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ABSTRACT

Robust decision-making is crucial in numerous risk-sensitive applications where
outcomes are uncertain and the cost of failure is high. Conditional Robust Op-
timization (CRO) offers a framework for such tasks by constructing prediction
sets for the outcome that satisfy predefined coverage requirements and then mak-
ing decisions based on these sets. Many existing approaches leverage conformal
prediction to build prediction sets with guaranteed coverage for CRO. However,
since coverage is a sufficient but not necessary condition for robustness, enforcing
such constraints often leads to overly conservative decisions. To overcome this
limitation, we propose a novel framework named Conformal Robustness Con-
trol (CRC), that directly optimizes the prediction set construction under explicit
robustness constraints, thereby enabling more efficient decisions without compro-
mising robustness. We develop efficient algorithms to solve the CRC optimization
problem, and also provide theoretical guarantees on both robustness and optimal-
ity. Empirical results show that CRC consistently yields more effective decisions
than existing baselines while still meeting the target robustness level.

1 INTRODUCTION

In many real-world applications, it is crucial for decision-makers to account for operational risks
to avoid irreversible consequences. For example, portfolio management (Markowitz, 1952) aims to
maximize returns while navigating the trade-off with risk tolerance. Similar risk-sensitive decision-
making challenges are also evident in fields such as medical diagnosis (Kiyani et al., 2025) and
transportation planning (Patel et al., 2024).

Consider a scenario where we observe an input X , but the corresponding outcome Y is unknown.
The decision-maker needs to choose a decision z(X) based on the input X such that the incurred
decision loss ϕ(Y, z(X)) does not exceed a certain risk certificate r(X) with high probability. For-
mally, the (1− α)-level robustness requirement is given by

P{ϕ(Y, z(X)) ≤ r(X)} ≥ 1− α. (1)

At the same time, the decision-maker seeks to minimize r(X) to improve efficiency and reduce
potential worst-case losses.

Over the years, Conditional Robust Optimization (CRO), introduced by Chenreddy et al. (2022),
has become a widely adopted and effective framework for robust decision-making. As an extension
of classical robust optimization (Ben-Tal et al., 2009), CRO incorporates covariate information to
enhance decision quality, enabling more precise and context-aware responses in complex tasks. In
the CRO framework, decisions are derived from a minmax optimization problem using a prediction
set U(X), formulated as zU (X) := argminz∈Z maxy∈U(X) ϕ(y, z). By designing U(X) with a
regular structure, such as a box or an ellipse, the resulting minmax problem remains convex and
can be solved efficiently in polynomial time. The corresponding risk certificate value is defined
as rU (X) := maxy∈U(X) ϕ(y, zU (X)). To meet the robustness requirement (1), CRO enforces a
coverage condition on the prediction set, that is

P{Y ∈ U(X)} ≥ 1− α. (2)

Recently, Johnstone & Cox (2021) and Sun et al. (2023) first employed the conformal prediction
(Vovk et al., 2005) to construct the prediction set U(X) from historical labeled data with the target
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coverage level 1− α; then substituted it into the minmax problem to make the final decision. It can
be observed that the coverage property (2) is a sufficient condition for achieving the final robustness
target (1). Hence, the two-step procedure above provides a statistically valid robustness guarantee
for the subsequent decisions.

However, as noted by Ben-Tal et al. (2009), controlling robustness via this sufficient condition often
results in suboptimal and overly conservative decisions. In this paper, we introduce Conformal
Robustness Control (CRC), a new strategy to alleviate the conservativeness of the existing CRO
framework and to enable more efficient robust decisions. Our contributions are summarized as
follows.

(1) Unlike conventional CRO methods that enforce coverage constraint on prediction sets,
CRC directly minimizes the expected risk certificate under explicit robustness constraint,
significantly improving decision efficiency. The CRC procedure is amenable to efficient
gradient-based optimization algorithms that minimize an empirical loss using labeled data.

(2) We establish non-asymptotic theoretical guarantees on both the robustness and the opti-
mality gap of the resulting decisions. For a given test data point, we further develop a
sample-splitting calibration procedure to endow the optimized prediction set with finite-
sample robustness guarantees.

(3) Through extensive experiments on both synthetic data and real-world applications, the pro-
posed CRC consistently outperforms baseline methods across key metrics.

Figure 1 compares the conventional CRO framework with our proposed method CRC, at the nominal
robustness level 1 − α = 90%. The brown circular regions in the right panel represent prediction
sets U(X) satisfying a 90% coverage constraint and a 90% robustness constraint, respectively. The
CRO decision attains a robustness level of 98%, which is significantly higher than the nominal
requirement. This leads to a higher risk certificate and decision loss compared to the proposed CRC.

Target: 
1 − 𝛼

robustness

ℙ 𝑌 ∈ 𝒰 𝑋 ≥ 1 − α

ℙ 𝜙(𝑌, 𝑧𝒰 𝑋 ) ≤ 𝑟𝒰 𝑋 ≥ 1 − 𝛼

Risk certificate: 1.93
Decision loss: 0.32

Risk certificate: 1.25
Decision loss : 0.17

CRO: Coverage constraint

CRC: Robustness constraint

Prediction set
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𝒰(𝑋)

−𝑦!

−𝑦"

Robustness: 0.90
Coverage: 0.56

𝒰(𝑋)

CRO CRC

Figure 1: Comparison of CRO and our method CRC. Portfolio optimization problem with with
ϕ(y, z) = −y⊤z, Z = {z ∈ R2 : z1 + z2 = 1, z1, z2 ≥ 0}, and α = 0.1. Blue lines show
CRO solutions for the brown circular prediction sets. The shaded blue regions indicate where the
loss ϕ(y, z(X)) is below the risk certificate r(X). The prediction set in CRO achieves exact 90%
coverage, with r(X) = 1.93. In contrast, CRC meets the 90% robustness requirement, yielding a
more efficient decision with r(X) = 1.25.

2 RELATED WORKS

Robust optimization is a well-established method for decision-making under uncertainty. Early
work focused on approximating Value at Risk (VaR) by designing deterministic prediction sets to
induce robustness (Ghaoui et al., 2003; Natarajan et al., 2008; Bertsimas et al., 2018). Later studies,
such as Shang et al. (2017); Bertsimas et al. (2018); Hong et al. (2021), have proposed data-driven
prediction sets. With the growing size of data, Chenreddy et al. (2022) explored how covariate in-
formation could be leveraged to develop more effective prediction sets, leading to the introduction
of the Conformal Robust Optimization (CRO) framework. Subsequent works by Johnstone & Cox
(2021); Patel et al. (2024); Sun et al. (2023) incorporated conformal prediction methods to construct
prediction sets that satisfy coverage conditions, thereby providing finite-sample robustness guaran-
tees for CRO. Kiyani et al. (2025) derived the explicit form of the optimal prediction set that has the
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minimum risk certificate under the coverage constraint. However, the construction relies on min-
imizing the VaR function, which often also leads to intractable formulations if the decision space
is continuous (Uryasev & Rockafellar, 2001). In addition, Wang et al. (2023) also considered opti-
mizing the prediction sets in a robust optimization problem, but relaxing the robustness constraint
through the conditional Value at Risk transformation (Rockafellar & Uryasev, 2002). Compared to
existing work, we impose the exact robustness constraint rather than a coverage constraint on the
prediction set, thereby enhancing the generation of more effective decisions.

Conformal prediction is a widely used method for uncertainty quantification, notable for its model-
agnostic and distribution-free properties (Vovk et al., 2005; Lei et al., 2018; Angelopoulos et al.,
2024a). In predictive inference tasks, the efficiency measure of conformal prediction sets is the size
or volume. Recent research has increasingly focused on improving the efficiency of these predic-
tion sets. Several studies, such as Sadinle et al. (2019), Bai et al. (2022), Stutz et al. (2022), and
Kiyani et al. (2024b) have formulated constrained optimization problems that minimize the size of
prediction sets subject to coverage constraints. In addition, Yang & Kuchibhotla (2025) introduced
a sample-splitting approach to select models yielding the smallest prediction sets, followed by con-
structing split conformal prediction sets (Vovk et al., 2005; Papadopoulos et al., 2002). Differently,
Liang et al. (2024) proposed a method that avoids sample splitting while maintaining finite-sample
coverage during model selection. In terms of decision efficiency, since the performance of deci-
sions varies significantly with different conformal prediction sets, Chenreddy & Delage (2024) and
Yeh et al. (2024) proposed end-to-end learning methods that train the conformal prediction sets by
directly minimizing downstream expected decision risk. Moreover, Bao et al. (2025) developed
new frameworks for prediction set selection in the CRO problem, which could keep finite-sample
robustness control while avoiding sample splitting.

3 PREDICTION SET OPTIMIZATION WITH ROBUSTNESS CONTROL

3.1 PROBLEM SETUP

Let X be the covariate space, and Y be the label space. The primary goal of robust decision is to
find a decision policy z(·) : X → Z and a risk certificate function r(·) : X → R that minimizes
E[r(X)] subject to the robustness constraint in (1). It is consistent with the Risk Averse Decision
Policy Optimization (RA-DPO) problem defined by Kiyani et al. (2025):

min
z(·),r(·)

E[r(X)] s.t. P{ϕ (Y, z(X)) ≤ r(X)} ≥ 1− α. (3)

However, directly optimizing over arbitrary forms of z(·) and r(·) is generally difficult. The CRO
framework provides a flexible alternative by introducing a prediction set U(·) that maps each covari-
ate x ∈ X to a subset of the label space Y , which relates to both the decision and the associated risk
certificate. Specifically, for x ∈ X ,

zU (x) := argmin
z∈Z

max
y∈U(x)

ϕ(y, z), rU (x) = max
y∈U(x)

ϕ(y, zU (x)).

To identify the optimal decision policy and risk certificate, it is natural to minimize the expected risk
certificate under the robustness constraint:

min
U(·):X→2Y

E [rU (X)] s.t. P {ϕ (Y, zU (X)) ≤ rU (X)} ≥ 1− α. (4)

The next theorem shows the equivalence between RA-DPO in (3) and the problem (4), which also
means that optimizing the prediction sets will not result in a suboptimal risk certificate.
Theorem 3.1. Let zRA-DPO(·), rRA-DPO(·) be the optimal solution of RA-DPO in (3), and let U∗ be the
optimal solution of (4). It holds that E[rRA-DPO(X)] = E[rU∗(X)], which means problems (3) and
(4) are equivalent in minimizing the expected risk certificate while maintaining robustness control.

We defer the proof of Theorem 3.1 to Appendix B.2. The prior work of Kiyani et al. (2025)
also derived a formulation equivalent to RA-DPO in Eq. (3), termed Risk Averse Conformal
Prediction Optimization (RA-CPO). This formulation optimizes the expected risk certificate over
all possible prediction sets subject to a coverage constraint, that is, replacing the constraint in
(4) with (2). To construct the “optimal” prediction set that solves RA-CPO, Kiyani et al. (2025)
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proposed a method based on the minimizer and minimum value of a contextual VaR problem:
z∗(x) = argminz∈Z VaR1−α(ϕ(Y, z)|X = x) and r∗(x) = minz∈Z VaR1−α(ϕ(Y, z)|X = x).
Here, VaR(·|X = x) denotes the conditional 1− α population quantile given the covariate X = x.
In the case of classification with a finite decision space, Kiyani et al. (2024a) approximated the opti-
mal prediction set by first estimating the conditional distribution of Y | X , then the associated VaR
problem can be solved by traversal. However, this approach does not extend to continuous decision
spaces Z , where the VaR problem generally becomes intractable (Uryasev & Rockafellar, 2001).

To address this limit, we consider solving problem (4) over the parametrized prediction set Uθ(·),
where θ ∈ Θ refers to the model parameters. In regression settings with X = Rp,Y = Rq , two
commonly used types of prediction sets are box and ellipsoidal sets (Johansson et al., 2017; Sun
et al., 2023). Their parametrized forms are can be defined as follows.

• Box prediction set. A box-shaped prediction set is constructed by componentwise lower
and upper bounds for the response vector. Let hlo

θ (·) : Rp → Rq and hhi
θ (·) : Rp → Rq be

models with parameters θ ∈ Θ, then

Uθ(x) =
{
y ∈ Rq : hlo

θ (x) ≤ y ≤ hhi
θ (x)

}
.

• Ellipsoidal prediction set. Unlike box sets, ellipsoidal prediction sets account for correla-
tions among components of the response vector. Let µθ(·) : Rp → Rq and Σθ(·) : Rp →
Rq×q denote the mean and covariance model with parameters θ ∈ Θ, then

Uθ(x) =
{
y ∈ Rq : (y − µθ(x))

⊤
Σ−1

θ (x) (y − µθ(x)) ≤ 1
}
.

In Appendix E.6, we also provide the example of a parametrized polyhedral set based on the defini-
tion in Bärmann et al. (2016).

For a parametrized prediction set Uθ(·), we denote the corresponding decision policy and risk cer-
tificate functions as zθ(·) ≡ zUθ

(·) and rθ(·) ≡ rUθ
(·) for short. We then consider the parameterized

version of problem (4):

min
θ∈Θ

E[rθ(X)] s.t. P {ϕ(Y, zθ(X)) ≤ rθ(X)} ≥ 1− α. (5)

Even though the parametrized optimization can also be applied to the RA-CPO framework, we show
that our proposed problem (5) yields a lower risk certificate in Appendix B.3, which further confirms
the benefit of robustness constraint over the coverage constraint. In the following subsections, we
investigate the optimization problem (5) based on the collected labeled data and provide theoretical
results for the robustness and optimality guarantees. Moreover, we also developed a differential
algorithm to solve the optimization problem for the continuous decision space.

3.2 EMPIRICAL OPTIMIZATION WITH CONFORMAL ROBUSTNESS CONTROL

Suppose we have collected an i.i.d. labeled dataset Dn = {(Xi, Yi)}ni=1 drawn from some distribu-
tion P . We first optimize the prediction set by addressing an empirical version of the problem (5),
and then apply this prediction set for decision-making. By approximating both the objective and the
constraint in (5) via sample averaging, we obtain the following empirical counterpart:

θ̂ = argmin
θ∈Θ

1

n

n∑
i=1

rθ(Xi) s.t.
1

n

n∑
i=1

1 {ϕ (Yi, zθ(Xi)) ≤ rθ(Xi)} ≥ 1− α. (6)

To distinguish from coverage control methods and to emphasize the explicit robustness constraint,
we refer to this procedure as Conformal Robustness Control (CRC).

A natural approach to solving problem (6) is to consider its dual formulation. Define the La-
grangian function as L(λ; θ) := f(θ) + λg(θ), where λ ≥ 0 is the Lagrange multiplier, f(θ) =
1
n

∑n
i=1 rθ(Xi) and g(θ) = 1 − α − 1

n

∑n
i=1 1 {ϕ (Yi, zθ(Xi)) ≤ rθ(Xi)}. The function f(θ) is

typically differentiable if the CRO problem for Uθ(x) can be reformulated into a convex program-
ming. In such cases, its gradient can be computed using existing implicit differential tools, see
Amos & Kolter (2017) and Agrawal et al. (2019). In contrast, the term g(θ) is non-smooth due to
the indicator. To enable gradient-based optimization, we approximate the indicator with a smooth
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surrogate 1̃{a ≤ b} = 1
2 (1 + erf( b−a√

2σ
)), where erf(x) = 2√

π

∫ x

0
e−t2dt is the Gaussian error func-

tion and σ > 0 controls the smoothness. Replacing the indicator in g(θ) with this surrogate yields
a smoothed constraint function g̃(θ). Similar smoothing techniques have been employed in the op-
timization problem of conformal prediction (Bai et al., 2022; Kiyani et al., 2024b). The resulting
smoothed dual problem is given by: minθ∈Θ maxλ≥0 L̃(λ; θ), where L̃(λ; θ) = f(θ)+λg̃(θ). This
smooth approximation enables numerical solution via an alternating gradient descent algorithm. We
refer to Davis et al. (2020) and Bolte et al. (2021) for the convergence analysis of similar optimiza-
tion problems. Implementation details are summarized in Algorithm 1.

Algorithm 1 Prediction Set Optimization with CRC

1: Input: Loss function ϕ, robustness level 1 − α, labeled dataset Dn = {(Xi, Yi)}ni=1,
parametrized set Uθ(·) with θ ∈ Θ, smooth surrogate function 1̃, learning rate η > 0.

2: Initialize θ ← θ0 and λ = 0.
3: Compute rθ(Xi) and zθ(Xi) for i ∈ [n].
4: Define empirical objective f(θ) and set smooth constraint g̃(θ).
5: Form the smoothed Lagrange multiplier L̃(λ; θ)← f(θ) + λg̃(θ).
6: while no converged do
7: Perform a few steps of gradient descent on θ to minimize L̃(λ; θ).
8: Compute g̃(θ) and perform projected gradient asent λ← max{0, λ+ ηg̃(θ)}.
9: end while

10: θ̂ ← θ.
11: Output: Prediction set Uθ̂(·).

Remark 3.1. In learning problems, Angelopoulos et al. (2024b) proposed the framework named
conformal risk control by extending the miscoverage risk to general monotone risk functions. The
robustness constraint can be regarded as a special risk, whereas it is not monotone in the model pa-
rameter. In addition, the objective function in Angelopoulos et al. (2024b) is the threshold parameter
of prediction sets, but we consider the risk certificate function r(·), which is more complex.

3.3 THEORETICAL RESULTS

This section presents the theoretical guarantees for the solution to problem (6). The analysis for the
smoothed variant (Algorithm 1), being conceptually analogous, are deferred to Appendix D.2. We
equip the parameter space Θ with the supremum norm and state the underlying assumptions.
Condition 3.1. Loss function ϕ is Lϕ-Lipschitz in decision z for any y ∈ Y . For any x ∈ X ,
the decision zθ(x) is Lz-Lipschitz in θ. The risk certificate rθ(x) is Lr-Lipschitz in θ ∈ Θ, and
uniformly bounded by a positive constant Br > 0 for any x ∈ X and θ ∈ Θ.

These regularity conditions are mild and typically satisfied in practice. For example, in portfolio
optimization with the loss function ϕ(y, z) = −y⊤z, the Lipschitz condition holds if Y is bounded.
For decision function zθ and risk certificate function rθ, if the CRO problem for prediction set Uθ
can be transformed into a smooth convex optimization problem, then the Lipschitz property can
be derived from the KKT conditions and the implicit function theorem, see Bolte et al. (2021) and
Amos & Kolter (2017). The next assumption introduces a mild distributional assumption.
Condition 3.2. Let Vθ(X,Y ) = ϕ (Y, zθ(X))− rθ(X) for data (X,Y ) ∼ P . Suppose that for all
θ ∈ Θ the density of Vθ(X,Y ) is uniformly bounded by a constant ρ0 > 0.

The bounded density condition is often needed for concentration guarantees in the conformal pre-
diction literature (Kiyani et al., 2024b; Jung et al., 2023; Lei & Wasserman, 2014).
Definition 3.1 (Covering number). Let Θ be a parameter space with the supremum norm ∥ · ∥∞.
Given any ϵ > 0, the subset Θϵ ⊆ Θ is called an ϵ-covering of Θ if for every θ ∈ Θ, there exists
some θϵ ∈ Θϵ such that ∥θ − θϵ∥∞ < ϵ. The covering number N (Θ, ∥ · ∥∞, ϵ) is the smallest
cardinality of any ϵ-covering of Θ.

Covering numbers quantify the complexity of a function class and are a fundamental tool in sta-
tistical learning theory and convergence analysis (Van Der Vaart & Wellner, 1996). The next two
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theorems provide a non-asymptotic characterization of the robustness and expected risk certificate
value for CRC.

Theorem 3.2 (Robustness gap). Let θ̂ be the solution to optimization problem (6). Under Condi-
tions 3.1 and 3.2, for any independent data (X,Y ) ∼ P , conditioning on the labeled data Dn, the
following inequality holds: with probability at least 1− n−1,

P
{
ϕ
(
Y, zθ̂(X)

)
≤ rθ̂(X) | Dn

}
≥1− α−∆n,

where the robustness gap ∆n = 5
√

log(2N (Θ,∥·∥∞,n−1))+logn
2n +

4(LϕLz+Lr)ρ0

n .

Theorem 3.3 (Risk certificate optimality). Let θ∗∆n
denote the optimal solution of problem (5) at

the robustness level 1 − α +∆n. Under the same conditions as Theorem 3.2, conditioning on Dn,
with probability at least 1− 2n−1,

E
[
rθ̂(X)− rθ∗

∆n
(X) | Dn

]
≤4Br

√
log(2N (Θ, ∥ · ∥∞, n−1)) + log n

2n
+

4Lr

n
.

For a finite-dimensional parameter space Θ of dimension d, the covering number scales approxi-
mately as N (Θ, ∥ · ∥∞, n−1) ≍ nd, so both the robustness gap and the expected risk certificate
converge to zero at rate O(

√
d log n/n). In Appendix D, we provide more comprehensive theoreti-

cal results, such as in the setting where the function class has a finite VC dimension.

Remark 3.2. It is worth noting that θ∗∆n
denotes the optimal model under a slightly relaxed robust-

ness level 1−α+∆n, rather than the exact level 1−α. This relaxation is introduced to ensure that
θ∗∆n

is feasible to the problem (6) with high probability, thereby guaranteeing that the empirical risk
certificate of θ̂ is less than that of θ∗∆n

with high probability. Finally, leveraging relevant theories of
empirical process, we can establish the bounds in Theorems 3.2 and 3.3. Let θ∗ be the solution to the
problem (4). If additional assumptions are imposed regarding the ∥θ∗∆n

− θ∗∥∞, such a relaxation
may no longer be needed.

4 TEST-TIME DECISION WITH FINITE-SAMPLE ROBUSTNESS CONTROL

In this section, we turn to the practical task of making decisions at a test point Xn+1 with unknown
label Yn+1. A straightforward approach is to output the decision zUθ̂

(Xn+1), where θ̂ is solution
to the problem (6). Theorem 3.2 shows that the robustness of the decision zUθ̂

(Xn+1) converges to
the target level asymptotically. To achieve finite-sample robustness control for the decision of the
specific test point, we further calibrate the prediction set obtained from Algorithm 1 using both the
test data Xn+1 and the labeled data {(Xi, Yi)}ni=1.

Specifically, we split the labeled datasetDn into a training setDtrain = {(Xi, Yi)}n0
i=1 and a calibra-

tion setDcal = {(Xi, Yi)}ni=n0+1, where n0 < n. We first obtain the optimized prediction set Uθ̂0(·)
using only Dtrain in Algorithm 1. Next, we apply full conformal prediction (Vovk et al., 2005; Lei
et al., 2018) to calibrate the prediction set Uθ̂0(·) based on Dcal and Xn+1.

Calibrating the entire parameters θ is computationally expensive and often unnecessary. Instead,
we can adjust the prediction set Uθ̂0(·) by tuning a single radius parameter t ∈ R+, which controls
the size of the set and provides an efficient way of model calibration. Following the framework of
nested prediction set in Gupta et al. (2022), we call the family {Uθ,t(x)}t∈R+ nested sets if t1 ≤ t2
implies that Uθ,t1(x) ⊆ Uθ,t2(x) for any x ∈ X . For the two examples of prediction sets in Section
3.1, the nested versions are given as follows.

• Nested parametrized box set:

Uθ,t(x) =
{
y ∈ Rq : hlo

θ (x)− t ≤ y ≤ hhi
θ (x) + t

}
;

• Nested parametrized ellipsoidal set:

Uθ,t(x) = {y ∈ Rq : (y − µθ(x))
⊤
Σ−1

θ (x) (y − µθ(x)) ≤ t}.
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Let y ∈ Y be a hypothesized value for the test label Yn+1, and denote the augmented calibration set
as {(Xi, Y

y
i )}

n+1
i=n0+1, where Y y

i = Yi for n0 + 1 ≤ i ≤ n and Y y
n+1 = y. Given the prediction set

Uθ̂0,t(·), the hypothesized radius threshold is computed by

t̂y = min

{
t ∈ R+ :

1

n− n0 + 1

n+1∑
i=n0+1

1

{
ϕ
(
Y y
i , zθ̂0,t(Xi)

)
≤ rθ̂0,t(Xi)

}
≥ 1− α

}
, (7)

where zθ,t(x) := argminz∈Z maxc∈Uθ,t(x) ϕ(c, z) and rθ,t(x) := maxc∈Uθ,t(x) ϕ(c, zθ,t(x)). Then
the calibrated prediction set is given by

UCal(Xn+1) =
{
y ∈ Y : ϕ

(
y, zθ̂0,t̂y (Xn+1)

)
≤ rθ̂0,t̂y (Xn+1)

}
.

Finally, the decision for test point is made by zUCal
(Xn+1). We name the procedure above as

Calibrated CRC (Cal-CRC), and summarize it in Algorithm 2.

Algorithm 2 Cal-CRC

1: Input: Same as Algorithm 1, size of training set n0, and test point Xn+1.
2: Sample splitting: Dtrain = {(Xi, Yi)}n0

i=1 and Dcal = {(Xi, Yi)}ni=n0+1.
3: Training: Obtain the prediction set Uθ̂0(·) by running Algorithm 1 on Dtrain.
4: Calibration: UCal(Xn+1)← ∅.
5: for y ∈ Y do
6: Define {(Xi, Y

y
i )}

n+1
i=n0+1, where Y y

i = Yi for n0 + 1 ≤ i ≤ n and Y y
n+1 = y.

7: Calculate the hypothesized threshold t̂y via (7).
8: if ϕ

(
y, zθ̂0,t̂y (Xn+1)

)
≤ rθ̂0,t̂y (Xn+1) then

9: UCal(Xn+1)← UCal(Xn+1) ∪ {y}.
10: end if
11: end for
12: Make the decision: zUCal

(Xn+1)← argminz∈Z maxy∈UCal(Xn+1) ϕ(y, z).
13: Output: the decision zUCal

(Xn+1).

Theorem 4.1. If the labeled data {(Xi, Yi)}ni=1 and test data (Xn+1, Yn+1) are i.i.d., then we have
the finite-sample robustness guarantee

P {ϕ (Yn+1, zUCal
(Xn+1)) ≤ rUCal

(Xn+1)} ≥ 1− α.

The finite-sample robustness relies solely on the exchangeability of data, which is identical to that in
classical conformal prediction theory (Lei et al., 2018). For implementation, note that the calibrated
prediction set UCal(Xn+1) is obtained by traversing all possible values of y ∈ Y . In practice, we
can apply the discretization technique (Chen et al., 2018) to avoid exhaustive search. The complete
implementation is provided in the Appendix B.4. The decision optimality of zUCal

is analyzed in the
Appendix B.5, and corresponding simulation results will be provided in Section E.3.

5 EXPERIMENTS

In this section, we compare our proposed CRC with two baseline methods for robust decision-
making: (i) CRO with conformal prediction sets (Sun et al., 2023); (ii) End-to-end (E2E) method
(Chenreddy & Delage, 2024; Yeh et al., 2024) to minimize the expected risk certificate. For clarity,
we refer to the application of CRC to ellipsoidal prediction sets as CRC-E, and to box prediction sets
as CRC-B. The same naming convention is applied to the CRO and E2E methods for consistency.
The implementation details of each baseline method are given in Appendix E.2.

We utilize the following metrics to evaluate the performance of three methods. (i) Risk Certificate:
The average of rU (X) across all test samples; (ii) Decision Loss: The average of ϕ(Y, zU (X))
across all test samples; (iii) Robustness: The proportion of test samples where the ϕ(Y, zU (X)) is
less or equal to rU (X); (iv) Coverage: The proportion of test samples where the true label Y is
covered by the prediction set U(X).

7
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5.1 SYNTHETIC DATA ON PORTFOLIO OPTIMIZATION

In this simulation, we define the loss function as ϕ(y, z) = −y⊤z, where Y = R2 and Z = {z ∈
[0, 1]2 : ∥z∥1 = 1}. The labeled data and test data are generated by:

Y1 = −5X1 − 2X2
2 − e1, Y2 = −3X2

1 −X2 − e2,

where Y = (Y1, Y2), X = (X1, X2), and e = (e1, e2). The covariate X ∼ N((1, 1)⊤, 2.25 · I2),
where I2 is a 2-dimensional identity matrix. The noise e ∼ N(0, I2) is independent of X . We only
consider ellipsoidal prediction sets since the oracle prediction set of Y | X is ellipsoidal under the
normal noise setting. Further experimental details will be presented in Appendix E.1. All methods
are evaluated over 100 trials, and the average results are reported.
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Figure 2: The results of risk certificate, decision loss, robustness, and coverage on synthetic data
when varying nominal level α with identical sample size n = 1500. The horizontal gray dashed
lines refer to robustness levels. The prediction sets are ellipsoids.

Results. We evaluate the decision performance of CRC and the baseline methods by varying the
nominal level α. As shown in Figure 2, CRC consistently outperforms the baselines in both risk
certificate and decision loss. In addition, CRC also maintains the robustness level to the nominal
target, while the baseline methods tend to be more conservative. With respect to coverage, CRC
attains a much lower coverage rate than the robustness level, which verifies the motivation of our
method. Additionally, the results for varying sample sizes are shown in Figure 3. CRC-E continues
to show strong performance across all metrics, demonstrating its stable advantage. In Figure 6 of
Appendix E.3, we present the density plots for risk certificate and decision loss when α = 0.15. The
overall density of CRC is shifted towards the lower loss region, further validating its superiority.
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Figure 3: The results of risk certificate, decision loss, robustness, and coverage on synthetic data
when varying sample size n with identical nominal level α = 0.1.

Since the RAC method proposed Kiyani et al. (2025) is applicable to discrete decision space in
classification problem, we conduct the simulation on RAC method by discretizing the label space
Y and decision space Z . The results are provided in Appendix E.4. In addition, we also report the
simulation results under the polyhedral prediction set in Appendix E.6.
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5.2 US STOCK PROBLEM

We conduct an additional experiment on the portfolio optimization problem using a real-world
dataset, following the experimental design outlined in Chenreddy et al. (2022). The dataset com-
prises historical US stock market data from January 1, 2012, to December 31, 2020, covering 64
stocks across eight different sectors. Daily percentage gains or losses are computed from the ad-
justed closing prices of consecutive trading days and used as labels. To enhance the input informa-
tion for the model, we also incorporate the trading volume of individual stocks and several market
benchmark indices as covariates. To evaluate the robustness of the methodology, we randomly se-
lect 15 stocks from the pool of 64 as the investable asset set in each experiment and repeat the
process multiple times to mitigate the influence of random chance. We define the loss function as
ϕ(y, z) = −y⊤z, where Y = Rq and Z = {z ∈ [0, 1]q : ∥z∥1 = 1, z ≥ 0}.

Table 1: The results of risk certificate, decision loss, and robustness under nominal levels α = 0.1
and α = 0.2 on the US stock problem.

Nominal level α = 0.1 Nominal level α = 0.2

Method Risk Certificate Decision Loss Robustness (%) Risk Certificate Decision Loss Robustness (%)

CRC-B 1.160 -0.055 90.9 0.731 -0.059 80.6
CRO-B 3.794 -0.051 99.9 3.017 -0.054 99.5
E2E-B 2.129 -0.046 96.7 1.512 -0.041 92.7
CRC-E 1.028 -0.077 90.8 0.701 -0.075 80.6
CRO-E 6.345 -0.069 99.9 6.195 -0.046 99.8
E2E-E 4.995 -0.071 98.6 4.503 -0.070 96.4

Results. As shown in Table 1, CRC outperforms the baseline methods in both risk certification and
decision loss. In terms of robustness, CRC maintains a level close to the target 1−α, demonstrating
strong stability and adaptability. In contrast, E2E and CRO frequently exceed the nominal robustness
target, which indicates the adoption of overly conservative strategies that lead to higher losses and
risks. Overall, CRC achieves a superior balance between risk control and decision performance.

5.3 BATTERY STORAGE PROBLEM

In this subsection, we consider a battery storage control problem based on the frameworks of Donti
et al. (2017) and Yeh et al. (2024). Given hourly electricity price forecasts y ∈ RT and contextual
covariates over a T -hour horizon, the controller determines the charging power zin ∈ RT , discharg-
ing power zout ∈ RT , and the resulting state of charge zstate ∈ RT , subject to the constraints for
t = 1, . . . , T :

zstate0 = B
2 , z

state
t = zstatet−1 − zoutt + γzint ,

0 ≤ zint ≤ cin, 0 ≤ zoutt ≤ cout, 0 ≤ zstatet ≤ B.

Here B denotes battery capacity, γ denotes charging efficiency, and cin, cout denotes per-hour power
limits. The objective balances three key factors: (1) Profit from arbitrage, which involves buying
and selling energy based on the prices y ∈ RT ; (2) Flexibility, which is encouraged by maintaining
the battery’s state of charge close to half of its total capacity; (3) Battery health, which is preserved
by penalizing large charging and discharging magnitudes. The resulting loss function is:

ϕ(y, z) =

T∑
t=1

yt
(
zint − zoutt

)
+ β

∥∥∥ zstate − B
2 1

∥∥∥2
2
+ ε

(
∥zin∥22 + ∥zout∥22

)
,

Following Donti et al. (2017) and Yeh et al. 2024, we also set T = 24 hours, B = 1, γ = 0.9,
cin = 0.5, cout = 0.2, β = 0.1, and ε = 0.05.

Results. Figure 4 presents a comparative analysis of the CRC method against the baselines using
ellipsoidal prediction sets. For clearer visualization, negative indicator values are mapped onto the
positive half-axis via a sigmoid transformation. The results demonstrate CRC’s consistent superi-
ority over both E2E and CRO across all three key metrics. As the nominal level increases, CRC
effectively mitigates risk in all measures, sustaining the lowest risk and loss values at higher levels.
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In addition, CRC maintains robustness values close to the nominal target, highlighting its stability
and adaptability. In contrast, E2E and CRO consistently exceed the robustness target, leading to
decisions characterized by excessive conservatism. The results of the box prediction set is presented
in Figure 5.
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Figure 4: The results of risk certificate, decision loss, and robustness when varying nominal level α
on battery storage problem. The prediction sets are ellipsoids.
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Figure 5: The risk certificate, decision loss and robustness when varying nominal level α on battery
storage problem. The prediction sets are box.

6 CONCLUSION AND DISCUSSION

This paper introduces Conformal Robustness Control (CRC), a novel framework that optimizes the
construction of prediction sets for robust decision-making by directly minimizing the expected risk
certificate under robustness constraints. Unlike existing conditional robust optimization methods
with conformal prediction sets, CRC adopts robustness constraints instead of coverage constraints,
expanding the range of feasible prediction sets and enabling more efficient decisions. Theoretical
guarantees for both robustness and optimality are provided, and empirical results on real-world
data demonstrate significant improvements over baseline methods. Our work also identifies future
research directions in data-driven robust optimization, such as developing more efficient strategies
to solve the optimization problem and designing domain-specific parameterizations of prediction
sets to achieve higher-quality decisions in practical applications.
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A USAGE STATEMENT OF LARGE LANGUAGE MODEL

We used a large language model solely for improving the fluency and readability of the manuscript.
The model was not involved in research ideation, experimental design, data analysis, or result inter-
pretation. All scientific contributions and substantive content were solely produced by the authors.

B MORE DISCUSSION ON RELATED WORK

B.1 RELATIONSHIP BETWEEN THE CRC PROBLEM AND THE VAR PROBLEM

The following proposition illustrates the relationship between the VaR problem and the CRC prob-
lem (4).

Proposition B.1. Let zQ(X) = argminz∈Z VaR1−α (ϕ(Y, z) | X) be the unique minimizer of VaR
problem. There exists a prediction set UQ such that zUQ = zQ. Moreover, the robustness constraint
is satisfied:

P [ϕ (Y, zUQ(X)) ≤ rUQ(X)] ≥ 1− α.

Furthermore, there exist cases where zQ = zU∗ , with U∗ being the solution to optimization problem
(4), and cases where zQ ̸= zU∗ .

The above conclusion indicates that, at least in some cases, decision zU∗ and decision zQ are consis-
tent. When decision zU∗ and decision zQ are inconsistent, the expected risk certificate generated by
decision zU∗ will also be lower than that of zQ, indicating that zU∗ still holds practical significance.

Proof of Proposition B.1. To find a prediction set UQ such that zQ equals zUQ , it is sufficient to
define prediction set UQ in the following form:

UQ(x) =
{
y ∈ Y : ϕ

(
y, zQ(x)

)
≤ VaR1−α

(
ϕ
(
Y, zQ(X)

)
| X = x

)}
, ∀x ∈ X .

Next, we will proceed with the verification. Since the coverage constraint is a sufficient condition
for the robustness constraint, we have

P {ϕ (Y, zUQ(X)) ≤ rUQ(X)} ≥ P
{
Y ∈ UQ(X)

}
= P

{
ϕ
(
Y, zQ(X)

)
≤ VaR1−α

(
ϕ
(
Y, zQ(X)

)
| X

)}
≥ 1− α.

Thus, we verify that robustness holds. Secondly, based on the definition of quantiles, we
have P{Y ∈ UQ(x)} ≥ 1 − α,∀x ∈ X . Therefore, we can control the upper bound of
VaR1−α (ϕ (Y, zUQ(X)) | X = x) in the following way:

VaR1−α (ϕ (Y, zUQ(X)) | X = x) ≤ max
y∈UQ(x)

ϕ (y, zUQ(x))

≤ max
y∈UQ(x)

ϕ
(
y, zQ(x)

)
≤ VaR1−α

(
ϕ
(
Y, zQ(X)

)
| X = x

)
.

That is, zUQ is also the optimal solution in the sense of minimizing the 1 − α quantile. Therefore,
zUQ equals zQ if zQ is the unique optimal solution.

For the scenario where decision zQ is equal to decision zU∗ , consider the following example. Let
X = {0, 1} and Z = {0, 1}. Suppose that the density of ϕ(Y, z) given X = x is as follows.

For x ∈ {0, 1}, z = 0, the density is

f(ϕ) =
1

25
[31{0 ≤ ϕ < 7.5}+ 1{7.5 ≤ ϕ < 10}] .

For x ∈ {0, 1}, z = 1, the density is

f(ϕ) =
1

25
[I{0 ≤ ϕ < 2.5}+ 3I{2.5 ≤ ϕ < 10}] .

14
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It can be verified that when α = 0.1, the optimal solutions of VaR and problem (4) are the same:

zU∗ = zQ =

{
0, if x is 0
0, if x is 1

.

For the scenario where decision zQ is not equal to decision zU∗ , consider the following example.
Let X = {0, 1} and Z = {0, 1}. Suppose that the density of ϕ(Y, z) given X = x is as follows.

For x ∈ {0, 1}, z = 0, the density is

f(ϕ) =
1

15
[1{0 ≤ ϕ < 1}+ 2

2∑
k=1

1{4k − 3 ≤ ϕ < 4k − 1}

+

2∑
k=1

1{4k − 1 ≤ ϕ < 4k + 1}+ 21{9 ≤ ϕ < 10}].

For x ∈ {0, 1}, z = 1, the density is

f(ϕ) =
1

15
[2I{0 ≤ ϕ < 1}+

2∑
k=1

I{4k − 3 ≤ ϕ < 4k − 1}

+ 2

2∑
k=1

I{4k − 1 ≤ ϕ < 4k + 1}+ I{9 ≤ ϕ < 10}].

It can be verified that when α = 0.4− 4ϵ/30 (ϵ is sufficiently small), we have

zQ =

{
0, if x is 0
0, if x is 1

.

On the contrary, the solution of the problem (4) is different

zU∗ =

{
0, if x is 0
1, if x is 1

, U∗ =

{
{y ∈ Y : ϕ(y, 0) ≤ 6.5 + 2ϵ}, if x is 0
{y ∈ Y : ϕ(y, 1) ≤ 5}, if x is 1

.

Note that in the example above, X and Z are discrete spaces. We can naturally extend them to the
continuous spaces [0, 1] while keeping the conclusions unchanged. The specific details are omitted
here.

B.2 RELATIONSHIP BETWEEN CRC AND RA-DPO, RA-CPO IN KIYANI ET AL. (2025)

For classification problems, Kiyani et al. (2025) proposed the following RA-DPO framework for the
optimal decision:

min
z(·),r(·)

E[r(X)] s.t. P{ϕ (Y, z(X)) ≤ r(X)} ≥ 1− α. (8)

This optimization problem can be viewed as a marginal version of the VaR problem. In addition,
Kiyani et al. (2025) also defined an optimal decision framework based on prediction sets, called
RA-CPO, as follows:

min
U()̇:X→2Y

E[rU (X)] s.t. P{Y ∈ U(X)} ≥ 1− α. (9)

The difference between RA-CPO and CRC lies in the fact that the former employs a coverage con-
straint rather than a robustness constraint. We can leverage the idea from Theorem 3.2 in Kiyani et al.
(2025) to prove the equivalence between the CRC problem and the RA-DPO, RA-CPO problem.

Proof of Theorem 3.1. Since RA-DPO and RA-CPO have been proved to be equivalent in Kiyani
et al. (2025), it suffices to establish the equivalence between RA-DPO and CRC.

Let (zRA−DPO(x), rRA−DPO(x)) be an optimal solution to RA-DPO. Define the uncertainty set

U∗(x) =
{
y : ϕ

(
y, zRA−DPO(x)

)
≤ rRA−DPO(x)

}
.

15
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Then,

P {ϕ (Y, zU∗(X)) ≤ rU∗(X)}
≥ P{Y ∈ U∗(X)}
≥ P

{
ϕ
(
Y, zRA−DPO(X)

)
≤ rRA−DPO(X)

}
≥ 1− α.

Thus, U∗ satisfies the constraint of CRC. Moreover, by definition,

rU∗(x) = argmin
z∈Z

max
y∈U∗(x)

ϕ(y, z)

≤ max
y∈U∗(x)

ϕ
(
y, zRA−DPO(x)

)
≤ rRA−DPO(x).

Hence,
E[rU∗(X)] ≤ E[rRA−DPO(X)].

This shows that any optimal solution of RA-DPO induces a feasible solution to CRC with a risk
certificate at least as good. Conversely, let U∗ be an optimal solution to CRC. Define

zRA−DPO(x) = zU∗(x), rRA−DPO(x) = rU∗(x).

This pair is feasible for RA-DPO and satisfies E[rRA−DPO(X)] = E[rU∗(X)]. Therefore, RA-DPO
and CRC are equivalent, and the theorem follows.

B.3 SUPERIORITY OF PARAMETRIZED CRC OVER PARAMETRIZED RA-CPO

The parametric formulation of RA-CPO in (9) is given by:

min
θ∈Θ

E [rθ(X)] s.t. P {Y ∈ Uθ(X)} ≥ 1− α.

The difference between parametrized RA-CPO and parametrized CRC (5) lies in the fact that the
former employs a coverage constraint rather than a robustness constraint. The relationship between
the two frameworks is formalized in the following proposition.
Proposition B.2. For any parameterized prediction set Uθ(·), it holds that

E[rθCRC(X)] ≤ E[rθRA−CPO(X)],

where θCRC and θRA−CPO denote the theoretical optimal solutions of the parametrized CRC and
parametrized RA-CPO problems, respectively. Moreover, there exist cases in which the inequality is
strict.

In fact, if no constraints are imposed on the prediction set, then as proven in Section B.2, the RA-
CPO and CRC frameworks are equivalent. However, in regression settings, prediction sets are gen-
erally required to satisfy certain structural properties—such as convexity and boundedness—in ad-
dition to being parameterized to render the problem tractable. As a consequence, once the prediction
set is parameterized, the solution derived from the CRC problem typically outperforms that obtained
via RA-CPO.

Proof. We first show that E[rθCRC(X)] ≤ E[rθRA−CPO(X)]. Let UθRA−CPO be the optimal solution
to the RA-CPO problem. Since it also satisfies the constraints of the CRC problem, the inequality
follows directly from the definition of the CRC problem.

We now proceed to construct a case where the inequality is strict. Consider a parameterized predic-
tion set of the form:

Uθ(x) = {y ∈ Rq : (y − µ(x))⊤Σ−1(x)(y − µ(x)) ≤ θ}, θ ∈ R+,

where Y | X ∼ N(µ(X),Σ(X)). Let the loss function be ϕ(y, z) = −y⊤z. Then the coverage
probability is given by:

P{Y ∈ Uθ(X)} = P{χ2
q ≤ θ},

where χ2
q denotes a chi-squared random variable with q degrees of freedom. To analyze the robust-

ness constraint, we derive the dual of the inner maximization in the CRO problem:

max
y∈Uθ(X)

−y⊤zθ(X) =
√
θ∥Σ1/2(X)zθ(X)∥2 − µ(X)⊤zθ(X).
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By the definition of the robustness level, we have:

P
{
ϕ(Y, zθ(X)) ≤ max

y∈Uθ(X)
ϕ(y, zθ(X))

}
= P

{
−Y ⊤zθ(X) ≤

√
θ∥Σ1/2(X)zθ(X)∥2 − µ(X)⊤zθ(X)

}
= P

{
−zθ(X)⊤(Y − µ(X)) ≤

√
θ∥Σ1/2(X)zθ(X)∥2

}
= P

{
−zθ(X)⊤(Y − µ(X))

∥Σ1/2(X)zθ(X)∥2
≤
√
θ

}
= P{N(0, 1) ≤

√
θ}.

Therefore, when q ≥ 1, we obtain:

θCRC = Φ2
1−α < χ2

q,1−α = θRA−CPO,

where χ2
q,1−α and Φ1−α denote the (1 − α)-quantiles of the χ2

q and N(0, 1) distributions, respec-
tively. In this case, it follows that:

E[rθCRC(X)] < E[rθRA−CPO(X)],

which completes the proof.

B.4 IMPLEMENTATION OF CAL-CRC

Algorithm 3 Discretization construction of Cal-CRC

1: Input: Same as Algorithm 2. Discretized space Ỹ with finite cardinality. Discretization map-
ping A(·) : Y → Ỹ . Step size τ0 > 0.

2: Discretization: Obtain the discretized calibration set D̃cal = {(Xi, Ỹi)}ni=n0+1 by discretiza-
tion mapping A.

3: Calibration initialization: ŨCal(Xn+1)← ∅.
4: for y ∈ Ỹ do

5: Define the augmented calibration set
{
(Xi, Ỹ

y
i )

}n+1

i=n0+1
.

6: t← 0.
7: s← 1

n−n0+1

∑n+1
i=n0+1 1

{
ϕ
(
Ỹ y
i , zθ̂0,t(Xi)

)
≤ rθ̂0,t(Xi)

}
.

8: while s < 1− α do
9: t← t+ τ0.

10: s← 1
n−n0+1

∑n+1
i=n0+1 1

{
ϕ
(
Ỹ y
i , zθ̂0,t(Xi)

)
≤ rθ̂0,t(Xi)

}
.

11: end while
12: t̂y ← t.
13: if ϕ

(
y, zθ̂0,t̂y (Xn+1)

)
≤ rθ̂0,t̂y (Xn+1) then

14: ŨCal(Xn+1)← ŨCal(Xn+1) ∪ {y}.
15: end if
16: end for
17: Anti-discretization: UCal(Xn+1)← A−1(ŨCal(Xn+1)).
18: Output: UCal(Xn+1).

B.5 OPTIMALITY ANALYSIS OF CAL-CRC

Under certain conditions, the discrepancy between rUCal
(Xn+1) and rUθ̂0

(Xn+1) is expected to

be negligible. For instance, if t̂y = 0 for any y ∈ Y , then by the definition of UCal, we have
Uθ̂0(Xn+1) ⊂ UCal(Xn+1). Consequently,

max
y∈UCal(Xn+1)

ϕ(y, zUCal
(Xn+1))

(a)

≥ max
y∈Uθ̂0

(Xn+1)
ϕ(y, zUCal

(Xn+1))
(b)

≥ max
y∈Uθ̂0

(Xn+1)
ϕ(y, zUθ̂0

(Xn+1)),
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where (a) follows from the inclusion relationship between the two prediction sets, (b) holds due to
the optimality of zUθ̂0

(Xn+1) over Uθ̂0(Xn+1). On the other hand, from a different perspective,

max
y∈UCal(Xn+1)

ϕ(y, zUCal
(Xn+1))

(c)

≤ max
y∈UCal(Xn+1)

ϕ(y, zUθ̂0
(Xn+1))

(d)

≤ max
y∈Uθ̂0

(Xn+1)
ϕ(y, zUθ̂0

(Xn+1)),

where (c) is due to the optimality of zUCal
(Xn+1) over UCal, and (d) follows from the definition

of the UCal. Combining these results yields rUθ̂0
(Xn+1) = rUCal

(Xn+1). We now consider a
more general setting. First, we state the generalized conditions, and then present the corresponding
theoretical results.

Condition B.1. Assume that for all y ∈ Y , we have |t̂y| ≤ t0, where t0 is a positive constant.

Condition B.2. Loss function ϕ is Lϕ-Lipschitz in decision z for any y ∈ Y . The decision
zθ̂0,t(Xn+1) is Lz-Lipschitz in t ≤ t0. The risk certificate rθ̂0,t(Xn+1) is Lr-Lipschitz in t ≤ t0.

Theorem B.1. Suppose that θ̂0 is obtained by running Algorithm 1 on the training dataset Dtrain.
Under conditions B.1 and B.2 in the calibration process, the following result holds:

rUCal
(Xn+1) ≤ rUθ̂0

(Xn+1) + t0(LϕLz + Lr).

Proof. For any y ∈ UCal(Xn+1), we have

ϕ(y, zθ̂0(Xn+1)) ≤ ϕ(y, zθ̂0,t̂y (Xn+1)) + t0LϕLz

≤ rθ̂0,t̂y (Xn+1) + t0LϕLz

≤ rUθ̂0
(Xn+1) + t0(LϕLz + Lr).

Therefore,

max
y∈UCal(Xn+1)

ϕ(y, zCal(Xn+1)) ≤ max
y∈UCal(Xn+1)

ϕ(y, zθ̂0(Xn+1))

≤ rUθ̂0
(Xn+1) + t0(LϕLz + Lr).

Note that rθ̂0,t(x) is monotonically increasing in t for any x ∈ X . Hence, if the initial model Uθ̂0
already approximately satisfies the 1 − α robustness requirement, the calibrated threshold t̂y will
generally remain small for all y ∈ Y . As a result, UCal can maintain risk certificates and decision
losses comparable to those of the initial model Uθ̂0 . Conversely, if the initial model’s robustness
is significantly below 1 − α, then although UCal still guarantee 1 − α robustness, it may produce
relatively conservative results.

C PROOF OF MAIN RESULTS IN SECTION 3.3

C.1 PROOF OF THEOREM 3.2

By leveraging the finite covering property of the function class and large-sample probability in-
equalities, we aim to prove that the empirical estimates converge uniformly to their expected values,
thereby establishing the conclusion of the theorem. First, given an ϵ2n-covering Θϵ2n with smallest
cardinality of the function class, and applying the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality
(Massart, 1990), we have

P

{
sup

t∈R,θ0∈Θϵ2n

∣∣∣∣∣ 1n
n∑

i=1

1 {Vθ0(Xi, Yi) ≤ t} − P {Vθ0(X,Y ) ≤ t}

∣∣∣∣∣ ≥ ϵ1n

}
≤ 2N (Θ, ∥·∥∞, ϵ2n)e

−2nϵ21n ,

where ϵ1n is the tolerance error, whose specific value will depend on the covering number N (Θ, ∥ ·
∥∞, ϵ2n) and will be specified later. According to the definition of ϵ2n-covering, for any given
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θ ∈ Θ, there exists θ0 ∈ Θϵ2n such that ∥θ − θ0∥ ≤ ϵ2n. Therefore, the upper bound on the
deviation between the empirical estimate and the expected value can be derived as follows:∣∣∣∣∣ 1n

n∑
i=1

1{Vθ(Xi, Yi) ≤ 0} − P {Vθ(X,Y ) ≤ 0}

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

1{Vθ(Xi, Yi) ≤ 0} − 1

n

n∑
i=1

1{Vθ0(Xi, Yi) ≤ 0}

∣∣∣∣∣ (10)

+

∣∣∣∣∣ 1n
n∑

i=1

1{Vθ0(Xi, Yi) ≤ 0} − P {Vθ0(X,Y ) ≤ 0}

∣∣∣∣∣
+ |P {Vθ0(X,Y ) ≤ 0} − P {Vθ(X,Y ) ≤ 0}| . (11)

Leveraging the Lipschitz condition, (10) and (11) can be bounded as follows:∣∣∣∣∣ 1n
n∑

i=1

1{Vθ(Xi, Yi) ≤ 0} − 1

n

n∑
i=1

1{Vθ0(Xi, Yi) ≤ 0}

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

1 {Vθ0(Xi, Yi) ≤ (LϕLz + Lr)∥θ − θ0∥} −
1

n

n∑
i=1

1 {Vθ0(Xi, Yi) ≤ 0}

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1

1 {Vθ0(Xi, Yi) ≤ −(LϕLz + Lr)∥θ − θ0∥} −
1

n

n∑
i=1

1 {Vθ0(Xi, Yi) ≤ 0}

∣∣∣∣∣
≤ 4 sup

t∈R,θ0∈Θϵ2n

∣∣∣∣∣ 1n
n∑

i=1

1{Vθ0(Xi, Yi) ≤ t} − P {Vθ0(X,Y ) ≤ t}

∣∣∣∣∣
+ sup

θ0∈Θϵ2n

P {−(LϕLz + Lr)ϵ2n ≤ Vθ0(X,Y ) ≤ (LϕLz + Lr)ϵ2n} ,

and
|P {Vθ0(X,Y ) ≤ 0} − P {Vθ(X,Y ) ≤ 0}|

≤ |P{Vθ0(X,Y ) ≤ 0} − P {Vθ0(X,Y ) ≤ (LϕLz + Lr)∥θ0 − θ∥}|
+ |P{Vθ0(X,Y ) ≤ 0} − P {Vθ0(X,Y ) ≤ −(LϕLz + Lr)∥θ0 − θ∥}|
≤ sup

θ0∈Θϵ2n

P {−(LϕLz + Lr)ϵ2n ≤ Vθ0(X,Y ) ≤ (LϕLz + Lr)ϵ2n} .

Finally, we consolidate the above results and obtain∣∣∣∣∣ 1n
n∑

i=1

1{Vθ(Xi, Yi) ≤ 0} − P {Vθ(X,Y ) ≤ 0}

∣∣∣∣∣
≤ 5 sup

t∈R,θ0∈Θϵ2n

∣∣∣∣∣ 1n
n∑

i=1

1{Vθ0(Xi, Yi) ≤ t} − P{Vθ0(X,Y ) ≤ t}

∣∣∣∣∣
+ 2 sup

θ0∈Θϵ2n

P {−(LϕLz + Lr)ϵ2n ≤ Vθ0(X,Y ) ≤ (LϕLz + Lr)ϵ2n} .

Let ϵ1n =
√

log(2N (Θ,∥·∥∞,ϵ2n))+log(1/δ)
2n . We have

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

1{Vθ(Xi, Yi) ≤ 0} − P {Vθ(X,Y ) ≤ 0}

∣∣∣∣∣ ≤5
√

log (2N (Θ, ∥ · ∥∞, ϵ2n)) + log(1/δ)

2n

+ 4(LϕLz + Lr)ρ0ϵ2n, (12)
with probability at least 1− δ. Furthermore, we have, with probability at least 1− δ,

P
{
ϕ
(
Y, zθ̂(X)

)
≤ rθ̂(X) | Dn

}
≥ 1− α− 5

√
log (2N (Θ, ∥ · ∥∞, ϵ2n)) + log(1/δ)

2n
− 4(LϕLz + Lr)ρ0ϵ2n,

where θ̂ is the solution to the CRC problem on dataset Dn.
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C.2 PROOF OF THEOREM 3.3

Let θ∗ be the convenient notation of θ∗∆n
. The following formula gives the risk difference between

the estimated model θ̂ and the optimal model θ∗:

E
[
rθ̂(X) | Dn

]
− E [rθ∗(X)] ≤

∣∣∣∣∣E[rθ̂(X) | Dn]−
1

n

n∑
i=1

rθ̂(Xi)

∣∣∣∣∣ (13)

+
1

n

n∑
i=1

rθ̂(Xi)−
1

n

n∑
i=1

rθ∗(Xi) (14)

+

∣∣∣∣∣ 1n
n∑

i=1

rθ∗(Xi)− E[rθ∗(X)]

∣∣∣∣∣ (15)

For formulas (13) and (15), we adopt a proof strategy similar to that of Theorem 3.2 to demonstrate
that the empirical estimates converge uniformly to their expected value. Given θ ∈ Θ, let θ0 ∈ Θϵ2n
be the approximation of θ in ϵ2n-covering Θϵ2n . We have∣∣∣∣∣ 1n

n∑
i=1

rθ(Xi)− E[rθ(X)]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

rθ(Xi)−
1

n

n∑
i=1

rθ0(Xi)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1

rθ0(Xi)− E[rθ0(X)]

∣∣∣∣∣
+ |E[rθ0(X)]− E[rθ(X)]|

≤ sup
θ0∈Θϵ2n

∣∣∣∣∣ 1n
n∑

i=1

rθ0(Xi)− E[rθ0(X)]

∣∣∣∣∣
+ 2Lrϵ2n,

where the last term is derived by applying the Lipschitz condition. According to Hoeffding’s in-
equality, we have:

sup
θ0∈Θϵ2n

∣∣∣∣∣ 1n
n∑

i=1

rθ0(Xi)− E[rθ0(X)]

∣∣∣∣∣ ≤ 2Br

√
log(2N (Θ, ∥ · ∥∞, ϵ2n) + log(1/δ)

2n
,

with probability at least 1− δ. Furthermore, we can derive upper bounds for formulas (13) and (15).
For formula (14), we assume that event (12) in the proof of Theorem 3.2 holds. At this point, since
θ̂ is the solution to the finite-sample CRC problem, we deduce the following result:

1

n

n∑
i=1

rθ̂(Xi)−
1

n

n∑
i=1

rθ∗(Xi) ≤ 0.

Integrating the above conclusions, we can obtain the following result:

E[rθ̂(X) | Dn]− E[rθ∗(X)] ≤ 4Br

√
log(2N (Θ, ∥ · ∥∞, ϵ2n) + log(1/δ)

2n
+ 4Lrϵ2n.

holds with probability at least 1− 2δ.

C.3 PROOF OF THEOREM 4.1

Suppose that the calibration set is Dcal = {(Xi, Yi)}ni=n0+1, the test data is (Xn+1, Yn+1) and a
model θ̂0 has been trained from the training set Dtrain = {(Xi, Yi)}n0

i=1. First, we demonstrate that
the prediction set UCal(·) achieves 1− α coverage. Note that

P{Yn+1 ∈ UCal(Xn+1)} = P
{
ϕ
(
Yn+1, zθ̂0,t̂Yn+1 (Xn+1)

)
≤ rθ̂0,t̂Yn+1 (Xn+1)

}
.
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Let W = {(Xn0+1, Yn0+1), ..., (Xn+1, Yn+1)} be an unordered set. Note that t̂Yn+1 is measurable
with respect to statistic W . We will complete the proof by leveraging the symmetry of the data.

P
{
ϕ
(
Yn+1, zθ̂0,t̂Yn+1 (Xn+1)

)
≤ rθ̂0,t̂Yn+1 (Xn+1)

}
= E

[
E
[
1

{
ϕ
(
Yn+1, zθ̂0,t̂Yn+1 (Xn+1)

)
≤ rθ̂0,t̂Yn+1 (Xn+1)

}
|W

]]
= E

[
1

n− n0 + 1

n+1∑
i=n0+1

1

{
ϕ
(
Yi, zθ̂0,t̂Yn+1 (Xi)

)
≤ rθ̂0,t̂Yn+1 (Xi)

}]
≥ 1− α.

The first equality stems from the law of total expectation. The second equality arises from the
symmetry of the data, a technique frequently employed in proofs within conformal prediction meth-
ods(Vovk et al., 2005; Liang et al., 2024). The final inequality is derived from the definition of
threshold t̂Yn+1 , as referenced in Algorithm 2. Finally, since the coverage constraint is a sufficient
condition for the robustness constraint, we can obtain the robustness guarantee, i.e.,

P {ϕ (Yn+1, zUCal
(Xn+1)) ≤ rUCal

(Xn+1)} ≥ P{Yn+1 ∈ UCal(Xn+1)} ≥ 1− α.

D ADDITIONAL THEORETICAL RESULTS

D.1 THEORETICAL RESULTS FOR VC/RADEMACHER CLASS

In this section, we present theoretical results on robustness and optimality when the function class
has a finite VC dimension. Additionally, we discuss a decision-making method based on parti-
tioning the covariate domain (Chenreddy et al., 2022). Under this approach, the corresponding
function class possesses a finite VC dimension, thereby exhibiting relevant convergence properties.
Let VC(C) := VC({(x, y)→ 1 {ϕ(y, zθ(x)) ≤ rθ(x)} : θ ∈ Θ}) denote the VC dimension of the
robustness-induced classifier class.

Theorem D.1 (VC class robustness). Suppose VC(C) = H < ∞. Then there exists an absolute
constant C > 0 such that, with probability at least 1− δ,

P
{
ϕ
(
Y, zθ̂(X)

)
≤ rθ̂(X) | Dn

}
≥ 1− α− C

√
H

n
−
√

log(2/δ)

2n
.

Proof. By McDiarmid’s Inequality, with probability at least 1− δ,

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

1{ϕ (Yi, zθ(Xi)) ≤ rθ(Xi)} − P {ϕ (Y, zθ(X)) ≤ rθ(X)}

∣∣∣∣∣
≤ E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

1{ϕ (Yi, zθ(Xi)) ≤ rθ(Xi)} − P {ϕ (Y, zθ(X)) ≤ rθ(X)}

∣∣∣∣∣
]

(16)

+

√
log(2/δ)

2n
.

The expectation in (16) can be bounded using the standard VC-class Rademacher bounds (Ver-
shynin, 2018, Theorem 8.3.23): there exists a constant C such that

E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

1{ϕ (Yi, zθ(Xi)) ≤ rθ(Xi)} − P {ϕ (Y, zθ(X)) ≤ rθ(X)}

∣∣∣∣∣
]
≤ C

√
H

n
.

Combining these results yields that, with probability at least 1− δ:

P
{
ϕ
(
Y, zθ̂(X)

)
≤ rθ̂(X) | Dn

}
≥ 1− α− C

√
H

n
−
√

log(2/δ)

2n
.
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Theorem D.2 (Rademacher risk). Assume additionally that |rθ(x)| ≤M for all θ ∈ Θ and x ∈ X .

Let θ∗∆n
be the optimal solution of problem (5) at robustness level 1−α+∆n where ∆n = C

√
H
n +√

log(2/δ)
2n . Then, with probability at least 1− 2δ,

E
[
rθ̂(X)− rθ∗(X) | Dn

]
≤ 4Rn({rθ(·) : θ ∈ Θ}) + 2M

√
log(4/δ)

2n
,

whereRn({rθ(·) : θ ∈ Θ}) denotes the Rademacher complexity for function class {rθ(·) : θ ∈ Θ}.

Proof. Let θ∗ = θ∗∆n
. We bound the risk difference between the estimated model θ̂ and the optimal

model θ∗ as follows:

E
[
rθ̂(X) | Dn

]
− E [rθ∗(X)] ≤

∣∣∣∣∣E[rθ̂(X) | Dn]−
1

n

n∑
i=1

rθ̂(Xi)

∣∣∣∣∣
+

1

n

n∑
i=1

rθ̂(Xi)−
1

n

n∑
i=1

rθ∗(Xi)

+

∣∣∣∣∣ 1n
n∑

i=1

rθ∗(Xi)− E[rθ∗(X)]

∣∣∣∣∣
≤ 2 sup

θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

rθ(Xi)− E [rθ(X)]

∣∣∣∣∣ (17)

+
1

n

n∑
i=1

rθ̂(Xi)−
1

n

n∑
i=1

rθ∗(Xi). (18)

For the term (17), by McDiarmid’s inequality, with probability 1− δ:

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

rθ(Xi)− E [rθ(X)]

∣∣∣∣∣ ≤ E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

rθ(Xi)− E [rθ(X)]

∣∣∣∣∣
]
+ 2M

√
log(2/δ)

2n
.

(19)

The expectation in (19) is bounded via Rademacher complexity:

E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

rθ(Xi)− E [rθ(X)]

∣∣∣∣∣
]
≤ 2E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1

ϵirθ(Xi)

∣∣∣∣∣
]
= 2Rn({rθ(·) : Θ}).

For the term (18), whenever∣∣∣∣∣ 1n
n∑

i=1

1{ϕ (Yi, zθ∗(Xi)) ≤ rθ∗(Xi)} − P {ϕ (Y, zθ∗(X)) ≤ rθ∗(X)}

∣∣∣∣∣ ≤ C

√
H

n
+

√
log(2/δ)

2n

the definition of problem (6) implies

1

n

n∑
i=1

rθ̂(Xi)−
1

n

n∑
i=1

rθ∗(Xi) ≤ 0.

By Theorem D.1, this event holds with probability at least 1 − δ. A union bound gives that, with
probability at least 1− 2δ:

E
[
rθ̂(X) | Dn

]
− E [rθ∗(X)] ≤ 4Rn({rθ(·) : θ ∈ Θ}) + 2M

√
log(2/δ)

2n
.

Remark D.1. In Chenreddy et al. (2022), the authors introduce a decision-making framework that
leverages data-driven learning of underlying structures to categorize individuals into K classes
based on their covariates. For each class, a prediction set is constructed, which in turn induces
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specific decisions and risk certificates. Denote the trained classifier byA : X → [K] and the model
parameters by θ. The decisions and risk certificates take the following forms:

zθ(x) =

K∑
k=1

zkθ1{A(x) = k} rθ(x) =

K∑
k=1

rkθ1{A(x) = k},

where zk ∈ Z, rk ∈ R for each k ∈ [K]. Considering a portfolio optimization problem with
loss function ϕ(y, z) = −y⊤z and Y = Rq , the set {(x, y)→ 1 {ϕ(y, zθ(x)) ≤ rθ(x)} : θ ∈ Θ}
becomes a subset of the following family:{

(x, y)→ 1

{
K∑

k=1

(
a⊤k y − rk

)
1 {A(x) = k} ≤ 0

}
: ak ∈ Rq, rk ∈ R for all k ∈ [K]

}
.

This family corresponds to a finite-dimensional linear space of functions and therefore has VC di-
mension at most (q+1)K. Applying Theorem D.1, we obtain the following convergence guarantee:
with probability at least 1− δ,

P
{
ϕ
(
Y, zθ̂(X)

)
≤ rθ̂(X) | Dn

}
≥ 1− α− C

√
(q + 1)K

n
−

√
log(2/δ)

2n
,

Similarly, the function class {rθ(x) : θ ∈ Θ} is uniformly bounded and has VC dimension at most

K + 1. Hence, its Rademacher complexity satisfies Rn({rθ : θ ∈ Θ}) ≤ C
′
√

K+1
n for some

constant C
′
. This leads to the following bound on the excess risk: with probability at least 1− 2δ,

E
[
rθ̂(X)− rθ∗(X) | Dn

]
≤ 4C

′

√
K + 1

n
+ 2M

√
log(2/δ)

2n
.

It is worth noting that, under the finite VC dimension condition, the resulting convergence rate
achieves the order O(

√
1/n).

D.2 THEORETICAL RESULTS UNDER SMOOTH CONSTRAINT

In this section, we we analyze the theoretical properties of the optimal solution to the following
smoothed optimization problem:

θ̂ = argmin
θ∈Θ

1

n

n∑
i=1

rθ(Xi) s.t.
1

n

n∑
i=1

1̃ {ϕ (Yi, zθ(Xi)) ≤ rθ(Xi)} ≥ 1− α. (20)

Here, 1̃{a ≤ b} = 1
2 (1 + erf( b−a√

2σ
)), where erf(x) = 2√

π

∫ x

0
e−t2dt is the Gaussian error function

and σ controls the smoothness of the surrogate. This formulation provides a smoothed approxi-
mation of (6) and serves as the direct optimization target in Algorithm 1. The next two theorems
provide a non-asymptotic guarantees of the robustness and expected risk certificate value of the
resulting solution.

Theorem D.3 (Robustness). Let Θϵ denote an ϵ-covering of the Θ with coverage numberN (Θ, ∥ ·
∥∞, ϵ), and let θ̂ be the solution of problem (20). Under Conditions 3.1-3.2, for any independent
data (X,Y ) ∼ P and conditioning on the labeled data Dn, we have

P
{
ϕ
(
Y, zθ̂(X)

)
≤ rθ̂(X) | Dn

}
≥ 1− α−

√
log(2N (Θ, ∥ · ∥∞, ϵ) + log(1/δ)

2n

− 2(LzLϕ + Lr)ϵ√
2πσ

−
√

π

2
σρ0,

with probability at least 1− δ.
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Proof. For any θ ∈ Θ, let θ0 ∈ Θϵ such that ∥θ− θ0∥ < ϵ. We decompose the deviation as follows:∣∣∣∣∣ 1n
n∑

i=1

1̃ {ϕ (Yi, zθ(Xi)) ≤ rθ(Xi)} − E
[
1̃ {ϕ (Y, zθ(X)) ≤ rθ(X)}

]∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

1̃ {ϕ (Yi, zθ(Xi)) ≤ rθ(Xi)} −
1

n

n∑
i=1

1̃ {ϕ (Yi, zθ0(Xi)) ≤ rθ0(Xi)}

∣∣∣∣∣ (21)

+

∣∣∣∣∣ 1n
n∑

i=1

1̃ {ϕ (Yi, zθ0(Xi)) ≤ rθ0(Xi)} − E
[
1̃ {ϕ (Y, zθ0(X)) ≤ rθ0(X)}

]∣∣∣∣∣ (22)

+
∣∣E [

1̃ {ϕ (Y, zθ0(X)) ≤ rθ0(X)}
]
− E

[
1̃ {ϕ (Y, zθ(X)) ≤ rθ(X)}

]∣∣ (23)

We can apply the Lipschitz condition to bound term (21):∣∣∣∣∣ 1n
n∑

i=1

1̃ {ϕ (Yi, zθ(Xi)) ≤ rθ(Xi)} −
1

n

n∑
i=1

1̃ {ϕ (Yi, zθ0(Xi)) ≤ rθ0(Xi)}

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣1̃ {ϕ (Yi, zθ(Xi)) ≤ rθ(Xi)} − 1̃ {ϕ (Yi, zθ0(Xi)) ≤ rθ0(Xi)}
∣∣

(a)

≤ 1

nσ
√
2π

n∑
i=1

|ϕ (Yi, zθ(Xi))− ϕ (Yi, zθ0(Xi))|+ |rθ(Xi)− rθ0(Xi)|

(b)

≤ (LzLϕ + Lr)ϵ√
2πσ

,

where (a) is due to the fact that function 1{·, ·} is 1
σ
√
2π

-Lipschitz continuous with respect to its
both components, and (b) is derived from condition 3.1. For the term (23), we can apply the same
method to derive its upper bound:∣∣E [

1̃ {ϕ (Y, zθ0(X)) ≤ rθ0(X)}
]
− E

[
1̃ {ϕ (Y, zθ(X)) ≤ rθ(X)}

]∣∣
≤ E

[∣∣1̃ {ϕ (Y, zθ0(X)) ≤ rθ0(X)} − 1̃ {ϕ (Y, zθ(X)) ≤ rθ(X)}
∣∣]

≤ 1√
2πσ

E [|ϕ (Y, zθ(X))− ϕ (Y, zθ0(X))|+ |rθ(X)− rθ0(X)|]

≤ (LzLϕ + Lr)ϵ√
2πσ

.

For term (22), by Hoeffding’s inequality and a union bound over θ0 ∈ Θϵ, with probability at least
1− δ,

sup
θ0∈Θϵ

∣∣∣∣∣ 1n
n∑

i=1

1̃ {ϕ (Yi, zθ0(Xi)) ≤ rθ0(Xi)} − E
[
1̃ {ϕ (Y, zθ0(X)) ≤ rθ0(X)}

]∣∣∣∣∣
≤

√
log(2N (Θ, ∥ · ∥∞, ϵ)) + log(1/δ)

2n
.

Combining these bounds yields:

E
[
1̃
{
ϕ
(
Y, zθ̂(X)

)
≤ rθ̂(X)

}
| Dn

]
≥ 1− α−

√
log(2N (Θ, ∥ · ∥∞, ϵ)) + log(1/δ)

2n
− 2(LzLϕ + Lr)ϵ√

2πσ

with probability at least 1 − δ. Finally, we quantify the discrepancy between the robustness
E [1{ϕ (Y, zθ(X)) ≤ rθ(X)}] and its smoothed version E

[
1̃{ϕ (Y, zθ(X)) ≤ rθ(X)}

]
. Let fθ(·)
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denote the density of Vθ(X,Y ). Then:

E
[∣∣1̃{ϕ(Y, zθ(X)) ≤ rθ(X)} − 1{ϕ(Y, zθ(X)) ≤ rθ(X)}

∣∣]
=

∫ 0

−∞

(
1− 1

2

(
1 + erf(

−t√
2σ

)

))
fθ(t)dt+

∫ +∞

0

1

2

(
1 + erf(

−t√
2σ

)

)
fθ(t)dt

(a)

≤ ρ0
2

∫ 0

−∞
1− erf(

−t√
2σ

)dt+
ρ0
2

∫ +∞

0

1 + erf(
−t√
2σ

)dt

(b)

≤
√

π

2
σρ0,

where (a) follows from the bounded density assumption 3.2, and (b) is derived via standard Gaus-
sian integral identities. Incorporating this bound into the previous result, we conclude that with
probability at least 1− δ,

P
{
ϕ
(
Y, zθ̂(X)

)
≤ rθ̂(X) | Dn

}
≥ 1− α−

√
log(2N (Θ, ∥ · ∥∞, ϵ)) + log(1/δ)

2n

− 2(LzLϕ + Lr)ϵ√
2πσ

−
√

π

2
σρ0.

The key difference from the non-smoothed case is the presence of the term
√

π
2σρ0, which quantifies

the bias introduced by the smoothing. Below, we directly present the relevant optimality theorem,
as its proof and conclusions are almost identical to the non-smoothed case.
Theorem D.4 (Optimality). Let θ∗∆n

be the optimal solution of problem (5) at the robustness level

1 − α +∆n where ∆n =
√

log(2N (Θ,∥·∥∞,ϵ)+log(1/δ)
2n +

2(LzLϕ+Lr)ϵ√
2πσ

+
√

π
2σρ0. Under the same

conditions of Theorem 3.3, conditioning on Dn, we have

E
[
rθ̂(X)− rθ∗

∆n
(X) | Dn

]
≤4Br

√
log(2N (Θ, ∥ · ∥∞, ϵ)) + log(1/δ)

2n
+

4Lr

n
,

with probability at least 1− 2δ.

E EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

E.1 EXPERIMENTAL DETAILS OF CRC

To accelerate the alternating optimization of CRC and promote stable convergence, we partition the
labeled data into two mutually exclusive parts: the first part is used for pretraining CRC, with the
resulting parameters serving as initialization for subsequent alternating optimization; the second part
is exclusively dedicated to the alternating optimization phase.

The baseline method employs the same partitioning strategy: the first portion trains the prediction
model, while the second portion is used for calibration or solving downstream optimization tasks.
To ensure comparability, all methods uniformly employ the same scoring function and optimization
objective in experiments.

Pre-training Pre-training of the CRC can be approached in two ways depending on the shape
of the prediction set: For ellipsoidal prediction sets, the neural network outputs the parameters
of a multivariate Gaussian, namely the mean vector µ̂(·) and the covariance matrix Σ̂(·). We pa-
rameterize Σ̂(·) via a Cholesky factorization, Σ̂(·) = L(·)L(·)⊤, where L(·) is lower triangular.
To guarantee positive definiteness, we add a small diagonal jitter to the predicted covariance, i.e.,
Σ′ = Σ+εI which raises the eigenvalue floor and ensures numerical stability of the Cholesky factor-
ization. Additionally, our training objective is to maximize the Gaussian log-likelihood, equivalently
to minimize the negative log-likelihood:

Lθ =
1

(2π)
d
2 |Σ| 12

exp
(
− 1

2 (y − µ)⊤Σ−1(y − µ)
)
.
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For box prediction sets, we use quantile regression to directly estimate quantiles. Concretely, we
train a neural network fθ(x) to output the α-level quantile for input x. The 1−α confidence interval
is constructed as

[
f
α/2
θ (x), f

1−α/2
θ (x)

]
. Benefiting from quantile regression, our training objective

is to minimize pinball loss. Given a quantile level α ∈ (0, 1) and prediction ŷ = fθ(x), the loss for
target y is

Lα(y, ŷ) =

{
α (y − ŷ), if y > ŷ,

(1− α) (ŷ − y), if y ≤ ŷ.

Optimization For CRC optimization, we use the cvxpylayers (Agrawal et al., 2019) Python
package to implement the implicit function differentiation. The optimization is performed using the
Adam optimizer, and we select the optimal combination of learning rates (1e−2, 1e−3, 1e−4) and
L2 weight decay values (0, 1e−2, 1e−3) to minimize the optimization loss. Moreover, to mitigate
overfitting and ineffective training, 20% of the data used for optimization is held out as a validation
set. Early stopping is triggered when the loss on the validation set fails to decrease for 10 consecutive
iterations or when the predefined maximum number of iterations is reached.

Smoothing parameters sensitivity For CRC method, we approximate the indicator with a smooth
surrogate 1̃{a ≤ b} = 1

2 (1 + erf( b−a√
2σ

)). We compared the sensitivity of different smoothing
parameters σ on CRC. The experimental results are summarized in Table 2.

Table 2: The results of different smoothing parameters sensitivity of CRC at the nominal level
α = 0.1, where the sample size is n = 1500. The prediction sets are ellipsoids.

Method Smoothing parameter σ Risk Certificate Decision Loss Robustness (%) Coverage (%)

CRC-E

0.01 8.678 ± 0.299 7.072 ± 0.220 89.8 ± 0.7 60.8 ± 5.6
0.05 8.633 ± 0.295 7.070 ± 0.219 89.9 ± 0.6 59.6 ± 5.5
0.10 8.641 ± 0.306 7.071 ± 0.221 90.3 ± 0.5 59.4 ± 5.7
0.15 8.643 ± 0.315 7.070 ± 0.221 90.5 ± 0.6 59.6 ± 5.7
0.20 8.649 ± 0.308 7.070 ± 0.220 90.2 ± 0.5 59.6 ± 5.7

Lagrange multiplier update schedule sensitivity For dual variable λ, we investigated the results
of CRC on Lagrange multiplier update schedule sensitivity which refers to the number of model
parameter optimization steps performed before each update of λ. The experimental results will be
shown in Table 3.

Table 3: The results of lagrange multiplier update schedule of CRC at the nominal level α = 0.1,
where the sample size is n = 1500. The prediction sets are ellipsoids.

Method λ update schedule Risk Certificate Decision Loss Robustness (%) Coverage (%)

CRC-E

1 8.641 ± 0.334 7.109 ± 0.251 89.9 ± 0.5 58.7 ± 5.8
2 8.528 ± 0.302 7.106 ± 0.251 90.4 ± 0.6 56.4 ± 5.5
4 8.478 ± 0.278 7.105 ± 0.251 90.1 ± 0.5 55.4 ± 4.8
8 8.452 ± 0.282 7.105 ± 0.251 89.7 ± 0.6 55.2 ± 4.9

E.2 BASELINE METHODS

CRO The CRO method is our implementation of the Predict-then-Calibrate framework proposed
by Sun et al. (2023). Specifically, we first train a predictive model to parameterize the uncertainty set
(e.g., outputting the mean and covariance of ellipsoidal prediction sets). Subsequently, we construct
a prediction set on the calibration set that satisfies the target coverage requirement. Finally, the
prediction set is directly embedded into a downstream robust optimization problem to solve for
decisions and minimize task loss. Thus, this method reduces task loss while enhancing solution
stability, all while ensuring coverage.
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E2E E2E is an end-to-end robust optimization method proposed by Chenreddy & Delage (2024)
and Yeh et al. (2024). Unlike CRO, E2E aims to bridge uncertainty calibration with downstream task
objectives by minimizing target loss through global optimization. Specifically, E2E first trains a pre-
diction model capable of outputting parameters of uncertainty sets. It then computes non-conformity
scores on the calibration set, determines the threshold q that satisfies the nominal coverage 1−α, and
constructs the uncertainty set accordingly. Finally, under this uncertainty set, the robust optimization
problem is solved to obtain the current task loss. The gradients of the task loss with respect to model
parameters are backpropagated through the differentiable optimization layer to the prediction model,
enabling collaborative updates of model parameters and task objectives. Consequently, the model
achieves better alignment with real-world decisions while ensuring coverage and reducing task loss.
For a fair comparison, we set the loss function in E2E method as the expected risk certificate.

E.3 DENSITY PLOT OF SIMULATION IN SECTION 5.1

The density plots of the risk certificate of three methods are given in Figure 6. Compared with other
baseline methods, CRC has achieved the best performance.
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Figure 6: The densities of risk certificate on synthetic data when α = 0.15 and n = 1500.

E.4 COMPARISON RESULTS OF RAC AND CRC

Based on the RA-CPO/RA-DPO framework, Kiyani et al. (2025) proposed the Risk-Averse Cali-
bration (RAC) method to solve decision-making problems in classification settings. However, this
method strictly relies on the finiteness of the label space and the decision space, i.e., |Y| <∞, |Z| <
∞. Consequently, the RAC method is more suitable for classification problems and is not applicable
to regression problems since constructing the prediction set in Kiyani et al. (2025) requires solving
the Value-at-Risk optimization problem, which is generally not tractable when the space is con-
tinuous. In contrast, our method is grounded in the CRO framework and derives final decisions by
directly optimizing over the space of prediction sets, thereby maintaining applicability to continuous
decision spaces.

To evaluate the performance of the RAC and CRC methods in regression tasks, we have to make
certain adjustments to the RAC method. Specifically, a simple regression problem can be converted
into a classification problem via discretization—that is, by partitioning the response and decision
space into discrete bins, thus allowing RAC to be applied. However, it is important to note that in
general regression settings involving high-dimensional response (such as the 15-dimensional U.S.
stock problem in Section 5.2 ), discretization often leads to substantial computational overhead and
considerable information loss, making the application of RAC infeasible. To ensure the validity of
the RAC method, we consider the following simple regression problem with loss function ϕ(y, z) =
−y⊤z and decision space Z = {z ∈ [0, 1]2 : ∥z∥1 = 1}. The data is generated by

Y1 = −1.33 · ϵ1
Y2 = −1 + 0.5 · ϵ2

where Y = (Y1, Y2) ∈ R2, and ϵ = (ϵ1, ϵ2) ∈ R2. The covariate X ∼ N(0, I2) is the spurious
feature and noise ϵ1, ϵ2 are independent standard Gaussian random variables. When implementing
the RAC method, we need to discretize both the decision space and the label space as follows.
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• For the decision space Z , we divide the first dimension z1 ∈ [0, 1] into J equally-spaced
points {z1,1, . . . , z1,J}. Due to the constraint z1 + z2 = 1, the dicision space is discretized
into the finite set Zdis = {(z1,1, 1− z1,1), . . . , (z1,J , 1− z1,J)}.

• For the label space Y , we first restrict each dimension of Y to the interval between its 1%
and 99% quantiles. This creates a bounded two-dimensional box, which benefits the RAC
method by ensuring a bounded loss. This box is then divided uniformly into L×L regions,
and the discretized label space Ydis is composed of the top-right endpoints of these regions.

The experimental results are reported in Table 4.

Table 4: The simulation results of CRC and RAC at the nominal level α = 0.1, where the sample
size is n = 2000. For the abbreviation RAC(J, L), the numbers J, L refer to the discretization
refinement of decision space and label space, respectively.

Method Risk Certificate Decision Loss Robustness (%) Coverage (%)

CRC-E 1.384 ± 0.049 0.541 ± 0.065 90.0 ± 0.8 36.1 ± 1.7
RAC(6, 2) 1.730 ± 0.039 0.803 ± 0.021 89.0 ± 1.0 89.8 ± 1.1
RAC(6, 4) 1.687 ± 0.032 0.612 ± 0.072 90.7 ± 0.9 89.9 ± 1.0
RAC(6, 8) 1.592 ± 0.038 0.725 ± 0.042 91.6 ± 0.9 89.8 ± 1.0
RAC(11, 2) 1.732 ± 0.038 0.803 ± 0.021 89.1 ± 1.0 89.8 ± 1.0
RAC(11, 4) 1.684 ± 0.033 0.576 ± 0.066 91.0 ± 0.9 89.9 ± 0.9
RAC(11, 8) 1.583 ± 0.036 0.697 ± 0.042 91.6 ± 0.9 89.9 ± 1.0

E.5 SIMULATION RESULTS ON CAL-CRC

The experiment results of Cal-CRC under ellipsoid prediction set are shown in Figure 7, where the
simulation setting is the same as that in Appendix E.4.
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Figure 7: The results of risk certificate, decision loss, robustness, and coverage on synthetic data
when varying nominal level α with identical sample size n = 2000. The horizontal gray dashed
lines refer to robustness levels. The prediction sets are ellipsoids.

E.6 SIMULATION RESULTS ON POLYHEDRAL PREDICTION SET

In this section, we adopt the methodology from Bärmann et al. (2016) to construct a parametric
formulation for polyhedral prediction sets and integrate it into our proposed CRC framework. Simu-
lation experiments demonstrate that under polyhedral prediction sets, our method still exhibits better
performance compared to baseline approaches.

Following Bärmann et al. (2016), the derivation of a parametric form for polyhedral prediction sets
is inspired by the parametric representation of ellipsoidal prediction sets. Let Bq = {y ∈ Rq :
∥y∥2 ≤ 1} denote the unit sphere in Rq , and let µθ(·) : Rp → Rq and Σθ(·) : Rp → Rq×q represent
the parameterized mean and covariance functions with parameters θ, respectively. The parametric
ellipsoidal prediction set can be equivalently defined as:

UE
θ (x) =

{
y ∈ Rq : Σ

−1/2
θ (x) (y − µθ(x)) ∈ Bq

}
.
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Now, let Bq be a polyhedral outer ϵ-approximation of Bq , defined by

Bq = {y : Ky ≤ k}, (24)

where K ∈ Rm×q, k ∈ Rm are a fixed matrix and vector, respectively, and m denotes the number
of polyhedral facets. The corresponding parametric polyhedral prediction set is then given by:

UP
θ (x) =

{
y ∈ Rq : Σ

−1/2
θ (x) (y − µ(x)) ∈ Bq

}
=

{
y ∈ Rq : KΣ

−1/2
θ (x)y ≤ k +KΣ

−1/2
θ (x)µθ(x)

}
. (25)

The construction of Bq depends on the dimension q and the approximation tolerance ϵ. For instance,
when q = 2 and ϵ = 0.01, an m = 23-facet polyhedron ensures that the approximation error remains
below ϵ. In this case, the components in (24) are specified as:

k = 123, K =


a1
a2
...

a23

 where ai =

[
cos

(
2πi

23

)
, sin

(
2πi

23

)]
for i = 1, ..., 23.

The polyhedral prediction set UP
θ can be directly incorporated into the CRC framework. For example,

in a portfolio optimization problem with loss function ϕ(y, z) = −y⊤z and decision space Z =
{z : z ∈ [0, 1]q : ∥z∥1 = 1, z ≥ 0}. We can establish that both the decision zθ(x) and the risk
certificate rθ(x) are differentiable with respect to θ. This enables the search of optimal prediction
sets via gradient-based optimization. Furthermore, the theoretical conditions outlined in Section 3.3
continue to hold, ensuring the validity of the corresponding theorems in this extended setting.

In this simulation, we compared the performance of CRC with other methods. The experimental
setup remains consistent with that described in Appendix E.4. The experimental results are summa-
rized in Table 5.

Table 5: The simulation results under polyhedral prediction set with nominal level α = 0.1, where
the sample size is n = 2000.

Method Risk Certificate Decision Loss Robustness (%) Coverage (%)

CRC-P 1.493 ± 0.067 0.852 ± 0.037 90.3 ± 0.5 23.5 ± 1.8
CRO-P 1.844 ± 0.028 0.978 ± 0.012 95.9 ± 0.6 90.1 ± 0.9
E2E-P 1.689 ± 0.024 0.954 ± 0.026 93.3 ± 0.9 89.9 ± 0.9

E.7 ABLATION EXPERIMENTAL RESULTS ON CRC

In this section, we conducted ablation experiments on CRC to compare the performance of CRC and
calibrated method. For CRC, we used the parameters of the pre-trained model as the initial values
for iteration. For Cal-CRC, we calibrated the model after CRC optimization. For Cal method,
we calibrated the pre-trained model. The experimental setup is the same as Section 5.1 and the
experimental results are summarized in Table 6.

Table 6: The results of CRC ablation experiments with nominal level α = 0.1, where the sample
size is n = 1500. The prediction sets are ellipsoids.

Method Risk Certificate Decision Loss Robustness (%) Coverage (%)

CRC-E 8.660 ± 0.561 7.053 ± 0.465 89.5 ± 0.8 59.8 ± 5.9
Cal-CRC-E 9.413 ± 0.516 7.108 ± 0.469 90.9 ± 1.1 90.5 ± 1.2

Cal-E 9.581 ± 0.589 7.081 ± 0.462 93.5 ± 1.3 93.2 ± 1.4
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