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ABSTRACT

Bayesian methods are known to address some limitations of standard deep learn-
ing, such as the lack of calibrated predictions and uncertainty quantification. How-
ever, they can be computationally expensive as model and data complexity in-
crease. Fast variational methods can reduce the computational requirements of
Bayesian methods by eliminating the need for gradient descent or sampling, but
are often limited to simple models. We demonstrate that conditional mixture net-
works (CMNs), a probabilistic variant of the mixture-of-experts (MoE) model,
are suitable for fast, gradient-free inference and can solve complex classifica-
tion tasks, thus balancing the expressiveness and scalability of neural networks
with the probabilistic benefits of Bayesian methods . By exploiting conditional
conjugacy and Pólya-Gamma augmentation, we furnish Gaussian likelihoods for
the weights of both the experts and the gating network. This enables efficient
variational updates using coordinate ascent variational inference (CAVI), avoid-
ing traditional gradient-based optimization. We validate this approach by training
two-layer CMNs on standard benchmarks from the UCI repository. Our method,
CAVI-CMN, achieves competitive and often superior predictive accuracy com-
pared to maximum likelihood estimation (MLE) with backpropagation, while
maintaining competitive runtime and full posterior distributions over all model
parameters. Moreover, as input size or the number of experts increases, computa-
tion time scales competitively with MLE and other gradient-based solutions like
black-box variational inference (BBVI), making CAVI-CMN a promising tool for
deep, fast, and gradient-free Bayesian networks.

1 INTRODUCTION

Modern machine learning methods attempt to learn functions of complex data (e.g., images, au-
dio, text) to predict information associated with that data, such as discrete labels in the case of
classification (Bernardo et al., 2007). Deep neural networks (DNNs) have demonstrated success in
this domain, owing to their universal function approximation properties (Park & Sandberg, 1991)
and the soft regularization inherited from stochastic gradient descent learning via backpropagation
(Amari, 1993). However, despite its computational efficiency, accuracy, and scalability to increas-
ingly large datasets and models, DNNs trained this way do not provide well-calibrated predictions
or uncertainty estimates, and practitioners typically utilize post-hoc calibration methods on valida-
tion datasets (Wang et al., 2021; Shao et al., 2020). This limits the applicability and reliability of
using DNNs in safety-critical applications like autonomous driving, medicine, and disaster response
(Papamarkou et al., 2024), where uncertainty-sensitive decision-making is required.

Bayesian machine learning addresses the issues of poor calibration and uncertainty quantification by
offering a probabilistic framework that casts learning model parameters θθθ as a process of inference -
namely, calculating a posterior distribution over model parameters p

(
θθθ | DDD

)
, given observed data DDD

(e.g., a data set of input-output pairs DDD =
(
(xxx1, yyy1), . . . , (xxxn, yyyn)

)
). The resulting posterior distri-

bution captures both expectations about model parameters θθθ and their uncertainty. The uncertainty
is then incorporated in predictions p(yyy) that are, in principle, well-calibrated to new datapoints com-
ing from the same set. This probabilistic treatment allows methods like Bayesian neural networks
(BNNs) (Hernández-Lobato & Adams, 2015) to maintain the expressiveness of deep neural networks
while also encoding uncertainty over network weights and thus the network’s predictions. However,
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these methods are often accompanied by an increase in computational cost and still involve running
gradient descent or generating samples (Izmailov et al., 2021).

In this paper we introduce a gradient-free variational learning algorithm for a probabilistic variant of
a two-layer, feedforward neural network — the conditional mixture network or CMN — and mea-
sure its performance on supervised learning benchmarks. This method rests on coordinate ascent
variational inference (CAVI) (Wainwright et al., 2008; Hoffman et al., 2013) and hence we name it
CAVI-CMN. We compare CAVI-CMN to maximum likelihood estimation and two other Bayesian
estimation techniques: the No U-Turn Sampler (NUTS) variant of Hamiltonian Monte Carlo (Hoff-
man et al., 2014) and black-box variational inference (Ranganath et al., 2014). We demonstrate that
CAVI-CMN maintains the predictive accuracy and scalability of an architecture-matched feedfor-
ward neural network fit with maximum likelihood estimation (i.e., gradient descent via backprop-
agation), while maintaining full distributions over network parameters and generating calibrated
predictions, as measured in relationship to state-of-the-art Bayesian methods like NUTS and BBVI.
Unlike other Bayesian (NUTS, BBVI) and non-Bayesian gradient based approaches (MLE), CAVI-
CMN achieves SOTA-like performance with absolute runtime comparable to a backpropagation-
based MLE approach, thanks to the fast convergence properties of coordinate ascent variational
inference.

We summarize the contributions of this work below:

• We introduce and derive a variational inference scheme for the conditional mixture net-
work, which we term CAVI-CMN. This relies on the use of conjugate priors for the linear
experts and Pólya-Gamma augmentation (Polson et al., 2013) for the gating network and
the final softmax layer.

• CAVI-CMN matches, and sometimes exceeds, the performance of maximum likelihood
estimation (MLE) in terms of predictive accuracy, while maintaining the benefits of a
full Bayesian approach, yielding well calibrated models that quantify uncertainty. This
is shown across a suite of 8 different supervised classification tasks (2 synthetic, 6 real).

• CAVI-CMN displays all the benefits explained above while requiring drastically less time
to converge and overall runtime than the other state-of-the-art Bayesian methods like NUTS
and BBVI.

The rest of this paper is organized as follows: first, we discuss related works include the MoE archi-
tecture and existing (Bayesian and non-Bayesian approaches) to fitting these models. We then in-
troduce the probabilistic conditional mixture model and derive a variational inference algorithm for
optimizing posterior distributions over its latent variables and parameters. We present experimen-
tal results comparing the performance of CAVI-based conditional mixture models with sampling
based methods, such as BBVI, NUTS, and traditional MLE based estimation, where gradients of the
log likelihood are computed using backpropagation and used to update the network’s parameters.
Finally, we discuss the implications of these findings and potential directions for future research.

2 RELATED WORK

The Mixture-of-Experts (MoE) architecture is a close relative of the CMN model we introduce here.
Jacobs et al. (1991) originally introduced MoEs as a way to improve the performance of neural net-
works by combining the strengths of multiple specialized models (Gormley & Frühwirth-Schnatter,
2019). MoE models process inputs by averaging the predictions of individual learners or experts,
where each expert’s output is weighted by a different mixing coefficient before the averaging. The
fundamental idea behind MoE is that the input space can be partitioned in such a way that differ-
ent experts (models) can be trained to excel in different regions of this space, with a gating network
determining the appropriate expert (or combination of experts) for each input. This leads to compos-
able (and sometimes interpretable) latent descriptions of arbitrary input-output relationships (Eigen
et al., 2013), further bolstered by the MoE’s capacity for universal function approximation (Nguyen
et al., 2016; Nguyen & Chamroukhi, 2018). Indeed, the powerful self-attention mechanism em-
ployed by transformers has has demonstrated the power and flexibility of MoE models (Movellan &
Gabbur, 2020). Non-Bayesian approaches to MoE typically rely on maximum likelihood estimation
(MLE) (Jacobs et al., 1991; Jordan & Jacobs, 1994), which can suffer from overfitting and poor
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generalization due to the lack of regularization mechanisms (Bishop & Svenskn, 2003), especially
in low data size regimes.

To address these issues, Bayesian approaches to MoE have been developed, which incorporate prior
information and yield posterior distributions over model parameters (Bishop & Svenskn, 2003;
Mossavat & Amft, 2011). This Bayesian treatment enables the estimation of model evidence
(log marginal-likelihood) and provides a natural framework for model comparison and selection
(Svensén, 2003; Zens, 2019). Bayesian MoE models offer significant advantages, such as improved
robustness against overfitting and a better understanding of uncertainty in predictions. However,
they also introduce computational challenges, particularly when dealing with high-dimensional data
and complex model structures.

The introduction of the Pólya-Gamma (PG) augmentation technique in Polson et al. (2013) enabled a
range of novel and more computationally efficient algorithms for Bayesian treatment of MoE models
(Linderman et al., 2015; He et al., 2019; Sharma et al., 2019; Viroli & McLachlan, 2019; Zens et al.,
2023). Here we complement these past works, which mostly rest on improving sampling methods
with PG augmentation, by introducing a closed-form update rules for MoE’s with linear experts in
the form of coordinate ascent variational inference (CAVI).

3 METHODS

In this section we first motivate the use of conditional mixture models for supervised learning, and
then introduce the conditional mixture network (CMN), the probabilistic model whose properties
and capabilities we demonstrate in the remainder of the paper.

3.1 CONDITIONAL MIXTURES FOR FUNCTION APPROXIMATION

Feedforward neural networks are highly expressive, approximating nonlinear functions through
sequences of nonlinear transformations, but the posterior distributions over their weights are in-
tractable, requiring expensive techniques like MCMC or variational inference (MacKay, 1992; Blun-
dell et al., 2015; Daxberger et al., 2021).

We circumvent these problems by focusing on the Mixture-of-Experts (MoE) models (Jacobs et al.,
1991), and particularly a variant of MoE that is amenable to gradient free CAVI parameter updates.
MoEs can be made tractable to gradient-free CAVI when the expert likelihoods are constrained to
be members of the exponential family (see Section 2 for more details on the MoE architecture), and
when the gating network is formulated in such a way to allow exact Bayesian inference (through
lower bounds on the log-sigmoid likelihood (Jaakkola & Jordan, 1997; Bishop & Svenskn, 2003) or
Pólya-Gamma augmentation (Polson et al., 2013)).

The MoE can be reformulated probabilistically as a mixture model by introducing a latent assign-
ment variable, zn, leading to a joint probability distribution of the form

p(Y, Z,Θ) = p(θ1:K)p(π)

N∏
i=1

p(yn|zn, θ1:K)p(zn|π) ,

where yn is an observation, Θ = {θ1:K , π}, pk(yn|θk) is the kth-component’s likelihood and zn
is a discrete latent variable that assigns the nth datapoint to one of the K mixture components, i.e.
pk(y

n|θk) = p(yn|zn= k, θ1:K). For instance, if each ‘expert’ likelihood pk(yn|θk) is a Gaussian
distribution, then the MoE becomes a Gaussian Mixture Model, where θk = (µk,Σk).

The problem of learning the model’s parameters, then becomes one of doing inference over the la-
tent variables Z and parameters Θ of the mixture model. However, mixture models are generally not
tractable for exact Bayesian inference, so some form of approximation or sampling-based scheme
is required to obtain full posteriors over their parameters. However, if each expert (i.e., likelihood
distribution) in the MoE belongs to the exponential family, the model becomes conditionally con-
jugate. This allows for derivation of exact fixed-point updates to an approximate posterior over
each expert’s parameters. The approach we propose, CAVI-CMN, does exactly this – we take ad-
vantage of the conditional conjugacy of mixture models, along with an augmentation trick for the
the gating network, to make all parameters amenable to an approximate Bayesian treatment. The
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conditionally-conjugate form of the model allows us to use coordinate ascent variational inference to
obtain posteriors over the weights of both the individual linear experts and the gating network (Wain-
wright et al., 2008; Hoffman et al., 2013; Blei et al., 2017), without resorting to costly gradient or
sampling computations.

Going forward we use the term conditional mixture networks (CMN) to emphasize (1) the discrim-
inative nature of proposed application of this approach, where the model is designed to predict an
output y given an input x and (2) the fact that individual MoE layers can be stacked hierarchically
into a feedforward architecture. This makes CMNs particularly suitable for tasks such as supervised
classification and regression, where the goal is effectively that of function approximation; predict
some output variable y given input regressors x.

3.2 CONDITIONAL MIXTURE NETWORK OVERVIEW

The conditional mixture network maps from a continuous input vector xxx0 ∈ Rd to its label y ∈
{1, . . . , L}. This is achieved with two layers: a conditional mixture of linear experts, which outputs
a joint continuous-discrete latent

(
xxx1 ∈ Rh, z1 ∈ {1, . . . ,K}

)
and a multinomial logistic regression,

which maps from the continuous latent xxx1 to the corresponding label y. The probabilistic mapping
can be described in terms of the following operations:

z1 ∼ Mult (z1;xxx0,βββ0)

xxx1 = AAAz1 · [xxx0; 1] + uuuz1 , uuuz1 ∼ N(000,ΣΣΣz1)

y ∼ Mult (y;xxx1,βββ1)

where we pad the input variable xxx0 with a constant value set to 1, to absorb the bias term within
the mapping matrix AAAz1 ∈ Rh×d+1, and where Mult (z;xxx,βββ) denotes a multinomial distribution
parameterized with a regressor xxx and logistic regression coefficients βββ. Note that for every pair of
regressors and labels (xxxn0 , y

n), we assume a corresponding pair of latent variables (xxxn1 , z
n
1 ). Written

in this way, it becomes clear than CMN is a mixture of linear transforms that is capable of modeling
non-linear transfer functions via a piecewise linear approximation.

In order to obtain a normally distributed posterior over the multinomial logistic regression weights,
βββ0 and βββ1, we use Pólya-Gamma augmentation (Polson et al., 2013; Linderman et al., 2015) applied
to the stick breaking construction for the multinomial distribution:

p
(
z = k|βββ,xxx

)
= πk (βββ,xxx)

k−1∏
j=1

(
1− πj (βββ,xxx)

)
πj (βββ,xxx) =

1

1 + exp
{
−βββj · [xxx; 1]

} ,∀j < K

πK = 1

(1)

where for the gating network (input layer) we will have coefficients of dimension βββ0 ∈ RK−1×d,
and for the output likelihood coefficients of dimension βββ1 ∈ RL−1×h.

3.3 GENERATIVE MODEL FOR THE CONDITIONAL MIXTURE NETWORK

Given a set of labels Y =
{
y1, y2, ..., yN

}
, and regressors XXX0 =

{
xxx10,xxx

2
0, ...,xxx

N
0

}
, that define

i.i.d input-output pairs xxxn0 , y
n, we write the joint distribution over labels Y , latents XXX1, Z1, and

parameters ΘΘΘ as:

p(YYY ,XXX1, Z1,ΘΘΘ|XXX0) = p (ΘΘΘ)

N∏
n=1

pβ1β1β1

(
yn|xxx1

)
pλλλ1

(
xxxn1 |xxxn0 , zn1

)
pβββ0

(
zn1 |xxxn0

)
p (ΘΘΘ) = p (βββ1) p (βββ0) p (λλλ1)

=

L−1∏
l=1

p(βββl,1)

K−1∏
k=1

p(βββk,0)

K∏
j=1

p
(
AAAj ,ΣΣΣ

−1
j

) (2)

Note that this model structure, with input and target variables, is often referred to as a discrimina-
tive model, as opposed to a generative model (Bernardo et al., 2007). However, we use the term
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xxxn1

zn1

AAAk

ΣΣΣ−1
kxxxn0

yn

βββk,0

βββl,1

a0, b0

MMM0, v0

000, σ0

000, σ1

K − 1

N

K

L− 1

Figure 1: A Bayesian network representation of the two-layer conditional mixture network, with
input-output pairs xxxn0 , y

n and latent variables xxxn1 , z
n
1 . Observations are shaded nodes, while latents

and parameters are transparent. Prior hyperparameters are shown without boundaries.

generative model to emphasize the fact that the model contains priors over latent variables (XXX1, Z1),

and parameters
(
ΘΘΘ =

(
βββ1:L−1,1,βββ1:K−1,0,AAA1:K ,ΣΣΣ

−1
1:K

))
, and that we are estimating posteriors

over these quantities, by maximizing a lower bound on marginal likelihood of the observed target
variables Y . Note that going forward, we will sometimes use λλλ1 as notational shorthand for the
parametersAAA1:K ,ΣΣΣ

−1
1:K of the first layer’s linear experts.

We specify the following conditionally conjugate priors for the parameters of the two-layer CMN:

p
(
AAAk|ΣΣΣ−1

k

)
= MN (AAAk;MMM0,ΣΣΣk, v0IIId+1)

p

(
ΣΣΣ−1
k ≡ diag

(
σσσ−2
k

))
=

h∏
i=1

Γ
(
σ−2
k,i ; a0, b0

)
p
(
βββk,0

)
= N

(
βββk,0; 000, σ

2
0IIId+1

)
p
(
βββl,1

)
= N

(
βββl,1; 000, σ

2
1IIIh+1

)
(3)

where we fixed the prior mean matrix of the linear transformation AAAk to be a matrix of zeros:
MMM0 = 000. Other hyperparameters of the priors are described in Appendix C.1. In the following
section we introduce a mean-field variational inference scheme we use for performing inference and
learning in the two-layer CMN.

3.4 COORDINATE ASCENT VARIATIONAL INFERENCE WITH CONJUGATE PRIORS

In this section we describe a variational approach for inverting the probabilistic model described in
Equation (2) and computing an approximate posterior over latents and parameters specified as

p
(
XXX1, Z1,ΘΘΘ|Y,XXX

)
=
p (Y,XXX1, Z1,ΘΘΘ,XXX)

p
(
Y |XXX

) ≈ q (ΘΘΘ)

N∏
n=1

q (zn1 ) q
(
xxxn1 |zn1

)
(4)

where q
(
xxxn1 |zn1

)
corresponds to a component specific multivariate normal distribution, and q (zn1 )

to a multinomial distribution. Importantly, the approximate posterior over parameters q (ΘΘΘ) further

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

factorizes (Svensén, 2003) as

q (ΘΘΘ) =

L−1∏
l=1

q
(
βββl,1

)K−1∏
k=1

q
(
βββk,0

) K∏
j=1

q
(
AAAj ,ΣΣΣ

−1
j

)
︸ ︷︷ ︸

=q(λλλ1)

q
(
βββl,1

)
= N

(
βββl,1;µµµl,1,ΣΣΣl,1

)
q
(
βββl,0

)
= N

(
βββl,0;µµµk,0,ΣΣΣk,0

)
q
(
AAAj |ΣΣΣ−1

j

)
= MN

(
AAAj ;MMM j ,ΣΣΣj ,VVV j

)
q
(
ΣΣΣ−1
j

)
=

h∏
i=1

Γ
(
σ−2
i,j ; aj , bi,j

)
(5)

The above form of the approximate posterior allows us to define tractable conditionally conjugate
updates for each factor. This becomes evident from the following expression for the evidence lower-
bound (ELBO) on the marginal log likelihood

L(q) = Eq(XXX1,ZZZ1)q(ΘΘΘ)

 N∑
n=1

ln
pΘΘΘ
(
yn,xxxn1 , z

n
1 |xxxn0

)
q
(
zn1
)
q
(
xxxn1 |zn1

)
+ Eq(ΘΘΘ)

[
ln
p (βββ1) p (βββ0) p (λλλ1)

q (βββ1) q (βββ0) q (λλλ1)

]
(6)

We maximize the ELBO using an iterative update scheme for the parameters of the approximate
posterior, often referred to as variational Bayesian expectation maximization (VBEM) (Beal, 2003)
or coordinate ascent variational inference (CAVI) (Bishop & Nasrabadi, 2006; Blei et al., 2017).
The procedure consists of two parts:

At a given variational iteration t, we fix the posterior over parameters q (ΘΘΘ) to their value at the
last iteration qt−1 (ΘΘΘ) (or if t = 1, to randomly-initialized values). With the parameter posterior
fixed, we then update the posterior over latent variables by setting them equal to the solution that
maximizes L(q), under qt−1 (ΘΘΘ):

qt(X1, Z1) ∝ exp

{
Eqt−1(ΘΘΘ)

[
ln pΘΘΘ

(
Y,X1, Z1|X0

)]}
(7)

This update of the latents is also known as the ‘variational E-step’ due to its resemblance to the
E-step in expectation maximization (Beal, 2003).The posterior over latent variables updated in the
E-step of Equation (7) qt(X1, Z1) is then used to update the posterior over parameters as

qt (ΘΘΘ) ∝ exp


N∑
n=1

Eqt(xn
1 ,z

n
1 )

[
ln pΘΘΘ

(
yn,xn1 , z

n
1 |xn0

)] (8)

This update of the parameter posterior is similarly known as the ‘variational M-step’ due to its
resemblance to the step which maximizes the log likelihood with respect to the parameters in the
E-M algorithm. More detailed expansions of these equations, including their functional forms, and
the PG augmentation scheme needed to turn them into conditionally-conjugate updates, are given in
Appendix A and Appendix B.

4 RESULTS

To evaluate the effectiveness of the CAVI-based approach, we compared it to other approximate
inference algorithms, using several real and synthetic datasets. We compared CMNs fit with CAVI
to the following three approaches:

MLE — We obtained point estimates for the parametersΘΘΘ of the CMN using maximum-likelihood
estimation (backpropagation to minimize the negative log likelihood).

6
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Figure 2: Performance and runtime results of the different inference algorithms on the ‘Pinwheel’
dataset. The standard deviation (vertical lines) of the performance metric is depicted together with
the mean estimate (circles) over different runs. The top row of subplots show performance metrics
across training set sizes: test accuracy (top left); log predictive density (top center), and expected
calibration error (top right). The bottom row shows runtime metrics as a function of increasing
training set size: the number of iterations required to achieve convergence (lower left); and the total
runtime, estimated using the product of the number of iterations to convergence and the average
cost (in seconds) for running one iteration (lower right). The number of iterations required for
convergence was calculated by determining the number of gradient steps (or M steps, for CAVI)
taken before the ELBO (or negative log likelihood, for MLE) reached 95% of its maximum value
(see Appendix F for details on how these metrics were computed).

NUTS-HMC — The No-U-Turn Sampler (NUTS), an extension to Hamiltonian Monte Carlo
(HMC) that incorporates adaptive step sizes (Hoffman et al., 2014). This provides sam-
ples from a posterior distribution over ΘΘΘ.

BBVI — Black-Box Variational Inference (BBVI) method (Ranganath et al., 2014). BBVI maxi-
mizes the evidence lower bound (ELBO) using stochastic estimation of its gradients with
respect to variational parameters.

Appendix C contains details of the hyperparameters used for each inference algorithm.

4.1 COMPARISON ON SYNTHETIC DATASETS

We fit two-layer CMNs with different inference routines on two different synthetic datasets: the
Pinwheels and the Waveform Domains (Breiman & Stone, 1988) datasets. The pinwheels dataset
consists of multiple clusters arranged in a pinwheel pattern, posing a challenging task for mixture
models (Johnson et al., 2016) due to the curved and elongated spatial distributions of the data. See
Appendix D for the parameters we used to simulate the pinwheels dataset. Similarly, the Waveform
Domains dataset consists of synthetic data generated to classify three different waveform patterns,
where each class is described by 21 continuous attributes (Breiman & Stone, 1988).

We fit all inference methods while varying the training set size N in order to study the robustness
of each inference method’s performance in the low data regime. For each inference method and
value of N , we fit the model using the same batch of training data, but with 16 randomly-initialized
models (different initial posterior samples or weights), and evaluated performance on the same fixed
test set across values of N .
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Figure 3: Performance and runtime results of the different models on the ‘Waveform Domains’
dataset. The waveforms dataset consists of synthetic data generated to classify three different wave-
form patterns. Each instance is described by 21 continuous attributes. See here for more information
about the dataset. Descriptions of each subplot are same as in the Figure 2 legend.

We assess the performance of the different inference methods using three main metrics: predictive
accuracy (Test Accuracy), log-predictive density (LPD), and expected calibration error (ECE). Log
predictive density is a common measure of predictive accuracy for methods that output probabilities
(Gelman et al., 2014), and expected calibration error measures how well a model’s predictions are
calibrated to the class probabilities observed in the data (Guo et al., 2017). In Figure 2 we show
performance for the Pinwheels dataset and in Figure 3 for the Waveform dataset as a function of
N . The CAVI-based approach achieves comparable log predictive density and calibration error to
the other two Bayesian methods, which all outperform maximum likelihood estimation in LPD and
ECE. This holds across training set sizes, indicating CAVI-CMN’s high sample efficiency.

4.2 COMPARISON ON REAL-WORLD DATASETS

To further validate the performance of CAVI-CMN, we conducted experiments using 6 real-world
classification datasets from the UCI Machine Learning Repository (Kelly et al., 2024). Table 1 sum-
marizes the performance of the different algorithms on all 7 different UCI datasets (the Waveform
domains dataset and the 6 real datasets), using the widely-applicable information criterion (WAIC)
as a measure of performance. WAIC is an approximate estimate of leave-one-out cross-validation
(Vehtari et al., 2017).

The CAVI-CMN approach consistently provided higher WAIC scores in comparison to the MLE
algorithm, and with comparable magnitude to those computed using BBVI and NUTS. The re-
sults confirm that using fully conjugate priors within the CAVI framework, does not diminish the
inference and the predictive performance of the algorithm, when compared to the state-of-the-art
Bayesian methods like NUTS and BBVI. Importantly, CAVI-CMN offers substantial advantages in
terms of computational efficiency as explored in the next section.

4.3 RUNTIME COMPARISON

The NUTS algorithm, although considered state-of-the-art in terms of inference robustness and ac-
curacy (for well calibrated models (Gelman et al., 2020)), is notoriously difficult to apply to large-
scale problems (Cobb & Jalaian, 2021). Hence, the preferred algorithm of choice for probabilistic
machine learning applications have been methods grounded in variational inference, such as black-
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Table 1: Comparison of widely-applicable information criterion (WAIC) for different methods eval-
uated on 7 different UCI datasets.

Rice Breast Cancer Waveform Vehicle Silh. Banknote Sonar Iris
CAVI -0.1820 -0.0504 -0.2921 -0.3281 -0.0206 -0.1544 -0.0747
MLE -0.3599 -0.3133 -0.5759 -0.7437 -0.3133 -0.3133 -0.5514
NUTS -0.1278 -0.0324 -0.3753 -0.3767 -0.0110 -0.0306 -0.0413
BBVI -0.1739 -0.0763 -0.3618 -0.4154 -0.0382 -0.0583 -0.1544

box variational inference (BBVI) (Ranganath et al., 2014) and stochastic variational inference (SVI)
(Hoffman et al., 2013).

In this subsection, we analyze the runtime efficiency of the MLE and BBVI algorithms for CMN
models, in comparison to a CAVI-based approach. The focus is on comparing the computation time
as the number of model parameters increases. To study this, we varied the complexity of the CMN
along the following dimensions: the dataset size used for training N , the number of linear experts
in the mixture layer K, the dimensionality of the input space d, and the dimensionality of the latent
space h. Note that in all runtime experiments, we did not measure NUTS’ runtime because its poor
scaling and speed is well-documented (Blei et al., 2017; Izmailov et al., 2021; Cobb & Jalaian,
2021) and for all but the smallest dataset sizes and model dimensionalities, it took already many
times longer to run than any of the other methods we studied (MLE, BBVI, or CAVI).

Figure 4: Relative scaling of fitting time in seconds for Maximum Likelihood, BBVI, and CAVI, as
a function of the number of parameters. The number of parameters itself was manipulated in three
illustrative ways: changing the input dimension d, changing the number of linear experts K in the
conditional mixture layer, and changing the dimensionality of the continuous latent variable h.

The runtime performance for varying dataset sizeN is shown for the Pinwheels dataset in the bottom
two subplots of Figure 2. This shows the total runtime in seconds, and steps until convergence for
different algorithms. As expected, all algorithms exhibit an increase in runtime as N increases
(which also scales the number of parameters for BBVI and CAVI). However the rate of increase
varies significantly across different algorithms, with CAVI-CMN approach showing the best scaling
behavior.

Similarly, in Figure 4 we plot the relative runtime scaling of MLE, CAVI, and BBVI (proportional
to the runtime of the least complex variant), as we increase the number of parameters along dif-
ferent dimensions of the model structure. Fitting CMNs with CAVI scales competitively with
gradient-based methods like BBVI and MLE. However, the rightmost subplot of Figure 4 indi-
cates that as we increase the dimensionality of the latent variable XXX1, CAVI-CMN scales more
dramatically than the other two methods. This inherits from the computational overhead of ma-
trix operations required by storing multivariate Gaussians posteriors over each continuous latent,
i.e., q(xxxn1 |zn1 ) = N (xxxn1 ;µµµ

n
1 ,ΣΣΣ

n
1 ). Running the CAVI algorithm involves operations (like matrix

inversions and matrix-vector products) whose (naive) complexity is quadratic in matrix size. This
explains the nonlinear scaling of runtime as a function of h, the dimension of XXX1. Various meth-

9
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ods (like low-rank approximations to the covariance structure of q(xxxn1 |zn1 ) and further factorization
of q(xxxn1 , z

n
1 ) into q(xxxn1 )q(z

n
1 )) could help mitigate the scaling of CAVI-CMN’s runtime as we in-

crease the latent dimension h. These additions are fruitful avenue for future research into scaling
CAVI-CMN to deeper (more layers) and wider (larger latent dimension) architectures.

In summary, both sets of runtime analyses (both absolute and relative) suggest CAVI-CMN may
be an attractive alternative to BBVI suitable for large-scale and time-sensitive applications. Like
BBVI, CAVI-CMN offers a variational Bayesian treatment of latent variables and parameters, while
maintaining much faster absolute runtime and quicker convergence, due to the use of coordinate
ascent to update the parameters of variational distributions, as opposed to the stochastic gradient
updates used in BBVI.

5 CONCLUSION

We demonstrate that the CAVI-based approach for conditional mixture networks (CMN) signifi-
cantly outperforms the traditional maximum likelihood estimation (MLE) based approach, in terms
of predictive performance and calibration. The improvement in probabilistic performance over the
MLE based approaches can be attributed to implicit regularisation via prior information, and proper
handling of posterior uncertainty over latent states and parameters, leading to a better representation
of the underlying data, reflected in improved calibration error and log predictive density, even in low
data regimes.

One of the key advantages of the CAVI-based approach is its computational efficiency compared to
the other Bayesian inference methods such as Black-Box variational inference (BBVI) and the No-
U-turn sampler (NUTS). While NUTS can sample from the full joint posterior distribution, which
maximizes performance in terms of inference quality, this comes at the expense of substantial com-
putational resources, especially for high dimensional and complex models (Hoffman et al., 2013).
Variational methods offer a scalable alternative to sampling-based inference in the form of methods
like black-box variational inference (BBVI). Although BBVI is highly efficient in comparison to
NUTS, it takes longer to converge and is slower than CAVI when applied to inference and learning
in conditional mixture networks. Hence, we expect CAVI to be a more practical choice for large-
scale application, especially when further combined with data mini-batching methods (Hoffman
et al., 2013).

The UCI benchmark results show that CAVI-CMN algorithm achieves comparable performance to
BBVI and NUTS in terms of predictive accuracy, log-predictive density and expected calibration
error, while being significantly faster. This balance between predictive likelihood and calibration
(jointly viewed as indicators of sample efficiency) is particularly important in real-world applications
where robust prediction, reflective of underlying uncertainty, are crucial.

Furthermore, a straightforward mixture of linear components present in CMN, offers additional
interoperability benefits. By using conditionally conjugate priors and a corresponding mean-field
approximation over latent variables and model parameters, we facilitate easier interpretation of the
model parameters and their uncertainties. This is particularly valuable in domains where under-
standing the underlying data-generating process is as important as the predictive performance, such
as in healthcare, finance, and scientific research. Another important point is that the conjugate form
of the CMN means that variational updates end up resembling sums of sufficient statistics computed
from the data; this means the CAVI algorithm we described is readily amenable to online compu-
tation and mini-batching, where sufficient statistics can computed and summed on-the-fly to update
model parameters in a streaming fashion (Hoffman et al., 2013; Broderick et al., 2013). This ap-
proach will become necessary when scaling CAVI-CMN to deeper (more than two-layer) models
(Viroli & McLachlan, 2019) and larger datasets, where storing all the sufficient statistics of the data
in memory becomes prohibitive.

Overall, these findings underscore the practical advantages of CAVI-CMN and highlight its promise
as a new tool for fast probabilistic machine learning.
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REPRODUCIBILITY STATEMENT

An author- and affiliation-anonymized version of the code for using CAVI and the other 3 methods
to fit the CMN model on the pinwheel and 7 UCI datasets is available for download at this link. The
main performance figures in the text can be reproduced by running each inference script and chang-
ing the --train size parameter, while using the hyperparameters specified in the appendices
(e.g., Appendix C.1).
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A COORDINATE ASCENT VARIATIONAL INFERENCE FOR CONDITIONAL
MIXTURE NETWORKS

In this section we expand the CAVI (or VBEM) equations provided in Equation (7) and Equation (8)
of the main text to provide their detailed functional form.
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Recall the ELBO used for CAVI-CMN:

L(q) = Eq(XXX1,ZZZ1)q(ΘΘΘ)

 N∑
n=1

ln
pΘΘΘ
(
yn,xxxn1 , z

n
1 |xxxn0

)
q
(
zn1
)
q
(
xxxn1 |zn1

)
+ Eq(ΘΘΘ)

[
ln
p (βββ1) p (βββ0) p (λλλ1)

q (βββ1) q (βββ0) q (λλλ1)

]
(9)

Coordinate ascent variational inference entails maximizing L(q) = using an iterative update scheme
for the parameters of the approximate posterior, which factorizes into the posterior over parameters
q(ΘΘΘ) and the posterior over latent variables q(X1, Z1). The procedure consists of two parts:

First, we fix the posterior over the parameters to its value at the previous iteration (or randomly-
initialized values, if at the first iteration). Given the posterior over parameters, we update the poste-
rior over latent variables (variational E-step) as

qt
(
xxxn1 |zn1

)
∝ exp

{
Eqt−1(βββ1)qt−1(λλλ1)

[
ln pβββ1

(
yn|xxxn1

)
+ ln pλλλ1

(
xxxn1 |xxxn0 , zn1

)]}

qt (z
n
1 ) ∝ exp

Eqt−1(ΘΘΘ)

[〈
ln pβββ1,λλλ1

(
yn,xxxn1 |xxxn0 , zn1

)〉
qt(xxxn

1 |zn1 )
+ ln pβββ0

(
zn1 |xxxn0

)]
(10)

Second, the posterior over latents that was updated in the E-step, is used to update the posterior over
parameters (variational M-step) as

qt (βββ1) ∝ exp


N∑
n=1

Eqt(xxxn
1 ,z

n
1 )

[
ln pβββ1

(
yn|xxxn1

)]
qt (βββ0) ∝ exp


N∑
n=1

Eqt(zn1 )
[
ln pβββ1

(
zn1 |xxxn0

)]
qt (λλλ1) ∝ exp


N∑
n=1

Eqt(xxxn
1 ,z

n
1 )

[
ln pλλλ1

(
xxxn1 |zn1 ,xxxn0

)]
(11)

In the variational inference literature, the distinction between latents and parameters is often de-
scribed in terms of ‘local’ vs ‘global’ latent variables (Hoffman et al., 2013), where local variables
are datapoint-specific, and global variables are shared across datapoints. To detail the form of the
updates to the parameters of the linear experts in Equation (11), i.e. qt(λλλ1) = qt(AAA1:K ,ΣΣΣ

−1
1:K), first

we note the form of the approximate posteriors over the latent variables q(XXX1, Z1):

q
(
XXX1|Z1

)
=

N∏
n=1

K∏
k=1

N (xxxn1 ;µµµ
n
k,1,ΣΣΣ

n
k,1)

q (Z1) =

N∏
n=1

Cat(zn1 ;γγγ
n) (12)

The update to the kth expert’s parameters q(AAAk,ΣΣΣ−1
k ) can written in terms of weighted updates to the

Matrix Normal Gamma’s canonical parametersMMMk,VVV k, ak and bk, where the weights are provided
by the sufficient statistics of {q

(
xxx11|z11=k

)
, q
(
xxx21|z21=k

)
, . . . , q

(
xxxN1 |zN1 =k

)
}:
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VVV −1
k = VVV −1

k,0 +

N∑
n=1

γnkxxx
n
0 (xxx

n
0 )

⊤

MMMk =

MMMk,0VVV
−1
k,0 +

N∑
n=1

γnkµµµ
n
k,1 (xxx

n
0 )

⊤

VVV k
ak = ak,0 +

∑N
n=1 γ

n
k

2

bi,k = bi,k,0 +
1

2

 N∑
n=1

γnk

[
ΣΣΣnk,1 +µµµnk,1(µµµ

n
k,1)

⊤
]
ii
−
[
MMMkVVV

−1
k MMMT

k

]
ii
+
[
MMMk,0VVV

−1
k,0MMM

T
k,0

]
ii


(13)

where the notation [·]ii selects the ith element of the diagonal of the matrix in the brackets.

However, the update equations described in Equation (10) and in the first two lines of Equation (11)
for q(βββ0), q(βββ1) are not computationally tractable without an additional approximation, known as
Pólya-Gamma augmentation of the multinomial distribution. The full details of the augmentation
procedure are described below in Appendix B. Here we will briefly sketch the main steps and de-
scribe the high level, augmented update equations. The Pólya-Gamma augmentation introduces
datapoint-specific auxiliary variables (ωωωn1 ,ωωω

n
0 ), that help us transform the log-probability of the

multinomial distribution into a quadratic function (Polson et al., 2013; Linderman et al., 2015) over
coefficients (βββ1,βββ0), and latents xxxn1 . This quadratic form enables tractable update of q

(
xxxn1 |zn1

)
in

the form of a multivariate normal distribution, and a tractable updating of posteriors over coefficients
q (βββ1) and q (βββ0).

With the introduction of the auxiliary variables the variational expectation and maximisation steps
are expressed as

Update latents (‘E-step’)

qt
(
xxxn1 |zn1

)
∝ exp

{
Eqt−1(βββ1)qt−1(λλλ1)

[〈
l (yn,xxxn1 ,ωωω
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)]}
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n
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]}
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)
∝ p
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n
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]}
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n
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]}
Update parameters (‘M-step’)

qt (βββ1) ∝ exp


N∑
n=1

Eqt(xxxn
1 ,z

n
1 )qt(ωωωn

1 |yn)
[
l(yn,xxxn1 ,βββ1,ωωω

n
1 )
]

qt (βββ0) ∝ exp


N∑
n=1

Eqt(zn1 )qt(ωωωn
0 |zn1 )

[
l(zn1 ,xxx

n
0 ,βββ0,ωωω

n
0 )
]

(14)

where we skipped the terms whose form did not change. Rzn1 ,t (xxx
n
0 ,λλλ1) reflects a contribution to

q(zn1 ) that depends on the expected log partition of the linear (Matrix Normal Gamma) likelihood
pλλλ1

(xxxn1 |xxxn0 , zn1 ). Note that the updates to each subset of posteriors (latents or parameters) have an
analytic form due to the conditional conjugacy of the model. Importantly, both priors and posterior
of the auxiliary variables are Pólya-Gamma distributed (Polson et al., 2013).
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Finally, in the above update equations, we have replaced instances of the multinomial distribution
p
(
z|xxx,βββ

)
with its augmented form p

(
ω|z
)
el(z,xxx,ωωω,βββ) where the function l (·) is quadratic with

respect to the coefficients βββ and the input variables xxx, leading to tractable update equations.

B VARIATIONAL BAYESIAN MULTINOMIAL LOGISTIC REGRESSION

In this section, we focus on a single multinomial logistic regression model (not in the context of the
CMN), but the ensuing variational update scheme derived in Appendix B.4 is applied in practice to
both the gating network’s parameters βββ0 as well as those of the final output likelihood for the class
label βββ1.

B.1 STICK-BREAKING REPARAMETERIZATION OF A MULTINOMIAL DISTRIBUTION

Multinomial logistic regression considers the probability that an outcome variable y belongs to one
of K mutually-exclusive classes or categories. The probability of y belonging to the kth class is
given by the categorical likelihood:

p(y = k|xxx,βββ) = pk (15)

The problem of multinomial logistic regression is to identify or estimate the values of regression
coefficients βββ that explain the relationship between some dataset of given continuous input re-
gressors XXX = (xxx1,xxx2, . . . ,xxxN ) and corresponding categorical labels Y = (y1, y2, . . . , yN ), yn ∈
1, 2, . . . ,K.

We can use a stick-breaking construction to parameterize the likelihood over y using a set of K − 1
stick-breaking coefficients: πππ = (π1, . . . , πK−1). Each coefficient is parameterized with an input
regressor xxx, and a corresponding set of regression weights βββj . Stick-breaking coefficient πj is then
given by a sigmoid transform of the product of the regression weights and the input regressors:

πj = σ
(
βββj [xxx; 1]

)
,

where σ
(
βββj [xxx; 1]

)
=

1

1 + exp
{
−βββj [xxx; 1]

} ,
and βββj [xxx; 1] =

d∑
i=1

wj,ixi + aj .

(16)

The outcome likelihood is then obtained via stick breaking transform1 as follows

pk = πK

K−1∏
j=1

(1− πj) = σ
(
βββK [xxx; 1]

)K−1∏
j=1

(
1− σ

(
βββj [xxx; 1]

))
=

K−1∏
j=1

exp
{
βββj [xxx; 1]

}
1 + exp

{
βββj [xxx; 1]

} (17)

where πK = 1, and βββK = 0⃗.

Finally, we can express the likelihood in the form of a Categorical distribution as

Cat (y;xxx,βββ) =
K−1∏
k=1

(
exp

{
βββk [xxx; 1]

})δk,y

(
1 + exp

{
βββk [xxx; 1]

})Nk,y
. (18)

where Nk,y = 1 for k ≤ y, and Nk,y = 0 otherwise (or Nk,y = 1 −
∑k−1
j=1 δj,y), and δk,y = 1 for

k = y and is zero otherwise.

1This blog post has helpful discussion on the stick-breaking form of the multinomial logistic likelihood and
provides more intuition behind its functional form.
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B.2 PÓLYA-GAMMA AUGMENTATION

The Pólya-Gamma augmentation scheme (Polson et al., 2013; Linderman et al., 2015; Durante &
Rigon, 2019) is defined as

(
eψ
)a(

1 + eψ
)b = 2−beκψ

∫ ∞

0

e−ωψ
2/2p(ω) dω (19)

where κ = a − b/2 and p
(
ω|b, 0

)
is the density of the Pólya-Gamma distribution PG(b, 0) which

does not depend on ψ. The useful properties of the Pólya-Gamma are the exponential tilting property
expressed as

PG(ω; b, ψ) =
e−ωψ

2/2PG(ω; b, 0)

E
[
e−ωψ2/2

] (20)

the expected value of ω, and e−ωψ
2/2 given as

E [ω] =

∫ ∞

o

ωPG(ω; b, ψ) dω =
b

2ψ
tanh

(
ψ

2

)
,

E
[
e−ωψ

2/2
]
= cosh−b

(
ψ

2

) (21)

and the Kulback-Leibler divergence between q (ω) = PG(ω; b, ψ) and p (ω) = PG(ω; b, 0) ob-
tained as

DKL

[
q (ω) ||p (ω)

]
= −E [ω]

ψ2

2
+ b ln cosh

(
ψ

2

)
= −bψ

4
tanh

(
ψ

2

)
+ b ln cosh

(
ψ

2

)
. (22)

We can express the likelihood function in Equation (18) using the augmentation as

p(y,ωωω|ψψψ) = p
(
y|ψψψ
)
p
(
ωωω|y,ψψψ

)
=

K−1∏
k=1

2−bk,yeκk,yψk−ωkψ
2
k/2PG(ωk; bk,y, 0)

p
(
y|ψψψ
)
=

K−1∏
k=1

2−bk,yeκk,yψk

∫ ∞

0

e−ωkψ
2
k/2PG(ωk; bk,y, 0) dωk

p
(
ωωω|y,ψψψ

)
=

K−1∏
k=1

PG
(
ωk; bk,y, ψk

)
(23)

where bk,y ≡ Nk,y , κk,y = δk,y − Nk,y/2, and ψk = βkβkβk [xxx; 1]. Given a prior distribution p (ψψψ) =
p (βββ) p (xxx), we can write the joint p (y,ωωω,ψψψ) as

p (y,ωωω,ψψψ) = p
(
ωωω|y
)
p (ψψψ) el(y,ψψψ,ωωω) ,

l (y,ψψψ,ωωω) =

K−1∑
k=1

lk (y, ψk, ωk) ,

lk (y, ψk, ωk) = κy,kψk − by,k ln 2− ωkψ
2
k/2 .

(24)

B.3 EVIDENCE LOWER-BOUND

Given a set of observations DDD =
(
y1, . . . , yN

)
the augmented joint distribution can be expressed as

p (DDD,ΩΩΩ,XXX,βββ) = p (βββ)

N∏
n=1

p (xxxn) p
(
ωωωn|yn

)
el(y

n,ψψψn,ωωωn)
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We can express the evidence lower-bound (ELBO) as

L(q) = Eq(ΩΩΩ)q(XXX)q(βββ)

− ln q (βββ) +

N∑
n=1

ln
p (yn,ψψψn,ωωωn)

q (ωωωn) q (xxxn)


= Eq(ΩΩΩ)q(XXX)q(βββ)

ln p (βββ)
q (βββ)

+

N∑
n=1

l (yn,ψψψn,ωωωn) + ln
p
(
ωωωn|yn

)
q (ωωωn)

+ ln
p (xxxn)

q (xxxn)


≥ ln p (DDD)

(25)

where we use the following forms for the approximate posterior

q
(
ΩΩΩ|Y

)
=

N∏
n=1

q
(
ωωωn|yn

)
=

N∏
n=1

K−1∏
k=1

PG
(
bk,yn , ξk,n

)
,

q (XXX) =

N∏
n=1

q (xxxn) =

N∏
n=1

N (xxxn;µµµn,ΣΣΣn) ,

q (βββ) =

K−1∏
k=1

N (βββk;µµµk,ΣΣΣk) .

(26)

B.4 COORDINATE ASCENT VARIATIONAL INFERENCE

The mean-field assumption in Equation (26) allows the implementation of a simple CAVI algorithm
(Wainwright et al., 2008; Beal, 2003; Hoffman et al., 2013; Blei et al., 2017) which sequentially max-
imizes the evidence lower bound in Equation (25) with respect to each factor in q

(
ΩΩΩ|Y

)
q (XXX) q (βββ),

via the following updates:

Update to latents (‘E-step’)

q(t,l) (xxxn) ∝ p (xxxn) exp
{
Eq(t−1)(βββ)q(t,l−1)(ωωωn)

[
l (yn,ψψψn,ωωωn)

]}
q(t,l)

(
ωnk |yn

)
∝ p

(
ωnk |yn

)
exp

{
Eq(t−1)(βββ)q(t,l)(xxxn)

[
lk (y

n, ψnk , ω
n
k )
]}

∀n ∈ {1, . . . , N} , and for q(t,0)
(
ωωωn|yn

)
= q(t−1,L)

(
ωωωn|yn

)
Update to parameters (‘M-step’)

q(t) (βββk) ∝ exp


N∑
n=1

Eq(t)(xxxn)q(t)(ωωωn|yn)
[
l (yn,ψψψn,ωωωn)

]

(27)

at each iteration t, and multiple local iteration l during the variational expectation step—until the
convergence of the ELBO.

Specifically, the update equations for the parameters of the latents (the ‘E-step’) are:

q(t,l) (xxxn) ∝ N
(
xxxn; 0,−2λλλ2,0

)
exp


K∑
k=1

κk,ynTr
(
µµµ
(t−1)
k [xxxn; 1]

T
)
− ⟨ωk⟩

2
Tr
(
MMM

(t−1)
k [xxxn; 1] [xxxn; 1]

T
)

λλλ
(n,t,l)
1 =

K−1∑
k=1

{
κk,yn

[
µµµ
(t−1)
k

]
1:D

− ⟨ωnk ⟩t,l−1

[
MMM

(t−1)
k

]
D+1,1:D

}

λλλ
(n,t,l)
2 = λλλ2,0 −

1

2

K−1∑
k=1

⟨ωnk ⟩t,l−1 [MMMk]1:D,1:D

MMM
(t−1)
k = ΣΣΣ

(t−1)
k +µµµ

(t−1)
k

[
µµµ
(t−1)
k

]T
(28)
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and

q(t,l)
(
ωnk |yn

)
∝ e−ω

n
k ⟨ψ2

k⟩/2PG
(
ωnk ; bk,yn , 0

)
ξnk =

√
Eq(t−1)(βββ)q(t,l)(xxxn)

[
ψ2
k

]
ξnk =

√
Tr
(
MMM

(t−1)
k M̂MM

(n,t,l)
)

where M̂MM
(n,t,l)

=

 MMM (n,t,l) µµµ(n,t,l)[
µµµ(n,t,l)

]T
1

 , andMMM (n,t,l) = ΣΣΣ(n,t,l) +µµµ(n,t,l)
[
µµµ(n,t,l)

]T
.

(29)

Similarly, for the parameter updates (‘M-step’) we get

q(t) (βββk) ∝ N
(
βββk; 0,−2λλλ′2,0

)
exp


N∑
n=1

κk,ynTr
(
µ̂µµ(n,t)βββTk

)
− ⟨ωk⟩nt

2
Tr
(
M̂MM

(t)

i βββkβββ
T
k

)
λλλ
(t)
k,1 =

∑
i

κk,ynµ̂µµ
(n,t)

λλλ
(t)
k,2 = λλλ′2,0 −

1

4

N∑
n=1

bk,yn

ξ
(n,t)
k

tanh

(
ξ
(n,t)
k

2

)
M̂MM

(n,t)

(30)

where µ̂µµ(n,t) =
[
µµµ(n,t); 1

]
.

C HYPERPARAMETERS

C.1 COMMON HYPERPARAMETERS

For the Bayesian methods (CAVI, NUTS, and BBVI), we used the same form for the CMN priors
(see Equation (3) for their parameterization) and fixed the prior parameters to the following values,
used for all datasets: v0 = 10, a0 = 2, b0 = 1, σ0, σ1 = 5. For all datasets, we fixed the dimension
of the continuous latent xxx1 to be h = L − 1, where L is the number of classes. For the Pinwheels
dataset (see Appendix D.1 below), we set the number of linear experts (and hence the dimension of
the discrete latent zzz1) at K = 10, while for all other datasets we used K = 20.

C.2 MAXIMUM LIKELIHOOD ESTIMATION

For gradient-based optimization of the loss function (the negative log likelihood), we used the Ad-
aBelief optimizer with parameters set to its default values as introduced in Zhuang et al. (2020)
(α = 1e − 3, β1 = 0.9, β2 = 0.999), and ran the optimization for 20, 000 steps. This implements
deterministic gradient descent, not stochastic gradient descent, because we fit the model in ‘full-
batch’ mode, i.e., without splitting the data into mini-batches and updating model parameters using
noisy gradient estimates.

C.3 NO U-TURN SAMPLER

Markov Chain Monte Carlo converges in distribution to samples from a target distribution, so for this
method we obtain samples from a joint distribution p(AAA1:K ,ΣΣΣ

−1
1:K ,βββ0,βββ1|Y,XXX0) that approximate

the true posterior. We used 800 warm-up steps, 16 independent chains, and 64 samples for each
chain.

C.4 BLACK BOX VARIATIONAL INFERENCE

While BBVI does not require conjugate relationships in the generative model, we use the same CMN
model and variational distributions as we use for CAVI-CMN, in order to ensure fair comparison.
For stochastic optimization, we used the AdaBelief optimizer with learning rateα = 5e−3 β1 = 0.9,
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β2 = 0.999, used 8 samples to estimate the ELBO gradient (the num particles argument of the
Trace ELBO() class), and ran the optimizer for 20, 000 steps).

D DATASET DESCRIPTIONS

We fit all inference methods using different training set sizes, where each next training set was twice
as large as the previous. For each training size, we used the same test-set to evaluate performance.
The test set was ensured to have the same relative class frequencies as in the training set(s). For each
inference method and examples set size, we fit using the same batch of training data, but with 16
randomly-initialized models (different initial posterior samples or parameters).

D.1 PINWHEELS DATASET

The pinwheels dataset is a synthetic dataset designed to test a model’s ability to handle nonlinear
decision boundaries and data with non-Gaussian densities (Johnson et al., 2016). The structure of
the pinwheels dataset is determined by 4 parameters: the number of clusters or distinct spirals; the
angular deviation, which defines how far the spiralling clusters deviate from the origin; the tangential
deviation, which defines the noise variance of 2-D points within each cluster; and the angular rate,
which determines the curvature of each spiral. For evaluating the four methods (CAVI-CMN, MLE,
BBVI, and NUTS) on the synthetic pinwheels dataset, we generated a dataset with 5 clusters, with an
angular deviation of 0.7, tangential deviation of 0.3 and angular rate of 0.2. We selected these values
by looking at the maximum achieved test accuracy across all the methods for different parameter
combinations and tried to upper-bound it 80%, which provides a low enough signal-to-noise ratio
to be able to meaningfully show differences in probabilistic metrics like calibration and WAIC. For
pinwheels, we trained using train sizes 50 to 1600, doubling the number of training examples at each
successive training set size. We tested using 500 held-out test examples generated using the same
parameters as used for the training set(s).

D.2 WAVEFORM DOMAINS DATASET

The Waveform Domains dataset consists of synthetic data generated to classify three different wave-
form patterns, where each class is described by 21 continuous attributes (Breiman & Stone, 1988).
For waveform domains, we fit each model on train sizes ranging from 60 to 3840 examples, and
tested on a held-out size of 1160 examples. See here for more information about the dataset.

D.3 VEHICLE SILHOUETTES DATASET

This dataset involves classifying vehicle silhouettes into one of four types (bus, van, or two car mod-
els) based on features extracted from 2D images captured at various angles (Mowforth & Shepherd).
We fit each model on train sizes ranging from 20 to 650 examples, and tested on a held-out size of
205 examples. See here for more information about the dataset.

D.4 RICE DATASET

The Rice dataset contains measurements related to the classification of rice varieties, specifically
Cammeo and Osmancik (mis, 2019). We fit each model on train sizes ranging from 40 to 2560
examples, and tested on a held-out size of 1250. See here for more information about the dataset.

D.5 BREAST CANCER DATASET

The ‘Breast Cancer Diagnosis’ dataset (Wolberg et al., 1995) contains features extracted from breast
mass images, which are then used to classify tumors as malignant or benign. See here for more
information about the dataset. We fit each model on train sizes ranging from 25 to 400 examples,
and tested on a held-out size of 169.
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Figure 5: Performance and runtime results of the different models on the ‘Vehicle Silhouettes’
dataset. Descriptions of each subplot are same as in the Figure 2 legend.

D.6 SONAR (MINES VS ROCKS) DATASET

The Sonar (Mines vs Rocks) dataset consists of sonar signals bounced off metal cylinders and rocks
under various conditions. The dataset includes 111 patterns from metal cylinders (mines) and 97
patterns from rocks. Each pattern is represented by 60 continuous attributes corresponding to the
energy within specific frequency bands (Sejnowski & Gorman). The task is to classify each pattern
as either a mine (M) or a rock (R). For this dataset, we fit each model on train sizes ranging from 8
to 128 examples and tested on a held-out size of 80 examples. See here for more information about
the dataset.

D.7 BANKNOTE AUTHENTICATION DATASET

The ‘Banknote Authentication’ dataset (Lohweg, 2013) contains features extracted from images of
genuine and forged banknotes. It is primarily used for binary classification tasks to distinguish
between authentic and counterfeit banknotes. See here for more information about the dataset.

E UCI PERFORMANCE RESULTS

In Figures 5 to 9 we report the same performance and runtime metrics as in Figure 2 for 7 UCI
datasets, and find that with the exception of the Sonar dataset, CAVI performs competitively with or
better than MLE on all datasets, and always outperforms MLE in terms of LPD and ECE. Runtime
scaling is similar as reported for the Pinwheels dataset in the main text; CAVI-CMN always con-
verges in fewer steps and is faster than BBVI, and either outperforms or is competitive with MLE in
terms of runtime.

F MODEL CONVERGENCE DETERMINATION

For each inference algorithm, the number of iterations taken to converge was determined by running
each algorithm for a sufficiently high number of gradient (respectively, CAVI update) steps such
that the ELBO (or log likelihood - LL - for MLE) stopped significantly changing. This was deter-
mined (through anecdotal inspection over many different initializations and runs across the different
UCI datasets) to be 20,000 gradient steps for BBVI, 20,000 gradient steps for MLE, and 500 com-
bined CAVI update steps for CAVI-CMN. To determine the time taken to sufficiently converge, we
recorded the value of the ELBO or LL at each iteration, and fit an exponential decay function to
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Figure 6: Performance and runtime results of the different models on the ‘Rice’ dataset. Descriptions
of each subplot are same as in the Figure 2 legend.

Figure 7: Performance and runtime results of the different models on the ‘Breast Cancer’ dataset.
Descriptions of each subplot are same as in the Figure 2 legend.
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Figure 8: Performance and runtime results of the different models on the ‘Connectionist Bench
(Sonar, Mines vs. Rocks)’ dataset. Descriptions of each subplot are same as in the Figure 2 legend..

Figure 9: Performance and runtime results of the different models on the ‘Banknote Authentication’
dataset. Descriptions of each subplot are same as in the Figure 2 legend.
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the negative of each curve. The parameters of the estimated exponential decay were then used to
determine the time at which the curve decayed to 95% decay of its value. This time was reported as
the number of steps taken to converge.
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