
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRAIN FOR THE WORST, PLAN FOR THE BEST:
UNDERSTANDING TOKEN ORDERING IN MASKED DIF-
FUSIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, masked diffusion models (MDMs) have emerged as a promising
alternative approach for generative modeling over discrete domains. Compared
to autoregressive models (ARMs), MDMs trade off complexity at training time
with flexibility at inference time. At training time, they must learn to solve an
exponentially large number of infilling problems, but at inference time, they can
decode tokens in essentially arbitrary order. In this work, we closely examine these
two competing effects. On the training front, we theoretically and empirically
demonstrate that MDMs indeed train on computationally intractable subproblems
compared to their autoregressive counterparts. On the inference front, we show that
a suitable strategy for adaptively choosing the token decoding order significantly
enhances the capabilities of MDMs, allowing them to sidestep hard subproblems.
On logic puzzles like Sudoku, we show that adaptive inference can boost solving
accuracy in pretrained MDMs from < 7% to ≈ 90%, even outperforming ARMs
with 7× as many parameters and that were explicitly trained via teacher forcing to
learn the right order of decoding.

1 INTRODUCTION

While diffusion models (Ho et al., 2020; Song et al., 2021) are now the dominant approach for
generative modeling in continuous domains like image, video, and audio, efforts to extend this
methodology to discrete domains like text and proteins (Austin et al., 2021; Lou et al., 2024;
Hoogeboom et al., 2021) remain nascent. Among numerous proposals, masked diffusion models
(MDMs) (Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024) have emerged as a leading variant,
distinguished by a simple and principled objective: to generate samples, learn to reverse a noise
process which independently and randomly masks tokens.

In many applications, such as language modeling, masked diffusion models (MDMs) still under-
perform compared to autoregressive models (ARMs) (Nie et al., 2024; Zheng et al., 2024a), which
instead learn to reverse a noise process that unmasks tokens sequentially from left to right. However,
recent studies suggest that MDMs may offer advantages in areas where ARMs fall short, including
reasoning (Nie et al., 2024; Kitouni et al., 2024), planning (Ye et al., 2024), and infilling (Gong
et al., 2024). This raises a key question: what are the strengths and limitations of MDMs compared
to ARMs, and under what conditions can MDMs be scaled to challenge the dominance of ARMs
in discrete generative modeling? To understand these questions, we turn a microscope to two key
competing factors when weighing the merits of MDMs over ARMs:

• Complexity at training time: By design, the prediction task that MDMs are trained on is more
challenging. Whereas ARMs seek to predict the next token given an unmasked prefix, MDMs seek
to predict a token conditioned on a set of unmasked tokens in arbitrary positions.

• Flexibility at inference time: On the other hand, the sampling paths taken by an MDM are
less rigid. The order in which tokens are decoded at inference time is random instead of fixed
to left-to-right. In fact, even more is possible: MDMs can actually be used to decode in any
order (Zheng et al., 2024a).

Therefore, we ask: Are the benefits of inference flexibility for MDMs enough to outweigh the
drawbacks of training complexity? In this work, we provide dual perspectives on this question.
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Figure 1: Left: MDM training involves learning multiple masked prediction problems, some of which
are harder to learn, leading to performance imbalance (Section 3). Right: During inference, adaptive
MDM avoids difficult problem instances, improving performance (Section 4.2).

(1) Training for the worst. First, we provide theoretical and empirical evidence that the overhead
imposed by training complexity quantifiably impacts MDMs’ performance. We prove that even for
simple, benign models of data, there are noise levels at which a large fraction, but not all, of the
corresponding subproblems solved by MDMs are computationally intractable. We then show this
imbalance in computational complexity across subproblems persists even in real-world text data
(Fig. 2, left).

(2) Planning for the best. While the above might appear to be bad news for MDMs, in the
second part of this paper we answer our guiding question in the affirmative by building upon the
observation (Zheng et al., 2024a) that MDMs which can perfectly solve all masking subproblems can
be used to decode in any order. In place of vanilla MDM inference whereby tokens are unmasked in
random order, we consider adaptive strategies that carefully select which token to unmask next. Our
key insight is that this adaptivity makes it possible to sidestep the hard subproblems from training
(Fig. 1). In fact, we find that even without modifying how MDMs are trained, the resulting
models’ logits contain enough information to determine the right order in which to unmask.

Our main empirical result is to show that for these adaptive strategies dramatically improves pretrained
MDM’s performance. For example, on Sudoku puzzle, the performance has been improved from
under 7% to nearly 90%. Remarkably, this not only outperforms vanilla ARMs, but even bespoke
ARMs trained to learn the right decoding order via supervised teacher forcing (Shah et al., 2024;
Lehnert et al., 2024) (Table 1).

2 MASKED DIFFUSION MODELS (MDM)

In this section, we explain the framework of Masked Diffusion Models (Shi et al., 2024; Sahoo
et al., 2024) and its interpretation as an order-agnostic learner. Below, we formulate the forward
and reverse processes for MDMs. Let the distribution pdata on {1, . . . ,m}L. We use 0 to denote the
“mask” token.

Forward process. For a given x0 ∼ pdata and a noise level t ∈ [0, 1], the forward process
xt ∼ qt|0(· |x0) is a coordinate-independent masking process via qt|0(xt|x0) =

∏L−1
i=0 qt|0(x

i
t|xi

0),
with qt|0(x

i
t | xi

0) = Cat
(
αtexi

0
+ (1− αt)e0

)
, where αt is the predefined noise schedule satisfying

α0 ≈ 1, α1 ≈ 0 and exi
0
∈ Rm+1 denotes a one-hot vector corresponding to the value of token

xi
0. Cat(π) denotes the categorical distribution given by π ∈ ∆m. In other words, for each i-th

coordinate, xi
t is masked to the mask token 0 with probability 1− αt and unchanged otherwise.

Reverse process. The reverse process of the above forward process is denoted using qs|t(xs|xt, x0)

and is given by qs|t(xs|xt, x0) =
∏L−1

i=0 qs|t(x
i
s|xt, x0) for any s < t, where

qs|t(x
i
s |xt, x0) =

{
Cat(exi

t
) xi

t ̸= m

Cat
(

1−αs
1−αt

em + αs−αt
1−αt

ex0

)
xi
t = m.

The reverse transition probability qs|t(x
i
s|xt, x0) is approximated using gθ(x

i
s|xt) ≜

qs|t(x
i
s |xt, x0 ← pθ(xt, t)) where pθ(xt, t) is a denoising network trained to predict the marginal
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on x0 via an ELBO-based loss:

Lθ =

∫ 1

0

α′
t

1− αt
E

x0∼pdata,xt∼qt|0(·|x0)

[
δxt,0e

⊺
x0

log pθ(xt, t)
]
dt.

Here, α′
t = dαt

dt and δxt,0 is the indicator function; the summation is computed over coordinates
i s.t. xi

t = 0. In practice, a time-embedding-free architecture for the denoising network, i.e.,
pθ(xt, t) = pθ(xt), is usually employed as xt implicitly contains information about t via the
number of masked tokens. The reverse sampling process starts from the fully masked sentence
x1 = (0, . . . , 0). At a given noise level t ∈ (0, 1], suppose we have a partially masked sequence xt.
For predetermined noise level s < t, we sample xs ∼ gθ(·|xt). This process is repeated recursively
from t = 1 to t = 0.

2.1 REFORMULATING THE TRAINING AND INFERENCE OF MDMS

In this section, we first discuss vanilla order-agnostic training of MDMs and compare it with “left-to-
right” order training of autoregressive models. Then, we reformulate vanilla MDM inference to set
the stage for the upcoming discussion.

Order-agnostic training of MDMs. Recent works (Zheng et al., 2024a; Ou et al., 2024) have
observed that the learning problem of MDM is equivalent to a masked language model. Building
upon their analysis, we reformulate the loss Lθ to show that Lθ is a linear combination of the loss
for all possible infilling masks. We first define x0[M ] as a masked sequence, obtained from original
sequence x0 where indices in the mask set M (regarded as a subset of [L] ≜ {1, 2, . . . , L}) are
replaced with mask token 0.

Proposition 2.1. Assume α0 = 1, α1 = 0 and denoising network pθ is time-embedding free. Then

Lθ = − 1

L

∑
M⊆[L],i∈M

1(
L−1

|M |−1

) E
x0∼pdata

[log pθ(x
i
0|x0[M ])] ≤ − E

x0∼pdata

[log pθ(x0)], (1)

where pθ(xi | x0[M ]) indicates the conditional probability of the i-th coordinate from pθ(xt).

The proof of the above proposition is given in Appendix E. As the MDM loss is a linear combination
of the loss for all possible infilling mask M , the minimizer of Lθ learns to solve every masking
problem. More formally, for all subsets M ⊆ {1, 2, . . . , L}, we have argminθ log pθ(x

i
0|x0[M ]) =

pdata(x
i
0|x0[M ]). In other words, the optimal predictor pθ is the posterior marginal of the i-th token,

conditioned on x0[M ] for all masks M . The training objective of MDM aims to predict x0 from
x0[M ] across all possible masks. Hence, we will refer to the MDM training as order-agnostic
training. On the other hand, Autoregressive Models (ARMs) learn the true likelihood with following
factorization.

log pθ(x0) =

L−1∑
i=0

log pθ(x
i
0|x0[{i, . . . , L− 1}]). (2)

ARMs are trained to predict tokens sequentially from left to right in all sequences, by predicting ith

token xi given all previous tokens x0, . . . , xi−1. This prediction problem is equivalent to predicting
xi by masking at positions {i, . . . , L − 1}. We refer to this as left-to-right training. In general,
one can also consider predicting tokens sequentially under some fixed, known permutation of the
sequence; we refer to this as order-aware training.

Vanilla MDM inference

(a) Sample S ⊆ {i | xi
t = 0} with P(i ∈ S) = αs−αt

1−αt
, (b) For each i ∈ S, sample xi

s ∼ pθ(x
i|xt).

Order-agnostic inference of MDMs. The MDM inference can be decomposed into two steps: (a)
randomly selecting a set of positions to unmask and (b) assigning token values to each position via
the denoising network pθ. Therefore, the inference in MDM is implemented by randomly selecting S
and then filling each token value according to the posterior probability pθ(x

i
s|xt).
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3 MDMS TRAIN ON HARD PROBLEMS

In this section, we theoretically and empirically demonstrate that a large portion of masking subprob-
lems pθ(xi

0 | x0[M ]) can be difficult to learn. For intuition, consider solving a masked prediction
problem pθ(x

i | x0[M ]) on text data like masking an arbitrary sentence in the middle of a document
and predicting the correct word for a specific position in that sentence. It is reasonable that this task
should be more complex, even for humans, than left-to-right prediction, and in this section, we place
this intuition on a rigorous footing.

In Section 3.1, we provide several examples of simple, non-pathological distributions for which
many of the ones encountered during order-agnostic training are computationally intractable. In
Section 3.2, we empirically show that text data also exhibits this gap between the computational
complexity of order-aware and order-agnostic training. In Section 3.3, we reveal that this discrepancy
in computational complexity manifests empirically in performance imbalance across tasks.

3.1 BENIGN DISTRIBUTIONS WITH HARD MASKING PROBLEMS

We now describe a simple model of data under which we explore the computational complexity of
masking problems.

Definition 3.1. A latents-and-observations (L&O) distribution is a data distribution pdata over
sequence of length L with alphabet size m (precisely, pdata is over {0, . . . ,m}L) is specified by a
permutation π over indices {1, 2, . . . , L}, number of latent tokens N , number of observation tokens
P such that N + P = L, prior distribution pprior of latent variables over {1, . . . ,m} and efficiently
learnable observation functions O1, . . . ,OP : {1, . . . ,m}N → ∆({0, . . . ,m}),1

• (Latent tokens) For i ∈ [N ], sample xπ(i) independently from the prior pprior of the latents.

• (Observation tokens) For j ∈ [P ], sample xπ(N+j) independently from Oj(x
π(1), . . . , xπ(N)).

L&O distributions contain two types of tokens: (1) latent tokens and (2) bservation tokens. Intuitively,
latent tokens are tokens in the sequence, indexed by π(1), π(2), . . . , π(N) that serve as “seeds” that
provide randomness in the sequence; the remaining tokens, called observation tokens (indexed by
π(N + 1), π(N + 2), . . . , π(N + P )), are determined as (possibly randomized) functions of the
latent tokens via O1, . . . ,OP .

Note that by design, order-aware training, e.g. by permuting the sequence so that π becomes
the identity permutation and then performing autoregressive training, is computationally tractable:
predicting xπ(i) given xπ(1), . . . , xπ(i−1) is trivial when i ≤ N as the tokens are independent, and
computationally tractable when i > N because xπ(i) only depends on xπ(1), . . . , xπ(N) and is
efficiently learnable by assumption. In contrast, below we will show examples where if one performs
order-agnostic training à la MDMs, one will run into hard masking problems with high probability.
Due to space constraints, here we focus on the following example, deferring two others to Apps. B.1
and B.2.

Example 3.2 (Sparse predicate observations). Consider the following class of L&O distributions.
Given arity k ≥ 2, fix a predicate function g : {1, . . . ,m}k → {0, 1}. Consider the set of all ordered
subsets of {1, 2, . . . , N} of size k and set the total number of observation latents P equal to the size
of this set (hence P = N !/(N − k)! = N(N − 1) · · · (N − k + 1)). To sample a new sequence, we
first sample latent tokens xπ(1), . . . , xπ(N) from the prior distribution pprior and an observation latent
corresponding to a k-sized subset S is given by g({xπ(i)}i∈S). In other words, each observation
latent corresponds to a k-sized subset S of {1, 2, . . . , N} and the corresponding observation function
OS(x

π(1), . . . , xπ(N)) is given by g({xπ(i)}i∈S).

The complete proof of the following proposition is given in Appendix B.3.

Proposition 3.3. Let x be a sample from an L&O distribution pdata with sparse predicate observations
as defined in Example 3.2, with arity k and predicate g satisfying Assumption B.11, and let γ be the

1Here efficiently learnable is in the standard PAC sense: given polynomially many examples of the form
(z, y) where z ∼ πn and y ∼ Oj(z), there is an efficient algorithm that can w.h.p. learn to approximate Oj in
expectation over πn.
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probability that g is satisfied by a random assignment from {1, . . . ,m}k. Let DKS and Dcond be
some constants associated with the predicate function g (see Definition B.12). Suppose each token
in x is independently masked with probability α, and M is the set of indices for the masked tokens.
If 1 − γ−1DKS/kN

k−1 ≤ α ≤ 1 − γ−1Dcond/kN
k−1, then under the 1RSB cavity prediction

(see Conjecture B.13), with probability Ωk(1) over the randomness of the masking, no polynomial-
time algorithm can solve the resulting subproblem of predicting any of the masked tokens among
xπ(1), . . . , xπ(N) given x[M ].

3.2 EMPIRICAL EVIDENCE OF HARDNESS VIA LIKELIHOODS

Recent studies (Nie et al., 2024; Zheng et al., 2024a) have shown that masked diffusion models
(MDMs) underperform compared to autoregressive models (ARMs) on natural text data. In this
section, we provide evidence that this performance gap is primarily due to the order-agnostic
training of MDMs. Since natural text follows a left-to-right token order, we demonstrate that as
training deviates from this order, model performance gradually deteriorates. To understand the
importance of the order during the training, we use the following setting: Given a permutation
π of indices {0, 1, . . . , L − 1}, define a π-learner to be a likelihood model log pθ(x0) given as
log pθ(x0) =

∑L−1
i=0 log pθ

(
x
π(i)
0

∣∣∣x0[π{i, . . . , L− 1}]
)
.

Note that the MDM loss encodes a π-learner for every permutation π because the MDM loss equa-
tion 1 is equivalent to the average loss of those π-learners over π sampled from Unif(SL):
Lθ = −Eπ,x0∼pdata

[∑L−1
i=0 log pθ

(
x
π(i)
0

∣∣∣x0[π{i, . . . , L− 1}]
)]

. Here, SL denotes the set of all
permutations over {0, 1, . . . , L− 1}. The proof of the above equivalence is provided in Appendix E.
Therefore, by measuring the ‘hardness’ of each π-learner, we can probe differences in hardness
between arbitrary masking problems and left-to-right masking problems.

Experimental setup. We use the Slimpajama dataset (Soboleva et al., 2023) to evaluate the per-
formance of training in different orders. To train a π-learner, we employ a transformer with causal
attention and use permuted data π(x0) as input. By varying π while maintaining all other training
configurations (e.g., model, optimization), we can use the resulting likelihood as a metric to capture
the hardness of subproblems solved by the π-learner. We sample π ∼ Unif(SL) and examine the
scaling law of the π-learner’s likelihood. We leverage the codebase from (Nie et al., 2024), where
the baseline scaling laws of MDM and ARM were introduced. To investigate how the distance
between π and the identity permutation affects the scaling law, we sample π from other distributions
interpolating between Unif(SL) and the point mass at the identical permutation. Further experimental
details are provided in Appendix C.1.

Results. As shown in Fig. 2, the scaling law for a π-learner with uniformly random π is worse
than that of an ARM. This elucidates the inherent hardness of masking problems pθ(xi | x0[M ])
beyond left-to-right prediction and also explains why MDM, which is trained simultaneously on all
π ∈ SL, is worse than ARM in likelihood modeling. Additionally, as π gets closer to the identity
permutation, the scaling laws also get closer to ARM (π-learner-closer and π-learner-much-closer in
Fig. 2). This also supports the common belief that ARM is a good fit for text data as it inherently
follows a left-to-right ordering.

That said, it should also be noted that even though MDMs are trained on exponentially more masking
problems than ARM (Θ(L2L) versus L), its performance is not significantly worse than π-learners.
We attribute this to the blessing of task diversity; multi-task training can benefit both the optimization
dynamics (Kim et al., 2024) and validation performance (Tripuraneni et al., 2021; Maurer et al., 2016;
Ruder, 2017) due to positive transfers across tasks.

3.3 ERROR IS IMBALANCED ACROSS MASKING PROBLEMS

In this section, we provide empirical evidence that the MDM’s final performance exhibits a similar
imbalance across subproblems. Details are provided in Appendix C.2.

L&O-NAE-SAT. Consider an L&O distribution with π given by the identity permutation and
where each observation Oj is deterministically given by NAE(xi1 , xi2 , xi3) ≜ 1 − 1[xi1 =
xi2 = xi3 ] for some randomly chosen (prefixed) triples (i1, i2, i3) ∈ [N ]. For an MDM
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Figure 2: Left: MDMs train on hard problems (Section 3.2). x-axis and y-axis correspond to
log(FLOPs) and − log pθ(x), respectively. MDM (Blue) is worse than ARM (Orange) in likelihood
modeling. Most masking problems (Other lines) that MDM is trained on are harder than those
encountered by ARM, as indicated by small log-likelihoods. Right: Task error imbalance (Sec-
tion 3.3). MDM’s performance varies across different tasks. For text data (top right), this is indicated
by validation loss. For L&O-NAE-SAT (bottom right), MDM performs well on the masking problems
for observation positions (light region) but struggles with latent positions (dark region).

trained on this distribution, we measure the error it achieves on each task log pθ(x0|x0[M ]) via
Ex0∥ log pθ(x0|x0[M ])−log pdata(x0|x0[M ])∥2, where pdata(x0|x0[M ]) denotes the Bayes-optimal
predictor. Technically, we do not have access to this, so instead we train another MDM for a much
larger number of iterations and use this as a proxy. Fig. 2 reveals that prediction tasks for latent
positions (light region) exhibit larger errors compared to those for observation positions (dark region).

Text. Here we revisit the text experiment from Section 3.2. Since we do not have access to
the Bayes-optimal predictor, we use the metric Ex0∼pdata [

∑L−1
i=0 log pθ(x

π(i)
0 |x0[π{i, . . . , L − 1}])].

This captures the accumulation of error across subproblems pθ(x
π(i)
0 |x0[π{i, . . . , L − 1}]), since

pθ(x0|x0[M ]) = pdata(x0|x0[M ]) minimizes this metric. Fig. 2 shows a clear gap between different
subproblems.

The theoretical and empirical evidence demonstrates that MDMs perform better in estimating
pθ(x0|x0[M ]) for some subproblems M than for others. We therefore want to avoid encounter-
ing hard subproblems M at inference time. In the next section, we show that while vanilla MDM
inference can run into such subproblems, simple modifications at the inference stage can effectively
circumvent these issues, resulting in dramatic, training-free performance improvements.

4 MDMS CAN PLAN AROUND HARD PROBLEMS

The vanilla MDM inference (Algorithm 1) aim to align the intermediate distributions with the forward
process, as used in continuous diffusion. However, unlike continuous diffusion, the reverse process
of MDM allows multiple valid sampling paths.

We first show that when we have an ideal MDM that perfectly solves all masking problems, i.e.,
pθ(x

i
0|x0[M ]) = pdata(x

i
0|x0[M ]), then using any sampling path (unmasking the tokens in any

order) results in the same distribution: For every step, S is a set with one index selected ag-
nostically (without following any distribution). For any clean sample x0 generated by this sam-
pler, note that pθ(x0) =

∏L−1
i=0 pθ

(
x
π(i)
0

∣∣∣x0[π{i, . . . , L− 1}]
)

by chain rule, and this is equal to∏L−1
i=0 pdata

(
x
π(i)
0

∣∣∣x0[π{i, . . . , L− 1}]
)
= pdata(x0). Therefore, other choices of S, not necessar-

ily following Algorithm 1, still capture the true likelihood.

In practice, unlike this ideal case, MDM does not perform equally well on all subproblems, as shown
in Section 3.3. Consequently, different sampling paths result in varying likelihood modeling abilities.
Motivated by this observation, we consider adaptive inference for MDMs: Instead of selecting S
randomly, adaptive MDM inference leverages an oracle F(θ, xt) to select S strategically to avoid
hard masking problems. This naturally raises the question of how to design an effective oracle F . In
the following sections, we demonstrate that careful choices ofF enhance MDM’s likelihood matching
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ability. In other words, a pretrained MDM, even if it performs poorly on certain hard subproblems,
still contains sufficient information to avoid them when paired with an effective oracle F .

Adaptive MDM inference

(a) Sample S = F (θ, xt) ⊆ {i|xi
t = 0}, (b) For each i ∈ S, sample xi

s ∼ pθ(x
i|xt).

4.1 EFFECTIVE DESIGN OF ORDERING ORACLE

We introduce two different oracles, Top-K and Top-K probability margin. Intuitively, both strategies
are based on the idea that S should be selected based on how “certain” the model is about each
position.

Figure 3: Generative Perplexity. We employ a
pretrained 170M MDM and LLaMA-7B (Touvron
et al., 2023) as inference and evaluation, respec-
tively. Adaptive MDM inference (Blue) leads to
a substantial reduction in generative perplexity,
while maintaining the entropy.

Top-K probability Zheng et al. (2024b).
Suppose we want to select |S| = K. In
the Top-K strategy, the uncertainty of a po-
sition is estimated by the maximum proba-
bility assigned to any value in the vocabu-
lary. More precisely, the certainty at posi-
tion i is maxj∈{0,...,m−1} pθ(x

i = j|xt) and
F(θ, xt) = Top K

(
max pθ(x

i|xt)
)
. Top-K

strategy, however, can often provide mislead-
ing estimates of uncertainty. Consider when an
MDM is confused between two token values. In
this case, Top-K strategy may still choose to
unmask this position, despite its uncertainty.

Top-K probability margin. To address the
aforementioned issue, we propose the follow-
ing alternative. In this strategy, the uncertainty
of a position is estimated using the difference
between the two most probable values. More
precisely, if j1 and j2 are the two most probable values in vocabulary according to pθ(x

i|xt)
in position i, the certainty in the position is given by |pθ(xi = j1|xt) − pθ(x

i = j2|xt)| and
F(θ, xt) = Top K

(
|pθ(xi = j1|xt)− pθ(x

i = j2|xt)|
)
. When multiple values have similar proba-

bilities at a position, Top-K probability margin will provide a better estimate of the uncertainty of a
position.

4.2 ADAPTIVE MDM INFERENCE

In this section, we experimentally validate that adaptive MDM inference helps MDMs avoid hard
subproblems, leading to better likelihood matching.

L&O-NAE-SAT and text data. For the L&O-NAE-SAT distribution defined in Section 3.3, we
evaluate the effectiveness of adaptive inference by measuring the accuracy in predicting the obser-
vation tokens. The result is deferred to appendix at Table 3. For the text dataset, we evaluate using
the standard metric of generative perplexity, by which likelihood is measured by a large language
model. As shown in Fig. 3, we observe a substantial decrease in generative perplexity using adaptive
inference. We defer further experimental details to Appendix D.1.

Logic puzzles. We consider two different types of logic puzzles: Sudoku and Zebra (Einstein)
puzzles. To measure the performance of inference methods, we use the percentage of correctly solved
puzzles. For both puzzles, we use train and test datasets from (Shah et al., 2024). For the Sudoku
puzzle (Table 1) we observe that adaptive MDM inference, in particular Top-K probability margin,
obtains substantially higher accuracy (89.49%) compared to vanilla MDM inference (6.88%) and
Top-K (18.51%). This is because Top-K probability margin more reliably estimates uncertainty
when multiple competing values are close in probability at a given position, as is often the case in
Sudoku. For the Zebra puzzle, as shown in Table 1, we observe a consistent result: Top-K (98.5%)
and Top-K probability margin (98.3%) outperform vanilla MDM inference (76.9%).
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4.3 ELICITING SEQUENCE-DEPENDENT REASONING USING ADAPTIVE MDM INFERENCE

Sudoku Puzzle Params Accuracy

ARM (w/o ordering) 42M 9.73%
ARM (with ordering) 87.18%

MDM (vanilla)
6M

6.88%
MDM (Top-K prob.) 18.51%
MDM (Top-K margin) 89.49%

Zebra Puzzle Params Accuracy

ARM (w/o ordering) 42M 80.31%
ARM (with ordering) 91.17%

MDM (vanilla)
19M

76.9%
MDM (Top-K prob.) 98.5%
MDM (Top-K margin) 98.3%

Table 1: Accuracy for solving puzzles.

In this section, we study the effectiveness of adap-
tive MDM inference in finding the right reason-
ing/generation order for tasks where every sequence
has a different “natural” order. To do so, we will com-
pare the performance of adaptive MDM inference to
that of ARM on Sudoku and Zebra puzzles. For these
puzzles, the natural order of generation is not only
different from left-to-right, but it is also sequence-
dependent. For such tasks, prior works have shown
that ARMs struggle if the information about the order
is not provided during the training (Shah et al., 2024;
Lehnert et al., 2024).

Therefore, to obtain a strong baseline, we not only
consider an ARM trained without the order informa-
tion but also consider an ARM trained with the order
information for each sequence in the training data.
Note that the latter is a much stronger baseline than
the former as one can hope to teach the model to figure out the correct order by some form of
supervised teacher forcing (as performed in Shah et al. (2024); Lehnert et al. (2024)), eliminating the
issue of finding the right order in an unsupervised manner.

Method Params Accuracy

ARM (with ordering) 42M 32.57%

MDM (vanilla)
6M

3.62%
MDM (Top-K prob.) 9.44%
MDM (Top-K margin) 49.88%

Table 2: Accuracy for solving the hard Su-
dokus.

We compare ARMs and MDMs for Sudoku in Ta-
ble 1.2 We observe that for both, Top-K probability
margin-based adaptive MDM inference not only out-
performs the ARM trained without ordering informa-
tion, but it even outperforms the ARM trained with
ordering information! This shows that the unsuper-
vised way of finding the correct order and solving
such logic puzzles using adaptive MDM inference
outperforms the supervised way of finding the correct
order and solving such puzzles using an ARM, and
is significantly less computationally intensive.

4.4 EASY TO HARD GENERALIZATION

To evaluate whether the model has learned the correct way of solving the puzzles and to test the
robustness of adaptive inference, we also test the MDMs on harder puzzles than the ones from
training. We see that MDMs with adaptive inference appear to be more robust to this distribution shift
than ARMs. We believe this is due to the fact that MDMs try to solve a significantly higher number
of infilling problems than ARMs and therefore are able to extract knowledge about the problem more
efficiently than ARMs.

5 CONCLUSION

In this work, we examined the impact of token ordering on training and inference in MDMs. We
provided theoretical and experimental evidence that MDMs train on hard masking problems. We also
demonstrated that adaptive inference strategies can be used to sidestep these hard problems. For logic
puzzles, we find that this leads to dramatic improvements in performance not just over vanilla MDMs,
but even over ARMs trained with teacher forcing to learn the right order of decoding.

An important direction for future work is to explore settings beyond logic puzzles where adaptive
inference can help MDMs match or surpass ARMs. For these, it may be crucial to go beyond the
relatively simple adaptive strategies like Top-K and Top-K probability margin considered here.

2A prior work (Ye et al., 2024) reported that a 6M MDM with Top-K inference achieves 100% accuracy on
Sudoku. Given that a 6M MDM with Top-K only achieves 18.51% on our dataset (Table 1), this suggests that
the Sudoku dataset in (Ye et al., 2024) is significantly easier than ours.
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Gómez-Bombarelli. Think while you generate: Discrete diffusion with planned denoising. arXiv
preprint arXiv: 2410.06264, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ICLR, 2019.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. ICML, 2024.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask
representation learning. JMLR, 17(81):1–32, 2016.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. arXiv preprint arXiv: 2410.18514, 2024.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your absorbing discrete diffusion secretly models the conditional distributions of clean data. arXiv
preprint arXiv: 2406.03736, 2024.

Vassilis Papadopoulos, Jérémie Wenger, and Clément Hongler. Arrows of time for large language
models. ICML, 2024.

Fred Zhangzhi Peng, Zachary Bezemek, Sawan Patel, Sherwood Yao, Jarrid Rector-Brooks, Alexan-
der Tong, and Pranam Chatterjee. Path planning for masked diffusion model sampling. arXiv
preprint arXiv:2502.03540, 2025.

David G. Radcliffe. 3 million sudoku puzzles with ratings, 2020. URL https://www.kaggle.
com/dsv/1495975.

Jarrid Rector-Brooks, Mohsin Hasan, Zhangzhi Peng, Zachary Quinn, Chenghao Liu, Sarthak
Mittal, Nouha Dziri, Michael Bronstein, Yoshua Bengio, Pranam Chatterjee, Alexander Tong, and
Avishek Joey Bose. Steering masked discrete diffusion models via discrete denoising posterior
prediction. arXiv preprint arXiv: 2410.08134, 2024.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv 1706.05098,
2017.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. NeurIPS, 2024.

Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
Bernardo P. de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
guidance mechanisms for discrete diffusion models. arXiv preprint arXiv: 2412.10193, 2024.

Kulin Shah, Nishanth Dikkala, Xin Wang, and Rina Panigrahy. Causal language modeling can elicit
search and reasoning capabilities on logic puzzles. arXiv preprint arXiv:2409.10502, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
generalized masked diffusion for discrete data. NeurIPS, 2024.

10

https://www.kaggle.com/dsv/1495975
https://www.kaggle.com/dsv/1495975


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Andy Shih, Dorsa Sadigh, and Stefano Ermon. Training and inference on any-order autoregressive
models the right way. NeurIPS, 2022.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R. Steeves, Joel Hest-
ness, and Nolan Dey. Slimpajama: A 627b token cleaned and deduplicated ver-
sion of redpajama, June 2023. URL https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. ICML, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. ICLR, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv: 2307.09288, 2023.

Nilesh Tripuraneni, Chi Jin, and Michael I. Jordan. Provable meta-learning of linear representations.
ICML, 2021.

Harshit Varma, Dheeraj Nagaraj, and Karthikeyan Shanmugam. Glauber generative model: Discrete
diffusion models via binary classification. arXiv preprint arXiv: 2405.17035, 2024.

Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion
language models are versatile protein learners. ICML, 2024.

Minkai Xu, Tomas Geffner, Karsten Kreis, Weili Nie, Yilun Xu, Jure Leskovec, Stefano Ermon, and
Arash Vahdat. Energy-based diffusion language models for text generation. arxiv preprint arXiv:
2410.21357, 2024.

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Beyond autoregression: Discrete diffusion for complex reasoning and planning. arXiv preprint
arXiv: 2410.14157, 2024.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv: 2401.02385, 2024.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
sampling. arXiv prepint arXiv: 2409.02908, 2024a.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model for
text generation. COLM, 2024b.

11

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A RELATED WORKS

Discrete diffusion models. (Continuous) diffusion models were originally built on continuous-
space Markov chains with Gaussian transition kernels (Sohl-Dickstein et al., 2015; Ho et al., 2020).
This was later extended to continuous time through the theory of stochastic differential equations
(Song et al., 2021). In a similar vein, discrete diffusion models have emerged from discrete-space
Markov chains (Hoogeboom et al., 2021). Specifically, (Austin et al., 2021) introduced D3PM
with various types of transition matrices. Later, Lou et al. (2024) proposed SEDD, incorporating a
theoretically and practically robust score-entropy objective. Additionally, Varma et al. (2024); Liu
et al. (2024b) introduced novel modeling strategies that classify tokens in a noisy sequence as either
signal (coming from clean data) or noise (arising from the forward process). In particular, Liu et al.
(2024b) uses this to give a planner that adaptively determines which tokens to denoise. While this is
similar in spirit to our general discussion about devising adaptive inference strategies, we emphasize
that their approach is specific to discrete diffusions for which the forward process scrambles the token
values, rather than masking them.

Masked diffusion models. Meanwhile, the absorbing transition kernel has gained popularity as a
common choice due to its better performance than other kernels. Building on this, Sahoo et al. (2024);
Shi et al. (2024) aligned its framework with continuous diffusion, resulting in a simple and principled
training recipe, referring to it as Masked Diffusion Model. Subsequent studies have explored various
aspects of MDM. Gong et al. (2024) efficiently trained MDM via adaptation from autoregressive
models, scaling MDM up to 7B parameters. Zheng et al. (2024a) interpreted MDMs as order-agnostic
learners and proposed a first-hitting sampler based on this insight. Ye et al. (2024); Gong et al.
(2024) demonstrated that MDM outperforms autoregressive models in reasoning and planning tasks,
emphasizing its impact on downstream applications. Nie et al. (2024) examined the scaling laws
of MDM, while Xu et al. (2024); Liu et al. (2024a) identified limitations in capturing coordinate
dependencies when the number of sampling steps is small and proposed additional modeling strategies
to address this issue. Schiff et al. (2024) studied conditional generation using MDM and Rector-
Brooks et al. (2024) tackled the challenge of controlling generated data distributions through steering
methodologies. Chen & Ying (2024) provided a theoretical analysis showing that sampling error is
small given accurate score function estimation.

Any-order reasoning. Even though language tasks generally have a natural order of “left-to-
right” token generation, in many tasks like planning, reasoning, and combinatorial optimization, the
natural order of token generation can be quite different from “left-to-right”. Even though prominent
autoregressive-based language models achieve impressive performance on various tasks, many works
(Golovneva et al., 2024; Chen et al., 2024; Kitouni et al., 2024) have shown that this performance is
tied to the training order of the tasks and therefore can cause brittleness from it. For example, Chen
et al. (2024) showed that simply permuting the premise order on math tasks causes a performance
drop of 30%. The reason behind such brittleness regarding the ordering is the inherent “left-to-right”
nature of the autoregressive models. Several works (Liao et al., 2020) have tried to address this
issue in the autoregressive framework. In particular, (Papadopoulos et al., 2024) highlighted the
significance of left-to-right ordering in natural language by comparing its likelihood to that of the
reverse (right-to-left) ordering.

Recently, discrete diffusion models have emerged as a promising approach for discrete data apart
from autoregressive models. Additionally, the order-agnostic training of discrete diffusion models
opens up the multiple sampling paths during the inference but it also faces some challenges during
the training therefore, they seem a promising approach to elicit any order reasoning. Zheng et al.
(2024b) proposed different ways of implementing an adaptive inference strategy for MDM but a
concrete understanding of why such an adaptive inference strategy is needed is still lacking. In this
work, we explore various aspects of vanilla MDM training and how adaptive MDM inference can
mitigate the issues raised by vanilla MDM training and elicit any order reasoning.

We also want to mention the concurrent work by Peng et al. (2025) that proposes an alternative
adaptive inference strategy by selecting F(θ, xt) based on the BERT model or the denoiser itself. In
particular, Peng et al. (2025) uses the BERT model or the denoiser to obtain the uncertainty of a token
and then uses Top-K to decide the positions to unmask it. In contrast to their work, we disentangle
the impact of token ordering on MDM training vs. MDM inference and provide a more complete
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understanding of the motivations for and benefits of adaptive inference. Additionally, our results
indicate drawbacks to using Top-K strategy as opposed to Top-K margin in deciding which tokens
to unmask when there are multiple values with high probabilities.

Beyond autoregressive models. Efforts to learn the natural language using non-autoregressive
modeling began with BERT (Devlin et al., 2019). Non-causal approaches can take advantage of
the understanding the text data representation. (Chang et al., 2022) adopted a similar approach for
learning image representations. Building on these intuitions, (Shih et al., 2022; Hoogeboom et al.,
2022) proposed any-order modeling, which allows a model to generate in any desired order. Shih
et al. (2022) made the same observation that any-order models by default have to solve exponentially
more masking problems than autoregressive models. However, whereas our work shows that learning
in the face of this challenging task diversity can benefit the model at inference time, their work sought
to alleviate complexity at training time by reducing the number of masking problems that need to be
solved.

B TECHNICAL DETAILS FROM SECTION 3

Notations. Throughout this section, we use xi to denote the i-th coordinate of the vector x and z(j)

to denote the j-th example. The i-th coordinate of the vector z(j) is denoted by z(j)
i.

B.1 ADDITIONAL EXAMPLE: SPARSE PARITY OBSERVATIONS

Example B.1 (Noisy sparse parity observations). Let m = 2, k ∈ N, and N2 logN ≪ P ≤ N0.49k.
Fix noise rate η > 0 as well as strings z(1), . . . , z(P ) sampled independently and uniformly at
random from the set of k-sparse strings in {0, 1}N . For each j ∈ [P ], define Oj(x) to be the
distribution which places mass 1 − η on 1 (resp. 2) and mass η on 2 (resp. 1) if

∑
i x

iz(j)
i is

odd (resp. even). Note that for k = O(1), each of these observations is efficiently learnable by
brute-force.

Below we show that for a certain range of masking fractions, a constant fraction of the masking prob-
lems for the corresponding L&O distributions are computationally hard under the Sparse Learning
Parity with Noise assumption (Alekhnovich, 2003). Formally we have:
Proposition B.2. Let 0 < α < 1 be an arbitrary absolute constant, and let η = 1/poly(N) be
sufficiently large. Let x be a sample from a L&O distribution pdata with noisy parity observations
as defined in Example B.1. Suppose each token is independently masked with probability α, and M
is the set of indices for the masked tokens. If 1 − 1/N ≤ α ≤ 1 − 1/2N , then under the Sparse
Learning Parity with Noise (SLPN) assumption (see Definition B.3), with constant probability over
M , no polynomial-time algorithm can solve the resulting masking problem of predicting any of the
masked tokens among xπ(1), . . . , xπ(N) given x[M ].

We note that it is important for us to take the observations to be sparse parities and to leverage the
Sparse Learning Parity with Noise assumption. If instead we used dense parities and invoked the
standard Learning Parity with Noise (LPN) assumption, we would still get the hardness of masking
problems, but the observations themselves would be hard to learn, assuming LPN. This result is based
on the following standard hardness assumption:
Definition B.3 (Sparse Learning Parity with Noise). Given input dimension N , noise parameter
0 < η < 1/2, and sample size P , an instance of the Sparse Learning Parity with Noise (SLPN)
problem is generated as follows:

• Nature samples a random bitstring x from {0, 1}N

• We observe P examples of the form (x(i), y(i)) where x(i) is sampled independently and
uniformly at random from k-sparse bitstrings in {0, 1}N , and y is given by ϵi + ⟨x(i), x⟩
(mod 2), where ϵi is 1 with probability η and 0 otherwise.

Given the examples {(x(i), y(i))}Pi=1, the goal is to recover x.

The SLPN assumption is that for any P = N (1−ρ)k/2 for constant 0 < ρ < 1, and any sufficiently
large inverse polynomial noise rate η, no poly(N)-time algorithm can recover x with high probability.
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Proof of Proposition B.2. With probability at least 1 − (1 − 1/N)N ≥ Ω(1), all of the variable
tokens xπ(i) for i ≤ N are masked. Independently, the number of unmasked tokens among the
observation tokensOj is distributed as Bin(P, 1−α), so by a Chernoff bound, with probability at least
1− e−Ω(P/N2) = 1− 1/poly(N) we have that at least P/4N = Ω(N logN) observation tokens are
unmasked. The masking problem in this case amounts to an instance of SLPN with input dimension
N and sample size in [Ω(N logN), O(N0.49k)]. Because of the lower bound on the sample size,
prediction of xM is information-theoretically possible. Because of the upper bound on the sample
size, the SLPN assumption makes it computationally hard. As a result, estimating the posterior mean
on any entry of xM given the unmasked tokens is computationally hard as claimed.

B.2 ADDITIONAL EXAMPLE: RANDOM SLAB OBSERVATIONS

Example B.4 (Random slab observations). Let m = 2 and P = γN2 for constant γ > 0. Fix
slab width β and vectors z(1), . . . , z(P ) sampled independently from N (0, I). For each j ∈ [P ],
define the corresponding observation Oj(x) to be deterministically 1 if |⟨z(j), 2x − 1⟩| ≤ β

√
N ,

and deterministically 0 otherwise.

In (Alaoui & Gamarnik, 2024), it was shown that stable algorithms (Definition B.7), which encompass
many powerful methods for statistical inference like low-degree polynomial estimators, MCMC,
and algorithmic stochastic localization (Gamarnik, 2021), are unable to sample from the posterior
distribution over a random bitstring conditioned on it satisfying |⟨z(j), x⟩| ≤ β

√
N for any Θ(N)

number of constraints z(1), . . . , z(P ′), provided P ′ is not too large that the support of the posterior
is empty. This ensemble is the well-studied symmetric perceptron (Aubin et al., 2019). The following
is a direct reinterpretation of the result of (Alaoui & Gamarnik, 2024):

Proposition B.5. Let pdata be a L&O distribution with random slab observations as defined in
Example B.4, with parameter γ > 0 and slab width β > 0. There exists a constant cβ > 0 such
that for any absolute constant 0 < c < cβ , if 1 − cβN/2P ≤ α ≤ 1 − cN/P and γ > cβ , the
following holds. Let p′data denote the distribution given by independently masking every coordinate
in pdata with probability α. Then any (1 − Ω̃(1/

√
N))-stable algorithm, even one not based on

masked diffusion, which takes as input a sample x′ from p′data and, with probability 1− o(1) outputs
a Wasserstein-approximate3 sample from pdata conditioned on the unmasked tokens in x′, must run
in super-polynomial time.

The upshot of this is that any stable, polynomial-time masked diffusion sampler will, with non-
negligible probability, encounter a computationally hard masking problem at some point during the
reverse process.

For the proof, we first formally define the (planted) symmetric Ising perceptron model:

Definition B.6. Let α, β > 0. The planted symmetric Ising perceptron model is defined as follows:

• Nature samples σ uniformly at random from {±1}N

• For each j = 1, . . . , P = ⌊αN⌋, we sample z(j) independently fromN (0, IN ) conditioned
on satisfying |⟨z(j), σ⟩| ≤ β

√
N .

The goal is to sample from the posterior on σ conditioned on these observations {z(i)}Pi=1.

Next, we formalize the notion of stable algorithms.

Definition B.7. Given a matrix Z ∼ N (0, 1)⊗P×N , define Zt = tZ +
√
1− t2Z ′ for independent

Z ′ ∼ N (0, 1)⊗P×N . A randomized algorithm A which takes as input Z ∈ RP×N and outputs an
element of {±1}N is said to be tN -stable if limN→∞ W2(law(A(Z)), law(A(Zt))) = 0.

As discussed at depth in (Gamarnik, 2021), many algorithms like low-degree polynomial estimators
and Langevin dynamics are stable.

3Here the notion of approximation is o(1)-closeness in Wasserstein-2 distance.
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Theorem B.8 (Theorem 2.1 in (Alaoui & Gamarnik, 2024)4). For any constant β > 0, there exists
cβ > 0 such that the following holds for all constants 0 < α < cβ . For tN ≤ 1− Ω(log2(n)/n2),
any tN -stable randomized algorithm A which takes as input Z = (z(1), . . . , z(P )) and outputs an
element of {±1}N will fail to sample from the posterior on σ conditioned on Z in the symmetric
Ising perceptron model to Wasserstein error o(

√
N).

Proof of Proposition B.5. By a union bound, with probability at least 1−(1−α)N ≥ 1−cβN2/P ≥
1 − cβ/γ over a draw x′ ∼ p′data, all of the xπ(i) tokens are masked. The number of unmasked
tokens in x′ among the observations Oj is distributed as Bin(P, 1− α). By a Chernoff bound, this
is in [3cN/4, 3cβN/4] with at least constant probability. The claim then follows immediately from
Theorem B.8 above.

B.3 PROOF OF PROPOSITION 3.3: SPARSE PREDICATE OBSERVATIONS

We first provide the proof overview for comprehensive understanding.

Proof overview. To understand the proof idea, we consider the case where all the latent tokens are
masked and some of the observation tokens are unmasked. In this case, the prediction task reduces
to learning to recover the latent tokens that are consistent with the observations. Intuitively, each
observation provides some constraints and the task is to recover an assignment that satisfies the
constraints. This is reminiscent of Constraint Satisfaction Problems (CSPs). Indeed, to show the
hardness result, we use the rich theory developed for planted CSPs at the intersection of statistical
physics and average-case complexity.

In a planted CSP, there is an unknown randomly sampled vector y of length N and, one is given
randomly chosen Boolean constraints which y is promised to satisfy, and the goal is to recover y as
best as possible (see Definition B.9). Prior works have shown the hardness of efficiently learning
to solve the planted CSP problem (Krzakala & Zdeborová, 2009; Alaoui & Gamarnik, 2024). We
show the hardness of masking problems in L&O distributions based on these results. Consider the
ground truth latent tokens as the random vector y and each observation as a constraint. In this case,
the problem of learning to recover the latent tokens from the observation tokens reduces to recovery
for the planted CSP.

There are precise predictions for the values of vocabulary size m and the number of observations
for which the information-theoretically best possible overlap and the best overlap achievable by any
computationally efficient algorithm are different. We show that these predictions directly translate to
predictions about when masking problems become computationally intractable:

As a simple example, let us consider sparse predicate observations with k = 2 and g(x′, x′′) =
1[x′ ̸= x′′]. These can be formally related to the well-studied problem of planted m-coloring.
In the planted m-coloring, a random graph of average degree D is sampled consistent with an
unknown vertex coloring and the goal is to estimate the coloring as well as possible (Krzakala &
Zdeborová, 2009), as measured by the overlap of the output of the algorithm to the ground-truth
coloring (see Definition B.9). As a corollary of our main result, we show that when all the latent
tokens xπ(1), . . . , xπ(N) are masked and a few unmasked observation tokens provide the information
of the form g(xπ(i), xπ(j)) = 1[xπ(i) ̸= xπ(j)] for i, j ≤ N , then solving the masking problem can
be reduced to solving planted coloring.

For planted m-coloring, when m = 5 the thresholds in Proposition 3.3 are given by DKS/2 = 16
and Dcond/2 ≈ 13.23 (Krzakala & Zdeborová, 2009) (the factor of 2 here is simply because the
observations correspond to ordered subsets of size 2). For general predicates and arities, there is an
established recipe for numerically computing DKS and Dcond based on the behavior of the belief
propagation algorithm (see the discussion in Appendix B.3). As an example, in Fig. 4, we execute this
recipe for m = 3, k = 3, and g given by the Not-All-Equal predicate NAE(x′, x′′, x′′) = 1−1[x′ =
x′′ = x′′′] to obtain thresholds that can be plugged into Proposition 3.3.

4Note that while the theorem statement in (Alaoui & Gamarnik, 2024) refers to the non-planted version of
the symmetric binary perceptron, the first step in their proof is to argue that these two models are mutually
contiguous in the regime of interest.
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Figure 4: Overlap achieved by belief propagation initialized at ground truth versus random for planted
CSP with k = 3, m = 3, and g = NAE, for N = 10000 and varying choices of average degree
D. DKS/K can be shown analytically to be 64, consistent with the phase transition depicted. Plot
suggests Dcond/K ≈ 50. By Prop. 3.3 this implies a range of masking fractions at which Ω(1)
fraction of masking problems are computationally hard.

Here we formally define the relevant notions needed to formalize our claim about hardness in
Proposition 3.3.
Definition B.9 (Planted CSPs). Given arity k ∈ N, vocabulary/alphabet size m ∈ N, predicate
g : {1, . . . ,m}k → {0, 1}, latent dimension N , and clause density P/N , the corresponding planted
constraint satisfaction problem is defined as follows: Nature samples an unknown assignment σ
uniformly at random from {1, . . . ,m}N , and then for each ordered k-tuple S of distinct elements
from [N ], we observe the clause S independently with probability ϕ/Nk−1 if g(σ|S) = 1.

To measure the quality of an algorithm for recovering σ given the observations, define the overlap
between an estimate σ̂ and the ground truth σ by d(σ, σ̂) ≜ minπ∈SN

∑
i 1[σi = π(σ̂i)] where SN

denotes the set of all permutations of {0, 1, . . . , N − 1}. Define the average degree to be kP/N , i.e.
the expected number of variables that share at least one clause with a given variable.

We begin by defining the central algorithm driving statistical physics predictions about hardness for
random constraint satisfaction problems: belief propagation (BP).
Definition B.10 (BP update rules). Belief propagation is an algorithm that iteratively updates a set
of messages {MSi→S

c [t],MSS→i
c [t]}, where i, S range over all pairs of variable indices i ∈ [N ] and

observations S ∋ i. At time t+ 1, the messages are computed via

MSi→S
c [t+ 1] ∝

∏
T :i∈T ̸=S

MST→i
c [t] (3)

MSS→i
c [t+ 1] ∝

∑
σ∈{1,...,m}S\i

g(σ ∪i c)
∏

j:i̸=j∈S

MSj→S
σj

[t] , (4)

where σ ∪i c ∈ {1, . . . ,m}S assigns c to entry i and σ to the remaining entries.

A set of messages can be used to estimate the marginals of the posterior on σ conditioned on
the observations as follows. The marginal on the i-th variable has probability mass function over
{1, . . . ,m} proportional to {

∏
T :i∈T MST→i

c }. Given a set of marginals, a natural way to extract an
estimate for σ is to round to the color in {1, . . . ,m} at which the probability mass function is largest.

Throughout we will make the following assumption that ensures that the trivial messages MSi→S
c =

1/m and MSS→i
c = 1/m are a fixed point, sometimes called the paramagnetic fixed point, for the

iteration above:
Assumption B.11. The quantity

∑
σ∈{1,...,m}[k]\i g(σ ∪i c) is constant across all c ∈ {1, . . . ,m}

and i ∈ [k].
Definition B.12. Given k,m, g, the Kesten-Stigum threshold DKS is defined to be the largest
average degree for which BP is locally stable around the paramagnetic fixed point, that is, starting
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from a small perturbation of the paramagnetic fixed point, it converges to the paramagnetic fixed
point. More formally, DKS is the largest average degree at which the Jacobian of the BP operator
{MSi→S [t]} 7→ {MSi→S [t+ 1]} has spectral radius less than 1.

The condensation threshold Dcond is defined to be the largest average degree at which the planted
CSP ensemble and the following simple null model become mutually contiguous and thus statistically
indistinguishable as N → ∞. The null model is defined as follows: there is no single unknown
assignment, but instead for every ordered subset S of k variables, Nature independently samples
an unknown local assignment σS ∈ {1, . . . ,m}S , and the observation is included with probability
ϕ/Nk−1 if g(σS) = 1.

For Dcond < kP/N < DKS, there exists some other fixed point of the BP operator whose marginals,
once rounded to an assignment, achieves strictly higher overlap than does BP with messages ini-
tialized randomly. The prediction is that in this regime, no efficient algorithm can achieve optimal
recovery (Krzakala & Zdeborová, 2009).

Conjecture B.13 (1RSB cavity prediction). Suppose k,m, g satisfy Assumption B.11, and let DKS

and Dcond denote the associated Kesten-Stigum and condensation thresholds for the average degree.
Then for all P for which Dcond < kP/N < DKS, the best overlap achieved by a computationally
efficient algorithm for recovering σ is strictly less than the best overlap achievable.

Proof of Proposition 3.3. At masking fraction α satisfying the bounds in the Proposition, with proba-
bility at least αN ≥ (1− γ−1DKS/N

k−1)N ≥ Ω(1) we have that all tokens corresponding to latents
xπ(i) get masked. Independently of this, the number of unmasked tokens among the observation
tokens OS is distributed as Bin(N(N − 1) · · · (N − k + 1), 1 − α), so by standard binomial tail
bounds, with constant probability (depending on the gap between Dcond and DKS) this lies between
γ−1DcondN/k and γ−1DKSN/k. Furthermore, of these unmasked tokens in expectation γ fraction
of them correspond to observations for which the associated predicate evaluates to 1. Conditioned
on the above events, the masking problem thus reduces exactly to inference for a planted constraint
satisfaction problem at average degree Dcond < D < DKS, from which the Proposition follows.

C EXPERIMENTAL DETAILS IN SECTION 3

C.1 EXPERIMENTAL DETAILS IN SECTION 3.2

π-learner configurations. We consider two distributions of π that interpolate between Unif (SL)
where SL denote the uniform distribution over all permutations of indices {0, 1, . . . , L − 1} and
the point mass at the identical distribution: (Closer) and (Much-closer). To construct those distri-
butions, we start from the identity permutation and perform a certain number of random swapping
operations. Since L log(L) number of swaps results in a distribution that is very close to Unif (SL)
(Bormashenko, 2011), we use L/10 and

√
L swaps to construct the (Closer) and (Much-closer)

distributions, respectively. For consistency, we repeat this sampling process three times.

Model and training configurations. As explained in Section 3.2, to evaluate the scaling law of the
π-learner, we can simply adapt the autoregressive training setup (a transformer with causal attention)
by modifying the input to π(x0) and using a learnable positional embedding layer instead of RoPE.
We borrow the training configurations from (Nie et al., 2024), which are also consistent with the
TinyLlama (Zhang et al., 2024) configurations. In particular, we use AdamW optimizer (Loshchilov
& Hutter, 2019), setting β1 = 0.9, β2 = 0.95, and a weight decay of 0.1 and L = 2048. A cosine
learning rate schedule is applied, with a maximum learning rate of 4× 10−4 and a minimum learning
rate of 4 × 10−5. We also note that unless otherwise specified, we maintain the same training
configuration throughout the paper.

Examining scaling laws. We conduct IsoFLOP analysis (Hoffmann et al., 2022). For a given
number of FLOPs C, by varying the number of non-embedding parameters of transformers, we set
the iteration numbers so that the total number of tokens observed by the model during training equals
C/6N , following prior studies (Hoffmann et al., 2022; Kaplan et al., 2020). We then select the
smallest validation loss and set it as a data point.
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C.2 EXPERIMENTAL DETAILS IN SECTION 3.3

C.2.1 EXPERIMENT ON L&O-NAE-SAT DISTRIBUTION

We consider the L&O-NAE-SAT distribution with (N,P ) = (20, 280). For each example sequence
from L&O-NAE-SAT, we pad the last 212 tokens with an additional token value of 2. We employ
a 19M MDM with RoPE and a maximum sequence length of 512. Then, this MDM is trained for
2× 103 iterations. To attain a proxy MDM for the Bayes optimal predictor, we further train it for
5× 104 iterations.

To measure the error across different tasks, we consider the following setup. For each ℓ ∈ [1, N − 1],
we randomly mask ℓ tokens in the latent positions and ℓ× (P/N) tokens in the observed positions.
Across all masked prediction positions, ℓ(1 + P/N), we measure the error for each position. For
certainty, we repeat this process 1000 times. The result in Figure 2 corresponds to the case when
ℓ = 11, and we observe the same tendency for other values of ℓ.

C.2.2 EXPERIMENT ON TEXT DATA

We take a 170M MDM pretrained with text data for a baseline model. To measure the performance
imbalance between likelihood modeling tasks

Ex0∼pdata

[
L−1∑
i=0

log pθ

(
x
π(i)
0

∣∣∣x0[π{i, . . . , L− 1}]
)]

.

As done in the experiments in Section 3.2, we sample πs from three different distributions: Unif(SL),
(Closer), the point mass of identical distribution. For each case, we calculate the expectation over
1024 samples of x0 ∼ pdata.

D EXPERIMENTAL DETAILS IN SECTION 4.2

D.1 EXPERIMENTAL DETAILS IN SECTION 4.2

D.1.1 EXPERIMENT ON L&O-NAE-SAT DISTRIBUTION

We consider five instances (N,P ) = (25, 275), (30, 270), (40, 260), (50, 250), (100, 200) for L&O-
NAE-SAT distribution. For each case, we train a 19M MDM and measure the accuracy difference
between vanilla inference and adaptive inference using Top-K probability margin.

(N,P ) Vanilla inference Adaptive inference

(25, 275) 78.06% 93.76%
(30, 270) 75.70% 93.54%
(40, 260) 74.60% 92.21%
(50, 250) 67.94% 90.01%
(100, 200) 62.84% 88.91%

Table 3: L&O-NAE-SAT. Adaptive MDM inference achieves better likelihood matching than vanilla
MDM inference. Note that naive guessing leads to 75% accuracy.

D.1.2 EXPERIMENT ON TEXT DATA

Top-K probability margin sampler with temperature. To modify our inference for text data
modeling, which does not have a determined answer, we found that adding a certain level of
temperature to the oracle is useful. This is because Top-K probability margin or Top-K often leads
to greedy sampling, which harms the diversity (entropy) of the generated samples. Therefore, we
consider a variant of the oracle as follows, incorporating a noise term ϵ:

F(θ, xt) = Top K
(
|pθ(xi = j1|xt)− pθ(x

i = j2|xt)|+ ϵ
)
.

Note that this approach has also been employed for unconditional sampling (Wang et al., 2024; Zheng
et al., 2024b).
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Generative perplexity and entropy. We employ a 1.1B MDM pretrained on text data as a baseline.
For each sampling step, we unconditionally generate samples using both vanilla and adaptive inference.
Next, we calculate the likelihood using LLama2-7B as a baseline large language model. Moreover,
we denote the entropy of a generated sample x as

∑
pi log pi, where pi = #{xi = i}/L.

D.2 EXPERIMENTAL DETAILS ON SUDOKU AND ZEBRA PUZZLES

Dataset. For both Sudoku and Zebra puzzles, we use the dataset provided in Shah et al. (2024) to
train our model. To evaluate our model on the same difficulty tasks, we use the test dataset proposed
in Shah et al. (2024). This dataset is created by filtering the puzzles from (Radcliffe, 2020) that
can be solved using a fixed list of 7 strategies. To create a hard dataset to evaluate easy-to-hard
generalization, we use the remaining puzzles from (Radcliffe, 2020) as they either require a new
strategy unseen during the training and/or require backtracking. The hard dataset contains around 1M
Sudoku puzzles.

Model, training, and inference. For the Sudoku dataset, we use 6M GPT-2 model and for the
Zebra dataset, we use 19M model but instead of causal attention, we use complete bidirectional
attention. We set the learning rate to 0.001 with batch size 128 to train the model for 300 epochs. For
the inference, we use 50 reverse sampling steps using the appropriate strategy. Additionally, we add
Gumbel noise with a coefficient of 0.5 to the MDM inference oracle F .

E OMITTED PROOFS

Proof of Proposition 2.1. We first re-state the Proposition 3.1 from (Zheng et al., 2024a). To clarify,
(Zheng et al., 2024a) generally considers the case beyond the time-embedding denoising network pθ.

Proposition E.1 (Proposition 3.1 of (Zheng et al., 2024a)). For clean data x0, let q̃(x(n) | x0) be
the discrete forward process that randomly and uniformly masks n tokens of x0. Suppose α0 = 0 and
α1 = 1. Then the MDM training loss equation 1 can be reformulated as

Lθ = −
L∑

n=1

Ex(n)∼q̃(·|x0)

 1

n

∑
ℓ:x(n)ℓ=m

exℓ
0
log pθ(x

ℓ | x(n))

 . (5)

To obtain an alternative formulation of equation 5, we expand the expectation x(n) ∼ q̃(· | x0).
Since there are total L positions of x0, we have the probability assigned for each x(n) equals 1/

(
L
n

)
.

Therefore,

Lθ =−
L∑

n=1

Ex(n)∼q̃(·|x0)

 1

n

∑
ℓ:x(n)ℓ=m

exℓ
0
log pθ(x

ℓ | x(n))


= −

∑
M∈[L],i∈M

1(
L

|M |
) × 1

|M |
exℓ

0
log pθ(x

ℓ | x[M ])

= −
∑

M∈[L],i∈M

1(
L

|M |
) × 1

|M |
log pθ(x

ℓ
0 | x[M ])

= −
∑

M∈[L],i∈M

1

L
(

L−1
|M |−1

) log pθ(xℓ
0 | x[M ]).

Reformulating the MDM loss with π-learner s. In this paragraph, we provide the proof of

− 1

L

∑
M⊆[L],i∈M

1(
L−1

|M |−1

) E
x0∼pdata

[log pθ(x
i
0|x0[M ])]

=− Eπ∼Unif(SL),x0∼pdata

[
L−1∑
i=0

log pθ

(
x
π(i)
0

∣∣∣x0[π{i, . . . , L− 1}]
)]

.
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Alternatively, we will demonstrate that

− 1

L

∑
M⊆[L],i∈M

1(
L−1

|M |−1

) log pθ(xi
0|x0[M ]) = −Eπ∼Unif(SL)

[
L−1∑
i=0

log pθ

(
x
π(i)
0

∣∣∣x0[π{i, . . . , L− 1}]
)]

holds for every x0. Note that

Eπ∼Unif(SL)

[
L−1∑
i=0

log pθ

(
x
π(i)
0

∣∣∣x0[π{i, . . . , L− 1}]
)]

=
1

L!

∑
π∈SL

L−1∑
j=0

log pθ

(
x
π(j)
0

∣∣∣x0[π{j, . . . , L− 1}]
)
.

Next, by regarding π{j, . . . , L − 1} = {π(j), . . . , π(L − 1)} = M ⊆ [L] and π(j) = i in the
equation equation 1, we count the number of π ∈ SL that induces a specific term log pθ(x

i
0|x0[M ]).

For a given M ∈ [L] and i ∈M , π must satisfy

π(j) = i, {π(j), . . . , π(L− 1)} = M.

The number of π that satisfies above is (L− |M |)!× (|M | − 1)!. Finally, the following calculation
concludes the proof.

Eπ∼Unif(SL)

[
L−1∑
i=0

log pθ

(
x
π(i)
0

∣∣∣x0[π{i, . . . , L− 1}]
)]

=
1

L!

∑
π∈SL

L−1∑
j=0

log pθ

(
x
π(j)
0

∣∣∣x0[π{j, . . . , L− 1}]
)

=
1

L!

∑
|M |∈[L],i∈M

[
log pθ(x

i
0|x0[M ])× (L− 1− |M |)!× (|M | − 1)!

]
=
1

L

∑
|M |∈[L],i∈M

1(
L−1

|M |−1

) × log pθ(x
i
0|x0[M ]).
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