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ABSTRACT

Unsupervised domain adaptation (UDA) has become an appealing approach for
knowledge transfer from a labeled source domain to an unlabeled target domain.
However, when the classes in source and target domains are imbalanced, most
existing UDA methods experience significant performance drop, as the decision
boundary usually favors the majority classes. Some recent class-imbalanced do-
main adaptation (CDA) methods aim to tackle the challenge of biased label distri-
bution by exploiting pseudo-labeled target data during training process. However,
these methods still suffer from the issues with unreliable pseudo labels and error
accumulation during training. In this paper, we propose a pairwise adversarial
training approach for class-imbalanced domain adaptation. Unlike conventional
adversarial training in which the adversarial samples are obtained from the `p ball
of the original data, we generate adversarial samples from the interpolated line
of the aligned pairwise samples from source domain and target domain. Exper-
imental results and ablation studies show that our method achieves considerable
improvements on benchmarks compared with the state-of-art CDA methods.

‘

1 INTRODUCTION

Unsupervised domain adaptation (UDA) aims to achieve knowledge transfer from a labeled source
domain to an unlabelled target domain. Recent years have witnessed the significant progress of
UDA based on deep neural networks (Pei et al., 2018; Cui et al., 2020; Hu et al., 2020; Liang et al.,
2020; Na et al., 2021). Most of existing UDA methods assume that only covariate shift occurs
in the source domain and target domain, while the label distributions in two domains are identical.
However, this assumption may not hold in real-world applications. For instance, in wild-life pictures,
the commonly seen animals such as rabbit and deer appear more frequently than the rare animal such
as panda and crocodile. Public datasets such as DomainNet (Peng et al., 2019) and and MSCOCO
(Lin et al., 2014) exhibit imbalanced class distribution. Figure 1 illustrates the imbalanced label
distributions in the Real domain and Sketch domain from the DomainNet dataset.

Figure 1: Illustration of label distribu-
tion shift in DomainNet dataset.

To address the issue of imbalanced label distributions in
domain adaptation, some recent studies (Wu et al., 2019;
Tan et al., 2020; Jiang et al., 2020) try to jointly model
the conditional feature distribution shift and label distri-
bution shift (LDS). This problem is referred to as Class-
imbalanced Domain Adaptation (CDA). Let x and y de-
note the samples and labels, respectively. p and q sepa-
rately represent the probability distribution of source do-
main and target domain. The common assumptions in
UDA involve the covariate shift (i.e., p(x) 6= q(x)) and
identical label distribution (i.e., p(y) = q(y)). In CDA,
however, apart from the covariate shift, both the condi-
tional feature shift and label shift exist, i.e., p(x|y) 6= q(x|y), p(y) 6= q(y).

CDA is a more challenging task than UDA. Recent studies (Tan et al., 2020) have demonstrated that
the mainstream UDA methods will suffer significant performance drop, as the classifier will favor
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the majority classes. Only a few CDA approaches have been proposed by far. In Tan et al. (2020)’s
work, the negative effect of label shift is reduced by exploiting the pseudo labelled target samples
via self-training. Jiang et al. (2020) use an implicit sampling method based on pseudo labels to align
the joint distribution between features and labels. However, one critical problem of these methods
is that the pseudo labels are likely to suffer from ill-calibrated probabilities (Guo et al., 2017), and
thus the unreliable pseudo labels will cause error accumulation during the training process, which
will largely degrade the model performance.

Augmenting training data has been proven as an effective strategy to tackle the issue of biased label
distributions in class-imbalance learning (Chawla et al., 2002; Chou et al., 2020). In addition to the
traditional data augmentation techniques, adversarial training is also capable of generating seman-
tically meaningful synthetic samples that help enhance the robustness of models. However, these
approaches only consider a single domain, and they cannot be directly applied to solve the CDA
problem. In this paper, we propose a pairwise adversarial training (PAT) approach that augments
training data for class-imbalanced domain adaptation. Unlike conventional adversarial training in
which the adversarial samples are obtained from the `p ball of the original data, we obtain the se-
mantic adversarial samples from the interpolated line of the aligned pair-wise samples from source
domain and target domain. Moreover, a class-imbalanced semantic centroid alignment strategy is
designed to explicitly align the source and target domains in the feature space.

The main contributions of this paper are three-fold. (1) We propose a novel pairwise adversarial
training approach that generates adversarial samples from pairs of samples across the source and
target domains, and further exploits these samples to augment training data. (2) We propose a new
optimization algorithm to solve pairwise adversarial training problem. (3) We conduct extensive
evaluations on benchmark datasets, and results show that our approach obtains competing perfor-
mance compared with state-of-art CDA methods.

2 RELATED WORK

In this section, we briefly introduce three relevant research topics, including unsupervised domain
adaptation, class-imbalanced domain adaptation and adversarial training.

Unsupervised Domain Adaptation. In recent years, unsupervised domain adaption (UDA) has at-
tracted increasing attention. Existing UDA methods could be roughly categorized into two groups,
including the discrepancy-based methods and adversarial-based methods. The discrepancy-based
methods usually align source and target feature distributions in the embedding space using vari-
ous statistical distance metrics, such as Maximum Mean Discrepancy (MMD) (Long et al., 2016;
2017; Kang et al., 2019), Correlation Alignment (CORAL) (Sun & Saenko, 2016), and Wasserstein
distance (Lee & Raginsky, 2018; Shen et al., 2018; Balaji et al., 2019). On the other hand, the
adversarial-based methods focus on learning domain invariant features via domain adversarial train-
ing (Ganin et al., 2016; Shu et al., 2018; Pei et al., 2018; Saito et al., 2018; Deng et al., 2019; Yu
et al., 2019). Recently, Zhang et al. (2019) proposed the margin disparity discrepancy (MDD) to
measure the discrepancy of two domains with generalization bounds. This theory is tailored into an
adversarial learning algorithm for domain adaptation. Unlike other adversarial learning based UDA
methods that align two domains by confusing a domain discriminator, MDD aligns two domains by
minimizing the maximum margin disparity discrepancy of an optimal classifier f and an auxiliary
classifier f ′. The optimization problem of MDD is formulated as:

min
f,ψ

ε(Ds) + ηDγ(Ds,Dt), (1)

max
f ′
Dγ(Ds,Dt), (2)

where ε is the classification loss on the source domain and Dγ measures the discrepancy of source
domain and target domain. Specifically,

ε(Ds) = E(xs,ys)∼Ds
L(f(ψ(xs)), ys), (3)

Ladv = Dγ(Ds,Dt) = Ext∼Dt
L′(f ′(ψ(xt)), f(ψ(xt)))− γExs∼Ds

L(f ′(ψ(xs))), f(ψ(xs)),
(4)

L is cross-entropy function, and L′(f ′(ψ(xt)), f(ψ(xt))) = log(1 − σy′(f
′(ψ(xt))). y′ is the

pseudo label generated from an optimal classifier. MDD is the backbone of our method.
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Class-imbalanced Domain Adaptation. As a branch of domain adaptation, the class-imbalanced
domain adaptation (CDA) aims to deal with data with biased class distribution. Tan et al. (2020)
might be the first one to investigate the CDA problem, and they exploited the pseudo labelled target
data to reduce the negative effect of label shift. Wu et al. (2019) proposed the asymmetrically-relaxed
distances as replacement of the standard ones under biased label distribution. Jiang et al. (2020)
adopted the implicit sampling strategy to ensure class alignment at the minibatch level. Prabhu et al.
(2021) avoided the use of highly unreliable pseudo labels by assessing the reliability of target data
with predictive consistency under random image transformations. Our method refrains from the
exploitation of pseudo labeled target data directly in the training process, while reducing the effect
of biased label shift by incorporating the semantic adversarial samples into the training process.

Adversarial Training. Adversarial training (AT) (Szegedy et al., 2014; Goodfellow et al., 2015) is
an effective regularization method for enhancing the robustness and generalization ability of deep
learning models. In particular, adversarial samples are incorporated in the model training process,
which are intentionally designed to deceive the deep learning model by adding small perturbation on
the original data. Furthermore, virtual adversarial training (VAT) has been proposed (Miyato et al.,
2018), which seeks the adversarial direction for regularization without using label information. Both
AT and VAT have been employed to tackle the standard UDA problems Shu et al. (2018). However,
to the best of our knowledge, our work is the first attempt to address the class-imbalanced domain
adaptation problem using adversarial training.

3 PROPOSED APPROACH

In this section, we first give the problem definition of CDA, and then present the details of the
proposed pairwise adversarial training approach. Finally, we introduce how to integrate the pairwise
adversarial training with MDD to address the CDA problem.

3.1 PROBLEM DEFINITION

In class-imbalanced domain adaptation, both the source and target domains suffer from label distri-
bution shift. We are given a source domain Ds = {(xsi , ysi )}

Ns
i=1 with Ns labelled samples and a

target domain Dt = {xti}
Nt
i=1 with N t unlabelled samples. Each domain contains K classes, and the

class label is denoted as ys ∈ {0, 1, 2, ...,K − 1}. Let p and q denote the probability distributions
of the source domain and target domain, respectively. We assume that both the covariate shift (i.e.,
p(x) 6= q(x)) and label distribution shift (i.e., p(y) 6= q(y) and p(x|y) 6= q(x|y)) exist in two do-
mains. Our goal is to train a model that can learn domain invariant features, reduce the gap between
source and target domains, and mitigate the label distribution shift. The model typically consists of
a feature extractor ψ : X → Z and a classifier f : Z → Y that aims to minimize the target risk.

3.2 PAIRWISE ADVERSARIAL TRAINING (PAT)

We investigate how to mitigate the challenging issue of label distribution shift in CDA, as illustrated
in Figure 1. Previous studies (Tan et al., 2020) found that when the source domain is imbalanced, the
model performance on target domains will be significantly dropped, especially when the target do-
main is also imbalanced. An intuitive solution is to augment the training data in two domains, such
that the model training would not be dominated by the majority classes in either domain. However,
this task is not trivial, considering the mixed effects of domain gap and imbalanced class distribu-
tions. Inspired by adversarial training, we aim to create adversarial samples to augment training
data. In adversarial training, the adversarial samples will be exploited to enhance the robustness and
generalization ability of model. The loss function of adversarial training is:

Lce(x+ δ∗, y; θ)

where δ∗ := argmax
||δ||p≤ε

Lce(x+ δ, y; θ), (5)

where x is the original sample, y is the ground-truth label of x, θ refers to model parameters, and δ
is the perturbation added to x.

The existing adversarial training methods could not be directly used to tackle the CDA problem for
two reasons. First, existing methods simply generate adversarial samples within the neighborhood
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of the original samples, but they could not mitigate the gap between source and target domains.
Second, existing methods treat majority classes and minority classes equally, so they are unable to
address the class imbalance issue. In this paper, we propose pairwise adversarial training that gen-
erates adversarial samples from the linear interpolation of source and target samples and meanwhile
reduces the domain discrepancy. In the following, we will introduce two key components of PAT,
including the generation of interpolated adversarial samples and semantic centroid alignment.

3.2.1 INTERPOLATED ADVERSARIAL SAMPLE GENERATION

Figure 2: Illustration of an
interpolated adversarial sam-
ple, which lies on the inter-
polated line of the source and
target samples.

As shown in Figure 2, we will generate adversarial samples on the
interpolated line from a source sample to a target sample of the same
class. The interpolated adversarial samples (IAS) should have the
same semantic meaning as their corresponding source/target sample
pair, although they are not perfectly aligned with the original sam-
ples. We explicitly address the data imbalance issue in the source
domain by exploiting interpolated adversarial samples and aligning
the source and target domains. As a result, the generalization ability
of the unbiased model will be improved and the data imbalance issue
in the target domain could be implicitly addressed. For the kth class,
the interpolated adversarial samples can be defined as:

X advk = {xadvk |xadvi = xsi +λ(x
t
i−xsi ), λ ∈ [0, 1)C , ysi = ŷti = k},

(6)
where xi ∈ RC×H×W , λ is the coefficient measuring the contributing weights of the source sample
and target sample. ŷti is the pseudo label of the target sample which is generated from the backbone
domain adaptation model (e.g., the optimal classifier f in MDD). It is used for match of the corre-
sponding source sample. In our work, though the pseudo labels might be incorrect, our PAT method
will not suffer from the potential error accumulation issue. First, we choose the target samples with
high confidence. Second, even if the pseudo label is incorrect, there is still a chance that the in-
terpolated adversarial sample will be generated within the boundary as expected. Specifically, the
misclassified target samples often appear near the decision boundary. So, even if the target sample
is from a different class, the adversarial sample generated from the pair of source sample and target
sample may not violate the decision boundary. Finally, the adversarial samples in our approach are
generated dynamically, and the adverse effect of bad adversarial samples could be mitigated.

Then, the generation of interpolated adversarial samples could be achieved by solving the following
optimization problem:

LIAS := D(x̂adv, y; θ)

where x̂adv = argmax
xadv∈Xadv

D′(xadv, y; θ). (7)

In Eq. (7), the outer minimization problem involves a standard cross-entropy loss function, i.e.,

D(x̂adv, y; θ) = LCE(x̂adv, y; θ) = − log(σy(f(ψ(x̂
adv)))), (8)

where ψ : X → Z denotes a feature extractor, f : Z → Y denotes a classifier, and σ is the
softmax function. For the inner maximization problem, we use a modified cross-entropy function
proposed by Goodfellow et al. (2014). The modified loss function can alleviate the problem of
gradient exploding or vanishing when the entropy loss is maximized. The loss function of the inner
maximization problem is written as:

D′(xadv, y; θ) = L′CE(xadv, y; θ) = log(1− σy(f(ψ(xadv))). (9)

Several optimization algorithms, such as the fast gradient sign method (Goodfellow et al., 2015)
and projected gradient descent (Madry et al., 2018), have been commonly used for adversarial train-
ing. However, these algorithms aim to obtain the adversarial samples in the `∞ ball of the original
samples, which cannot be directly applied to solving our problem. In our case, the interpolated ad-
versarial samples are confined on the interpolated line of source data and target data. We propose a
new optimization algorithm to solve the inner maximization optimization in Eq. (7). We initialize
the interpolated adversarial samples with random λ and update them by back propagation in each
iteration. The main procedures of our algorithm are summarized in Algorithm 1.
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Algorithm 1 Solving the maximization problem in PAT

Input: Source samples from a mini-batch {(xsi , ysi )}
Bs
i=1, target samples and their pseudo labels

{(xti, ŷti)}
Nt
i=1, probability threshold of each class {Pk}Kk=1

Output: Interpolated adversarial samples {x̂advi }
Nadv
i=1

for each source sample xsi in the mini-batch do
if rand() > Pk(k = ysi ) then

Choose one target sample xti with pseudo label equals to k
Initialize xadv with random λ using Eq. (6)
repeat

Calculates the gradient of λ with loss function in Eq. (7). gλ = α∇λD′(xadv, y; θ)
Update λ with the gradient, λ← λ+ gλ
Clip the λ between 0 and 1, λ← λ · clip(0, 1)
Update adversarial sample xadv with new λ using Eq. (6).

until the optimization converges
end if

end for

Generating interpolated samples has been explored in literature, such as mix-up (Chou et al., 2020)
and its variants. However, mix-up based methods and our method have significant differences. First,
mix-up based methods focus on the single-domain classification or standard domain-adaptation
problems, while our method focuses on the data imbalance problem in domain adaptation. Sec-
ond, the ideas for generating samples and labels in mix-up and our method are different. Mix-up
creates virtual samples and their labels from two randomly chosen samples. While in our method,
an adversarial sample is generated using a pair of samples from two domains with the same label.
Third, mix-up needs to manually define a hyper-parameter to control the strength of interpolation.
However, in our method, the parameter for controlling the strength of interpolation is adaptively
updated along with adversarial training.

3.2.2 CLASS-IMBALANCED SEMANTIC CENTROID ALIGNMENT

Figure 3: Illustration of generation of adversarial samples
(a) without centroid alignment and (b) with centroid align-
ment. In (a), adversarial samples have a larger chance to
violate the decision boundary.

Without careful control of the gener-
ation mechanism, the interpolated ad-
versarial samples may not alleviate the
issue of imbalanced class distribution.
Moreover, although the interpolated
adversarial samples bridge the source
and target domains to some extent, the
discrepancy between source and target
domains is not explicitly reduced. To
address these issues, we propose to ex-
plicitly align the source and target do-
mains with imbalanced class distribu-
tions using two strategies.

First, we propose a strategy to guide the generation of interpolated adversarial samples. For training
samples in each mini-batch from the source domain, they should not have the equal opportunity to
generate interpolated adversarial samples. Since the decision boundary usually favors the majority
classes, the probability of generating adversarial samples for minority classes should be larger than
that for majority classes. For the k-th class, we set a probability threshold Pk as follows:

Pk =
nk

nmax + ε
, (10)

where nk is the number of the samples from the kth class. nmax = maxk{nk}Kk=1, and ε is the
bias. For a specific class, if a random number r ∈ [0, 1) is larger than the corresponding threshold,
the adversarial samples will be generated, as shown in Algorithm 1. We also adopt class-balanced
sampling on the source data to alleviate the biased occurrence of the majority classes. Specifically,
each class will be selected with an equal chance, in order to reduce the model prediction bias towards
the majority classes.
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Figure 4: Illustration of our framework based on PAT and MDD. It includes a feature extractor G,
an optimal classifier F , and an auxiliary classifier F ′. The dashed line represents the data flow in
pairwise adversarial training. The margin disparity discrepancy of two domains is diminished by
aligning the two one-hot labels. We also explicitly align the pair of class conditioned samples by
minimizing the distance of the centroids denoted as LCA.

Second, we incorporate the moving average centroid alignment (Xie et al., 2018) to align the condi-
tional feature distributions of source and target domains by explicitly matching the centroids of two
domains. As illustrated in Figure 3, without centroid alignment, the adversarial samples may be gen-
erated from a pair of samples in which one of the samples is misaligned to other classes, thus making
the embedding of adversarial samples fall out of the decision boundary. With centroid alignment,
we can eliminate the occurrence of such out-of-bound adversarial samples, and the interpolated ad-
versarial samples could provide meaningful support for the minority class in the target domain. The
loss function of moving average centroid alignment is defined as LCA =

∑K
k=1 dist(Csk, Ctk), where

Csk and Ctk denote the centroids of the kth class in the source domain and target domain, respectively.
dist() can be implemented by the Euclidean distance or cosine distance.

3.3 PAT FOR CLASS IMBALANCED DOMAIN ADAPTATION

The proposed PAT approach could be integrated with many existing domain adaptation frameworks
to enhance their performance on class-imbalanced data. In this paper, we adopt MDD (Zhang et al.,
2019) as an example backbone model and showcase how to integrated PAT with it.

The MDD framework consists of a feature extractor G, an optimal classifier F , and an auxiliary
classifier F ′. The loss function of MDD is introduced in Eq. (1) and Eq. (2). Adversarial samples
designed to maximize the modified cross-entropy functionL′CE are generated from the pair of source
data and target data. Finally, the overall loss function of our framework is:

L = LMDD + αLIAS + βLCA, (11)

where α and β are two trade-off parameters.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Figure 5: Biased label distribution
shift on Amazon→Webcam from
imbalanced Office-31.

Office-31 is a widely used benchmark image dataset for do-
main adaptation (Saenko et al., 2010). It contains 31 classes
in three domains: Amazon (A), Dslr (D) and Webcam (W).
The standard Office-31 doesn’t exhibit obvious label distri-
bution shift (LDS), so a new imbalanced Office-31 is cre-
ated by sampling from standard ones as suggested by Tan
et al. (2020). The distribution conforms to Paredo distri-
bution (Reed, 2001) and follows the Reversely-unbalanced
Source and Unbalanced Target (RS-UT) protocol. Both the
source domain and target domain have shifted label distribu-
tions, and the label distribution of source domain is a reversed version of that of target domain.
Office-Home is a large benchmark dataset containing 65 classes of objects commonly found in of-
fice and home scenarios (Venkateswara et al., 2017). It has four domains: Real-World (Rw), Clipart

6



Under review as a conference paper at ICLR 2022

Table 1: Per-class average accuracy on Office-Home dataset with RS→UT label shift. Bold and
underscore denote the best and second-best performing methods, respectively.

Method Rw→Pr Rw→Cl Pr→Rw Pr→Cl Cl→Rw Cl→Pr AVG

source † 70.74 44.24 67.33 38.68 53.51 51.85 54.39

BSP (Chen et al., 2019) † 72.80 23.82 66.19 20.05 32.59 30.36 40.97
PADA (Cao et al., 2018) † 60.77 32.28 57.09 26.76 40.71 38.34 42.66
BBSE (Lipton et al., 2018) † 61.10 33.27 62.66 31.15 39.70 38.08 44.33
MCD (Long et al., 2018) † 66.03 33.17 62.95 29.99 44.47 39.01 45.94
DAN (Long et al., 2015) 69.35 40.84 66.93 34.66 53.55 52.09 52.90
F-DANN (Wu et al., 2019) † 58.56 40.57 67.32 37.33 55.84 53.67 53.88
JAN (Long et al., 2017) † 67.20 43.60 68.87 39.21 57.98 48.57 54.24
DANN (Ganin & Lempitsky, 2015) † 71.62 46.51 68.40 38.07 58.83 58.05 56.91
MDD (Zhang et al., 2019) † 71.21 44.78 69.31 42.56 52.10 52.70 55.44
COAL (Tan et al., 2020) † 73.65 42.58 73.26 40.61 59.22 57.33 58.40
InstaPBM (Li et al., 2020) † 75.56 42.93 70.30 39.32 61,87 63.40 58.90
MDD+implicit (Jiang et al., 2020) † 76.08 50.04 74.21 45.38 61.15 63.15 61.67
SENTRY (Prabhu et al., 2021) † 76.12 56.80 73.60 54.75 65.94 64.29 65.25

Ours 79.88 54.68 77.32 50.21 67.29 67.04 66.07
† Data of the baseline methods are cited from Prabhu et al. (2021) .

Table 2: Per-class average accuracy on DomainNet dataset. Bold and underscore denote the best
and second-best performing methods respectively.

Method R→C R→P R→S C→R C→P C→S P→R P→C P→S S→R S→C S→P AVG

source † 65.75 68.84 59.15 77.71 60.60 57.87 84.45 62.35 65.07 77.10 63.00 59.72 66.80

BBSE (Lipton et al., 2018) † 55.38 63.62 47.44 64.58 42.18 42.36 81.55 49.04 54.10 68.54 48.19 46.07 55.25
PADA (Cao et al., 2018) † 65.91 67.13 58.43 74.69 53.09 52.86 79.84 59.33 57.87 76.52 66.97 61.08 64.48
MCD (Long et al., 2018)† 61.97 69.33 56.26 79.78 56.61 53.66 83.38 58.31 60.98 81.74 56.27 66.78 65.42
DAN (Long et al., 2015) † 64.36 70.65 58.44 79.44 56.78 60.05 84.56 61.62 62.21 79.69 65.01 62.04 67.07
F-DANN (Wu et al., 2019) † 66.15 71.80 61.53 81.85 60.06 61.22 84.46 66.81 62.84 81.38 69.62 66.50 69.52
UAN (You et al., 2019) † 71.10 68.90 67.10 83.15 63.30 64.66 83.95 65.35 67.06 82.22 70.64 68.09 72.05
JAN (Long et al., 2017) † 65.57 73.58 67.61 85.02 64.96 67.17 87.06 67.92 66.10 84.54 72.77 67.51 72.48
ETN (Cao et al., 2019) † 69.22 72.14 63.63 86.54 65.33 63.34 85.04 65.69 68.78 84.93 72.17 68.99 73.99
BSP (Chen et al., 2019) † 67.29 73.47 69.31 86.50 67.52 70.90 86.83 70.33 68.75 84.34 72.40 71.47 74.09
DANN (Ganin & Lempitsky, 2015) † 63.37 73.56 72.63 86.47 65.73 70.58 86.94 73.19 70.15 85.73 75.16 70.04 74.46
COAL (Tan et al., 2020) † 73.58 75.37 70.50 89.63 69.98 71.29 89.81 68.01 70.49 87.97 73.21 70.53 75.89
MDD+implicit 75.54 74.30 70.02 88.17 70.50 70.30 87.94 72.03 72.29 88.85 76.12 71.21 76.44
InstaPBM (Li et al., 2020) † 80.10 75.87 70.84 89.67 70.21 72.76 89.60 74.41 72.19 87.00 79.66 71.75 77.84
Sentry (Prabhu et al., 2021) † 83.89 76.72 74.43 90.61 76.02 79.47 90.27 82.91 75.60 90.41 82.40 73.98 81.39
Ours 80.15 76.93 76.08 89.87 72.25 76.25 90.04 79.11 76.32 89.61 80.71 75.46 80.23
† Data of the baseline methods are cited from Prabhu et al. (2021)

(Cl), Product (Pr) and Art (Ar). In our experiments, we use the existing imbalanced Office-Home
with RS-UT distributions generated in Tan et al. (2020) to train and test our approach. Since there
are very limited samples in the art (Ar) domain, we only conduct domain adaptation tasks on the
other three domains. DomainNet is a large-scale benchmark dataset for domain adaptation (Peng
et al., 2019). Since there are mislabeled samples in some classes and domains, we follow Tan et al.
(2020) and adopt only 40 common classes from four domains: Real (R), Clipart (C), Painting (P),
and Sketch (S). Different from Office-31 and Office-Home, the selected samples in DomainNet al-
ready exhibit obvious label distribution shift in the source domain and target domain. So there is no
need to sample this dataset again. Figure 5 illustrates the label distributions of imbalanced Office31
and imbalanced Office-Home datasets.

We use PyTorch to implement our approach. We train our model with the mini-batch SGD, a Nes-
terov momentum of 0.9, and a weight decay of 0.0005. The learning rate of classifiers is 10 times
larger than that of feature extractor, and all the learning rates are adjusted by every iteration. In
order to obtain the interpolated adversarial sample from a pair of source sample and target sample
from the same class, we utilize a memory pool to store the pseudo labels of all the target data. The
pseudo labels are updated in every iteration. Note that we utilize a class-balanced sampler on the
source data, which can be referred to as N-way (number of classes per batch) and K-shot (number
of examples per class). The coefficient α is set to 0.5 and β is set to 0.05 for all the experiments.
Following existing work on CDA, we adopt the per-class mean accuracy as our evaluation metric.
All the experiments are implemented on Nvidia RTX A5000 platform.
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Table 3: Accuracy of MDD and our full model on minority classes from imbalanced Office-Home
(Rw→Pr). Bold denotes the best performing method.

Method Batteries Bed Bike Bottle Calculator Chair Clipboards AVG

MDD (baseline) 51.61 95.52 19.79 85.91 71.42 93.05 62.22 68.50
Ours 59.67 100.0 29.17 88.73 73.47 100.0 64.44 73.64

Table 4: Per-class average accuracy on Office-31 with RS→UT label shift. Bold and underscore
denote the best and second-best performing methods respectively.

Method A→W D→W W→D A→D D→A W→A AVG

source 71.77 90.86 93.06 72.25 59.03 58.34 74.21

F-DANN (Wu et al., 2019) 69.83 93.56 93.95 76.45 58.57 58.11 75.07
COAL (Tan et al., 2020) 81.18 91.12 95.46 81.67 66.08 66.60 80.35
MDD+implicit (Jiang et al., 2020) 85.79 96.20 97.40 84.25 68.11 66.63 83.06
Sentry (Prabhu et al., 2021) 81.77 90.95 93.50 83.91 62.72 64.00 79.48

Ours 89.61 96.08 97.08 86.66 71.93 70.40 85.29

4.2 COMPARISON WITH STATE-OF-ART CDA METHODS

We compare our approach with several state-of-art methods for class imbalanced domain adaptation.
The baseline methods can be divided into two categories. The first category of methods are specif-
ically designed to solve the CDA problem, including Sentry (Prabhu et al., 2021), MDD+implicit
Jiang et al. (2020), COAL (Tan et al., 2020), and F-DANN (Wu et al., 2019). The second cate-
gory of methods aim to solve the standard unsupervised domain adaptation problem, including the
InstaPBM (Li et al., 2020) and BSP (Chen et al., 2019).

Table 1 shows the per-class average accuracy and overall average accuracy of our approach and
baselines on the imbalanced Office-Home dataset. The results of the baseline are cited from Prabhu
et al. (2021). Our proposed model achieves the best results in 4 out of 6 tasks. The accuracies of
our approach in these 4 tasks are more than 3% higher than the second-best results. In addition,
our model obtains the second-best results in the Rw→CL and Pr→Cl tasks. Overall, our method
achieves the highest average accuracy (i.e., 66.07%) among all the compared methods. We also
investigate the class-specific accuracy of MDD (Zhang et al., 2019) and our method on minority
classes, in order to understand how well our method addresses the data imbalance issue. Table 3
shows that our PAT method can significantly boost the performance on the minority classes from the
imbalanced Office-Home dataset.

Table 2 shows the per-class average accuracies of our approach and baselines on the DomainNet
dataset. Our approach achieves the best results in 4 tasks and second-best results in 8 tasks. In
R→S, P→S and S→P, our model can achieve 76.08%, 75.46%, which are 1.65% and 1.48% higher
than the second-best results, respectively. Though in some tasks our results are lower than Sentry
(Prabhu et al., 2021), the overall average accuracy of our approach is comparable to that of Sentry.

We manually sample the standard Office-31 dataset and construct the imbalanced Office-31 dataset,
in which the label distribution conforms to the Paredo distribution (Reed, 2001). We compare our
model with current state-of-art methods that focus on the CDA problem. Among all the 6 tasks,
our model achieves best results in 4 tasks. In these tasks, our results are 3.82%, 2.41%, 3.28% and
3.77% higher than the second best results. In the D→W and W→D tasks, the performance of our
approach are only 0.12% and 0.32% less than the best results.

4.3 ABLATION STUDIES

We further investigate the performance of our approach from several aspects. First, we evaluate
the contribution of each component in the loss function. Second, we evaluate the sensitivity of the
model to the change of the hyper-parameters. Third, we evaluate the performance of our method on
the standard unsupervised domain adaptation problem. We have also evaluated: (1) the effect of the
number of the iteration in the inner maximization of PAT; and (2) the integration of PAT and other
domain adaptation methods including CDAN, CDANE and Sentry, and reported the results in the
Appendix due to space limit.
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Table 5: Per-class average accuracy of MDD, Ours w/o IAS, Ours w/o CA, and our full model on
three tasks from imbalanced Office-Home dataset. Bold denotes the best performing method.

Method Rw→Pr Rw→Cl Pr→Rw Pr→Cl Cl→Rw Cl→Pr AVG

MDD (baseline) † 75.96 47.38 71.56 42.73 57.46 58.76 58.98

Ours w/o IAS † 78.38 51.85 75.72 48.31 67.16 65.80 64.26
Ours w/o CA † 77.37 53.02 76.12 47.08 64.99 64.73 63.61
Ours † 79.88 54.68 77.32 50.21 67.29 67.04 66.07
† We adopt class-balanced source sampling on all these methods.

Table 6: Accuracy of MDD and our model on four tasks from standard Office-Home. Bold denotes
the best performing method.

Method Rw→Pr Ar→Rw Cl→Pr Pr→Cl AVG

MDD (baseline) † 82.3 77.8 71.4 53.6 71.3
Ours 84.7 80.2 75.1 54.3 73.6
† Data of the baseline methods are cited from Zhang et al. (2019) .

The proposed pairwise adversarial training approach includes two major components, i.e., interpo-
lated adversarial samples (IAS) and centroid alignment (CA). We choose three tasks from each of
the three datasets separately. Table 5 shows the performance of our backbone model MDD, Ours
w/o IAS, Ours w/o CA, and our full model on the imbalanced Office-Home dataset. Detailed results
on the other two datasets are provided in the Appendix. Ours w/o IAS and Ours w/o CA consis-
tently achieve better performance than the baseline model MDD, which validates the effectiveness
of both methods in dealing with the biased label distribution shift. Our full model further improves
the classification accuracy, demonstrating the complementary roles of pairwise adversarial samples
and centroid alignment in our approach.

(a) (b)

Figure 6: Average accuracy of our model with: (a) varying
α when β = 0.05, and (b) varying β when α = 0.5 on
Rw→Pr in imbalanced Office-Home.

Furthermore, we evaluate the sensitiv-
ity of our model to the change of two
hyperparameters α and β . In partic-
ular, we first set β to 0.05 and choose
α from [0, 2.5]. Then, α is set to 0.5,
and β is chosen from [0, 0.25]. Fig-
ure 6 shows the per-class average ac-
curacy of our model when varying the
hyper-parameter values. It shows that
our model is not very sensitive to the
settings of hyper-parameters in a rela-
tively wide range.

Finally, we evaluate our method in the standard UDA setting, by comparing the results against
the baseline MDD (Zhang et al., 2019) on the standard Office-Home dataset. The results from
Table 6 shows that the classification accuracy in all the four tasks are improved after incorporating
our interpolation method, which proves the effectiveness of our method in unsupervised domain
adaptation problem.

5 CONCLUSION

In this paper, we propose a pairwise adversarial training approach to tackle the class-imbalanced
unsupervised domain adaptation (CDA) problem. Our approach generates interpolated adversarial
samples across source and target domains. In order to alleviate the biased label distribution shift
issue, we use the interpolated adversarial samples to augment the training data (especially the mi-
nority classes) and meanwhile adopt the centroid alignment strategy to explicitly align source and
target domains. Experimental results on three CDA benchmark datasets show that, our approach
yields competing performance compared with state-of-art CDA methods.
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A APPENDIX

We evaluate the effect of the number of iterations of the inner maximization in pairwise adversarial
training. We choose Rw→Pr from Office-Home, R→C from DomainNet and A→W from Office-31
as our evaluation tasks. The results are illustrated in Figure 7. It shows that the performance of our
approach will generally increase with more iterations. At some points the performance experiences
the slight fluctuation. Though performance reaches the maximum value at iteration of 12, it is
relatively time-consuming in the training process.

Figure 7: Per-class average accuracy of our model with different number of iterations.

Table 7 and Table 8 show the per-class average accuracy of MDD, Ours w/o IAS, Ours w/o CA,
and our full model on three tasks from the DomainNet dataset and Office-31 dataset, respectively.
The results demonstrate the effectiveness of two major components (i.e., interpolated adversarial
samples and centroid alignment) in our approach.

Table 7: Per-class average accuracy of MDD, Ours w/o IAS, Ours w/o CA, and our full model on
three tasks from DomainNet dataset. Bold denotes the best performing method.

Method R→C C→P C→R AVG

MDD (baseline) † 75.30 70.38 87.94 77.87

Ours w/o IAS † 77.03 69.43 88.60 78.35
Ours w/o CA † 77.65 71.25 88.49 79.13
Ours † 80.15 72.25 89.87 80.76
† We adopt class-balanced source sampling on all these

methods.

Table 8: Per-class average accuracy of MDD, Ours w/o IAS, Ours w/o CA, and our full model on
imbalanced Office-31 dataset. Bold denotes the best performing method.

Method A→W W→D W→A AVG

MDD (baseline) † 85.86 96.12 65.20 82.39

Ours w/o IAS † 87.41 96.44 68.42 84.09
Ours w/o CA † 90.58 96.55 69.99 85.71
Ours † 89.61 97.08 70.04 85.58
† We adopt class-balanced source sampling on all these meth-

ods.

Furthermore, as our PAT method is an independent module, which could be combined with other do-
main alignment techniques such as CDAN and Sentry. We integrate PAT with CDAN and CDANE,
and report the experimental results on the RS-UT Office-Home dataset in Table 9. Results show that
our PAT module could significantly improve the performance: 54.07%→60.38% for CDAN, and
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55.70%→62.61% for CDANE. The results in Table 10 further validate that our PAT method could
boost the performance of the state-of-the-art CDA method Sentry.

Table 9: Per-class average accuracy of CDAE, CDANE and our methods on imbalanced Office-
Home dataset with RS→UT label shift. Bold denotes the best performing method.

Model Rw→Pr Pr→Cl Cl→Pr AVG

CADN 70.78 38.46 52.99 54.07
CDAN+PAT (ours) 77.44 42.16 61.54 60.38

CDANE 72.16 40.39 54.57 55.70
CDANE+PAT (ours) 78.59 44.20 65.04 62.61

Table 10: Per-class average accuracy of Sentry and our method on DomainNet dataset. Bold denotes
the best performing method.

Model R→C P→R S→R AVG

Sentry 83.89 90.27 90.41 88.19
Sentry + PAT (ours) 86.42 91.33 91.37 89.71
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