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Abstract

The ability of deep networks to learn superior representations hinges on leveraging
the proper inductive biases, considering the inherent properties of datasets. In
tabular domains, it is critical to effectively handle heterogeneous features (both
categorical and numerical) in a unified manner and to grasp irregular functions
like piecewise constant functions. To address the challenges in the self-supervised
learning framework, we propose a novel pretext task based on the classical binning
method. The idea is straightforward: reconstructing the bin indices (either orders or
classes) rather than the original values. This pretext task provides the encoder with
an inductive bias to capture the irregular dependencies, mapping from continuous
inputs to discretized bins, and mitigates the feature heterogeneity by setting all
features to have category-type targets. Our empirical investigations ascertain several
advantages of binning: compatibility with encoder architecture and additional
modifications, standardizing all features into equal sets, grouping similar values
within a feature, and providing ordering information. Comprehensive evaluations
across diverse tabular datasets corroborate that our method consistently improves
tabular representation learning performance for a wide range of downstream tasks.

1 Introduction

Tabular datasets are ubiquitous across diverse applications from financial markets and healthcare
diagnostics to e-commerce personalization and manufacturing process automation. These datasets
are structured with rows representing individual samples and columns representing heterogeneous
features—a combination of categorical and numerical features—and they serve as the foundation for
myriad analyses. However, despite the wide applicability of tabular data, research into leveraging
deep networks to harness the inherent properties of such datasets is still in its nascent stage. In
contrast, tree-based machine learning algorithms like XGBoost [[Chen and Guestrinl 2016] and
CatBoost [Prokhorenkova et al.| [2018]] have consistently demonstrated prowess in discerning the
nuances of tabular domains, outperforming deep networks even those with a larger model capacity
and specialized modules [Arik and Pfister, 2021} [Gorishniy et al., 2021} (Grinsztajn et al., 2022}
Rubachev et al.| [2022]]. The consistent edge held by tree models fuels the exploration of how their
advantageous biases can be adapted for deep networks.

Recently, the quest to boost the performance of deep networks on tabular data has gained momen-
tum. A fundamental challenge is the inherent heterogeneity of tabular datasets, encompassing both
categorical and numerical features [[Popov et al., 2019, Borisov et al., 2022} [Yan et al.| [2023]]. To
mitigate the feature discrepancies in deep networks, previous studies proposed using an additional
module like a feature tokenizer [|[Gorishniy et al.| [2021]] and an abstract layer [[Chen et al., [2022]].
Concurrently, some research has explored ways to infuse the proven strengths of tree-based models
into deep networks. For instance, (Grinsztajn et al.| [2022] observed that deep networks tend to prefer
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overly smooth solutions and struggle with modeling irregularities like piecewise constant functions,
in contrast to the tree-based models. To address this challenge, Gorishniy et al.|[2022]] introduced a
novel approach combining piecewise linear encoding during preprocessing and periodic activation
functions. Although these advancements have led to enhanced performance on several tabular data
problems, they have predominantly been explored within a supervised learning framework.

To expand the success of deep networks on tabu-
lar domain to unsupervised representation learn-
ing, we propose a novel pretext task based on
the classical binning method for auto-encoding-
based self-supervised learning (SSL). Our ap-
proach is straightforward: reconstructing bin
indices rather than reconstructing the raw val-
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to the minor errors that can yield spurious pat-  Fjgyre 1: Binning as a pretext task. Bins are de-
terns. It also facilitates standardizing all features  termined based on the distribution of the training
into equal sets, thereby preventing any uninfor- - gataset for each feature. The inputs are passed into
mative features from dominating during SSL.  the encoder network, then the decoder network pre-
Furthermore, our approach is compatible with  gjcts the bin indices which can be ordinal when the

any other modifications, including the choice pretext task is the regression or nominal when the
of deep architectures and input transformation  pretext task is the classification.

functions.

Based on the extensive experiments on 25 public datasets, we found that the binning task consistently
improves the SSL performance on diverse downstream tasks, even though we simply changed the
targets during SSL from the continuous to the discretized bins. The performance is also comparable
with the supervised counterparts. Finally, we found that the binning task can be not only an effective
objective function for fully unsupervised learning but also beneficial as the pretraining strategy.

Our main contributions can be summarized as follows. First, we suggest binning as a new pretext
task for SSL in tabular domains, compatible with any modifications. Second, we conduct extensive
experiments on 25 public tabular datasets focusing on the various input transformation methods
and SSL objectives. Finally, we empirically found that the binning task not only results in better
representations but also provides good initial weights for fine-tuning in various tabular data problems.

2 Related works

Tabular deep learning: In recent years, there has been a large number of deep learning research
on a tabular domain: developing new deep architectures [Popov et al., 2019, Badirli et al., 2020,
Huang et al., 2020, (Wang et al.,[2021} |Arik and Pfister, [2021, |Gorishniy et al., 2021} |Ucar et al., 2021}
Chen et al., [2022] [Zhu et al.| 2023| [Kotelnikov et al.,|2023| |Chen et al.,|2023]]; or representing the
heterogeneous nature of tabular features as the graphs [Yan et al.,2023]]; or adopting new activation
function [Gorishniy et al, [2022]. In this paper, our goal is to suggest a new pretext task for self-
supervised learning in tabular domains, so we focus on architectures directly inspired by classic deep
models, in particular MLPs and FT-Transformers [Gorishniy et al., 2021].

Self-supervised learning in tabular domains:  Self-supervised learning (SSL) aims to learn
desirable representations without making use of annotation information. Recently, contrastive learning
and auto-encoding have been two major choices in the tabular domain. Contrastive learning aims to



model the similarity between two or more augmented views from the same sample, corresponding
to the positive samples, and the dissimilarity between other samples, corresponding to the negative
samples. Bahri et al.|[2021]], [Ucar et al.| [2021]] have optimized contrastive loss after defining the
positive and negative samples based on the data augmentation function, such as masking or cropping
in feature dimension. Auto-encoding aims to reconstruct the original sample given its corrupted
observation [Vincent et al., 2008]]. Compared to contrastive learning, auto-encoders can handle a mix
of data types which can be beneficial for tasks involving heterogeneous datasets, like tabular data.
Yoon et al.|[2020], Huang et al.| [2020]], Majmundar et al.| [2022] adopted the auto-encoding methods
optimizing the reconstruction loss with or without the additional losses, such as corruption detection.
In this study, we suggest a new SSL pretext task based on the auto-encoding approach.

3 Auto-encoding-based Self-supervised Learning in Tabular Domains

Autoencoding is a classical method for learning representations with a variety of use cases. Numerous
methods have been suggested to generalize denoising autoencoders [[Vincent et al. 2008] in the
context of SSL, which aim to learn representations by reconstructing original signals from corrupted
samples. In this section, we delve into the auto-encoding-based self-supervised learning framework in
tabular domains focusing on two factors: transformation methods to tabular inputs and the objective
functions in the auto-encoding-based SSL framework.

Input transformation:  To ensure the encoder network does not simply learn an identity function,
we employ transformation functions on the input that preserve the label-related information. For
tabular datasets, only a few transformation functions are available like masking [[Yoon et al., [2020,
Ucar et al. 2021} Majmundar et al., [2022] as illustrated in Figure [Z] because all individual values
can play a key role in determining the semantics and small changes can affect the context. Given a
sample z; € R in dataset D where d is the number of features, i € [1, N], and N is the batch size,
we randomly generate the masking vector m; with the same size of x;. Each element of the masking
vector m; is independently sampled from a Bernoulli distribution with probability p,,, € [0,1]. To
replace the masked values, the replacing vector Z; should be defined. In this study, we utilize two
methods suggested in the previous studies [Yoon et al.,|2020, [Ucar et al., 2021} Majmundar et al.,
2022].

* Constant (Figure : Z; 1 18 set as the pre-determined constant value for all ¢. In this study, we
use the average for each feature k in the training dataset.

* Random (Figure [Z;EI): Z; 1, 1s sampled from the other in-batch samples for a given feature. In other
words, to replace the k-th feature of the ¢-th sample in the batch, we use the k-th feature of the
1’-th sample in the same batch, and ¢’ is sampled from the uniform distribution I/ (%)

Finally, the corrupted sample &; is formulated as Z; = (1 — m;) ® x; + m; ® T; where 1 is all-ones
vector with the same size of x;. The transformation procedure is stochastic and it provides randomness
during training. When p,,, = 0, m; becomes the zero matrix, and the uncorrupted input z; = x; is
used for training.
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Figure 2: An illustration of two methods to generate the replacing vectors for masked features.

SSL objectives:  Following the convention of SSL, the encoder f, first transforms the corrupted
sample ; to a representation z;, then the decoder f; will be introduced to learn the informative



representation by optimizing the unsupervised loss £. We can leverage which representation should
be learned by introducing the specific pretext task. As a baseline, we consider two pretext tasks used
in|Yoon et al.|[2020], Huang et al.|[2020], Majmundar et al.|[2022].

* Reconstructing the original values: One common approach is to reconstruct uncorrupted samples
from their corrupted counterparts [Vincent et al.l [2008]. In this setup, the encoder attempts to
impute the masked features by leveraging the correlations present in the non-masked features. The
learned representations will involve the semantic-level information that is invariant to corruption.

To this end, the decoder network is defined as f;°°" : Z — X, and the corresponding loss is
N
formulated as Lvaluerecon := % > i |lwi — ;;COH(zi)Hg.

* Detecting the masking vector: An auxiliary task that can facilitate the pretext task of recon-
struction is predicting which features have been masked during the corruption process of the
input sample [[Yoon et al., 2020]. In this setup, the encoder attempts to leverage the inconsis-
tency between feature values to identify the masked features, resulting in learned representations
that capture abnormal patterns for a given input. Specifically, the method employs a binary

cross-entropy loss which can be formulated as Lyjasicxent = _% ZZI\; L m;log ‘f(tinask( Z)+ (1 —
m;)log (1 — fM%¥(z;)) where the decoder network is defined as f7*% : Z — M.

We can optimize several loss functions simultaneously if we train several decoders that utilize z as
the inputs. For example, [Yoon et al|[2020] utilized the weighted sum of Lvyajyerecon @nd LyaskXent-

4 Methods: Binning as a Pretext Task for Tabular SSL

Binning is a classical data preprocessing technique that quantizes a given numerical feature 27 €
RIP! into T discrete intervals, known as bins B} = [b]_,,b]) where t € [1,T] and b} € R is
the bin boundaries. Binning is effective in transforming continuous features into discrete ones,
mitigating minor errors in datasets like noise and outliers, and making the data distribution more
manageable [Dougherty et al.l [1995] Han et al., 2022].

In this study, we implement binning to establish targets for auto-encoding-based SSL. We anticipate
the representations will be robust to the minor input variation in the same bins. Also, the deep
networks can capture the irregularities akin to the decision-making process of tree-based models,
which assign discrete leaves to each continuous sample because the pretext task corresponds to
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Figure 3: An example of binning (Dataset: Wine Quality [Cortez et al.,|2009]]). In the example, we
set T" as 10. For each feature, we implement the binning to include the same number of observations
based on the training dataset. Finally, we use the binning indices as the targets for binning pretext.
When we regard the bin indices as the classes without order information, the binning indices are
converted into the one-hot vectors.



mapping continuous inputs to discretized bins. Additionally, the binning approach helps mitigate
feature heterogeneity by treating the targets for all features as the same category type during SSL.

The binning procedure is described in Figure[3] We first determine the number of bins 7 as the design

parameter. Then, we split the value range into the disjoint set of 7" intervals, {B{ ey B%}, consid-

ering the number of observations in the training dataset Dy, for each j-th feature . Specifically,
the bin boundaries b{ are determined according to the quantiles of % When the number of unique
values for 27 in the training dataset is less than T', each distinct value is assigned its own bin. Finally,
we place each numerical feature :1:3 into the bin B?, and we substitute the original values with the

corresponding bin indices tf € [1,T). Thus, we use the grouped ranks (or classes) instead of the raw
values. We call the binned dataset as Xg;j,.

The bin index of i-th sample and j-th feature, tf , can be expressed as ordinal values or nominal
classes. When we utilize the bin indices as ordinal values, we set the pretext task as reconstructing
the bin indices based on the continuous inputs, and the corresponding BinRecon loss is defined as

N
1 . 2 i N
EBinRecon = N § ||tz _ f(]i?nnRecon(Zi)||2 where fngecon - 7 = Xpin. 1)
=1

When we utilize the bin indices as nominal classes, we convert the bin index tf into the one-hot

vector ug = [uy,uz,...,ur] where u, = 1 when v = tj and u, = 0 otherwise. Then, we set the
pretext task as predicting the bin indices as classes by optimizing the BinXent loss, defined as the
average of binary cross-entropy loss for each feature.

N d
1 , 4 . . . .
Loinxen 7= =55 > 2w log [ ()) + (1 —w)) log (1 = fF™"(=])) ()
i=1 j=1

In this case, the predictions for each sample should be in R%*”". As a simple implementation, we add

the 1x1 convolutional layer at the end of fBinXent(.) . 7 — U where U € RV*4XT represents the
one-hot encoded binned dataset.

We outline the benefits of utilizing the binning task in SSL as follows. Empirical evidence on how
each item is advantageous for tabular data problems will be provided in subsequent sections.

» Compatibility with any other modifications: The binning task is agnostic to modifications such
as changes in encoder architecture, input transformation functions, and additional objectives.
Therefore, it can be utilized independently or in conjunction with other options. (Section[5.1]

* Standardizing all features into equal sets: After binning, all features lie on the uniform distribution
with identical elements. Unlike the conventional normalization schemes, it largely simplifies the
dataset to include only 7" distinct values, and this ensures all features become equal sets, thereby
preventing any uninformative features from dominating during training. (Section [6)

* Grouping similar values in each feature: Binning clusters the nearby values in each feature and
eliminates the other information except the bin index. Deep networks can identify nearby samples
in a distribution as similar, independent of their magnitude. (Section [])

* Ordering in BinRecon loss: BinRecon loss utilizes the grouped rank information only while
eliminating the raw value information. This ensures that the encoder network learns the ordering
information, regardless of the magnitude of the values. (Section 6]

Overall, we implement SSL as follows. First, tabular inputs undergo a transformation that retains
their semantic information. Then, the encoder network f. takes the transformed input & and produces
the representation z, and the decoder network f; models the representation z to the target Jss.
depending on the choice of pretext task. In this study, we consider four types of pretext tasks and the
corresponding losses are ValueRecon, MaskXent, BinRecon, and BinXent. Once SSL is finished, the
learned representations z are evaluated based on linear probing.

S Experiments

In this section, we evaluate the effectiveness of binning as a pretext task across 25 public tabular
datasets encompassing a range of data sizes and task types. Dataset details are provided in Appendix.



For all datasets, we apply standardization for numerical features and labels for evaluating the
regression tasks.

As the encoder network f., we mainly utilize the MLP networks without a special module. Note
that a larger or more complex network does not guarantee better performance in tabular datasets
as investigated in [|Gorishniy et al., 2021} Rubachev et al., 2022, |Grinsztajn et al., [2022, |Gorishniy
et al, 2022]. To determine the depth and width of f., we identify the optimal configuration based on
validation performance in the supervised setup, ensuring the unsupervised nature of our framework.
Then, the decoder f; mirrors f, in architecture. Consequently, all cases for each dataset have
been trained on the same architecture and optimization setups. For a given network and dataset,
we also investigate the masking probability p,,, € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} and the
number of bins T € {2, 5,10, 20,50, 100}. Then, we found the optimal configuration based on
validation performance on each downstream task. After SSL, we evaluate the representations based
on linear probing 10 times with different random seeds, and an average is reported. We evaluate the
representation quality based on accuracy for classification tasks and RMSE for regression tasks. All
experiments are conducted on a single NVIDIA GeForce RTX 3090.

5.1 Comparing SSL models

We first compare a series of auto-encoding-based SSL methods utilizing the same MLP networks for
each dataset. To identify the compatibility of the binning task with other transformation functions,
we include the cases optimizing BinRecon loss with masking transformation. Finally, we experiment
with four cases to validate our methodology; optimizing BinXent, treating bins as nominal classes;
optimizing BinRecon, treating bins as ordinal values without any augmentation; optimizing BinRecon
with masking as constant values; and optimizing BinRecon with masking as random values. The
results for each type of downstream task are summarized in Table|l} and four rows at the bottom
correspond to our methods.

Binary classification:  First, we compare the performance of eight datasets whose downstream
task is binary classification. For all cases, except PH dataset, binning as a pretext task shows the
best performance against the other methods. In particular, BinRecon without any augmentation
shows the best performance for three datasets, and the average rank is 2.375 among 11 SSL methods.
Interestingly, for HI dataset, the performance has been improved from 0.651 to 0.687(+3.6%), 0.653
t0 0.672(+1.9%), and 0.661 to 0.682(+2.1%) when we simply change the target for reconstruction
loss from the raw values to bin indices. Similar patterns are often observed in other datasets. These
results indicate that learning irregular functions (from continuous to discrete) is more beneficial than
learning smooth functions (from continuous to continuous) in tabular representation learning.

Multiclass classification: ~ Next, we investigate nine datasets whose downstream task is multiclass
classification. Unlike the binary classification tasks, we observe that optimizing BinRecon loss with
masking consistently leads the additional improvements compared to the cases without masking, and
optimizing BinXent does not work well. These results indicate that the order information is important
for multiclass classification and BinRecon can effectively manipulate them. Further discussion will
be provided in Section[6] When we compare the results of MNIST and p-MNIST, the effectiveness
of the binning task especially for the tabular datasets becomes clear. Because MNIST is a simply
flattened dataset of handwritten images, the locality should exist and it is not a general property of
the tabular datasets. To make the dataset more tabular-like, we permute the values and call them
p-MNIST. We observe that most SSL methods achieve good performance for MNIST (worst 0.793,
best 0.966), while the performance degrades quite a lot for p-MNIST (worst 0.554, best 0.934). On
the other hand, we found that BinRecon consistently achieves a great performance in both datasets
(MNIST: 0.964 to 0.981, p-MNIST: 0.950 to 0.971). Thus, the binning task could lead to learning
good representations even when the inter-feature dependency is rarely quantified.

Regression:  Finally, we test eight datasets whose downstream task is the regression. Since the
evaluation metric is RMSE, lower values correspond to better-performing cases. Again, the binning
task consistently improves the SSL performance, and BinRecon with masking as the random values
shows the best performance with an average rank of 1.625. Compared to other downstream tasks,
regression tasks exhibit the most significant improvements with the binning pretext task. For instance,



Table 1: Linear evaluation results for various SSL methods. For each method, we also determine the
performance rankings for each dataset, and the average ranks are also provided in the last column.
(a) Binary classification (Metric: Accuracy)

Masking Replacing value  SSL Objective(s) CH HI AD BM PH oS CS PO  Average Rank
FALSE - ValueRecon 0.810 0.651 0837 0.899 0.728 0.883 0.709 0.851 7.625
TRUE Const. MaskXent 0.807 0.672 0.836 0.899 0.715 0.893 0.708 0.845 7.500
TRUE Const. ValueRecon 0.810 0.653 0.839 0900 0.734 0.884 0.718 0.849 6.000
TRUE Const. MaskXent+ValueRecon 0.817 0.669 0.835 0.900 0.724 0.877 0.706 0.837 8.000
TRUE Random MaskXent 0.814 0.681 0843 0901 0.710 0.883 0.706 0.853 6.000
TRUE Random ValueRecon 0.811 0.661 0.838 0.898 0.738 0.885 0.714 0.842 6.875
TRUE Random MaskXent+ValueRecon 0.804 0.647 0.826 0.899 0.715 0.879 0.713 0.861 8.375
FALSE - BinXent 0.817 0.683 0845 0901 0.732 0.886 0.738 0.851 3.250
FALSE - BinRecon 0.823 0.687 0.840 0.900 0.737 0.889 0.724 0.865 2.375
TRUE Const. BinRecon 0.820 0.672 0.843 0.899 0.730 0.896 0.718 0.858 3.625
TRUE Random BinRecon 0.819 0.682 0.846 0.898 0.735 0.894 0.718 0.858 3.500

(b) Multiclass classification (Metric: Accuracy)

Masking  Replacing value ~ SSL Objective(s) co oT GE VO wQ AL HE  MNIST p-MNIST Average Rank
FALSE - ValueRecon 0.769 0.776  0.527 0.619 0.568 0.931 0.353  0.965 0.928 6.333
TRUE Const. MaskXent 0.784 0.777 0.518 0.545 0.547 0.909 0.341  0.793 0.554 9.333
TRUE Const. ValueRecon 0.783  0.791 0.557 0.622 0.586 0.931 0.354  0.966 0.925 4.111
TRUE Const. MaskXent+ValueRecon  0.750 0.774 0.519 0.610 0.571 0.931 0360 0.941 0.907 7.444
TRUE Random MaskXent 0.763  0.791 0.555 0.549 0.544 0.925 0336 0.945 0.817 8.000
TRUE Random ValueRecon 0.761 0.782 0.538 0.625 0.573 0.930 0.357 0.956 0.934 5.556
TRUE Random MaskXent+ValueRecon  0.769 0.779 0.521 0.564 0.519 0.925 0.353  0.945 0.906 8.333
FALSE - BinXent 0.742  0.781 0.517 0.600 0.565 0.903 0.354 0.956 0.908 8.333
FALSE - BinRecon 0.784 0.783 0.544 0.625 0.592 0.935 0.357 0.964 0.950 3.556
TRUE Const. BinRecon 0.812 0792 0.559 0.647 0.581 0943 0359 0974 0.964 2222
TRUE Random BinRecon 0.814 0.794 0.580 0.655 0.574 0.949 0.365 0.981 0.971 1.333

(c) Regression (Metric: RMSE)

Masking  Replacing value  SSL Objective(s) CA HO FI MI KI CPU DIA EL  Average Rank
FALSE - ValueRecon 0.749 4241 13900.720 0.784 0.163 3.876 1016.641 0.399 8.625
TRUE Const. MaskXent 0.709 4.548 13473750 0.788 0.185 4.475 1259.744 0.396 8.875
TRUE Const. ValueRecon 0.693 4.086 13518.683 0.778 0.160 3.728  952.444 0.394 5.000
TRUE Const. MaskXent+ValueRecon  0.700 4.157 13915.875 0.775 0.174 5.644 2797.034 0.398 8.750
TRUE Random MaskXent 0.677 4297 13826.641 0.782 0.176 3.951 1358.135 0.388 7.875
TRUE Random ValueRecon 0.713  4.127 13668.988 0.777 0.162 3.760  986.306 0.396 6.500
TRUE Random MaskXent+ValueRecon  0.701  4.136  14107.645 0.780 0.166 4.506 1917.875 0.397 8.750
FALSE - BinXent 0.690 4.116 13038.762 0.776 0.170 3.717 1207.923 0.383 4.875
FALSE - BinRecon 0.622 3766 13453309 0.767 0.158 3.208  897.645 0.370 2.250
TRUE Const. BinRecon 0.634 3765 13208.133 0.773 0.158 3.156  957.801 0.371 2.375
TRUE Random BinRecon 0.619 3.703 13075.474 0.773 0.160 3.183  870.283 0.368 1.625

when comparing our method with the best baselines, we observed improvements of 10.27% for HO
dataset, 8.63% for DIA dataset, and 8.57% for CA dataset.

5.2 Comparison with the supervised counterparts

We observed that the binning as a pretext task consistently improves the SSL performance across
the various tabular datasets and the downstream tasks. In this section, we compare our method with
the supervised counterparts, consisting of the encoder and linear head. For supervised baselines,
we employ the encoder networks with random weights (Baseline-1) and trained from scratch with
a supervised objective (Baseline-2). For our methods, encoder networks are first trained with
BinXent or BinRecon loss, and then the learned representations are evaluated through linear probing
(Ours-1) or fine-tuning (Ours-2). To investigate the effectiveness of the binning task with different
encoder architectures, we also experiment with the FT-Transformer [|Gorishniy et al.|[2021]], a simple
adaptation of the Transformer architecture for tabular data without additional hyperparameter tuning.

The results are provided in Table |Z[ For most datasets, we found that our methods in unsupervised
setups (Ours-1) achieve comparable performance with the supervised baselines. After fine-tuning
(Ours-2), pre-trained models on the binning task frequently outperform the supervised baselines.
Binning-based models show the best performance for all datasets regardless of the choice of encoder
architecture, with the exception of OT with FT-Transformer. Overall, we found that SSL based on the
binning task can be an effective method to learn both the good representations and the initial weights
for fine-tuning.



Table 2: Comparison with supervised baselines. We compare the downstream task performance under
several scenarios: (1) Baseline-1, where the encoder is randomly initialized; (2) Baseline-2, where
the encoder is trained by optimizing the supervised loss; (3) Ours-1, where the encoder is trained
based on the binning task only; and (4) Ours-2, where the encoder is fine-tuned after the pre-training
on binning tasks. (Notation: 1 corresponds to accuracy, J. corresponds to RMSE)
Trainingmethod CH? ADT PHf OS? COf OTt GEf VOf HE{ MNISTT CA} HO|  FIJ  ELJ
Encoder = MLP

Baseline-1 0.796 0.820 0.683 0.873 0.729 0.766 0.467 0.547 0.311 0.896 0.854 4.700 14241.610 0.400
Baseline-2 0.836 0.849 0.724 0.895 0.968 0.810 0.659 0.694 0.378 0.983 0.513 3.146  10086.080 0.354
Ours-1 0.823 0.846 0.736 0.896 0.814 0.794 0.580 0.655 0.365 0.981 0.619 3.703 13038.762 0.368
Ours-2 0.841 0.854 0.738 0.895 0.969 0.814 0.675 0.724 0.385 0.986 0.502 3.026  9963.609 0.350
Encoder = FT-Transformer
Baseline-1 0.818 0.828 0.694 0.866 0.730 0.705 0.509 0.544 0.311 0.550 0.690 4.107 16128.694 0.394
Baseline-2 0.824 0.837 0.724 0.884 0.970 0.794 0.664 0.704 0.338 0.966 0.487 3.319 10206.127 0.350
Ours-1 0.836 0.853 0.725 0.887 0.762 0.780 0.554 0.614 0.364 0.931 0.549 3.570 14557.626 0.371
Ours-2 0.834 0.839 0.734 0882 0.971 0.793 0.698 0.720 0.342 0.978 0477 3.173  9936.115 0.343

6 Discussion

In this section, we scrutinize the individual contributions of the components of binning, detailed in
Section[d] Specifically, we examine the roles of discerning the order of samples within each feature,
standardizing all features into equal sets, and grouping similar values. BinRecon encapsulates all
three elements while ValueRecon disregards them completely. To dissect the influence of each factor,
we systematically eliminate them one by one from the BinRecon loss as follows.

* Ordering: We shuffle the bin indices with different random seeds for each feature.

 Standardizing into equal sets: We replace the raw values with the averages for each bin, instead of
bin indices. Then, each feature includes different elements in different ranges.
* Grouping: We set T7 = |Dj | for every feature. In this case, each unique value corresponds to an

train
individual bin, and only the order information remains.

The results are summarized in Table[3l Because the Table 3: Ablation test results on individual com-
performance range varies depending on the datasets, ponents of binning.

we I'CpOI't the dataset count and the relative perfor— Ordering  Standardizing Grouping  Improved Deteriorated

mance improvement/deterioration against the case Yes Yeos Yes - (Baseline) - (Baseline)

optimizing BinRecon loss without input transfor- No Yes Yes  1(+4.70%) 12(= 4.04%)
. . . . Yes No Yes 1(+521%) 15(— 6.76%)

mation corresponding to satisfying all three factors. Yes No No _ 23 (~25.29%)

We do not include the unchanged cases where the No No No - 18 (= 599%)

performance change is less than 1%. Obviously,

eliminating the grouping factor shows the largest performance degradation, averaging a 25.29%
decrease in 23 datasets among 25. This decline is much steeper than the effect of eliminating all three
factors, which only decreased performance by 5.99% in 18 datasets. From these observations, we
infer that the grouping factor is most critical for the successful implementation of binning.

7 Conclusion

In this work, we suggest a novel pretext task based on binning which can manipulate the unique
properties of tabular datasets. The binning task can effectively address the challenges in tabular SSL,
including mitigating the feature heterogeneity and learning the irregularities. Importantly, our method
focuses exclusively on modifying the objective function and is independent of specific architectures
or augmentation methods. Based on the extensive experiments, we found that the binning task not
only consistently improves the unsupervised representation learning but also is beneficial to providing
good initial weights for fine-tuning. In this study, we’ve uncovered the potential of leveraging the
inherent properties of tabular data as pretext tasks for SSL. However, many unique characteristics
remain unexplored, such as hierarchical relationships between features. We hope our work inspires
further investigations into tabular-data-specific SSL in the future.
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A Appendix

A.1 Dataset detail

In this study, we use 25 public datasets mostly from the OpenML [Vanschoren et al., [2014] library,
including the frequently used datasets in previous studies [Yoon et al.l 2020, |Ucar et al., 2021}
Gorishniy et al., 2021, 2022]. Each dataset has exactly one train-validation-test split, so all algorithms
use the same splits as the previous studies [|[Gorishniy et al., 2021} 2022, [Rubachev et al.| 2022]]. We
summarize the main properties of datasets in Table 4] For each dataset, we use a predefined batch
size depending on the number of training samples: 64 when the number of training samples is less
than 1000, 128 when the number of training samples is larger than 1000 and less than 5000, 256
when the number of training samples is larger than 5000 and less than 10000, 512 when the number
of training samples is larger than 10000 and less than 50000, and 1024 when the number of training
samples is larger than 50000.

We regard the feature as categorical when the number of unique values in the training dataset is less
than 20 (5 for AL, MNIST, p-MNIST, MI). The categorical variables are fed into the feature tokenizer
for FT-Transformer while MLP has no additional operation for them. For MNIST and p-MNIST
datasets, we ignore the features that have only one possible value throughout the training dataset.

Table 4: Dataset summary.

Abbr. Name #Train  # Validation #Test #Num #Cat Tasktype Batch size
CH Churn Modeling M 6400 1600 2000 4 6 Binclass 256
HI Higgs Small [Baldi et al.|2014 62751 15688 19610 24 4 Binclass 1024
AD Adult [Kohavi et al.[|1996 26048 6513 16281 2 12 Binclass 512
BM Bank Marketing [Moro et al.|[2011] 28934 7234 9043 7 9 Binclass 512
PH Philippine |[Guyon et al.{[2019] 3732 933 1167 308 0 Binclass 128
oS Online Shoppers [Sakar et al./[2019] 7891 1973 2466 8 9 Binclass 256
CS German Credit dataset ] 640 160 200 20 0 Binclass 64
PO Phoneme 3458 865 1081 5 0 Binclass 128
CcO Covertype [Blackard and Dean||1999 371847 92962 116203 44 7 Multiclass 1024
oT Otto Group Products 39601 9901 12376 80 13 Multiclass 512
GE Gesture Phase 6318 1580 1975 32 0 Multiclass 256
VO VolkertF]Guyon et al.|[2019] 37318 9330 11662 147 33 Multiclass 512
wQ Wine Quality |Cortez et al.[2009] 4157 1040 1300 11 0 Multiclass 128
AL ALOI [|Geusebroek et al.[[2005] 69120 17280 21600 124 4 Multiclass 1024
HE Helena [Guyon et al.|[2019] 62752 15688 19610 27 0 Multiclass 512
MNIST Handwritten Digit Images 50000 10000 10000 627 90 Multiclass 512
p-MNIST  Permuted MNIST 50000 10000 10000 627 90 Multiclass 512
CA California Housing [[Pace and Barry![1997] 13209 3303 4128 8 0 Regression 512
HO House 16H E] 14581 3646 4557 16 0 Regression 512
FI FIFA 12273 3069 3836 28 0 Regression 512
MI MSLR-WEB10K(Fold 1) [Qin and Liu/2013] 723412 235259 241521 131 5 Regression 1024
KI Forward kinetics of an 8 link robot arm 5242 1311 1639 8 0 Regression 256
CPU Computer Activity Databases u 5242 1311 1639 8 0 Regression 256
DIA Diamonds 34521 8631 10788 9 0 Regression 512
EL ElectricityE] 24623 6156 7695 7 0 Regression 512

'https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling
"https://archive.ics.uci.edu/dataset/144/statlog+germant+credit+data
*https://www.kaggle.com/c/otto-group-product-classification-challenge/data
“https://automl.chalearn.org/data
Shttp://www.ncc.up.pt/~1torgo/Regression/DataSets.html
Shttp://www.ncc.up.pt/~1torgo/Regression/DataSets.html
"http://www.ncc.up.pt/~1ltorgo/Regression/DataSets.html
%https://github.com/LeoGrin/tabular-benchmark
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