further edited by the
authors. The analyses, ideas, and technical content, of course, are all original.
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