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ABSTRACT

With face-recognition models now embedded in everyday authentication and
surveillance, recent works have pinpointed a critical weakness: these models re-
main acutely vulnerable to adversarial semantic edits. I.e., adversarially produced
semantic alterations to the input, such as slight aging or pose changes, can in-
duce misclassifications. Certain existing attacks are powerful, but they can be
computationally costly, rendering them inadequate for developing defenses (e.g.,
through adversarial training). To fill the gap, we introduce BOUNDSTYLE, a po-
tent semantic attack operating in StyleGAN’s rich latent space to maximize mis-
classification rates. Notably, BOUNDSTYLE is significantly more efficient than
equally powerful attacks, making it suitable for adversarial training. Building on
BOUNDSTYLE, we develop STYLEAT, an efficient adversarial training scheme
that incorporates low-budget attack variants yet defends against stronger and un-
seen semantic attacks. We evaluate on two datasets unseen during training (LFW
and VGG-Face) and five models, and find that STYLEAT boosts robust accuracy
against state-of-the-art attacks (DiffPrivate and BOUNDSTYLE) and outperforms
common defenses (DOA and classical filters) in various settings.

1 INTRODUCTION

Face-recognition (FR) technologies are employed in various security-critical applications, including
for surveillance and access control (Introna & Nissenbaum, 2009). Failures of such systems may be
pernicious; for instance, false negatives may enable criminals to avoid surveillance, whereas false
positives may provision unauthorized access to important resources protected by access control.
However, unfortunately, similar to other machine-learning (ML) models that can be evaded by ad-
versarial examples at inference time (Goodfellow et al., 2015; Szegedy et al., 2014), FR models are
vulnerable to general semantic attacks—a class of adversarial example attacks that introduce slight
semantic changes (e.g., addition of accessories or alterations of pose, expression, or age) to fool FR
despite preserving the identity of the subject in the image (Barattin et al., 2023; Jia et al., 2022; Le
& Carlsson, 2024; 2025; Liu et al., 2024).

Existing general semantic attacks mostly rely on generative models, such as StyleGAN (Le & Carls-
son, 2024) and latent diffusion models (Le & Carlsson, 2025), to discover adversarial semantic edits
through latent-space perturbations that mislead FR. However, these attacks suffer from certain limi-
tations: Some attacks such as StyleAdv achieve limited attack success (Le & Carlsson, 2025); other
attacks such as AMT-GAN produce edits with low visual fidelity (Le & Carlsson, 2024); and attacks
such as DiffPrivate are computationally heavy, requiring significant run time to attain high success
rates (see §6). Due to these limitations, existing attacks may fail to uncover weakness in FR or may
not lend themselves to being incorporated in training schemes for improving FR’s robustness.

For specific forms of adversarial examples, such as those created by adversarial perturbations with
bounded ℓp-norms, numerous defense types like adversarial training (Wong et al., 2020) and ran-
domized smoothing (Cohen et al., 2019) can help boost robustness. However, to our knowledge,
no established defenses have been proposed to mitigate general semantic attacks (Le & Carlsson,
2025). Particularly, adversarial training for defending against general semantic attacks remains in-
feasible due to the run-time overhead or limited success rates of existing attacks. Consequently, FR
remains vulnerable to general semantic attacks.
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To fill these gaps, this work presents a new general semantic attack, BOUNDSTYLE, and a defense,
STYLEAT. Our attack takes advantage of StyleGAN3’s rich latent space, among others, to produce
high-fidelity semantic edits to fool FR. Importantly, BOUNDSTYLE is tunable, enabling us to control
the magnitude of edits and run time, thus ensuring that identity is preserved w.r.t. human observer
and allowing us to execute time-efficient variants. Notably, we also find that BOUNDSTYLE is
highly successful, on par with the state-of-the-art DiffPrivate attack (Le & Carlsson, 2025), while
being significantly (≈ ×9.5) faster. Interestingly, while we find compelling evidence that DiffPri-
vate introduces imperceptible adversarial perturbations alongside visible semantic edits, we find no
clear signs that BOUNDSTYLE makes edits other than semantic ones. Altogether, BOUNDSTYLE’s
advantages render it suitable for measuring the susceptibility of FR models to attacks as well as for
adversarial training to help improve robustness against semantic attacks.

Our defense, STYLEAT, employs a time-efficient variant of BOUNDSTYLE to adversarially train FR
models and improve their adversarial robustness against general semantic attacks. Against BOUND-
STYLE, STYLEAT achieves up to 28.6% increase in robust accuracy (depending on the setting ex-
plored) compared to undefended models, markedly higher than defenses not tailored for general
semantic attacks that achieve ≤6.0% increase in robust accuracy. Crucially, STYLEAT also leads
to improvements against DiffPrivate, an attack not encountered during training, with up to 46.3%
higher robust accuracy than undefended models, showcasing that STYLEAT generalizes to unknown
general semantic attacks.

We next present related work (§2) and lay out our threat model (§3). Subsequently, we present the
technical approach behind BOUNDSTYLE and STYLEAT (§4) before presenting our experimental
results (§5–6) and concluding (§7).

2 RELATED WORK

Attacks on FR Prior work has demonstrated that ML models in general, and FR in particular, are
vulnerable to test-time evasion attacks that induce misclassifications via imperceptible adversarial
perturbations with bounded ℓp-norm (Szegedy et al., 2014). For instance, the fast gradient sign
method (FGSM) creates attacks by perturbing inputs in the gradient direction once (Goodfellow
et al., 2015), while projected gradient descent (PGD) does so through multiple, iterative perturba-
tions Madry et al. (2018). However, such attacks may be challenging to realize in real-world settings
due to difficulties in implementing norm-bounded noise and cameras’ sampling errors, among oth-
ers (Sharif et al., 2016). To this end, researchers have proposed semantic attacks—attacks that alter
inputs in minor, easy-to-realize, and semantically meaningful ways—to mislead FR models.

Semantic attacks consist of two families. The first family of attacks makes ad hoc changes to inputs,
for example, by introducing adversarial accessories like eyeglasses or hats to fool models (Komkov
& Petiushko, 2021; Sharif et al., 2016). These also include attacks that fool models via facial make-
up or spatial transformations applied in an adversarial manner (Hu et al., 2022; Xiao et al., 2018; Yin
et al., 2021). By contrast, the second family of attacks leverages general edits of inputs to induce
misclassifications, including, but not limited to, changes of expression, age, and accessories, or a
combination thereof (Barattin et al., 2023; Jia et al., 2022; Le & Carlsson, 2024; 2025; Liu et al.,
2024). Our work focuses on general semantic attacks, proposing a new attack and a defense.

General semantic attacks typically leverage generative models to produce adversarial edits of in-
puts. For instance, attacks such as StyleAdv (Le & Carlsson, 2024) and Adv-Attribute (Jia et al.,
2022) search for adversarial editing directions in the latent space of generative adversarial networks
(GANs) to produce misclassifications. By contrast, Adv-Diffusion (Liu et al., 2024) and DiffPri-
vate (Le & Carlsson, 2025) use latent diffusion models to find adversarial semantic edits of inputs.
DiffPrivate is the most recent and potent general semantic attack; we use it in our evaluation.

Defending FR A diversity of defenses against evasion attacks have been proposed, including, but
not limited to, ones that detect attacks (e.g., Metzen et al. (2017)); filter out adversarial perturbations
(e.g., Xu et al. (2018)); smoothen classification boundaries to reduce model vulnerability (e.g., Car-
lini et al. (2023); Cohen et al. (2019)); verify robustness against specific adversaries (e.g., Katz
et al. (2019)); and adversarial train of models by injecting correctly labeled adversarial inputs to
the training data to inherently increase model robustness (e.g., Kurakin et al. (2017); Madry et al.
(2018)). Due to its intuitive nature, its ability to improve adversarial robustness in a practical man-
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ner against different attack types, and absence of impact on model’s inference time, Adversarial
training is particularly appealing and was widely studied. Still, adversarial training may be compu-
tationally expensive due to the overhead of producing attacks during training, potentially rendering
training prohibitive. To this end, researchers have also explored efficient adversarial training variants
(e.g., Shafahi et al. (2019); Wong et al. (2020)). We take inspiration from Wong et al. (2020) who
showed how to leverage the efficient FGSM attack in training to induce robustness against much
more potent attacks at test time.

To the best of our knowledge, there are no established defenses for countering general seman-
tic attacks against FR. Nonetheless, several countermeasures have been proposed to counter ad
hoc semantic attacks. For example, defense through occlusion attack (DOA) adversarially trains
models with carefully positioned patches containing adversarial patterns to help counter eyeglass
attacks (Wu et al., 2020a). As another example, DiffPure utilizes forward diffusion followed by
image recovery to remove adversarial manipulations, helping counter spatial adversarial modifica-
tions (Nie et al., 2022). Prior work has also shown that input filters, such as JPEG compression
and blurring can hinder general semantic attacks to some degree when those attacks are agnostic
to the filters (Le & Carlsson, 2025). Related to our work, Laidlaw et al. (2020) adversarially train
ML models with imperceptible adversarial perturbations created using generative models. However,
they only evaluate robustness against imperceptible perturbations and spatial manipulations.

3 THREAT MODEL

We consider an adversary carrying out a general semantic attack against FR. Per standard practice,
we assume the FR system is tuned to an operating point where the false positive rate (FPR) is below a
target threshold, such as 0.01 FPR (Introna & Nissenbaum, 2009; Le & Carlsson, 2025). We consider
a powerful adversary aiming to produce arbitrary, untargeted misclassifications (primarily, false
negatives) rather than impersonations (i.e., targeted attacks), as, intuitively, this adversary would be
more challenging to defend against. Contrastively, our defender aims to hinder the adversary’s
attempts through keeping the robust true positive rate (TPR)—i.e., the TPR under attacks—high
while preserving the benign accuracy of standard FR models when ingesting clean inputs. In line
with Le & Carlsson (2025), We primarily focus on potent adversaries with white-box access to
both the FR model and the defense, but we also consider black-box adversaries without access to the
model or defense that seek to transfer attacks from surrogate models, as well as gray-box adversaries
that have access to the (undefended) model but not to the defense.

4 TECHNICAL APPROACH

We now present our proposed attack (BOUNDSTYLE) and defense (STYLEAT).

4.1 BOUNDSTYLE: A HIGH-FIDELITY, POTENT, TUNABLE GENERAL SEMANTIC ATTACK

We design BOUNDSTYLE as a general semantic attack against FR based on generative models with
three goals in mind: (1) We require that the attack produces evasive face images with high visual
fidelity through diverse and realistic edits; (2) We seek tunability such that we would be able to con-
trol the run time of the attack to later enable efficient adversarial training and bound the magnitude
of the edit so as the identity in the face image is unchanged (for a human observer); and (3) We
need the attack to be potent exposing the weaknesses of FR through achieving high success rates.
We next describe how our design of BOUNDSTYLE ensures high visual fidelity and tunability. Our
experiments (§5–6) evidence the attack’s potency.

A Tunable Attack Let F denote the feature extractor used for FR, C the preprocessing algorithm
(cropping and alignment), G a generative model, x the image to modify with an inverted latent code
l, and xe a face image of the same subject enrolled in the gallery. BOUNDSTYLE aims to edit
x through a slight modification of l such that the similarity (sim, usually cosine similarity) with
xe would become small. Formally, BOUNDSTYLE aims to minimize the following loss through a
perturbation δ of the latent code:

Latk = sim(F (C(G(l + δ), F (C(xe))).
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BOUNDSTYLE optimizes the loss through iterative gradient-based optimization, in the spirit of PGD,
and its performance is governed by two primary inputs T , the number of iterations, and β, the
magnitude (specifically, ℓ2-norm) of the perturbation δ. Initially, δ0 is randomly initialized inside
the β-ball, as random initialization is critical to the performance of evasion attacks in adversarial
training (Wong et al., 2020). Subsequently, in each iteration (up to T ), BOUNDSTYLE updates
δi = δi − α · g

∥g∥∞
where g = ∇δiLatk is the loss gradient and α is a step-size hyperparameter. At

any point, if the norm of δi exceeds the bound β, it is projected back to the β-ball via δi = β · δi
∥δi∥2

.

Both T and β are tunable parameters that enable achieving different trade-offs with BOUNDSTYLE.
Decreasing T may potentially harm the attack success, but also makes BOUNDSTYLE faster, ren-
dering it more suitable for (efficient) adversarial training. Moreover, setting β should balance two
goals—it should be large enough so that the attack is successful due to stronger edits in the latent
space, but small enough so that the identity of the subject is preserved w.r.t. human observers.

Ensuring High Fidelity We take several measures to ascertain that BOUNDSTYLE introduces high-
fidelity edits. First, we adopt the StyleGAN3 generator (Karras et al., 2021), which provides a rich
latent space with diverse editing directions and high quality outputs. Second, we invert x to a latent
code l that maps back almost precisely to x, thus preserving identity. To do so, we use a hybrid
combination of encoder-based projection to the latent space (Alaluf et al., 2022) followed by direct
gradient-based optimization for accurate reconstruction of the face image (Zhu et al., 2020). Last, we
use pivotal tuning, a method that tunes the generator G to enable better editability while preserving
identity (Roich et al., 2022).

4.2 STYLEAT: STYLE-AWARE ADVERSARIAL TRAINING

Building on BOUNDSTYLE, we design STYLEAT, a method for adversarially training FR models
to enhance their adversarial robustness against general semantic attacks. In particular, STYLEAT
fine-tunes pre-trained FR feature extractors while aiming to balance three different objectives: (1)
Preserving benign accuracy on clean images; (2) Improving robust accuracy against general se-
mantic attacks; and (3) Countering imperceptible perturbations inadvertently introduced by certain
established semantic attacks. To achieve each of these goals, STYLEAT minimizes the triplet losses
LCln, LAdvSem, and LAdvPix, respectively. These losses are balanced through non-negative hyperpa-
rameters that accumulate to one (i.e., λCln + λAdvSem + λAdvPix = 1). We next elaborate how each
of LAdvSem and LAdvPix are computed and optimized and how we select triplets for loss computa-
tion; minimizing LCln is intuitive and follows standard practice (Wang et al., 2021). An overview of
STYLEAT’s pipeline is depicted in Fig. 1; Alg. 1 in App. A presents its pseudocode.

Computing and Optimizing LAdvSem We leverage BOUNDSTYLE to produce general semantic
attacks for adversarial training. However, as executing the most potent attack variant during training
may make the training process infeasible, we incorporate “weakened” but efficient attack variants
into training. Specifically, we run fast variants of BOUNDSTYLE with a small number of iterations
T , analogously to fast adversarial training with FGSM (Wong et al., 2020). Here, we tune T and
the step size α such that training can be completed within a few days under our resource constraints,
while the attacks are sufficiently evasive to help enhance FR’s robustness against general semantic
attacks.

Computing and Optimizing LAdvPix Our evaluation of established semantic attacks shows that
certain attacks may introduce imperceptible perturbations alongside semantic edits to mislead FR.
This phenomenon is perhaps most clearly demonstrated when evaluating attacks against filter-based
defenses such as JPEG compression that primarily affect imperceptible, non-semantic perturbations.
Said differently, if such filters have a pronounced effect on an attack’s success, one may conclude
that misclassification did not occur due to a semantic edit, but rather due to imperceptible changes
of pixels. Indeed, our evaluation shows that DiffPrivate exhibits a significant decrease in their suc-
cess once JPEG compression and similar filters are employed (see Fig. 4 and Fig. 10, with App. C
providing additional support through a frequency-domain analysis). To account for these potential
perturbations, we also adversarially train our models against imperceptible ℓ∞-norm-bounded ad-
versarial perturbations. We find that doing so does not harm robustness against semantic attacks that
do not seem to introduce imperceptible adversarial perturbations (namely, BOUNDSTYLE; App. C).
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Figure 1: An overview of STYLEAT’s training pipeline. The framework processes a mini-batch
of identity pairs {(xi, x

+
i )} through three parallel branches: (1) The clean branch extracts features

from the original samples to preserve benign accuracy (LCln). (2) The latent branch generates a batch
of semantic adversarial examples xadv

i via BOUNDSTYLE to improve robustness against semantic
attacks (LAdvSem). (3) The pixel branch applies imperceptible perturbations to the semantically
edited batch to increase robustness against imperceptible perturbations (LAdvPix). Batch processing
enables hard negative mining to optimize the triplet losses.

Toward countering imperceptible adversarial perturbations, we integrate fast PGD attacks with few
iterations into training, in the spirit of Wong et al.’s (2020) work. Importantly, to avoid robust
overfitting, we perform PGD with random initialization before each attack. Crucially, we apply PGD
to images already edited adversarially with BOUNDSTYLE, as we aim to counter the combination
of adversarial semantic edits and imperceptible perturbations.

Selection of Triplets For a given positive pair of samples depicting the same identity, we se-
lect the hardest negative sample from the batch to compute triplet losses. Doing so, as shown
in prior work on adversarially robust metric learning (Mao et al., 2019), is most conducive for
adversarial robustness. More precisely, to compute the triplet loss, for a positive pair of sam-
ples p and a (standing for positive and anchor, respectively), we select the negative sample n
from the batch such that it depicts a different identity and is most similar to a in the feature
space compared to other samples in the batch. Subsequently, the triplet loss is calculated by
(sim(F (C(n)), F (C(a)))− sim(F (C(p)), F (C(a))) + µ)

+, where µ is a small (non-negative)
constant. Moreover, in the interest of improving adversarial robustness, we adversarially perturb
the anchor sample a when computing LAdvSem and LAdvPix, and select the hardest negative sample
after applying the perturbations, per Li et al. (2019).

5 EXPERIMENTAL SETUP

FR Backbones We employ seven popular and high-performing FR models, four convolutional
networks, one vision transformer, and two convolutional networks equipped with specialized su-
pervisory heads. Specifically, we use MobileFaceNet (MobileFace) (Chen et al., 2018); ResNet
(ResNet-152, IR-SE) (He et al., 2016); RepVGG (Ding et al., 2021); LightCNN (Wu et al., 2018;
2020b); Swin Transformer (SwinT) (Liu et al., 2021); and ArcFace (Deng et al., 2019) as well as
MagFace (Meng et al., 2021) with MobileFace backbones. We use these models in two roles, both
as targets for attacks, and as surrogates (i.e., proxies) for producing transferable adversarial exam-
ples. As part of STYLEAT, we create adversarially trained variants of ResNet and RepVGG through
fine-tuning the original pre-trained backbones. We obtain the initial weights from FaceX-Zoo (Wang
et al., 2021).

Datasets Following FaceX-Zoo (Wang et al., 2021), we construct our training dataset from MS-
Celeb-1M-v1c (Guo et al., 2016), we use their randomly selected preprocessed positive image pairs
for training. We then run our preprocessing pipeline on all images and discard pairs where an image
fails face or landmark detection, yielding a final training set of 52,269 positive image pairs. (Note
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that negative images are selected as hard negatives, independently for each batch during training.)
We evaluate on two widely used datasets: (1) Labeled Faces in the Wild (LFW) (Huang et al., 2007)
and (2) VGG-Face (Parkhi et al., 2015). Specifically, we select 216 and 156 positive pairs from
LFW and VGG-Face, respectively. When selecting these images, we ensure no overlap between the
selected identities and those appearing in the training (and pre-training) sets from MS-Celeb-1M-
v1c, by removing any image that has similarity with any training samples above the threshold where
the original ResNet backbone has an FPR of 10−4.

Attacks We evaluate BOUNDSTYLE, bounding the edit perturbation ℓ2-norms in StyleGAN3’s la-
tent space to β ∈ {1.0, 1.5, 2.0, 3.0}. We avoid perturbations of larger magnitude to help preserve
subject identities in images (App. B). For best performance, we set the step size α=β, and the num-
ber of iterations T=30, as more iterations show no improvements in attack success (App. C). As a
baseline, we evaluate DiffPrivate (Le & Carlsson, 2025), a state-of-the-art attack that edits images
through perturbations in the diffusion latent z-space. For a fair comparison with BOUNDSTYLE, we
adopt a norm-bounded variant of DiffPrivate by enforcing ∥∆z∥2 = ∥zadv−z0∥2 ∈ {1, 2, 3, 4, 5, 6}.
We avoid perturbations with norm >6 to preserve subject identities in images (App. B). Under this
bounded setup, we find that capping the optimization at 70 iterations for convergence to the highest
attack success (App. C).

Defenses We apply STYLEAT on both ResNet and RepVGG models, adversarially training them
from checkpoints obtained from FaceX-Zoo. We use a low-cost variant of BOUNDSTYLE for adver-
sarial training, with T = 3 attack iterations, β = 3 ℓ2-norm for perturbations in the StyleGAN3 la-
tent space, and α = 3 as step size in the attack; we run PGD attacks for 2 iterations with ϵ = 24/255
ℓ∞-norm for perturbations in the pixel space and step size α = ϵ/2. We find that these param-
eters help attain reasonable benign accuracy within feasible time under our resource constraints.
After hyperparameter search, we set specific loss weights for each backbone: for ResNet, we set
λCln = 0.35, λAdvSem = 0.45, and λAdvPix = 0.2; for RepVGG, we set λCln = 0.1, λAdvSem = 0.8,
and λAdvPix = 0.1. Other parameters (e.g., for the optimizer and triplet loss margin) are adopted
from FaceX-Zoo. We run training on 8 NVIDIA RTX A5000 GPUs with a batch size of 4 per GPU
(global batch size 32). We run training for 8 epochs, completing it within 4 days. As baselines, we
compare STYLEAT with DOA—a defense tailored for ad hoc semantic attacks using eyeglasses (see
§2)—and standard filters considered in prior work (Le & Carlsson, 2025), including Gaussian blur,
denoising via total variation minimization, JPEG compression, feature squeezing, spatial smoothing,
and random noise injection.

Metrics and FR Operating Point We evaluate model robustness through accuracy (i.e., TPR) after
perturbing one of the samples from a positive pair. Following standard practice, we calibrate the
verification threshold to meet a target FPR on clean data (without attacks). Specifically, we perform
the calibration on LFW’s full (clean) validation set (containing negative and positive pairs) to obtain
an FPR of 0.01, similar to Le & Carlsson (2025).

6 EXPERIMENTAL RESULTS

We now evaluate the BOUNDSTYLE attack and STYLEAT defense.

6.1 BOUNDSTYLE IS POTENT AND FAST

White-box Attacks Tab. 1 reports the robust accuracy of the seven (undefended) FR backbones
against BOUNDSTYLE and DiffPrivate on the LFW and VGG-Face datasets when varying the attack
budgets. The results show that both attacks are potent in the white-box setting—despite high be-
nign accuracy (>99%), the robust accuracy drops as the attack budgets increase. At their strongest
BOUNDSTYLE budgets (β=3 for BOUNDSTYLE and ∥∆z∥=6 for DiffPrivate), the average robust
accuracy against BOUNDSTYLE (∼46% on LFW and ∼37% on VGG-Face) is slightly higher than
against DiffPrivate (∼35.5% on LFW and ∼16% on VGG-Face).

Black-box Attacks Fig. 2 presents the robust accuracy of models when transferring attacks be-
tween models at the highest attack budgets considered. In the heatmaps, off-diagonals show robust
accuracy in black-box settings (transfer from the rows to columns), while diagonals correspond to
white-box settings. BOUNDSTYLE exhibits strong transferability—on both datasets, the heatmaps
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LFW
BOUNDSTYLE — β DiffPrivate — ∥∆z∥

Model Clean 1 1.5 2 3 1 2 3 4 5 6

SwinT 99.1 94.9 88.0 78.7 52.6 99.5 98.6 98.6 85.6 50.5 49.1
LightCNN 99.1 90.3 84.7 72.7 40.5 99.1 97.7 89.4 62.0 32.9 28.7
MobileFace 99.1 91.7 88.0 75.0 50.2 98.6 98.1 96.3 79.2 53.7 38.0
RepVGG 99.1 92.6 83.3 69.4 40.5 99.1 99.1 96.3 72.7 43.5 38.0
ResNet 99.1 93.5 83.8 70.8 39.5 99.1 98.6 93.5 71.8 41.7 33.8
MagFace 99.1 94.0 88.9 77.8 52.2 98.6 98.6 96.3 74.5 44.9 28.7
ArcFace 99.5 94.4 85.2 74.1 45.0 99.1 98.6 91.7 69.0 38.4 31.5

VGG-Face
BOUNDSTYLE — β DiffPrivate — ∥∆z∥

Model Clean 1 1.5 2 3 1 2 3 4 5 6

SwinT 100.0 85.3 80.8 65.4 45.5 83.9 76.8 64.5 41.9 26.5 19.4
LightCNN 98.7 84.0 72.4 60.3 34.0 69.7 58.7 45.8 25.2 18.1 14.8
MobileFace 97.4 78.8 72.4 62.2 38.5 70.3 66.5 47.7 34.2 21.9 16.1
RepVGG 100.0 80.8 71.2 60.3 32.0 77.4 69.7 53.5 32.3 22.6 17.4
ResNet 100.0 84.0 72.4 59.6 34.6 77.4 67.7 51.0 30.3 22.6 17.4
MagFace 98.1 75.6 67.3 57.7 40.8 69.0 67.7 52.3 31.0 20.0 14.8
ArcFace 98.7 80.8 71.8 52.6 34.4 71.6 58.7 44.5 27.7 20.0 14.2

Table 1: Robust accuracy of models against white-box attacks (higher is better). We report results
on LFW and VGG-Face while varying the attack budgets of BOUNDSTYLE and DiffPrivate. The
second column from the left reports the benign accuracy (without attacks).

are near-uniform with off-diagonals typically within 5–15% of the diagonal. This indicates strong
transferability, where attacks crafted on one model substantially reduce accuracy on others. By con-
trast, DiffPrivate exhibits relatively weak transferability—off-diagonals are often 20–60% higher
than the diagonal, meaning attacks fail to carry over. For instance, on LFW, evaluating on SwinT
yields 49% robust accuracy in the white-box setting compared to 90–97% robust accuracy when
transferring the attack from the convolutional networks to SwinT, suggesting that DiffPrivate is
architecture-specific.

Attacks’ Run Times We benchmark attacks’ run times on an NVIDIA RTX A6000 GPU, executing
each attack 100 times and averaging the run time. For fair comparison, we use an equal batch size of
1 for both attacks. Under this setting, BOUNDSTYLE takes an average of 8,302 ms to complete per
image compared to an average of 79,094 ms attained by DiffPrivate, demonstrating approximately
×9.5 speedup. This result highlights BOUNDSTYLE’s better fit for adversarial training compared to
other state-of-the-art attacks: BOUNDSTYLE is not only roughly as powerful in inducing misclassi-
fications in white-box settings and more transferable in black-box settings, but it is also significantly
faster. We further analyze the trade-offs between wall-clock time and attack success in App. C,
finding that BOUNDSTYLE is effective even under strict time constraints where DiffPrivate fails.

6.2 STYLEAT IMPROVES ADVERSARIAL ROBUSTNESS

White-box Setting We execute white-box attacks against STYLEAT and DOA as well as against
the undefended models (ResNet and RepVGG) at different attack budgets. Tab. 2 reports the results.
Compared to the undefended models, STYLEAT shows a 0.4–20.9% increase in robust accuracy
on the different attack budgets against both BOUNDSTYLE and DiffPrivate, with the latter unseen
during training. The DOA defense, tailored for ad hoc semantic attacks, shows a 0.4–0.7% higher
robust accuracy than STYLEAT a few attack budgets on DiffPrivate, but otherwise trails behind
STYLEAT’s robust accuracy by 0.4–9.6% against the DiffPrivate attack. However, against BOUND-
STYLE, DOA is counterproductive for most attack budgets, decreasing robust accuracy compared to
the undefended model by up to 6%. Altogether, these results show that STYLEAT reliably improves
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Figure 2: Robust accuracy of models against black-box attacks. Each heatmap reports the robust
accuracy of the model at the column, when transferring attacks from the model at the row. Diagonals
correspond to white-box attacks.

LFW
BOUNDSTYLE — budget β DiffPrivate — ∥∆z∥

Backbone Defense Clean 1 1.5 2 3 1 2 3 4 5 6

ResNet
No Defense 99.1 93.5 83.8 70.8 39.5 99.1 98.6 93.5 71.8 41.7 33.8
DOA 99.1 94.9 80.6 69.4 35.4 99.1 98.6 96.8 85.6 54.6 42.6
STYLEAT 99.5 97.7 91.7 84.3 50.7 99.5 99.5 97.7 86.6 54.2 47.2

RepVGG
No Defense 99.1 92.6 83.3 69.4 40.5 99.1 99.1 96.3 72.7 43.5 38.0
DOA 99.5 93.1 84.3 72.7 34.5 99.5 99.1 97.7 89.4 59.7 43.1
STYLEAT 99.5 97.2 92.1 84.7 54.3 99.5 99.5 98.6 92.6 64.4 50.0

VGG-Face
BOUNDSTYLE — budget β DiffPrivate — ∥∆z∥

Backbone Defense Clean 1 1.5 2 3 1 2 3 4 5 6

ResNet
No Defense 100.0 84.0 72.4 59.6 34.6 77.4 67.7 51.0 30.3 22.6 17.4
DOA 99.4 82.7 69.9 55.8 28.9 79.4 74.2 58.7 38.1 27.1 16.1
STYLEAT 100.0 88.5 81.4 65.4 35.3 81.3 76.1 63.2 41.9 27.7 18.1

RepVGG
No Defense 100.0 80.8 71.2 60.3 32.0 77.4 69.7 53.5 32.3 22.6 17.4
DOA 98.7 79.5 73.7 57.0 27.6 81.3 74.2 57.4 40.0 26.5 21.3
STYLEAT 99.4 89.1 80.8 69.9 35.7 80.6 76.1 62.6 43.2 31.0 20.6

Table 2: Evaluating defenses against white-box attacks. For each defense and undefended model,
we report benign accuracy and robust accuracy under varied attack budgets on the LFW and VGG-
Face datasets, for both ResNet and RepVGG backbones.

robust accuracy against general semantic attacks while generalizing to attacks unseen during train-
ing. Importantly, STYLEAT also maintains the benign accuracy on clean data as the undefended
model or even roughly improves it.
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Gray-box Setting We also evaluate STYLEAT and filter-based defenses against gray-box attacks,
where the adversary produces attacks against the undefended models (ResNet and RepVGG), in
a manner agnostic to the defense. Figs. 3–4 report the robust accuracy achieved against BOUND-
STYLE and DiffPrivate, respectively, with the ResNet backbone. Against BOUNDSTYLE, it can be
seen that filter-based defenses have little impact on robustness, increasing robust accuracy by 6.0%
in the best case compared to the undefended model. In comparison, STYLEAT results in up to 33.3%
increase in robust accuracy. The filter-based defenses are more useful against DiffPrivate, increas-
ing robust accuracy by up to 31.5%. Nonetheless, STYLEAT is also more effective than filter-based
defenses against DiffPrivate, with an increase of up to 50.9% in robust accuracy compared to the
undefended model. These results further highlight STYLEAT’s utility against defense-agnostic ad-
versaries including against attacks not accounted for during training (i.e., DiffPrivate). The results
on the RepVGG backbone (Figs. 9–10 in App. C) show identical trends.
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Figure 3: Evaluating defenses against gray-box BOUNDSTYLE attacks (ResNet).
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Figure 4: Evaluating defenses against gray-box DiffPrivate attacks (ResNet).
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7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Our work studies general semantic attacks against FR, proposing a new attack and a defense. The
proposed attack, BOUNDSTYLE, produces high-fidelity images, attains high success rates, and is
tunable, lending itself to being integrated into adversarial training. We find that BOUNDSTYLE
achieves success rates on par with state-of-the-art attacks and even outperforms them in some set-
tings, while being almost ×9.5 more time-efficient. Our defense, STYLEAT, is, to the best of our
knowledge, the first defense tailored for general semantic attacks against FR. STYLEAT builds on
BOUNDSTYLE, augmenting the training data with evasive samples produced via a weakened but
efficient attack variant, leading to significant increases in robust accuracy in several settings we
consider.

While STYLEAT helps improve adversarial robustness of FR, thus improving security, it is important
to notice that it does not prevent attacks completely. Moreover, in line with other adversarial training
methods, STYLEAT is an empirical and practical defense, but it does not provide provable security
guarantees. Future work may seek to further increase adversarial robustness against general semantic
attacks and derive theoretical guarantees, for instance through randomized smoothing (Cohen et al.,
2019) in the latent space.

ETHICS STATEMENT

Our work lies in the general field of ML security. The two main innovations we make, BOUND-
STYLE and STYLEAT, can be used to challenge the security of FR and improve it, respectively.
While BOUNDSTYLE may be used to mislead existing deployment of FR, we argue that developing
it brings about more advantages than disadvantages. In particular, if not created by us, adversaries
may use methods similar to BOUNDSTYLE to fool FR systems without our knowledge. Crucially,
BOUNDSTYLE is a critical component in enabling STYLEAT, allowing us to enhance FR’s reliabil-
ity in the face of general semantic attacks.

REPRODUCIBILITY STATEMENT

As proponents of open science, we intend to release our code, data, and models upon paper accep-
tance to facilitate reproducibility and allow future work to build off of our contributions. Our code
release will be accompanied with detailed documentation and scripts that can be used to recreate all
our results. We also hope that our implementation would help practitioners improve FR’s reliability
in practice.
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A STYLEAT’S ALGORITHM

Alg. 1 presents the pseudocode of STYLEAT.

Algorithm 1 STYLEAT (per minibatch)

Input: minibatch {(xi, x
+
i )}Bi=1; StyleGAN encoder E and generator G, feature extractor fθ, latent

attack steps K, step size α, attack strength β, triplet loss margin µ, pixel PGD steps S, αpix step,
PGD radius ε;
loss weights: λCln, λAdvSem, λAdvPix ≥ 0 with λCln + λAdvSem + λAdvPix = 1
Output: updated parameters θ

1: for i = 1 to B do
2: li ← OptimizeInv

(
E(xi), G

)
{inversion (offline cacheable)}

3: end for
4: for i = 1 to B do
5: Latent branch (BOUNDSTYLE):
6: Sample unit direction vi ∼ N (0, I); vi ← vi/∥vi∥2
7: Sample bi ∼ U(0, β);
8: δi ← bi vi
9: xi ← CropAlign(xi); x+

i ← CropAlign(x+
i )

10: for k = 1 to K do
11: xadv

i ← CropAlign
(
G(li + δi)

)
12: g ← ∇δ

[
− cos

(
fθ(x

adv
i ), fθ(xi)

)]
{dodging: reduce cosine}

13: δi ←
(
δi + α g

||g||∞

)
14: Project δi ← β · δi

∥δi∥2
15: end for
16: xadv

i ← CropAlign
(
G(li + δi)

)
17: Pixel branch (PGD under ℓ∞(ε), around xadv

i ):
18: x̂i

(0) ← Clip
(
xadv
i + U [−ε, ε]

)
{random init near xadv

i }
19: for s = 1 to S do
20: gx ← ∇x

[
cos

(
fθ(x̂i

(s−1)), fθ(x
+
i )

)]
21: x̂i

(s) ← x̂i
(s−1) − αpix · sign(gx)

22: x̂i
(s) ← ΠB∞(xadv

i ,ε)

(
x̂
(s)
i

)
{project to ℓ∞ ball around xadv

i }
23: x̂i

(s) ← Clip
(
x̂i

(s)
)

{valid pixel range}
24: end for
25: xpix

i ← x̂i
(S)

26: end for
27: for i = 1 to B do
28: e+i = fθ(x

+
i ); e

cln
i = fθ(xi); eadvSem

i = fθ(x
adv
i ); eadvPix

i = fθ(x
pix
i )

29: end for
30: LCln ← TripletLoss

(
{(ecln

i , e+i )}
B
i=1, µ, mine=batch-hardest-negative

)
31: LAdvSem ← TripletLoss

(
{(eadvSem

i , e+i )}
B
i=1, µ, mine=batch-hardest-negative

)
32: LAdvPix ← TripletLoss

(
{(epix

i , e+i )}
B
i=1, µ, mine=batch-hardest-negative

)
33: L← λCln LCln + λAdvSem LAdvSem + λAdvPix LAdvPix {λCln + λAdvSem + λAdvPix = 1}
34: θ ← θ − η∇θL
35: return θ

B SELECTION OF ATTACKS’ PERTURBATION BUDGETS

Qualitative Examples Figs. 5–6 provide qualitative examples of BOUNDSTYLE and DiffPrivate
semantic attacks at different attack budgets. It can be seen that the original identities in the images
become harder to identify as the attack budgets increase, leading to more aggressive semantic edits.

User Study: Humans’ Verification Accuracy We conducted a user study with a convenience
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clean 1.0 1.5 2.0 3.0

Figure 5: Examples of edits produced by BOUNDSTYLE when varying the attack budget β ∈
{1.0, 1.5, 2.0, 3.0}.

clean 1 2 3 4 5 6

Figure 6: Examples of edits produced by DiffPrivate when varying the attack budget ∥∆z∥ ∈
{1, 2, 3, 4, 5, 6}.

sample (N = 181) to evaluate human recognition performance under different attack budgets. Our
participants were asked to verify 30 randomly sampled image pairs each: 20 same-identity pairs
where one image is clean and the other is either clean or adversarially modified by BOUNDSTYLE
or DiffPrivate, and 10 different-identity pairs. The images were drawn from a combined pool of the
LFW and VGG-Face datasets. For each presented pair, participants needed to judge whether the
pairs depicted the same person (i.e., “same” or “different”). Fig. 7 details the results. We observe
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Figure 7: Human verification accuracy under attack. Participants (N = 181) evaluated image
pairs at varying attack budgets. Blue: Original images (same and different identities); Orange:
BOUNDSTYLE; Green: DiffPrivate.

that verification accuracy declines smoothly as the attack budgets (β and ∥∆z∥) increase, confirming
these knobs control edit strength. At lower attack budgets (β=1 and ∥∆z∥=2), participants maintain
high accuracy (64.8% and 69.8%, respectively), retaining approximately 76–82% of the accuracy
achieved on original clean pairs (≈ 85%). Conversely, at the highest attack budgets we consider
(β=3 and ∥∆z∥=6), accuracy drops significantly (33.2% and 47%, respectively), roughly 39–55%
of the clean images, justifying the capping of β ≤3 and ∥∆z∥ ≤6.

C ABLATION STUDY

Effect of LAdvPix During Training Tab. 3 reports white-box robust accuracy on LFW for a ResNet
model adversarially trained with and without LAdvPix. Against DiffPrivate, enabling LAdvPix boosts
robust accuracy substantially for high attack budgets, by up to 9.3%. Against BOUNDSTYLE, the ef-
fect of optimizing LAdvPix during training is minor and mixed, with -1.2–+0.93% difference in robust
accuracy in comparison to when LAdvPix is not optimized. Overall, LAdvPix primarily helps ameliorate
DiffPrivate at high attack budgets, while inducing only negligible changes against BOUNDSTYLE.
Thus, we include this term by default in our training objective.

BoundStyle (β)
1 1.5 2 3

w/o LAdvPix 98.61 90.74 83.80 51.87
w/ LAdvPix 97.69 91.67 84.26 50.72
∆ −0.92 +0.93 +0.46 −1.15

DiffPrivate (∥∆z∥)
1 2 3 4 5 6

w/o LAdvPix 99.54 99.07 97.69 79.63 46.30 37.96
w/ LAdvPix 99.54 99.54 97.69 86.57 54.17 47.22
∆ 0 +0.46 0 +6.94 +7.87 +9.26

Table 3: The effect of LAdvPix on robust accuracy against white-box attacks. We use LFW for
evaluation.

Attack Iterations We analyze the impact of the number of attack iterations on the effectiveness
of attacks. Tab. 4 shows the robust accuracy of the ResNet model on LFW under BOUNDSTYLE
(β = 3) and DiffPrivate (∥∆z∥ = 5) for varying numbers of iterations. For both attacks, we
observe that attack success saturates after a certain number of steps. For BOUNDSTYLE, increasing
iterations from 30 to 50 results in a marginal accuracy drop of only 0.76%. Similarly, for DiffPrivate,
extending the attack from 70 to 250 iterations yields a negligible decrease of 0.47%. Based on these
results, we fix the number of iterations to 30 for BOUNDSTYLE and 70 for DiffPrivate to balance
attack strength with computational efficiency.

Attacks’ Time and Success Trade-offs To further demonstrate that BOUNDSTYLE attains superior
time and success-rate trade-offs compared to DiffPrivate, we execute both attacks under a matched
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BoundStyle (β = 3)

Iterations Accuracy (%)

3 51.16
5 50.48
10 47.44
15 47.20
30 39.52
50 38.76

DiffPrivate (∥∆z∥ = 5)

Iterations Accuracy (%)

10 98.15
50 51.85
70 41.67
100 41.20
250 41.20

Table 4: Ablation on attack iterations. We report robust accuracy on LFW against BOUNDSTYLE
(β = 3) and DiffPrivate (∥∆z∥ = 5) with varying iteration counts. The selected number of iterations
is in boldface.

wall-clock constraint on the same hardware. Specifically, we run the attacks on an NVIDIA A6000
GPU with a limit of 6 seconds, which corresponds to approximately 30 iterations of BOUNDSTYLE.
For DiffPrivate, we provide a significant advantage by removing caps on ∥∆z∥ and the number
of iterations, constraining it solely by the run time. Tab. 5 lists the results. It can be seen that,
under equal execution time, DiffPrivate leaves robust accuracy at 98.6%, whereas BOUNDSTYLE
degrades it to 85.2–50.9% (depending on β) against ResNet, on the LFW dataset. This result further
highlights BOUNDSTYLE’s efficiency and its ability to attain high success rates within strict time
constraints, making it suitable for adversarial training.

Attack Budget (β / ∥∆z∥) Time Robust Acc.

DiffPrivate ∞ 6s 98.6%
BOUNDSTYLE 1.5 6s 85.2%
BOUNDSTYLE 2.0 6s 75.0%
BOUNDSTYLE 3.0 6s 50.9%

Table 5: Comparing attacks’ success, on LFW and ResNet, under matched time constraints (6
seconds).

D IMPERCEPTIBLE PERTURBATIONS IN DIFFPRIVATE

We now present additional evidence that DiffPrivate introduces imperceptible perturbations. Recall
that (1) DiffPrivate’s success rates decrease significantly when applying semantics-preserving filters
such as JPEG compression (Fig. 4 and Fig. 10); and that (2) adversarial training against PGD in
the pixel space (employed in STYLEAT) improves robustness against DiffPrivate (Tab. 3). Both
of these findings indicate that DiffPrivate introduce imperceptible perturbations besides semantic
edits. To further investigate imperceptible perturbations produced by DiffPrivate, we analyze the
frequency-energy patterns of the adversarial perturbations (i.e., the pixel-wise difference between
original and adversarial images). To this end, we convert the perturbations produced by attacks
(i.e., difference between edited and clean images) to the Fourier domain and measure the cumulative
energy outside an increasing radial distance r from the zero frequency (i.e., DC) component. The
result is monotonic curves decreasing from 1 to 0, as shown in Fig. 8, which illustrate the energy
distribution: a faster decay indicates energy concentrated in low frequencies (i.e., semantic changes),
while a slower decay implies reliance on high frequencies. We find that the decay is significantly
faster for BOUNDSTYLE (> 90% of residual energy contained within r ≈ 15) than for DiffPrivate
(>90% of residual energy within r ≈ 30). This results further demonstrates that DiffPrivate’s
success can be partially attributed to non-semantic, imperceptible perturbations.
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Figure 8: Frequency energy decay of adversarial perturbations. We measure the relative en-
ergy of the noise residual outside frequency radius r. BOUNDSTYLE (orange/blue) decays rapidly,
indicating changes are concentrated in low frequencies (semantic). DiffPrivate (green/red/purple)
decays slower, indicating a reliance on higher frequencies (imperceptible noise). Results are shown
for the red channel of LFW, but we observe consistent behavior across all color channels.

E GRAY-BOX ATTACKS AGAINST REPVGG TRAINED WITH STYLEAT

We present the gray-box evaluation results for the RepVGG backbone in Figs. 9–10. Consistent with
the ResNet findings, STYLEAT demonstrates superior robustness compared to filter-based defenses.
For instance, against DiffPrivate attack on the LFW dataset (at ∥∆z∥ = 6), STYLEAT achieves a ro-
bust accuracy of 88.9%, significantly outperforming the strongest filter defense (Feature Squeezing
at 69.9%) and the undefended model (38.0%). Similar trends are observed against the BOUND-
STYLE attack, where filter-based defenses fail to provide meaningful robustness gains compared to
STYLEAT.
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(b) VGG-Face

Figure 9: Evaluating defenses against gray-box BOUNDSTYLE attacks (RepVGG).
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(b) VGG-Face

Figure 10: Evaluating defenses against gray-box DiffPrivate attacks (RepVGG).

F SEMANTIC STRUCTURE OF BOUNDSTYLE ADVERSARIAL DIRECTIONS

To explore how BOUNDSTYLE manipulates distinct semantic attributes, we analyze the nature of the
adversarial perturbations. To do so, we collect the latent perturbations δ generated by BOUNDSTYLE
(at β = 3) against the ResNet backbone on the LFW dataset. Subsequently, we then perform Prin-
cipal Component Analysis (PCA) on these perturbation vectors to identify the dominant directions
of variance in the attack space.

Fig. 11 visualizes the top five principal components (PCs). To interpret these abstract vectors, we
project the perturbation δi of each test sample i onto each PC. Then, for every PC, we select the top
five samples with the highest positive projection scores, i.e., the images whose adversarial manipu-
lations align most strongly with that specific principal direction. We visualize examples with β=3
to maximally emphasize the semantic nature of the directions. Our visual analysis demonstrates
that the dominant modes of the attack correspond to coherent semantic factors: PC1 captures aging
(older appearance, thinning hair, and beard growth); PC2 modifies lighting and alters nose shape;
PC3 creates a younger appearance by smoothing skin texture and softening facial features; PC4
alters head pose; and PC5 performs subtle structural changes to facial width. This analysis con-
firms that BOUNDSTYLE discovers and exploits interpretable semantic weaknesses in the target FR
model.
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Figure 11: Visualization of image samples whose adversarial perturbations align most strongly with
the top five Principal Components (PCs) of the BOUNDSTYLE perturbation distribution. Each col-
umn pair displays an original (left) and an adversarial (right) image. The dominant directions cor-
respond to clear semantic attributes: PC1 induces aging effects (older appearance); PC2 alters nose
shape and illumination; PC3 creates a younger appearance; PC4 corresponds to head pose adjust-
ments; and PC5 performs subtle structural changes to facial width.

USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT to assist in polishing some text and help improve the quality of the presentation.
All outputs of the LLM have been manually verified and most have been further edited by the
authors. The analyses, ideas, and technical content, of course, are all original.
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