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Abstract: Learning visuomotor policies for agile quadrotor flight presents sig-
nificant difficulties, primarily from inefficient policy exploration caused by high-
dimensional visual inputs and the need for precise and low-latency control. To
address these challenges, we propose a novel approach that combines the perfor-
mance of Reinforcement Learning (RL) and the sample efficiency of Imitation
Learning (IL) in the task of vision-based autonomous drone racing. While RL
provides a framework for learning high-performance controllers through trial and
error, it faces challenges with sample efficiency and computational demands due
to the high dimensionality of visual inputs. Conversely, IL efficiently learns from
visual expert demonstrations, but it remains limited by the expert’s performance
and state distribution. To overcome these limitations, our policy learning frame-
work integrates the strengths of both approaches. Our framework contains three
phases: training a teacher policy using RL with privileged state information, dis-
tilling it into a student policy via IL, and adaptive fine-tuning via RL. Testing in
both simulated and real-world scenarios shows our approach can not only learn in
scenarios where RL from scratch fails but also outperforms existing IL methods in
both robustness and performance, successfully navigating a quadrotor through a
race course using only visual information. Videos of the experiments are available
at https://bootstrap-rl-with-il.github.io/.
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1 Introduction

Visuomotor policy learning enables robots to perform complex tasks by directly mapping visual in-
formation into action. This technique has been successfully demonstrated in various robotic systems
to learn complex behaviors such as visual navigation [1, 2], dexterous manipulation [3, 4, 5], and
agile maneuvers [6, 7, 8]. The ability to learn directly from visual data allows machines to interpret
visual observations and translate them directly into corresponding motor actions, akin to the human
skill of hand-eye coordination. However, learning from only visual inputs introduces a range of
distinct challenges. The intrinsic high dimensionality of visual input makes the policy exploration
and learning process more inefficient than using low-dimensional input, such as robot states.

In agile quadrotor flight, these challenges are more pronounced due to the platform’s agility, inherent
instability, and reliance on low-level commands like collective thrust and body rates, which necessi-
tate precise low-latency closed-loop control. Previous works [8, 1] have demonstrated the capabil-
ity of piloting quadrotors at high speeds using visual inputs for acrobatics and obstacle avoidance.
These systems always rely on high-frequency proprioceptive data from an Inertial Measurement Unit
(IMU) for accurate state estimation. However, despite these advancements, the goal of training and
deploying an autonomous drone directly using RGB images has yet to be achieved. This limitation is
particularly relevant in scenarios such as first-person-view (FPV) drone racing, where pilots achieve
high-performance flight near the physical limits of the platform using only visual information from
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Figure 1: Long exposure image of real-world flights shows a blue trajectory for our approach and a red one for
the imitation policy. Training on the same number of samples, our approach yields a tighter trajectory, resulting
in faster lap times and demonstrating superior performance and robustness.

a 60 Hz monocular camera. Addressing this gap, our work specifically focuses on autonomous
quadrotor racing, employing purely visual inputs without relying on metric state estimation or IMU
data. Two primary learning methods have emerged in tackling this challenge: Reinforcement Learn-
ing (RL) and Imitation Learning (IL). RL is gaining traction as a general framework for designing
complex controllers that are difficult to handcraft using classical methods [9, 7, 10]. This method
involves learning through millions of trial-and-error interactions within a simulated environment.
Despite the potential of RL, it often requires collecting extensive data samples to learn effectively,
which can be computationally demanding. As a result, enhancing the sample efficiency of RL algo-
rithms has become a critical focus. Thus, the ability to explore and learn efficiently in vision-based
RL environments from scratch is essential, presenting a key challenge that our research seeks to
overcome.

Conversely, IL has been successfully demonstrated on different mobile platforms to perform end-to-
end vision-based learning [8, 1, 11, 5]. IL synthesizes policies using either expert demonstrations or
a privileged policy in a supervised fashion. The optimization objective is to clone an expert rather
than to interact with the environment and collect rewards as in RL. Due to this simplification, IL
typically requires fewer samples and, consequently, has been validated for real-world robot learning
problems [1, 8, 5, 11, 12, 13]. However, IL faces several challenges, including the significant issue
of covariate shift. This term describes the discrepancies between training data (demonstrations for
IL) and real-world scenarios, which can lead to degraded performance as the learned policy may
not generalize well to new situations. Additionally, the effectiveness of an IL-derived policy is
inherently limited to the quality of the expert demonstrations it is based on; it cannot surpass the
performance of the demonstrations used for training.

The RL policy for state-of-the-art autonomous drone racing [7], which outperformed world-
champion pilots, still relies on explicit state estimates, including position, velocity, and orientation.
Our work, however, focuses on learning visuomotor policies that map visual information directly to
control commands without explicit state estimation. Achieving this would bring autonomous flying
machines closer to how human pilots navigate. However, this ambition was unattained in the realm
of drone racing due to one fundamental challenge: sample inefficiency.

Contributions By leveraging the complementary advantages of IL and RL, we propose a framework
that trains a policy capable of navigating through a sequence of gates using solely gate corners or
RGB images. Through experiments in both simulation and real-world environments, we demonstrate
that our approach, given the same sample budget, outperforms existing IL methods in robustness and
performance and succeeds where RL from scratch fails. While most state-of-the-art visuomotor pol-
icy learning for mobile robotics adopts the teacher-student IL framework [8, 1, 6, 14], we extend this
framework by bootstrapping the IL policy for adaptive RL fine-tuning to enhance the performance.
Although we validate our method using vision-based drone racing, our approach does not rely on
task-specific adaptations that might limit its applicability to other robotic platforms or tasks.
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2 Related Work
Vision-Based Robot Learning Deep visuomotor policies directly map actions from visual inputs,
such as RGB images [4] or depth images [1, 15]. In contrast to conventional methods, end-to-
end approaches often operate without the need of environmental mapping [16, 17], precise state
estimation [18, 19], or motion planning [18, 20]. Existing works have demonstrated end-to-end
vision-based policies primarily through either RL or IL [8, 21, 1, 22, 23]. In RL, the optimization
objective is shaped by task-specific reward designs. The policy gains robustness and generalizabil-
ity by learning from both positive and negative samples through interactions with training envi-
ronments [24]. Despite having a task-centric objective, vision-based RL has predominantly found
application in simulations, such as fixed-based manipulation tasks [25, 21], or video games [26],
due to its sample inefficiency. Therefore, efficient approaches for vision-based RL in mobile robots
are still actively being explored. In contrast, in most IL approaches, the optimization objective is a
difference measure in behavior between the learned policy and the expert demonstrations [27, 28].
The simplification of learning the task solely from expert demonstrations dramatically reduces the
required samples for effective training. Thanks to its sample efficiency, various visuomotor policy
learning methods have been demonstrated on mobile robots [8, 1, 6, 11, 5]. Due to the supervised
fashion of policy training, the performance of IL policies is capped by the teacher policies and suf-
fers degradation for out-of-distribution observations [28], particularly in task settings where actions
are only partially observable from visual inputs.

RL Finetuning from Expert Demonstrations For various robot learning applications, one cen-
tral question is how expert demonstrations can be used to develop high-performance policies. The
predominant method in existing research begins with behavior cloning (BC) and refines the policy
through RL to enhance state exploration and sample efficiency, as seen in tasks like pole balanc-
ing and dexterous manipulation [29, 30, 31, 32, 33]. A major challenge in online fine-tuning with
RL is the “stability-plasticity dilemma”, where networks catastrophically forget old behaviors while
continuing learning [34]. This problem is especially acute for RL settings, as exploration generates
out-of-distribution (OOD) data, leading to suboptimal learning or even completely unlearning the
previous skills. Using our approach, which adaptively updates the policy based on performance, we
demonstrated that catastrophic forgetting is greatly reduced.

3 Methodology

The drone racing task can be formulated as an optimization problem where the objective is to min-
imize the time required to navigate through a predefined sequence of gates [35], as illustrated in
Fig. 4. The drone perceives the environment solely through a single RGB camera, and the learned
policy network utilizes egocentric vision input op to output Collective Thrust and Bodyrates control

Stage I: State-based RL Stage II: Vision-based IL Stage III: Vision-based RL Fine-tuning
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Figure 2: We demonstrate visuomotor policy learning in three different stages. In stage I, we train a state-based
teacher policy using RL. In stage II, we use IL to learn a student distillation policy using visual inputs. In stage
III, we bootstrap the actor using the student policy to fine-tune the policy through vision-based RL.
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command [c, ωx, ωy, ωz], where c represents collective thrust, and ω denotes the body rates [36].
As shown in Fig. 2, our approach consists of three phases: (I) initial training of a teacher policy
using state information, (II) distillation into a student policy via IL to transfer knowledge and create
an efficient baseline model, and (III) fine-tuning the student policy through a novel performance-
constrained adaptive RL approach to enhance the policy’s performance and robustness.

Phase I: State-based Teacher Policy Training The teacher policy πteacher processes state obser-
vations s =

[
p, R̃,v,ω, i,d

]
, where p ∈ R3 denotes the drone’s position, R̃ ∈ R6 is a vector

comprising the first two columns of RWB [37], v ∈ R3 and ω ∈ R3 denote the linear and angular
velocity of the drone, and d ∈ R3 represents the position of the next gate center relative to the cur-
rent drone position. The training of the teacher policy employs a model-free reinforcement learning
approach using Proximal Policy Gradient (PPO) [24]. The RL policy training rewards are adjusted
based on [38]. The reward at time t, denoted as rt, is defined as the sum of various components

rt = rprog
t + rperc

t + ract
t + rbr

t + rpass
t + rcrash

t , (1)

where rprog
t encourages progress towards the next gate to be passed [39], rperc

t encodes perception
awareness by adjusting the quadrotor’s attitude such that the optical axis of its camera points to-
wards the next gate’s center, ract

t penalizes action changes from the last time step, rbr
t penalizes

bodyrates and consequently reduces motion blur, rpass
t is a binary reward that is active when the

robot successfully passes the next gate, rcrash
t is a binary penalty that is only active when a collision

happens, which also ends the episode. For the detailed reward formulation, we refer the readers to
the Appendix.

Phase II: Imitation Learning using Visual Input The goal of this phase is to distill a student policy
πstudent from the expert πteacher. The vision-based student policy takes a sequence (history length H
timesteps) of perceptual observations [ot−H+1, . . . ,ot] as input. We use a Temporal Convolutional
Network (TCN) [40] to encode the series of vision embeddings from I or corners C. The output
features from the two TCNs are concatenated and fed into a two-layer MLP, which outputs the
actions. The supervision loss is formulated as LA (action error), which is the mean square error
between the outputs of the teacher policy and the student policy

LA(D, θstudent) = ED [∥πstudent([ot−N+1, . . . ,ot] ; θstudent)− πteacher(st)∥] . (2)
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(a) Symmetric Actor-Critic configuration.

(b) Asymmetric Actor-Critic configuration.

Figure 3: Visualization of difference
between the symmetric and asymmet-
ric actor-critic learning setup.

To acquire an imitation learning policy, the most common
methods are (i) Behavior Cloning (BC) or (ii) DAgger [27]. In
the case of BC, the state-based teacher policy is executed for
a fixed number of steps, generating a dataset that encompasses
corresponding perceptual observations and action outputs. In
contrast, DAgger involves iteratively training the student pol-
icy by executing the learned student policy with a gradually in-
creasing probability over time. The on-policy training fashion
of DAgger results in a broader distribution of demonstrations
from the student policy. This approach results in improved
performance compared to traditional BC, contributing to more
effective learning.

Phase III: Performance-Adaptive Online Fine-Tuning
State-of-the-art visuomotor policy learning for mobile robotics
typically employs a teacher-student IL framework; however,
integrating online RL fine-tuning could further enhance policy
performance and robustness. The major challenge of online policy fine-tuning is catastrophic forget-
ting during exploration, where the state distribution shift during exploration causes the pre-trained
policy to generalize poorly. To address this, we propose an algorithm that conditions exploration and
network updates on the policy’s performance, as shown in Algorithm 1. In our algorithm, we initiate
the fine-tuning process using the pre-trained student policy as the starting actor in RL. However, a
straightforward plug-and-play approach may not yield optimal results due to two key challenges:
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(i) the critic function requires interactions to adapt the pre-trained actor, necessitating a “warm-up”
process. (ii) During the initial training phase, policy update steps should be kept relatively adap-
tive based on the learning progress to prevent catastrophic forgetting resulting from sudden, large
updates. In our approach, if the policy improvement is small, the update rate of the critic is auto-
matically increased. Once the policy achieves high-reward action sequences, the policy update rate
also increases. By linking the learning rates and the clip range to the policy rollout performance,
we eliminate the need for heuristic tuning of learning rates to mitigate catastrophic forgetting. We
believe this approach is easily generalizable to other platforms as it does not require task-specific
information.

In our approach, the exploration and learning rates should dynamically depend on the agents’ per-
formance rather than being solely determined by the number of iterations.

Algorithm 1 Adaptive Fine-tuning and Proximal Policy Gradient Update
1: Input: Pre-trained policy πpre, learning rates LRπ, LRV , constants cV , cπ, cϵ
2: Execute πpre to collect initial reward rinit
3: Initialize learning rates LRπ for policy and LRV for value function
4: Freeze actor and exclusively train critic for N iterations
5: for each training step do
6: Sample batch of transitions (s, a, r, s′) from experience buffer
7: Compute advantage estimates Â and update critic θ ← θ + LRV∇θLV (θ)
8: if (step mod N) == 0 then
9: Evaluate policy to collect reward rrollout

10: Compute performance ratio α = rrollout
rinit

11: Update learning rates and PPO clip range:
12: LRπ ← min (LRπ +max(α− 1, 0) · cV , LRπmax)
13: LRV ← max (LRV −max(α− 1, 0) · cπ, LRVmin)
14: ϵ← min (ϵ+max(α− 1, 0) · cϵ, ϵmax)
15: end if
16: Update policy by maximizing PPO objective
17: Lπ(ϕ) = E

[
min

(
πϕ(a|s)
πold(a|s) Â, clip

(
πϕ(a|s)
πold(a|s) , 1− ϵ, 1 + ϵ

)
Â
)]

18: ϕ← ϕ+ LRπ∇ϕLπ(ϕ)
19: end for
20: Output: Policy parameters

Asymmetric Critic For the third phase vision-based RL, we employ an asymmetric actor-critic
setup, as illustrated in Fig. 3 (b). This approach involves augmenting the critic function inputs with
privileged information, such as the robot state s. Incorporating this privileged state information en-
ables more precise learning of the critic function, thereby enhancing the efficiency and performance
of actor training in partially observable settings [21].

4 Experiments and Results

4.1 Training Setup

We validate our approach on three different race tracks, as shown in Fig. 4, namely the “SplitS”,
“Figure 8”, and “Kidney” tracks. During evaluation, each policy is rolled out until it completes 10
laps or for 3000 simulation time steps (50 seconds). We evaluate each policy 100 times, starting
from positions uniformly sampled within a 1m cubic box centered on the nominal starting position
of the racing track. Each method is repeated 5 times with different random seeds. The evaluation
uses a realistic simulation based on the BEM model for aerodynamic effects [41].

We use three evaluation metrics: success rate (SR), mean-gate-passing-error (MGE), and lap time
(LT). SR is the ratio of completed laps to total trials. MGE measures the distance between the drone’s
position and the gate center when passing through, here the inner gate size used for experiments is
1.5 m. LT indicates the duration to complete a full race track, flying through all gates. Further details
on training configurations and our hardware setup are available in the Appendix.
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(a) SplitS Track (b) Figure 8 Track (c) Kidney Track
Figure 4: Visualization of the drone racing tracks used for the experiments, each characterized by varying levels
of complexity. All the tracks maintain a consistent size scale, spanning widths from 8 meters to 16 meters.

Policy Input To evaluate the performance of our approach, we conduct IL experiments with two
categories of visual input: (i) implicitly learned from ResNet [42]. Here we employ a pre-trained
ResNet50 [42] network on ImageNet [43] to produce embeddings of length 128. Hence, the input
of the TCN network corresponds to the history of the embeddings, which is H × 128. (ii) racing
gate corners projected in the camera pixel frame. Here we utilize the normalized pixel coordinates
of all gate corners projected in the camera view. We model gate corners based on the gate detection
system presented in [7]. To simulate real-world scenarios, we include domain randomization such
as gate scales, pixel position noise (10 pixels in both (u, v) in a 1280 × 760 image frame), and a
10% random missing probability for each corner at each frame to mimic the detection failures of the
gate detector. After projection, we sort the gate corner pixels by their u coordinates, and we model
corners out of the image view as (−1,−1). Detailed simulation visualizations for both inputs are
available in the Appendix.

4.2 Experiment Results

Performance comparison to baseline approaches One inherent limitation of the student-teacher
IL framework is to infer reasonable actions from partial information. This limitation arises because
the student policy is trained only on the explicit actions of the expert, without understanding the
underlying context that the expert may infer from unobservable cues. As a result, the student policy
can struggle in scenarios where critical information is missing, leading to suboptimal actions and
reduced overall performance. An example of this is the SplitS Track, where frames often lack visible
corners (detailed in Appendix). Hence, to benchmark the learned policies’ performance, we conduct
a detailed analysis of our approach to the existing baselines using various time horizons for the
policy H ∈ [2, 4, 8, 16, 32, 64].

Table 1: Policy performance evaluation averaged by 6 different history lengths using both implicitly learned
representations, specifically a common ResNet50 [42] for RGB images, and the task-specific gate corners
positions across three different racing tracks.

Input Methods
Race Tracks

Figure 8 SplitS Kidney
SR% MGE [m] LT [s] SR% MGE [m] LT [s] SR% MGE [m] LT [s]

BC 0 crash - 0 crash - 0 crash -
RL [24] 0 crash - 0 crash - 0 crash -

DAgger [27] 63 0.41 5.19 57 0.43 8.30 64 0.28 5.53
PIRLNav [22] 21 0.49 5.79 4 0.67 8.32 18 0.61 6.30

Pixel

Ours 85 0.32 4.57 76 0.25 7.77 82 0.21 4.93

BC 0 crash - 0 crash - 0 crash -
RL [24] 0 crash - 0 crash - 0 crash -

DAgger [27] 57 0.42 4.82 52 0.51 8.81 60 0.34 5.42
PIRLNav [22] 12 0.57 6.12 0 crash - 12 0.69 6.48

Corners

Ours 79 0.37 4.84 72 0.32 7.91 85 0.15 5.18
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Figure 5: Left: Reward comparison between our approach and the other RL configurations. Ours is the only
approach that is able to learn to perform the task. Right: Using a fixed sample budget, we varied the IL
policy percentage for our approach on the vision-based policy for SplitS track, achieving a local maximum in
deployment reward with 60% IL pretraining and 40% RL fine-tuning.

We included 4 baseline methods, namely BC and IL, RL from scratch, and a fine-tuning baseline,
PIRLNav [22], where BC policy is fine-tuned using RL without adaptivity. We average the evalu-
ation metrics, SR, MGE, and LT among various H . The results are shown in Table. 1. Across all
configurations and racing tracks, our approach consistently exhibits the best performance in all the
metrics compared to all baselines, under the same 10M data sample budget. In our approach, since
our third stage takes advantage of an asymmetric critic containing privileged state information, the
resulting policy will possess more task understanding. For the detailed metrics for the individual
history length, we refer the readers to the Appendix.

Training Effectiveness with different RL configurations To demonstrate the effectiveness of our
visuomotor policy learning approach, we ablate the training performance of our approach with dif-
ferent baseline RL configurations: (i) RL from scratch using the asymmetric critic with privileged
states, and (ii) Vanilla fine-tuning, where we initialize the parameters of the actor network using the
same pre-trained DAgger policy perform same RL training setup as used in stage I. This setup is
distinct from the baseline PIRLNav where a BC policy is used for initialization. For (i) we train the
RL policy using RGB images with 10M samples and our approach and baseline (ii) we use 5M data
samples for pretraining and 5M data samples for fine-tuning. For a fair comparison, we selected the
policy with H = 32 for all the methods, which balances good policy performance with the network’s
capability for real-time, low-latency control of our quadrotor. The results are illustrated in Fig. 5
left. Firstly, it is noteworthy that the direct RL from corners or pixels achieves a 0% success rate in
all three tracks. This once again underscores the difficulty of RL exploration in high-dimensional
time series without bootstrapping. The policy initially showed improved learning performance
for the vanilla bootstrapping baseline but deteriorated with increasing timesteps. This highlights
the importance of the adaptive component in our third phase for maintaining policy performance.

Table 2: Evalutation results on Perceptual and Po-
sitional disturbance.

Disturbance Prob. [%] SR% Error [m]
IL Ours IL Ours

Perceptual 1 59 100 0.38 0.25
5 33 91 0.55 0.39

Positional 1 84 100 0.32 0.28
5 64 97 0.49 0.33

Sample Efficiency Analysis To analyze we fix the
total sample budget at 10M and varying the pre-
training ratio, we visualize the deployment reward
of the resulting policies, shown in Fig. 5 right. It is
evident that at 60%, the collected rewards achieve a
peak (>100) in the curve representing the best per-
formance. The plot indicates that by using an ap-
propriate amount of data, the performance can easily
surpass policies trained solely from IL. The detailed
training metrics of individual policies are presented
in the Appendix.
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Figure 6: Comparison of real-world trajectories
on the SplitS track: ours (green) achieves 7.67s
lap time, while DAgger’s (orange) is 8.06s.

Robutstness to unknown disturbances In the fol-
lowing experiments, we conduct two trials to ver-
ify whether our approach enhances the policy’s ro-
bustness to unknown disturbances. To simulate real-
world uncertainties, we conducted two experiments:
i) random frame blackouts to mimic sensor failures
like communication loss, and ii) random positional
jumps during flight to simulate disturbances such as
strong winds. The results are demonstrated in Ta-
ble. 2, it is clear that our approach outperforms the
baseline DAgger approach in terms of robustness to
unknown disturbance.

Towards the Limit of End-to-End Policy. To ex-
plore how far we can push or approach achieving an
end-to-end policy that maximizes the potential of the physical platform, we conducted an experiment
aimed at pushing the speed to its limit. We applied our approach to train on the SplitS track, based
on the setup described in [7], where the policy outperformed several human champions. In [7], the
policy achieved a median lap time of 5.52 seconds, while the best human pilots achieved 5.76 sec-
onds in the real world. The main difference from our previous experiments is that we increased the
maximum thrust limit. We tested our approach using the aforementioned corner observation and val-
idated it through 100 runs as part of our evaluation. The policy’s performance resulted in an average
lap time of 5.82 seconds, with the best policy achieving a lap time of 5.54 seconds. This indicates
that an end-to-end policy’s extreme performance can match that of human world champions.

Input Methods
Race Tracks

Figure 8 SplitS Kidney
MGE [m] LT [s] MGE [m] LT [s] MGE [m] LT [s]

Corners IL 0.49 4.85 0.55 8.18 0.37 5.76
Ours 0.26 4.60 0.29 7.83 0.29 5.22

Images IL 0.35 4.69 0.48 8.06 0.35 5.45
Ours 0.27 4.30 0.31 7.67 0.18 4.93

Table 3: Real-world performance comparison between DAgger and our
fine-tuned approach for two types of input representations.

Real-world Experiments
To demonstrate policy im-
provements, we validated our
policy in real-world scenarios
using Hardware-in-the-Loop
(HIL) simulations, aided by a
VICON motion capture system
for perceptual inputs. We
compared our approach against
a DAgger policy trained using the same number of 10M data samples. The results are detailed in
Table 3, with supplementary videos providing visual footage. Our approach consistently achieved
faster lap times and smaller gate errors in the real-world setting, confirming the effective real-world
transfer of our vision-based quadrotor enhancements. Further analysis of the policies’ real-world
trajectories, depicted in Fig. 1 and Fig. 6, shows that fine-tuning results in tighter trajectories and
higher peak velocities. Notably, in the challenging SplitS maneuver, the RL-fine-tuned policy
executed tighter turns and longer straights, optimizing overall speed. These improvements illustrate
that RL fine-tuning enables the discovery of maneuvers that enhance speed and performance,
surpassing the capabilities of imitation learning alone.

5 Limitations and Discussions
In this work, we introduced a novel approach by fusing the strengths of Reinforcement Learning
(RL) and Imitation Learning (IL) for vision-based agile quadrotor flight, specifically focusing on
autonomous drone racing. We demonstrate for the first time a visuomotor policy capable of navigat-
ing through a sequence of gates using solely gate corners or RGB images. One limitation is that our
current setup is tested in the controlled lab settings, it will likely fail in an in-the-wild setup. Despite
demonstrating superior robustness compared to existing baselines, we believe the perception module
in our framework is to improve to handle more out-of-distribution cases. In this work, we utilized
a pre-trained ResNet to ensure a fair performance assessment. For future work, we aim to integrate
a customized vision encoder that leverages data from diverse simulation settings, modalities, and
extensive real-world environments.
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A Supplementary Materials

A.1 Quadrotor Dynamics for Policy Training
The quadrotor is assumed to be a 6 degree-of-freedom rigid body of mass m and diagonal moment
of inertia matrix J = diag(Jx, Jy, Jz). Furthermore, the rotational speeds of the four propellers
Ωi are modeled as a first-order system with a time constant kmot where the commanded motor
speeds Ωcmd are the input. World W and Body B frames are defined with an orthonormal basis
i.e. {xW ,yW , zW}. The frame B is located at the center of mass of the quadrotor. The state space
is thus 17-dimensional and its dynamics can be written as:

ẋ =



ṗWB

q̇WB

v̇W

ω̇B

Ω̇


=



vW

qWB ·
[
0 ωB/2

]⊤
1
m (qWB ⊙ (fprop + fdrag)) + gW

J−1
(
τprop − ωB × JωB

)
1

kmot

(
Ωcmd −Ω

)


, (3)

where gW = [0, 0,−9.81m/s2]⊺ denotes earth’s gravity, fprop, τprop are the collective force and the
torque produced by the propellers, and fdrag is a linear drag term. The quantities are calculated as
follows:

fprop =
∑
i

fi , τprop =
∑
i

τi + rP,i × fi , (4)

fdrag = − [kvxvB,x kvyvB,y kvzvB,z]
⊤
, (5)

where rP,i is the location of propeller i expressed in the body frame , fi, τi are the forces and torques
generated by the i-th propeller, and (kvx, kvy , kvz) [44, 45] are linear drag coefficients.

A.2 Reward Formulations for RL Trainings.
The reward components are formulated as follows:

rprog
t = λ1(dGate(t− 1)− dGate(t)),

rperc
t = λ2 exp(λ3 · δ4cam),

ract
t = −λ3∥at − at−1∥,
rbr
t = −λ4∥ωt∥,
rpass
t = c1, if robot passes the next gate,

rcrash
t = −c2, if robot crashes (gates, ground) .

(6)

Here dGate(t) denotes the distance from the robot’s center of mass to the center of the next gate to
pass, δcam is the angle between the camera’s optical axis and the direction towards the center of the
next gate. a represents the control command, and ω the bodyrate. λ1, λ2, λ3, λ4, c1, c2 are different
positive hyperparameters.

In our experiments, we employ identical hyperparameters for both state-based teacher training and
vision-based RL fine-tuning to ensure a fair comparison. These parameters are determined based
on iterations, shown in Table. 4 in both simulation and real-world experiments, aiming to achieve
optimal and smooth performance for the state-based policy.

A.3 Training Configurations.
For state-based teacher training, we employ a policy network consisting of a two-layer MLP, each
layer containing 256 neurons, with a final layer outputting a 4-dimensional vector using a tanh
activation function. In imitation learning, a 3-layer Temporal Convolutional Network (TCN) is
utilized to encode the 32 timestamps of perceptual inputs. The length of the temporal embedding is
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Reward Name Symbol Value
Progress reward λ1 0.5

Perception-aware reward λ2 0.025
Command smoothness reward λ3 2e-4

Body rate penalty λ4 5e-4
Gate passing reward c1 10

Collision penalty c2 4

Table 4: Parameters for RL training.

128, followed by another two-layer MLP to output the control command. For imitation learning, we
employ a batch size of 512, and convergence typically occurs after collecting 5M data samples over
approximately 100 epochs. We incorporate a linear decay in the learning rate, starting at 1e-3 and
decreasing to 1e-5 at 50 epochs, remaining unchanged for the remainder of the training process.

A.4 Hardware Configurations.

We deploy our approach in the real world using a high-performance racing drone with a maximum
thrust-to-weight ratio (TWR) of 5.78. However, for our experiments, we have limited the TWR
to 2.7. We use a modification of the Agilicious platform [46] for the real-world deployment. We
have replaced the onboard computer with an RF receiver, which is connected directly to the flight
controller1 and takes care of parsing the collective thrust and bodyrate commands from the computer.
Additionally, we also mount an ultra-low latency camera feed sender, which sends the live video
stream to the base computer. This configuration is similar to the one used by professional drone
racing pilots.

A.5 Ablation study on Asymmetric Critic Formulation
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Figure 7: Comparing rewards across different RL
configurations for the SplitS track using ResNet
embedding, we find that utilizing an asymmetric
critic makes the learning process more efficient.
As a result, we have selected this configuration as
the default setting for our other experiments.

In stage III of our approach, the visuomotor pol-
icy undergoes fine-tuning using an asymmetric critic
setup. In this experiment, we ablate how the critic
configurations, as demonstrated in Fig. 3, can impact
policy performance. As depicted in Fig. 7, RL fine-
tuning with an asymmetric critic function achieves
the highest reward within the same sample budget.
At the same time, as shown previously, including
privileged knowledge in the training process can also
lead to better performance when handling partial ob-
servations.

A.6 Performance w/ Diff. History Length

In Table. 5 we detailed the results of our approach
against the best baseline methods DAgger on vary-
ing different history lengths. It is evident that by in-
corporating more historical information, the student
could achieve a higher success rate. More importantly, in all of these cases, our approach achieves
both better performance and success rate. The enhanced performance of our RL-based approach
in partially observable situations can be attributed to our asymmetric actor-critic setup, where ad-
ditional state information is provided for value estimations during environment interactions. This
setup significantly mitigates the challenges of partial observability, thereby improving the robustness
and effectiveness of the learning process.

1https://www.betaflight.com
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History SR% MGE [m] LT [s]
Length DAgger Ours DAgger Ours DAgger Ours

4 0 0 - - - -
8 28 84 0.64 0.29 8.34 7.92

16 58 97 0.52 0.27 8.31 7.83
32 100 100 0.27 0.22 8.26 7.68
64 100 100 0.28 0.21 8.27 7.65

Average 57 76 0.43 0.25 8.30 7.77

Table 5: Ablation study on history length of the policy observations using raw pixels. We could clearly find
out by using more history observations, that the policy improvement will get improved. Notably, our approach
consistently outperforms baseline methods across all history lengths

A.7 Onboard Image Visualization

(a) SplitS Track (b) Figure 8 Track (c) Kidney Track
Figure 8: Top: Visualization demonstrates the render image input for our visuomotor policies in simulation.
Bottom: Sparse corners visualization. Our learned visuomotor policies, relying solely on perceptual inputs,
showcase their acquired capabilities for achieving robust but agile flying performance across three distinct
tracks.

To significantly reduce the sim-to-real gap, we gather LiDAR and image data within our indoor
testing arena and construct a digital twin for all our experiments. In Fig 8, visualizations of the
images and the corners of our policies on three different racing tracks are depicted.

It is noteworthy that for corner generation, there is a 20% probability of missing data per corner, with
±10 pixels of noise applied. For a detailed view of real-world flights, please see the accompanying
videos.

A.8 Unobservable States Illustration
For imitation learning, the policy usually needs to infer action from only partially observable states,
here we demonstrate one detailed example for corner-based racing in SplitS Track in Fig. 10. To
avoid the fact that the policy will need to infer actions from unobservable states, we utilize the
history of the observations and the asymmetric setup for RL training.

A.9 Can we fine-tune an amateur policy into a champion-level policy?

In this experiment, we address the question of how far our setup can improve the per-
formance of a policy learned through imitation learning. We adapted the parameters pre-
sented in [9] for this purpose. In this series of experiments, state information is used
as input for all evaluations. First, we limit the maximum policy thrust to 6N per mo-
tor and train a teacher policy using PPO. Then, we train an imitation policy using DAg-
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Figure 10: Illustration of one corner observation in the real world racing track. There are certain timesteps
where there exist no meaningful corner projections at all. Hence we emphasize the necessity of introducing
history information to handle unobservable perceptual states.

Approach Slow IL policy Our Finetuned Policy Champion-level Policy
LT [s] SR [%] LT [s] SR [%] LT [s] SR [%]

Nominal Simulation 9.53 39 5.17 100 5.14 100
Realistic Simulation 10.29 30 5.27 100 5.26 100

Table 6: Ablation study on history length of the policy observations using raw pixels. We could clearly find
out by using more history observations, that the policy improvement will get improved. Notably, our approach
consistently outperforms baseline methods across all history lengths

ger to imitate the slow policy, after which we apply our approach to fine-tune the policy
with the full thrust of 11.3N per motor. The detailed training curve is visualized in 9.
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Figure 9: Return comparison between our approach and
the policy achieved Champion-level performance.

We demonstrate that our policy training
achieves improved sample efficiency, even for
the state-based approach. The quantitative re-
sults, shown in 6, clearly indicate that our ap-
proach greatly improves policy performance,
achieving lap times within a difference of 0.05s
to that in [9], where they outperformed human
champions.
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