
Towards Coreset Learning in Probabilistic Circuits

Martin Trapp1 Steven Lang2 Aastha Shah∗3 Martin Mundt2,4 Kristian Kersting2,4 Arno Solin1

1Aalto University, Espoo, Finland
2TU Darmstadt, Darmstadt, Germany

3University of Pennsylvania, Philadelphia, USA
4 Hessian Center for AI (hessian.AI), Darmstadt, Germany

Abstract

Probabilistic circuits (PCs) are a powerful family
of tractable probabilistic models, guaranteeing effi-
cient and exact computation of many probabilistic
inference queries. However, their sparsely struc-
tured nature makes computations on large data sets
challenging to perform. Recent works have focused
on tensorized representations of PCs to speed up
computations on large data sets. In this work, we
present an orthogonal approach by sparsifying the
set of n observations and show that finding a core-
set of k � n data points can be phrased as a mono-
tone submodular optimisation problem which can
be solved greedily for a deterministic PCs of |G|
nodes in O(k n |G|). Finally, we verify on a series
of data sets that our greedy algorithm outperforms
random selection.

1 INTRODUCTION & RELATED WORK

Over the years, probabilistic circuits (PCs) (e.g., Darwiche
[2003], Poon and Domingos [2011], Peharz [2015], Trapp
[2020], Choi et al. [2020], Vergari et al. [2021]) have been
established as a powerful family of deep probabilistic mod-
els rendering many probabilistic inferences tractable. How-
ever, scaling PCs to large amounts of data (e.g., streaming
data) is a challenging and unsolved task. To overcome the
computational challenges arising in PCs, prior works have
primarily focused on restricting the model architecture in
order to obtain tensorized representations of PCs (e.g., Pe-
harz et al. [2020b] and Peharz et al. [2020a]). In this work,
we present an orthogonal approach by studying coreset se-
lection in PCs, i.e., summarizing the data set with a coreset,
applicable to large scale data applications such as streaming
data or continual learning.

*Work done as an intern at Aalto University.

Coresets have been widely studied in machine learning,
with applications to summarization or active learning. In
particular, there exists a plethora of approaches to coreset
selection for classical modelling families (e.g., Tsang et al.
[2005], Har-Peled and Kushal [2007], Rosman et al. [2014],
Wei et al. [2015], Tremblay et al. [2019]) in the context of
supervised and unsupervised learning problems. Recently,
coreset selection has also been explored in the context of
Bayesian learning to accelerate approximate inference (e.g.,
Campbell and Broderick [2019], Zhang et al. [2021]) and
in the context of deep architectures such as neural networks
(e.g., Borsos et al. [2020], Killamsetty et al. [2021]). We
refer to Munteanu and Schwiegelshohn [2018] for a more
detailed review of coreset methods. However, to the best of
our knowledge, coreset selection has not been considered in
the context of probabilistic circuits.

In this work, we study coreset selection in PCs, i.e., sum-
marising a data set of size n with a coreset of size k � n,
and show that deterministic PCs with indicator leaves admit
efficient greedy coreset selection. In particular, we show
that the optimisation problem for deterministic PCs can
be phrased as a cardinality constrained monotone submod-
ular maximisation problem [Fujishige, 2005], which can
be solved for a circuit of |G| nodes in O(k n |G|) or in
O(k log(n) log(|G|)) for a parallelised implementation.

The contributions of this work are summarised as follows:
(i) we discuss coreset selection in deterministic PCs with in-
dicators and show that the task can be phrased as cardinality
constrained monotone submodular problem, (ii) we intro-
duce an efficient greedy algorithm for approximate coreset
selection, and (iii) we assess the efficiency of our greedy
algorithm on a series of standard benchmark data sets.

2 PRELIMINARIES

We briefly review background information on coresets and
probabilistic circuits, and introduce the notation used in this
work. See appendix for a notation summary.

Accepted for the 5th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2022).

mailto:<martin.trapp@aalto.fi>

2.1 CORESETS

Given a set X = {xi}ni=1 of n data points, we aim to sum-
marize X through a sparsely weighted set C = γX called
a coreset. More formally, let γ ∈ Rn+ be a sparse vector of
positive weights such that k � n and k ≥ ||γ||0, where
|| · ||0 denotes the `0 pseudo-norm. Moreover, let θ ∈ Θ
denote a solution to a cost function, which we assume to
additively decompose into non-negative functions. An ex-
ample for such a cost function is the negative log-likelihood
(NLL) function defined as:

Lθ(X) =

n∑
i=1

−f(xi | θ), (1)

where f(x | θ) ≤ 0 is a log-probability function. Further,
let the coreset weighted NLL function be given by:

Lθ(C) =

n∑
i=1

−γif(xi | θ), (2)

we aim to find a coreset C of size k such that the difference
between the costs is minimal.

Definition 1 (Coreset). Let k ≥ 1, ε ∈ (0, 1). The γ-
weighted set C is a ε-coreset for L, if for every θ ∈ Θ:

|Lθ(X)− Lθ(C)| ≤ εLθ(X) (3)

C is a strong coreset if Eq. (3) holds uniformly for all θ ∈ Θ,
and a weak coreset if Eq. (3) only holds for the optimal
solution, i.e. the maximum likelihood estimate (MLE). We
refer to Bachem et al. [2017] for further details.

2.2 PROBABILISTIC CIRCUITS

There are multiple ways to define probabilistic circuits
(PCs), for consistency with recent works, we will use the
formalism in Trapp et al. [2019] and Choi et al. [2020].
A PC on a set of RVs X = {Xj}dj=1 is defined as a
tuple (G, ψ) consisting of a directed acyclic graph G and
a scope function ψ. Nodes in G are either sum nodes
(S(x) =

∑
N∈ch(S) θS,N N(x)), product nodes (P(x) =∏

N∈ch(P) N(x)) or leaf nodes (L(x) = p(x | θL)) nodes.
We use N to denote a generic node and use boldface to in-
dicate sets of nodes. The scope function ψ : N → P(X)
assigning each node N ∈ N in G a scope, i.e. a subset
Y ⊆X , where P(X) is the power set including ∅ andX .

Depending on the structural properties of the circuit, specific
probabilistic inference queries can be answered tractably.
We will assume throughout the paper that the circuit is
smooth and decomposable (see Choi et al. [2020] for details).
Moreover, we will focus most of our analysis on circuits
that are deterministic.

Definition 2 (Determinism). A sum node is deterministic
if, for any fully-instantiated input, the output of at most one
of its children is nonzero. A PC is deterministic if all of its
sum nodes are deterministic.

Even though determinism is a strong structural constraint, it
has been shown by prior work that ensembles thereof can
obtain competitive results in density estimation tasks (e.g.,
Peharz et al. [2014], Liang et al. [2017]) and can be effective
surrogate models for Bayesian inference (e.g., Belle et al.
[2015], Shih and Ermon [2020]).

3 MAIN RESULTS

The following section will study coreset estimation under
the modelling assumption of deterministic PCs. For simpli-
city, we will use DC to denote a deterministic PC.

Given a DC (G, ψ) with indicator leaves and a data set X ,
the NLL function admits the following simple form:

Lθ(X) =
∑
S∈G

∑
N∈ch(S)

− log θ
g(S,N)
S,N , (4)

where g(S,N) =
∑n
i=1 1[(S,N) ∈ Txi

] and Txi
denotes

the induced tree [Zhao et al., 2016, Trapp et al., 2019]
associated with the ith datum.

We aim to summarize X through a sparsely weighted set C
that minimizes the difference between costs:

arg min
γ ∈ Rn+

∣∣∣∣∣∑
S∈G

∑
N∈ch(S)

−
[

log θ
g(S,N)
S,N − log θ

g(S,N,γ)
S,N︸ ︷︷ ︸

=log θ
g(S,N,1−γ)
S,N

]∣∣∣∣∣
s.t. ||γ||0 ≤ k

(5)
where k denotes the coreset size and g(S,N,γ) =∑n

i=1 γi1[(S,N) ∈ Txi
]. Note that each term in Eq. (5) will

be positive or zero if g(S,N,1− γ) ≥ 0 for all (S,N) ∈ G.
Therefore, we obtain the following alternative constrained
program:

arg min
γ ∈ Rn+

J(γ) =
∑
S∈G

∑
N∈ch(S)

− log θ
g(S,N,1−γ)
S,N

s.t. g(S,N,1− γ) ≥ 0, ∀(S,N) ∈ G,
||γ||0 ≤ k

(6)

3.1 PRODUCT-FREE DETERMINISTIC CIRCUITS

Definition 3 (Product-free). A PC is said to be product-
free if it is a convex combination of leaf nodes with scope
ψ(L) = ψ(G) for all L ∈ G, i.e., G only contains products
with at most one child.

Note that for product-free DCs, each observation is allocated
to precisely one leaf node, i.e., each inducing tree T is a

2

single path through G. Therefore, the number of leaves is
equivalent to the number of inducing trees T denoted as τ .
We will now show that Eq. (6) simplifies for product-free
DCs to optimise a monotone modular function.

Definition 4 (Submodular function [Fujishige, 2005]). A
function f : 2V → R is submodular if given some ground
set N for every A ⊆ B ⊆ N and C ∈ N \B we have:

f(A ∪ C)− f(A) ≥ f(B ∪ C)− f(B), (7)

i.e. marginal gains are decreasing. A function is supermodu-
lar if its negative is submodular and modular if the inequal-
ity holds with equality.

Assume a product-free DC with indicator leaves and let Lj
denote the jth leaf, i.e., the unique leaf of the induced tree
Tj . Moreover, let πj :=

∏
(S,L)∈Tj θS,L denote the weight

of the jth induced tree. Then the NLL function is given as:

Lπ(X) =

τ∑
j=1

−g(Lj) log πj︸ ︷︷ ︸
=wj

, g(Lj) =

n∑
i=1

1[Lj ∈ Ti].

(8)

Therefore, the objective J(γ) reduces to finding a sparse
vector γ ∈ Rτ+ where τ ≤ n by minimizing:

J(γ) =

τ∑
j=1

[γj − g(Lj)] log πj . (9)

Let σ(·) be a permutation of the induced trees such that
wσ(1) ≥ wσ(2) ≥ wσ(3) ≥ · · · ≥ wσ(τ). Then, the optimal
solution for a coreset of size k is found by simply setting
γσ(j) = g(Lσ(j)) for 1 ≤ j ≤ k. Alternatively, given a bin-
ary vector b ∈ Bτ we write Eq. (9) as J(b) =

∑τ
j=1 bj wj ,

which is a linear set function.

Corollary 1. Given a product-free deterministic cir-
cuit with indicator leaves, finding an ε-coreset of size
k is a linear set function, and the optimal solution
can be obtained exactly and gives an approximation of:∑τ
j=k+1−g(Lσ(j)) log πσ(j) ≤ εLθ(X).

3.2 DETERMINISTIC CIRCUITS

We will now discuss general DCs with indicator leaves.
Again, we may reformulate the objective of finding a coreset
of size k in terms of a set function. Let b ∈ Bn denote a
binary vector of size n with bi = 0, then we can bound the
ith coreset weight to be:

0 ≤ γi ≤ min
(S,N)∈Txi

g(S,N,1− γ � b) (10)

where � denotes the Hadamard (element-wise) product.
Therefore, the coreset objective for DCs with indicator
leaves is a cardinality constrained linear program.

Algorithm 1 Greedy Coreset Selection

1: Initialize γi = 0 for each i = 1, . . . , n;
2: for j = 1, . . . , k do
3: u← 0;
4: ∆← 0;
5: for i = 1, . . . , n do
6: ui ← compute upper bound (Eq. (10));
7: ∆i ← compute improvement (Eq. (12));
8: end for
9: cj ← argmaxi ∆i;

10: γcj ← ucj ;
11: end for
12: Return: c,γ

Let the optimal coreset be given by maximising:

fγ(b) =
∑
S∈G

∑
N∈ch(S)

[g(S,N)− γT (v(N)� b)] log θS,N

(11)
subject to the constraint ‖b‖0 ≤ k and where v(N) =
(1[N ∈ Tx1], . . . ,1[N ∈ Txn])T .

Due to the constraints on γ, finding the optimal solution
for Eq. (11) is a cardinality constrained monotone submod-
ular maximization problem. For the derivation, we refer
to Appendix A. Therefore, a greedy algorithm provides a
1− 1/e approximation to the optimal solution [Nemhauser
et al., 1978, Fujishige, 2005] in the worst-case. To greedily
maximize fγ(b), we compute the improvement obtained by
adding the ith datum at iteration j < k and select the datum
which results in the largest marginal gain, i.e.,

arg max
i

∑
(S,N)∈Ti

−γ∗i log θS,N (12)

where ei denotes the ith one-hot coded binary vector of size
n and γ∗i is the optimal coreset weight for the ith datum.

Because Eq. (11) is a cardinality constrained linear program,
the optimal solution lies on the vertices of the solution poly-
tope [Tanahashi, 1971]. Motivated by this observation, we
heuristically pick the optimal coreset weight as follows:

γ∗i = min
L∈Tj

g(L)− γT (v(L)� b� ¬ej), (13)

which is the locally optimal solution if G is a tree, cf. Ap-
pendix A for further details. Algorithm 1 summarizes the
proposed greedy coreset selection for DCs.

Note that choosing the coreset weights based on the locally
optimal solution may result in degeneracy of the greedy al-
gorithm. Therefore, one may optimize the coreset objective
directly using a solver for mixed-integer programs [Wolsey,
2007] in exchange for higher computational cost. We leave
a detailed discussion for future work.

3

J
(γ

)
J

(γ
)

J
(γ

)
J

(γ
)

J
(γ

)

coreset size k coreset size k coreset size k coreset size k

NLTCS

MSNBC

KDD

PLANTS

AUDIO

JESTER

NETFLIX

ACCIDENTS

RETAIL

PUMSB-STAR

DNA

KOSARAK

MSWEB

BOOK

EACHMOVIE

WEBKB

REUTERS-52

20 NEWSGRP

BBC

AD

Figure 1: Results on 20 discrete benchmark data sets comparing greedy selection (), random selection with γ∗i ()
as weight, and random selection with randomly sampled weights (). Each plots shows the objective function value
J(γ) (y-axis with minimum = 0.0) as a function of the coreset size k (x-axis) for core sets of increasing relative sizes, i.e.,
[1e−3%, 5e−3%, 0.01%, 0.05%, 0.1%, 0.5%, 10%] of the training set. All results depict the mean and std compute for ten
randomly generated deterministic circuits with fixed maximum depth of 15 layers. Smaller is better.

4 EXPERIMENTS

We analyze the performance of greedy coreset selection on
20 commonly used discrete data sets introduced by Lowd
and Davis [2010] and Van Haaren and Davis [2012]. See
Table 1 for details on the setup and data sets. Each exper-
iment uses ten randomly generated DCs with a maximum
of 15 consecutive sum and product nodes and a minimum
number of 100 observations per leaf. For reproducibility
and fair comparison, we use predefined random seeds.

Fig. 1 depicts the mean and std of the objective function val-
ues (J(γ)) for each data set as a function of the coreset size
k for the greedy selection (), random selection using γ∗i
as weight (), and random selection with γi ∼ U(0, γ∗i)
(). Overall, we find that greedy coreset selection per-
forms best. In many cases, greedy coreset selection quickly
converges to a local optimum.

5 CONCLUSION & DISCUSSION

In this work, we discussed coreset selection in deterministic
probabilistic circuits (DCs). Our results indicate that coreset
selection in DCs can be solved exactly for a restricted class
of DCs and approximately for a more general class. For the
latter, we utilize the fact that the problem can be phrased as
a cardinality constrained submodular maximization problem
and that the optimal coreset weights are an extreme point
on the solution polytope of the respective linear program,
allowing us to pick locally optimal coreset weights. We
showed on 20 common data sets that greedy coreset selec-
tion outperforms random selection and provides a promising
avenue for further research.

In the future, we plan to account for the factorization applied
by the PC, discuss more general PCs, and explore applica-
tions to continual learning and probabilistic programming.

4

References

Olivier Bachem, Mario Lucic, and Andreas Krause.
Practical coreset constructions for machine learning.
arXiv:1703.06476, 2017.

Vaishak Belle, Andrea Passerini, and Guy Van den Broeck.
Probabilistic inference in hybrid domains by weighted
model integration. In International Joint Conference on
Artificial Intelligence (IJCAI), 2015.

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Core-
sets via bilevel optimization for continual learning and
streaming. Advances in Neural Information Processing
Systems (NeurIPS), 33:14879–14890, 2020.

Trevor Campbell and Tamara Broderick. Automated scal-
able Bayesian inference via Hilbert coresets. The Journal
of Machine Learning Research, 20(1):551–588, 2019.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic models. Technical report, UCLA, 2020.

Adnan Darwiche. A differential approach to inference in
Bayesian networks. Journal of the ACM (JACM), 50(3):
280–305, 2003.

Satoru Fujishige. Submodular Function and Optimization,
volume 58 of Annals of Discrete Mathematics. Elsevier,
2 edition, 2005.

Sariel Har-Peled and Akash Kushal. Smaller coresets for
k-median and k-means clustering. Discrete & Computa-
tional Geometry, 37(1):3–19, 2007.

Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and
Rishabh Iyer. RETRIEVE: Coreset selection for efficient
and robust semi-supervised learning. Advances in Neural
Information Processing Systems (NeurIPS), 34:14488–
14501, 2021.

Yitao Liang, Jessa Bekker, and Guy Van den Broeck. Learn-
ing the structure of probabilistic sentential decision dia-
grams. In Conference on Uncertainty in Artificial Intelli-
gence (UAI), 2017.

Daniel Lowd and Jesse Davis. Learning Markov network
structure with decision trees. In IEEE International Con-
ference on Data Mining (ICDM), pages 334–343. IEEE,
2010.

Alexander Munteanu and Chris Schwiegelshohn. Coresets-
methods and history: A theoreticians design pattern for
approximation and streaming algorithms. KI-Künstliche
Intelligenz, 32(1):37–53, 2018.

George L Nemhauser, Laurence A Wolsey, and Marshall L
Fisher. An analysis of approximations for maximizing
submodular set functions—I. Mathematical program-
ming, 14(1):265–294, 1978.

Robert Peharz. Foundations of Sum-Product Networks for
Probabilistic Modeling. PhD thesis, Graz University of
Technology, 2015.

Robert Peharz, Robert Gens, and Pedro Domingos. Learning
selective sum-product networks. In ICML workshop on
LTPM, volume 32, 2014.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner,
Alejandro Molina, Martin Trapp, Guy Van den Broeck,
Kristian Kersting, and Zoubin Ghahramani. Einsum net-
works: Fast and scalable learning of tractable probabil-
istic circuits. In International Conference on Machine
Learning (ICML), pages 7563–7574. PMLR, 2020a.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Xiaoting Shao, Martin Trapp, Kristian Kersting,
and Zoubin Ghahramani. Random sum-product networks:
A simple and effective approach to probabilistic deep
learning. In Conference on Uncertainty in Artificial Intel-
ligence (UAI), pages 334–344, 2020b.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. In Conference on Uncertainty
in Artificial Intelligence (UAI), pages 337–346, 2011.

Guy Rosman, Mikhail Volkov, Dan Feldman, John W
Fisher III, and Daniela Rus. Coresets for k-segmentation
of streaming data. In Advances in Neural Information
Processing Systems (NIPS), volume 27. Curran Associ-
ates, Inc., 2014.

Andy Shih and Stefano Ermon. Probabilistic circuits for
variational inference in discrete graphical models. Ad-
vances in Neural Information Processing Systems (Neur-
IPS), 33:4635–4646, 2020.

Tsuguhiko Tanahashi. Cardinality-constrained linear pro-
gramming. PhD thesis, Department of Engineering-
Economic Systems, Stanford University, 1971.

Martin Trapp. Sum-Product Networks for Complex Model-
ling Scenarios. PhD thesis, Graz University of Techno-
logy, 2020.

Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, and
Zoubin Ghahramani. Bayesian learning of sum-product
networks. In Advances in Neural Information Processing
Systems (NeurIPS), pages 6347–6358, 2019.

Nicolas Tremblay, Simon Barthelmé, and Pierre-Olivier
Amblard. Determinantal point processes for coresets.
Journal of Machine Learning Research, 20:168–1, 2019.

Ivor W Tsang, James T Kwok, Pak-Ming Cheung, and Nello
Cristianini. Core vector machines: Fast SVM training
on very large data sets. Journal of Machine Learning
Research, 6(4), 2005.

5

Jan Van Haaren and Jesse Davis. Markov network struc-
ture learning: A randomized feature generation approach.
In AAAI Conference on Artificial Intelligence (AAAI),
volume 26, pages 1148–1154, 2012.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and
Guy Van den Broeck. A compositional atlas of tractable
circuit operations for probabilistic inference. Advances
in Neural Information Processing Systems (NeurIPS), 34:
13189–13201, 2021.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in
data subset selection and active learning. In International
Conference on Machine Learning (ICML), pages 1954–
1963. PMLR, 2015.

Laurence A Wolsey. Mixed integer programming. Wiley En-
cyclopedia of Computer Science and Engineering, pages
1–10, 2007.

Jacky Zhang, Rajiv Khanna, Anastasios Kyrillidis, and
Sanmi Koyejo. Bayesian coresets: Revisiting the non-
convex optimization perspective. In International Confer-
ence on Artificial Intelligence and Statistics (AISTATS),
pages 2782–2790. PMLR, 2021.

Han Zhao, Tameem Adel, Geoff Gordon, and Brandon
Amos. Collapsed variational inference for sum-product
networks. In International Conference on Machine Learn-
ing (ICML), pages 1310–1318. PMLR, 2016.

6

Supplementary Material:
Towards Coreset Learning in Probabilistic Circuits

This appendix contains further derivations in Appendix A,
further details on the proposed algorithm in Appendix B,
and details on the experiments in Appendix C. Moreover,
we will summarize the notation used in the paper.

General Notation Scalars are written lowercase (e.g.,
x, y) vectors are written lowercase bold (e.g., x,y) and
matrices are written uppercase bold (e.g., X,Y). Further-
more, the following is used for general mathematical ob-
jects.

X Set of data points
|X | Cardinality of a set
n Number of data points, e.g., size of training set
p Number of dimensions / features
γ Coreset weights

γi Coreset weight of ith observation
C Coreset weighted data set

xi ith observation
b binary vector

ei ith one-hot encoded vector
1 vector of ones

P(X) Power set including empty set
1[·] Indicator function
� Element-wise multiplication

‖γ‖0 Pseudo-norm of γ, i.e.,
∑
i

1[γi > 0]

Notation on Probabilistic Circuits The following nota-
tion is used for objects related to probabilistic circuits.

G Graph, i.e., computational graph
ψ Scope function

S,P,L Sum, Product and Leaf node (respectively)
N Generic node, i.e., a sum, product of leaf node
N Set of nodes

θS,N Edge weight for edge from S to N

Lθ Negative log-likelihood function
f(x | θ) log-probability function

A DERIVATIONS

Derivation of submodularity Given a deterministic PC
(G, ψ) with indicator leaves and let the coreset objective be
defined as:

arg max
b ∈ Bn

f(b,γ)

s.t. ‖b‖0 ≤ k
(14)

with

f(b,γ) =
∑
S∈G

∑
N∈ch(S)

[g(S,N)− γT (v(N)� b)] log θS,N.

(15)

Further, let b[a] ⊆ b[b] ∈ Bn and let ei denotes the ith one-
hot coded binary vector of size n. Then, we have for any ei
with b[b]i = 0 that:

f(b+ei,γ�(b+ei))−f(b,γ�b) = f(ei,γ�(b+ei))
(16)

and

f(ei,γ � (b[a] + ei)) ≥ f(ei,γ � (b[b] + ei)) (17)

due to the fact that

[γ � (b[a] + ei)]i ≥ [γ � (b[b] + ei)]i (18)

by the definition of bound on γi given in Eq. (10) where [·]i
denotes the ith element. We, therefore, conclude that f(b,γ)
is submodular and monotone due to γi ≥ 0 for all i.

Connection to linear programming Coreset selection in
deterministic PC (G, ψ) with indicator leaves can be formu-
lated as a cardinality-constrained linear program [Tanahashi,
1971].

In particular, let the coreset objective be defined as:

arg max
b,γ

∑
S∈G

∑
N∈ch(S)

[g(S,N)− γT (v(N)� b)] log θS,N

s.t. ‖b‖0 ≤ k,
0 ≤ γi ≤ min

(S,N)∈Txi
g(S,N,1− γ � b)

(19)
which is a mixed integer program with packing constraints.

Note that, if G is a tree, then the observation count is an
additive function on G, i.e.,

g(S,N) =
∑

S′∈ch(N)

∑
N′∈ch(S′)

g(S′,N′) (20)

and is non-increasing for every path in G, i.e., g(S,N) ≥
g(S′,N′) for every S′ ∈ G that is a descendant of N.

Therefore, it is sufficient to consider coreset weight con-
straints only for the edges to the leaves of G, i.e.,

0 ≤ γj ≤ min
L∈Tj

g(L)− γT (v(L)� b� ¬ej) (21)

where v(N) = (1[N ∈ Tx1], . . . ,1[N ∈ Txn])T and ej de-
notes the jth one-hot coded binary vector.

B ALGORITHM

This section presents further details on the proposed greedy
selection algorithm.

In praxis, computing LINE 6 has computational cost of
O(|L|) and LINE 7 a computational cost of O(|G|). Both
computations can be parallelized across nodes while the
inner for loop over the observations is parallelisable over
observations, resulting in an overall computational cost of
O(k log(n) log(|G|)) for a parallelised implementation.

C EXPERIMENTS

This section contains details on the experiments conducted.
Appendix C.1 contains detail on the experimental setup, and
Appendix C.2 contains a listing of the data sets used in the
experiments depicted in the main text.

C.1 EXPERIMENTAL SETUP

For each data set, we randomly generated ten DCs with a
maximum of 15 consecutive sum and product nodes and a
minimum of 100 observations per leaf. Each random DC
structure is generated based on a simple recursive algorithm
that produces randomly defined deterministic sum nodes
and product nodes until the maximum depth or the min-
imum number of observations is reached. In particular, for
each sum node, we choose to split the data into two disjoint
subsets. The splitting is chosen randomly, and if no separ-
ation into two sub-sets can be found, we construct a leaf
node instead. Note that this is a pretty naïve approach, and
a more elaborate strategy will likely result in a more accur-
ate model. We then recurse to generate a product node. We
randomly separate the input dimensions into two disjoint
sub-sets for each product node. If the number of dimen-
sions is one, we construct a product node with a single child.
Afterwards, we recurse to generate a new sum node. This
procedure continues until no partition in two sub-sets of
the data can be found, a depth of 15 consecutive sum and
product nodes has reached, or the number of observations
in a sub-set is below 100. We used the following random
seeds for reproducibility: [1, . . . , 10].

Random selection with γ∗ Random selection with γ∗

relies on the computation of Eq. (10). In particular, we first
draw an observation i at random without replacement. Then
we obtained γ∗i for the respective observation. After this, we
draw another observation at random without replacement
and re-evaluate Eq. (10) to set the coreset weight accord-
ingly. This procedure continues until we have selected a
pre-specified number of coreset members.

Random selection with random weights Random selec-
tion with random weights picks a weight in the range defined
by Eq. (10) at random. In particular, we first draw an obser-
vation i at random without replacement. Then we obtained
γi ∼ U(0, γ∗i) for the respective observation. After this,
we draw another observation at random without replace-
ment, re-evaluate Eq. (10) and draw the coreset weight from
the updated uniform distribution. This procedure continues
until we have selected a pre-specified number of coreset
members.

C.2 BINARY BENCHMARK DATA SETS

Table 1 lists the binary benchmark data sets used in the em-
pirical evaluation of the greedy coreset selection algorithm.

Table 1: Commonly used discrete benchmark data sets.

Data set p ntrain nvalid ntest

NLTCS 16 16181 2157 3236
MSNBC 17 291326 38843 58265
KDD 65 180092 19907 34955
PLANTS 69 17412 2321 3482
AUDIO 100 15000 2000 3000
JESTER 100 9000 1000 4116
NETFLIX 100 15000 2000 3000
ACCIDENTS 111 12758 1700 2551
RETAIL 135 22041 2938 4408
PUMSB-STAR 163 12262 1635 2452
DNA 180 1600 400 1186
KOSARAK 190 33375 4450 6675
MSWEB 294 29441 3270 5000
BOOK 500 8700 1159 1739
EACHMOVIE 500 4524 1002 591
WEBKB 839 2803 558 838
REUTERS-52 889 6532 1028 1540
20 NEWSGRP. 910 11293 3764 3764
BBC 1058 1670 225 330
AD 1556 2461 327 491

	Introduction & Related Work
	Preliminaries
	Coresets
	Probabilistic Circuits

	Main Results
	Product-free deterministic circuits
	deterministic circuits

	Experiments
	Conclusion & Discussion
	Derivations
	Algorithm
	Experiments
	Experimental Setup
	Binary benchmark data sets

