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ABSTRACT

Current evaluation paradigms for large language models (LLMs) suffer from over-
estimated or biased evaluation and mismatched question difficulty, leading to in-
complete evaluations of LLM’s knowledge and capability boundaries, which hin-
der LLM’s effective application and optimization. To address these challenges, we
propose Agent-as-Interviewer, a dynamic evaluation paradigm that employs LLM
agents to conduct multi-turn interactions for evaluation. Unlike current bench-
marking or dynamic interaction paradigms, Agent-as-Interviewer utilizes agents
to call knowledge tools for wider and deeper knowledge in the dynamic multi-turn
question generation, achieving more complete evaluations of the LLM’s knowl-
edge boundaries. It also leverages agents to plan query strategies for adjustment of
the question difficulty levels, enhancing the difficulty control to match the actual
capabilities of target LLMs. Based on this paradigm, we develop JudgeAgent, a
knowledge-wise dynamic evaluation framework that employs knowledge-driven
synthesis as the agent’s tool, and uses difficulty scoring as strategy guidance,
thereby finally providing valuable suggestions to help targets optimize them-
selves. Extensive experiments validate the effectiveness of JudgeAgent’s sugges-
tions, demonstrating that Agent-as-Interviewer can accurately identify the knowl-
edge and capability boundaries of target models. The source code is available on
https://anonymous.4open.science/r/JudgeAgent.

1 INTRODUCTION

Evaluating large language models (LLMs) to understand the boundaries of their knowledge and
capabilities is a critical step for their successful application across various domains (Tang et al.,
2024; Yuan et al., 2023; Shi, 2024; Wang et al., 2025). Current mainstream evaluation methods for
LLMs rely on static benchmark evaluations (Clark et al., 2018; Hendrycks et al., 2021; Huang et al.,
2023; Lin et al., 2022; Cobbe et al., 2021; Tang & Yang, 2024), where predefined questions are posed
to the target LLM and the target’s performance is evaluated by humans (Chang et al., 2024) or LLM-
as-a-judge (Liu et al., 2023; Wang et al., 2023b; Zheng et al., 2023). Benefiting from the controlled
question quality and straightforward workflows of the static benchmarking paradigm, developers
can rapidly acquire a fundamental understanding of the strengths and limitations of various evolving
LLMs, thereby facilitating swift iteration in LLM applications.

However, this benchmarking paradigm faces the bottleneck that benchmarks have become sat-
urated more and more quickly in recent years. It took until 2023 for the accuracy record of
MMLU(Hendrycks et al., 2020), which was released in 2020, to reach 80%. While the GPQA
benchmark(Rein et al., 2023), published in late 2023, achieved an 80% record just within one year.
The bottleneck is due to the static nature(Gu et al., 2024; Ko et al., 2024) of this paradigm. Firstly,
the static paradigm restricts evaluations within a predefined knowledge scope, making it difficult
to accurately measure the model’s comprehensive knowledge mastery (Wang et al., 2023a; Kwan
et al., 2024), leading to out-of-domain risks in practical applications. Secondly, the lack of dynamic
updates increases the risk of data contamination(Schaeffer, 2023; Oren et al., 2023), where target
models artificially inflate their benchmark performance by being exposed to test questions during
training, leading to an overestimation of their actual capabilities. These shortcomings result in LLMs
being misapplied in scenarios beyond their actual capabilities, causing the waste of resources.
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Figure 1: The difference between Agent-as-Interviewer and current evaluation paradigms.

Consequently, researchers begin to focus on dynamic evaluation paradigms that leverage LLMs to
dynamically modify questions. Initial efforts involve using LLMs to modify questions from static
benchmarks based on specific requirements to mildly mitigate data contamination (Bai et al., 2023;
Shi et al., 2025). Beyond these methods, researchers proposed paradigms that dynamically adjust
questions during multi-turn interactions based on the model’s previous responses, enabling a more
in-depth evaluation (Wang et al., 2023a; Kim et al., 2025). While these dynamic approaches partially
address challenges in static paradigms, such as data contamination and plain evaluations, they still
suffer from biased evaluation and mismatched difficulty due to simplified feedback mechanisms and
knowledge limitations of evaluator LLMs, leading to a misalignment between evaluation questions
and the actual range of the target’s capability. This misalignment hinders precise evaluations of the
target LLM’s knowledge and capability boundaries, thereby impeding effective guidance for both
application and subsequent optimization of LLMs.

To address these challenges, we propose Agent-as-Interviewer, a dynamic evaluation paradigm that
employs LLM agents to conduct multi-turn interactions for evaluation. Unlike current benchmark-
ing or dynamic interaction paradigms, in the dynamic follow-up question generation based on the
target’s responses in multi-turn interactions, Agent-as-Interviewer utilizes agents to call knowledge
tools for wider and deeper knowledge, achieving more complete evaluations of the target LLM’s
knowledge and capability boundaries. It also leverages agents to plan query strategies for adjust-
ment of the question difficulty levels, enhancing the difficulty control to match the actual capabilities
of target LLMs. Based on this paradigm, we develop JudgeAgent, a knowledge-wise dynamic eval-
uation framework that employs knowledge-driven synthesis as the agent’s tool and uses difficulty
scoring as strategy guidance in multi-turn dynamic interactions, thereby finally providing valuable
suggestions to help targets optimize themselves.

In summary, our contributions are as follows:

• Agent-as-Interviewer paradigm: We propose a dynamic evaluation paradigm that em-
ploys LLM agents to conduct multi-turn interactions for evaluation, addressing the chal-
lenges of incomplete evaluation and inadequate difficulty control in current paradigms.

• Knowledge-wise evaluation framework: We introduce JudgeAgent, a knowledge-wise
dynamic evaluation framework based on Agent-as-Interviewer, to provide valuable sugges-
tions and precise guidance for the optimization of target LLMs.

• Validation of the paradigm: We conduct thorough experiments and analysis to validate
the effectiveness of Agent-as-Interviewer and JudgeAgent’s suggestions.

2 RELATED WORKS

2.1 STATIC BENCHMARK-BASED EVALUATION

These methods employ pre-constructed benchmarks to evaluate LLMs in specific tasks, using
formats such as multiple-choice, question-answer(Q&A), or prompts for performing tasks. For
multiple-choice (Clark et al., 2018; Hendrycks et al., 2021; Huang et al., 2023) or Q&A (Lin et al.,
2022; Cobbe et al., 2021; Tang & Yang, 2024) formats, the benchmark provides correct answers and
measures the target’s capability by its accuracy. For task-execution format, the benchmark measures
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Figure 2: The framework of JudgeAgent. The left part is the interaction process. The central part is
the composition of JudgeAgent. The right part presents the tools of JudgeAgent.

the model by the correctness and plausibility assessed by human (Chang et al., 2024) or LLM-as-a-
judge (Wang et al., 2023b; Zheng et al., 2023) based on reference answers. These methods ensure
controllable question quality and rapid pipelines, but they are also susceptible to data contamination,
which undermines the validity of evaluations.

2.2 DYNAMIC LLM-BASED EVALUATION

These methods leverage LLMs to dynamically generate evaluation questions. Bai et al. (2023)
employs LLMs as examiners to generate questions based on Google Trends categories. Safe-
tyQuizzer(Shi et al., 2025) formulates questions with current events retrieved from search engines to
maximize the timeliness. These methods focus on the knowledge sources, but lack interaction with
target models. Therefore, researchers attempt to generate follow-up questions based on responses
in multi-round Q&A sessions. KIEval (Yu et al., 2024) and LLM-as-an-Interviewer (Kim et al.,
2025) leverage LLMs to generate follow-up questions and provide feedback based on the target’s
responses in multi-turn interactions, thereby probing the depth of the target’s knowledge.

Compared to static methods, their advantage is that target models cannot prepare for generated
questions, thereby producing more genuine evaluations. However, these dynamic processes are
often centered on a single question, and all the generations rely entirely on the LLM, resulting in a
limited scope of knowledge coverage and pool quality control. Moreover, these methods focus on
the content of questions, without properly calibrating question difficulty to the target’s capability
range, leading to biased evaluations. To address these challenges, we propose Agent-as-Interviewer
and develop JudgeAgent based on this paradigm, which performs fine-grained evaluation through
knowledge-wise generation and adaptive difficulty adjustment in dynamic multi-turn interactions.

3
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3 METHODOLOGY

We introduce Agent-as-Interviewer, which utilizes LLM agents to simulate the entire interview for
the dynamic evaluation of LLMs, and develop JudgeAgent based on this paradigm. In this sec-
tion, we use JudgeAgent as an example to illustrate the workflow of this paradigm. The workflow
comprises three core components: (1) Benchmark Grading: Fundamentally estimating the target’s
capability range through testing on public static benchmarks. (2) Interactive Extension: Using
knowledge-driven data synthesis to dynamically generate follow-up questions and update the diffi-
culty levels based on the target’s capability estimations. (3) Evaluation Feedback: Evaluating the
target’s deficiencies in multiple dimensions and providing actionable suggestions for optimization.
The overall framework is illustrated in Figure 2, and detailed as pseudo code in Algorithm 1.

3.1 BENCHMARK GRADING

Analogous to a written test before an interview, JudgeAgent forms a base understanding of the target
model’s capabilities by evaluating its performance on a publicly available static benchmark.

JudgeAgent first partitions the benchmark questions into batches and then prompts the target to
answer the questions batch by batch. After assessing the target’s answers, JudgeAgent estimates
the target’s capability based on its performance in each batch. Within each batch, each correct
answer improves the total score, and the average score determines the follow-up question’s difficulty
in the extension stage, including Easy, Medium, and Hard. Let [d1, d2, d3] respectively denote
the difficulty Easy, Medium, and Hard, nit, nif respectively represent the number of correct and
incorrect answers for di-level questions, cit be the score gain for a correct answer at di, and tij be
the score threshold between di and dj . The difficulty control mechanism is formalized as follows:

avgs =

∑3
i=1 citnit∑3

i=1(nit + nif )
, dnext =


d1, avgs ≤ t12

d2, avgs ≤ t23

d3, avgs > t23

(1)

In JudgeAgent, we set [c1t, c2t, c3t] = [1, 1.5, 2] and [t12, t23] = [0.5, 1]. For benchmarks without
difficulty labels, the default score gain is c2t. The mechanism’s detailed design rules, analysis, and
proofs are available in Appendix B.

3.2 INTERACTIVE EXTENSION

This process is an ”interview” where JudgeAgent conducts an in-depth evaluation of target models.
Specifically, JudgeAgent iteratively generates questions based on the target’s responses and dynam-
ically controls the difficulty. The process consists of three steps: Relevant Knowledge Retrieval,
Difficulty-Adaptive Question Generation, and Capability Estimation.

Relevant Knowledge Retrieval: Based on seed question batches, JudgeAgent retrieves related
knowledge from the benchmark’s knowledge base. If only reference texts of seed questions are
used as background knowledge for generation, the generated questions will be highly similar to the
original questions, with limited knowledge scopes. Inspired by SoG(Jiang et al., 2025), JudgeAgent
employs a context-graph–based sampling approach to get background texts. The context graph
is constructed from the benchmark’s knowledge base (e.g., the collection of all reference texts)
by segmenting texts into chunks and extracting entities as nodes, with entities in the same text as
neighbors. The detailed construction is illustrated in Appendix C and Algorithm 3.

During sampling, JudgeAgent first extracts entities from seed questions and finds the most similar
entity e on the graph. In each hop of sampling, JudgeAgent retrieves the most relevant chunks of e
to the question, randomly selects a chunk c, treats (e, c) as the root, and e is used as the entity for the
next hop. This process is repeated for N hops to form a knowledge path with breadth and depth, and
the chunks along the path are concatenated to form the background knowledge. The context graph
ensures both knowledge breadth and depth, and the greedy similarity strategy ensures relevance to
seed questions. Entity extraction is performed by an LLM, which is GPT-4.1 in our experiments,
with prompts detailed in Appendix G. This step provides the appropriate knowledge background for
JudgeAgent to generate knowledge-wise questions.
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Difficulty-Adaptive Question Generation: Unlike other dynamic methods, JudgeAgent incorpo-
rates the target’s capability estimation into question generation to enable more fine-grained evalua-
tions. A fixed-difficulty test can identify underperforming models, but can hardly comprehensively
evaluate a model’s knowledge levels. For instance, when an overly challenging test evaluates a
model with limited knowledge, the evaluation may reveal that the model performs poorly, but fails
to delineate the actual range of its knowledge. Therefore, JudgeAgent dynamically adjusts the tar-
get’s capability estimation and the follow-up question’s difficulty based on Eq 1. This adaptive
approach allows for a precise and refined understanding of the target’s knowledge boundaries.

Based on the capability estimation, JudgeAgent adjusts the question difficulty as Easy, Medium, or
Hard, and explicitly specifies each difficulty’s requirements in the prompt. For Easy, the focus is on
assessing information retrieval skills, primarily through cloze-style questions based on the original
text, like ”Which virus primarily causes HFMD?”. For Medium, the emphasis is on understanding
key concepts, with questions involving basic inference, like ”Which description is correct regarding
meiosis II?” For Hard, the questions are designed to encourage deep thinking and complex logical
analysis, like ”A patient ingested a toxic substance... The doctor employed... which type of treatment
is likely lacking?”. Detailed prompt designs are provided in Appendix G.

Capability Estimation: In each round, JudgeAgent presents the generated questions to the target
model and collects its responses. Based on all responses in the above two stages, JudgeAgent com-
putes scores according to the scoring scheme described in Section 3.1, considering both difficulty
and correctness. The average score is used to determine the difficulty for the next round’s generation.

3.3 EVALUATION FEEDBACK

This process constitutes the result generation phase. JudgeAgent aggregates the target’s all Q&A
performances in the above two stages, and evaluates the target from multiple dimensions, including
knowledge boundaries, logical reasoning, and comprehensive performance, producing a text eval-
uation report. Based on this evaluation, JudgeAgent simultaneously provides suggestions aimed at
addressing the identified capability gaps, serving as a reference for model optimization.

Inspired by Generative Reward Model methods (Ankner et al., 2024; Ye et al., 2024; Li et al., 2025)
and the evaluation report method proposed by (Kim et al., 2025), JudgeAgent generates feedback
and suggestions based on all Q&A history for each batch, without directly providing the correct
answer or background knowledge. Benefiting from context graphs, the suggestions can identify
key knowledge concepts and extend relevant information to provide concise and valuable feedback,
rather than providing ”cheating information” specific to seed questions. To verify the suggestion’s
effectiveness, the target model is prompted to answer the same questions again with these sug-
gestions. By comparing accuracy before and after the intervention, we can indirectly validate the
effectiveness of the evaluations.

4 EXPERIMENTS

In this section, we validate the effectiveness of JudgeAgent’s evaluations using the method in Sec-
tion 3.3, which is detailed in Algorithm 2. The following research questions guide our experiments:
First, does JudgeAgent genuinely discover the shortcomings of the target model (RQ1)? Second, to
what extent does each mechanism in JudgeAgent influence the evaluations (RQ2)?

Experiment Setup. We select GPT-4.11(Achiam et al., 2023) to be the core LLM in JudgeAgent,
which serves as both a generator and evaluator model. In our experiments, the batch size in Bench-
mark Grading is 3, and the Interactive Extension is limited to a maximum of 3 rounds.

4.1 DATASET AND TARGET MODEL SELECTION

The initial stage of JudgeAgent, Benchmark Grading, requires a predefined static benchmark. In
our experiments, we select MedQA(Jin et al., 2021), MultiHop-RAG(Tang & Yang, 2024), and
QuALITY(Pang et al., 2022). We remove the background knowledge of questions from MedQA
and MultiHop-RAG during evaluation to evaluate the target’s knowledge boundaries rather than

1We use gpt-4.1-2025-04-14 from OpenAI’s official API for all experiments
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its comprehension ability, and to verify whether JudgeAgent can discover the target’s knowledge
deficiencies. We use QuALITY to validate the effectiveness of JudgeAgent in guiding the compre-
hension and reasoning of target models. For detailed statistical information and the preprocessing
procedures of these datasets in our experiments, refer to Appendix D.

For the target models, we select three LLMs as the targets: Qwen3(Yang et al., 2025), GLM4-
Flash(GLM et al., 2024), GPT-4.1(Achiam et al., 2023), and gemini-2.5-pro(Comanici et al., 2025)2.
We utilize the official APIs to interact with these models.

4.2 EVALUATION METRICS

The metrics used in our experiments are as follows:

(1) Accuracy (ACC). We use this metric to measure the performance of the target model on base
datasets, which is the proportion of questions correctly answered by the target model. To inves-
tigate the validity of JudgeAgent’s evaluations, we compared the changes in the ACC before and
after dynamic evaluation. ACC1 represents the target model’s ACC in answering base questions in
Benchmark Grading stage, measuring its performance before receiving evaluation feedback. ACC2
denotes the ACC in answering the same questions after receiving feedback from JudgeAgent.

(2) Correction Rate (CR). This metric quantifies the proportion of questions that the target model
initially answered incorrectly but subsequently answered correctly after receiving evaluation sug-
gestions, which measures the effectiveness of the feedback suggestions from JudgeAgent. A higher
correction rate indicates better performance of the suggestions.

(3) Correct-to-Error Rate (CtE). This metric serves as the inverse of the Correction Rate, repre-
senting the proportion of questions that were initially answered correctly but subsequently answered
incorrectly. A lower CtE indicates greater effectiveness of the suggestions.

4.3 MAIN RESULTS AND ANALYSIS

To address RQ1, we conduct experiments on three datasets to validate the effectiveness of
JudgeAgent’s evaluation, and the results are shown in Table 1 and Table 2.

Based on the results from the knowledge-intensive datasets, MedQA and MultiHopRAG, as pre-
sented in Table 1, JudgeAgent can effectively identify potential knowledge gaps in the target LLM
and subsequently mitigate these gaps by providing targeted prompts that indicate possibly missing
knowledge points or overlooked knowledge associations to the target models. Furthermore, as evi-
denced by the overall performance on QuALITY, a dataset emphasizing reasoning and comprehen-
sion, as presented in Table 2, JudgeAgent also contributes to providing further optimization guidance
to address potential shortcomings in the logical reasoning and semantic understanding abilities of
the target models, thereby assisting in refining the target’s thinking steps. Additionally, by compar-
ing the Correction Rate (CR) and the Correction-to-Error Rate (CtE) of different models before and
after receiving evaluation suggestions, it can be observed that the effectiveness of the suggestions is
less consistent for relatively weaker models (e.g., the free model GLM4-Flash), as reflected in the
higher CtE. In contrast, stronger models are less susceptible to misleading suggestions.

Based on the performance across different difficulties of QuALITY as shown in Table 2, we can
analyze the effectiveness of JudgeAgent’s suggestions for different targets on various difficulties.
For stronger models (Qwen3, GPT-4.1, and Gemini-2.5-pro), JudgeAgent provides stronger guid-
ance and optimization, particularly on questions of higher difficulty (Medium and Hard), since these
models may have already mastered the basic knowledge of Easy-level questions. In contrast, for
the weaker models, JudgeAgent leads to considerable improvement across all difficulty levels, with
particularly notable gains on the Easy level, since JudgeAgent’s feedback is more effective at fill-
ing gaps in basic concepts. These results further indicate that JudgeAgent more accurately assesses
the capability boundaries of targets and provides more difficulty-adaptive optimization to the tar-
gets. Furthermore, for all target models, JudgeAgent’s suggestions demonstrate clear optimizing
guidance on Hard-level questions that involve complex reasoning, suggesting that JudgeAgent ef-
fectively identifies underlying deficiencies in target models through dynamic interactive evaluation.

2We use qwen-plus-2025-04-28, gpt-4.1-2025-04-14, gemini-2.5-pro-preview-06-05, and the free version
glm-4-flash-250414 as the target models.
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Table 1: The results on MedQA and MultiHopRAG, and all values are percentages.

Target Model MedQA MultiHopRAG
ACC1 ACC2 CR↑ CtE↓ ACC1 ACC2 CR↑ CtE↓

Qwen3 91.71 96.38 5.02 0.35 63.65 70.07 17.49 11.07
GLM4-Flash 80.09 92.82 13.46 0.73 51.25 65.92 24.26 9.59
GPT-4.1 84.97 92.44 7.65 0.18 68.94 75.55 12.36 5.75
Gemini-2.5-pro 91.04 94.60 4.03 0.47 62.25 71.83 15.41 5.83

Table 2: The results on QuALITY with different difficulty levels. QuALITY-X refers to the sub-
dataset that consists of questions with specific difficulty, and -overall refers to all questions.

Target Model QuALITY-overall QuALITY-easy
ACC1 ACC2 CR↑ CtE↓ ACC1 ACC2 CR↑ CtE↓

Qwen3 87.83 88.84 1.88 0.87 94.63 95.61 0.98 0.00
GLM4-Flash 73.48 76.38 4.78 1.88 83.26 84.65 4.19 2.79
GPT-4.1 89.13 92.75 3.91 0.29 93.66 96.10 2.44 0.00
Gemini-2.5-pro 93.77 96.38 3.19 0.58 97.55 99.02 1.47 0.00

Target Model QuALITY-medium QuALITY-hard
ACC1 ACC2 CR↑ CtE↓ ACC1 ACC2 CR↑ CtE↓

Qwen3 88.53 88.89 1.43 1.08 80.10 82.04 3.40 1.46
GLM4-Flash 74.35 79.18 5.58 0.74 62.14 64.08 4.37 2.43
GPT-4.1 91.04 94.27 3.58 0.36 82.04 87.38 5.83 0.49
Gemini-2.5-pro 93.57 95.36 2.50 0.71 90.29 95.15 5.83 0.97

In summary, the results indicate that JudgeAgent can effectively identify potential knowledge or
capability gaps in target models and optimize their performance by providing targeted suggestions.
Furthermore, through a difficulty-adaptive, dynamic interaction-based evaluation, JudgeAgent can
more precisely delineate the target model’s capabilities, offering more refined evaluation results.

In addition, we conducted cross-validation experiments to verify that the JudgeAgent’s suggestions
are effective not only for base questions, further corroborating the validity of the main experiment
results. The results and analysis are detailed in Appendix E.2

4.4 ABLATION STUDY

To address RQ2, we conduct ablation studies on MedQA with GLM4-Flash as the target LLM.
When maintaining the responses to base questions unchanged, we removed different modules of
JudgeAgnet. By comparing the performance improvement under various ablation settings, we in-
vestigated how much different modules influence the evaluations. The results are shown in Table 3.

JudgeAgent (w/o context graph) removes the context graph, which ensures the knowledge relevance
between synthesized questions and the base ones, and only uses chunks sampled randomly from the
original knowledge base. The results indicate that removing the context graph reduces the improve-
ment effect of the JudgeAgent’s evaluations. A possible explanation is that the lack of context graph
prevents extended questions and base questions from being associated in terms of focused entities
and knowledge, leading to fragmented suggestions without accurate information, which may disrupt
the thinking of target LLMs. The higher correction-to-error rate (CtE) compared to the setting -w/o
difficulty-adaptive also provides supporting evidence for this potential interference.

JudgeAgent (w/o difficulty-adaptive) removes the difficulty-adaptive mechanism, which enables
JudgeAgent to assess the target model’s capability precisely, and generates questions with fixed
difficulty rules in the prompt. The results show that the removal of this module diminishes the
effectiveness of JudgeAgent’s evaluations, demonstrating the importance of the difficulty-adaptive
mechanism for providing effective evaluations.

7
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Table 3: The results of the ablation study with MedQA as the base dataset, and all values are
percentages. ∆ = ACC2 − ACC1 = CR − CtE refers to the overall improvement on the target
models after receiving evaluation from JudgeAgent.

Target Model Evaluator MedQA
ACC1 ACC2 CR↑ CtE↓ ∆ ↑

GLM4-Flash

JudgeAgent

80.09

92.82 13.46 0.73 12.73
-w/o context graph 88.60 10.26 1.75 8.50
-w/o difficulty-adaptive 89.68 11.14 1.56 9.59
-w/o interactive extension 86.50 9.47 3.06 6.41

GPT-4.1

JudgeAgent

84.97

92.44 7.65 0.18 7.47
-w/o context graph 91.36 6.72 0.33 6.39
-w/o difficulty-adaptive 91.94 7.36 0.38 6.98
-w/o interactive extension 89.81 6.13 1.28 4.85

Qwen3

JudgeAgent

91.71

96.38 5.02 0.35 4.67
-w/o context graph 95.57 4.28 0.42 3.86
-w/o difficulty-adaptive 95.94 4.59 0.36 4.23
-w/o interactive extension 93.01 1.97 0.67 1.30

JudgeAgent (w/o interactive extension) removes the Interactive Extension, which is the core process
of dynamic evaluation to extend the evaluation scope of knowledge and capability, and only eval-
uates models with base datasets. The results show that removing the Interactive Extension signifi-
cantly weakens the effectiveness of JudgeAgent compared to other ablation settings. This indicates
that the evaluation enabled by the dynamic expansion, which expands both breadth and depth of
knowledge and capability in dynamic evaluation, is crucial to the final evaluation suggestions.

Additionally, the ablation experiment results comparing different models reveal that for relatively
weaker models (e.g., GLM4-Flash), the performance decline after removing each component is more
pronounced, which indicates that these dynamic evaluation mechanisms are particularly beneficial
to weaker models and can effectively facilitate their optimization.

4.5 PARAMETER ANALYSIS

Figure 3: The results of different expansion rounds on MedQA and MultiHop-RAG. @K indicates
the ACC improvement after receiving suggestions from the K-th interaction.

Are more expansion rounds better for JudgeAgent? To answer this research question, we tested
the evaluation effectiveness of JudgeAgent under different rounds in the Interactive Extension, as
shown in Figure 3. The results demonstrate that as the expansion rounds increase, the effectiveness
of JudgeAgent, which is represented by the accuracy improvement of target models, also gradually
improves. However, the trend gradually slows down, showing a relatively clear marginal effect.

As the rounds increase, JudgeAgent can expand more questions around the knowledge related to
base questions. After reaching certain rounds, the Q&A history is sufficient for JudgeAgent to
identify the target’s knowledge deficiencies around base questions. Additional questions serve only
as corroborative rather than critical evidence. There is a clear marginal effect in Figure 3. For

8
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Figure 4: The brief overview of the comparative case in the Case Study.

example, the results of GPT-4.1 on MultiHop-RAG, the improvement per round decreases gradually
from 2.04% by the first round, 1.13% by the second, 0.71% by the third, and to 0.23% by the last
round, and other curves exhibit similar patterns. Therefore, JudgeAgent expands a maximum of 3
rounds in our experiments to avoid wasting resources and time.

4.6 CASE STUDY

To gain a deeper understanding of Agent-as-Interviewer’s mechanism, we analyze GLM4-Flash’s
responses to MedQA questions by receiving suggestions from direct evaluation and Agent-as-
Interviewer. The seed questions where the target answers correctly are omitted in this case. A brief
overview of the case is shown in Figure 4, while the detailed content is provided in Appendix H.

In this case, the target LLM answers the base question incorrectly. When directly evaluated by the
LLM evaluator, the evaluator adopted a more conservative approach to generically enumerate the
potential consequences of closed abdominal injury, rather than to perform a comparison between the
specific medical concepts involved. Consequently, even after receiving the feedback, the target LLM
still outputs an incorrect answer, which is attributable to a nuance it failed to discern: peritonitis
symptoms resulting from both colon injury and duodenal bulb injury can exhibit delayed onset.

In contrast, JudgeAgent first extracted two key entities, closed abdominal injury and peritonitis. It
then retrieved relevant entities with texts, such as splenic rupture and duodenal injury, from the
context graph. Based on the sampled knowledge paths, JudgeAgent generated a series of extended
questions. Given that the target model consistently errs on all questions where duodenal injury and
closed abdominal injury co-occur, JudgeAgent can determine that the target model had insufficient
understanding of this concept entity, thereby providing specific knowledge guidance. Ultimately,
the target LLM successfully answered the original base question correctly with this feedback.

The case above demonstrates that through the Agent-as-Interviewer paradigm, JudgeAgent is capa-
ble of accurately identifying gaps in the target’s knowledge and providing targeted feedback.

5 CONCLUSION

In this paper, we propose Agent-as-Interviewer, a dynamic evaluation paradigm that employs LLM
agents to conduct multi-turn interactions for evaluation. This paradigm utilizes agents to call knowl-
edge tools for wider and deeper knowledge in the dynamic question generation to achieve more
complete evaluations, and leverages agents to plan query strategies for adjustment of the question
difficulty to match the actual capabilities of target LLMs. Based on this paradigm, we develop
JudgeAgent, a knowledge-wise dynamic evaluation framework to assess LLMs in multi-turn Q&A
sessions and provide valuable suggestions that assist target LLMs in optimizing themselves. Thor-
ough experiments validate that Agent-as-Interviewer can precisely assess the target’s knowledge
boundaries. In our future work, we will further refine this novel evaluation paradigm and develop
more reliable evaluation frameworks for LLMs.
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A THE USE OF LARGE LANGUAGE MODELS

In this paper, we only used LLMs, including DeepSeek-R1 and ChatGPT, for polishing the writing.
Specifically, we used LLMs to assist in refining the language, improving readability, and grammar
checking. The authors take full responsibility for the content of the paper.

B ANALYSIS AND PROOFS OF ADAPTIVE DIFFICULTY-CONTROL
MECHANISMS

In Section 3.1, we have formalized the difficulty control mechanisms as follows:

Let [d1, d2, d3] respectively denote the difficulty Easy, Medium, and Hard, nit, nif respectively
represent the number of correct and incorrect answers for di-level questions, cit be the score gain
for a correct answer at di, and tij be the score threshold between di and dj , we can get the average
score avgs and the difficulty of the next round question generation dnext:

avgs =

∑3
i=1 citnit∑3

i=1(nit + nif )
, dnext =


d1, avgs ≤ t12

d2, avgs ≤ t23

d3, avgs > t23

where [c1t, c2t, c3t] = [1, 1.5, 2] and [t12, t23] = [0.5, 1] in our experiments. In this section, we will
illustrate the criteria and rules of the score gain cit and the threshold tij , along with the analysis and
proofs. For ease of representation, let N =

∑3
i=1(nit + nif ) in the subsequent analysis.
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For the selection of score gains and thresholds, we followed simple cognitive principles to establish
several rules that a reasonable difficulty control mechanism should satisfy:

R1. Balance: Correctly answering a more difficult question should gain a higher score. If the
number of correctly answered Easy and Hard questions is equal, the level should be considered
equivalent to the same total number of Medium questions. Additionally, the conventional range of
the average score should correspond equally to the three difficulty levels in ascending order.

R2. Generalizability: The same formula, score gains, and thresholds should apply even to questions
without difficulty labels, where difficulty is estimated solely based on the accuracy.

R3. Improvability: Correctly answering questions should increase the average score, and there
should be a possibility of exceeding the threshold to advance to the next difficulty level.

R4. Stability: If the capability estimation remains at a certain difficulty for a long period, the
likelihood of advancing to the next level should gradually decrease.

Following the above rules, we can analyze the mathematical conditions that cit and tij must satisfy.
From R1, we can get that c1t + c3t = 2c2t ∧ c1t < c2t < c3t. Since we have set the score for
correctly answering a question without a difficulty level as c2t, the range of avgs can be determined
as [0 , c2t], representing the spectrum from answering all questions incorrectly to answering all
correctly. Based on the condition about threshold in R1, we can get that t12 = c2t/3 , t23 = 2c2t/3
in the case that difficulty levels are absent. Due to R2, these threshold conditions can be generalized
to the case where questions are provided with difficulty levels.

For R3, let avgs denote the average score after answering N questions, and avg′s denote the average
score after answering N+1 questions. Then R3 is equivalent to satisfying the following conditions:

C1. avg′s =
avgsN + cit

N + 1
> avgs, holds true always when avgs ≤ t(i,i+1)

C2. ∃ avgs0, N0, s.t. avg′s =
avgs0N0 + cit

N0 + 1
> t(i,i+1)

(2)

Simplifying Eq 2.C1, we find that cit > avgs holds true always when avgs ≤ t(i,i+1). Therefore,
we can conclude that cit > t(i,i+1), meaning c2t > c1t > t12 and t23 < c2t < c3t. Simplifying
Eq 2.C2, we can obtain a relationship between avgs0 and N0:

avgs0 > t(i,i+1) −
cit − t(i,i+1)

N0
(3)

Combining the condition cit > t(i,i+1) from Eq 2.C1, this relationship indicates that, under the
premise of R3, advancing to the next difficulty level by answering questions correctly requires a
higher avgs as N increases. This description is essentially R4: the longer one remains at a specific
difficulty level, the harder it becomes to advance to the next level. Therefore, R3⇒R4 is true.

Finally, R4 can be stated as follows: given the average score a ≤ t(i,i+1) after N questions, the
number n of consecutive questions that must be answered correctly to surpass the level threshold
should increase with N . We can obtain the following inequality:

aN + citn

N + n
> t(i,i+1) ⇒ (cit − t(i,i+1))n > (ti,i+1 − a)N (4)

If R4 holds, which means n should increase as N increases, combined with the inherent condition
a ≤ t(i,i+1), it follows that cit > t(i,i+1), from which R3 can be deduced. Therefore, R3⇒R4 and
R4⇒R3 hold simultaneously, meaning R4 and R3 are equivalent, demonstrating that we have now
analyzed all the mathematical conditions that cit and t(i,i+1) must satisfy:

c1t < c2t < c3t

c1t + c3t = 2c2t

t12 = c2t/3 , t23 = 2c2t/3

cit > t(i,i+1) ⇒ c2t > c1t > t12 , t23 < c2t < c3t

(5)

Therefor, we first set c2t = 1.5, and so t12 = 0.5 , t23 = 1. Then, since 1.5 = c2t > c1t > t12 = 0.5
and 1 = t23 < c2t = 1.5 < c3t, we set c1t = 1 for convenience, and so c3t = 2c2t − c1t = 2.
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C CONSTRUCTION OF CONTEXT GRAPH

For the dataset selected during the Benchmark Grading stage, the process of constructing a con-
text graph from its knowledge base (e.g., the set of all reference texts) can be divided into three
components: text chunking, node construction, and node linking.

Text Chunking: To preserve the integrity of knowledge, the granularity of chunking is not refined
to the sentence level. Instead, several sentences or an entire paragraph are grouped to form a single
unit, treated as the minimal hierarchical “chunk”. On this basis, chunks are further aggregated into
higher-level “documents” according to whether they belong to the same article or serve as reference
texts for the same question.

Node Construction: An LLM is employed to extract entities from each chunk, and the detailed
prompt is provided in Appendix G. Each extracted entity serves as the subject for constructing a
node. All chunks containing the same entity are assigned to the corresponding entity node. For-
mally, given an entity e, along with the chunks containing the entity {c1, c2, ...} and the documents
containing the entity {d1, d2, ...}, the node in the context graph can be defined as follows:

N = (e , C , D) , where C = {c1, c2...} , D = {d1, d2, ...} (6)

In practice, we store only the IDs of chunks and documents within each node to conserve space.

Node Linking: During construction, if two entities appear together in the same chunk or the same
document-level texts, their corresponding nodes in the context graph are treated as neighbors. For-
mally, given two nodes N1 = (e1 , C1 , D1) and N2 = (e2 , C2 , D2), if ∃ c1i ∈ C1, c2j ∈
C2 , s.t. c1i ≡ c2j or ∃ d1i ∈ D1, d2j ∈ D∈ , s.t. d1i ≡ d2j , then N1 and N2 will be treated as
neighbors in the context graph.

D STATISTICS AND PREPROCESSING OF DATASETS

D.1 DETAILS OF DATASETS

The following benchmarks are used in our experiments, whose details are shown in Table 4.

MedQA(Jin et al., 2021) contains multiple-choice questions in the style of the Medical Licensing
Examination. Questions in this dataset are collected from medical board exams in the US, Mainland
China, and Taiwan, where human doctors are evaluated on their professional knowledge and ability
to make clinical decisions. The background knowledge texts of MedQA are provided in the form of
additional complete articles, and the questions only provide meta information.

MultiHop-RAG(Tang & Yang, 2024) consists of phrase Q&A queries, their ground truth answers,
and the associated supported evidence constructed from news articles published between September
and December 2023. The background knowledge texts of MultiHop-RAG are provided as support-
ing evidence along with the questions.

QuALITY(Pang et al., 2022) is a multiple-choice question dataset for long document comprehen-
sion, whose questions are written and validated by human contributors based on the long passages.
The sources of QuALITY include: (1) Project Gutenberg fiction stories, which are mostly science
fiction; (2) Slate magazine articles from the Open American National Corpus; (3) other nonfiction
articles taken from The Long+Shor, Freesouls, and the book Open Access. QuALITY is organized
by articles, with each data item consisting of a long article and several related questions, and the
article serves as the background knowledge for each question.

D.2 PREPROCESSING OF DATASETS

To verify Agent-as-Interviewer’s ability to evaluate knowledge deficiencies in target models, we
remove the background knowledge of the questions from MedQA and MultiHopRAG during evalu-
ation. Otherwise, it would only test the target’s reading comprehension ability rather than knowledge
deficiencies. In contrast, we provided the background text when using QuALITY for evaluation, as
the questions in QuALITY are highly dependent on the text content, and many of the texts are fic-
tional narratives. Therefore, we use QuALITY to validate the JudgeAgent’s effectiveness in guiding
comprehension and reasoning rather than discovering knowledge deficiencies.
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Table 4: Details of datasets in our experiments. The language of all the datasets is English.

Datasets Question Type Categories Splits Used Splits Split Size

MedQA multiple-choice
medical train

test 1273clinical validation
test

MultiHopRAG phrase QA

technology

test test 2556

entertainment
sports
science
business
health

QuALITY multiple-choice
fiction stories train

validation 2086magazine articles validation
long articles test

Additionally, we have reprocessed the difficulty levels of the questions from QuALITY. Based on
the accuracy of human annotators in answering questions, QuALITY originally classified questions
into two levels, Easy and hard, using a 50% accuracy threshold. To align with the difficulty levels
defined by JudgeAgent’s difficulty control module (Easy, Medium, and Hard), we re-labeled the
questions using the same accuracy criteria. Questions of QuALITY with an accuracy below 1/3 are
re-labeled as Easy, those with an accuracy between 1/3 and 2/3 as Medium, and the rest as Hard.

E ADDITIONAL EXPERIMENT ANALYSIS

E.1 THE RESILIENCE AGAINST DATA CONTAMINATION

Can Agent-as-Interviewer mitigate the challenges of data contamination in static benchmark-
ing paradigms? In this section, we simulate a scenario where the static benchmarking evalua-
tion paradigm suffers from data contamination by deliberately exposing the evaluation questions
to LLMs during their training process. We selected Llama3-8B-Instruct, Mistral-7B-Instruct-v0.3,
and Qwen2.5-7B-Instruct as base models, and constructed supervised fine-tuning (SFT) data from
the MedQA and MultiHop-RAG benchmarks, which are intended for evaluation in the main exper-
iments. These training data were used to fine-tune the selected base models. By comparing the
performance differences between the original base models and the fine-tuned models on both the
static benchmark questions and the extended questions generated by JudgeAgent, we analyze and
verify the resilience of the Agent-as-Interviewer paradigm and its derivative JudgeAgent against
data contamination.

Specifically, the procedure can be summarized as follows: for a base LLMM and a static evaluation
benchmark D, a fine-tuned LLMM-sft is obtained by supervised fine-tuning with the training data
constructed from D. The performance ofM andM-sft, which is measured by the accuracy (ACC)
in answering the questions, is then compared on bothD and the extended questionsD@K generated
at the K-th iteration. The severity of data contamination (∆) is measured by the improvement
in performance from the fine-tuned model M-sft to the base model M, which is formalized as
∆ = ACCM-sft − ACCM. To mitigate the effects of the LLM’s randomness, each question was
answered by the LLM 5 times. If the LLM produced a correct answer in three or more of these
trials, it was considered to have answered the question correctly. We conduct our experiments on an
Ubuntu machine with one 40GB NVIDIA A100 GPU. The results are shown in Table 5.

The experiment results indicate that, across various LLMs and benchmarks, fine-tuning with evalu-
ation data leads to a notable improvement in model performance on base questions (∆-base), par-
ticularly evident on the MultiHop-RAG benchmark. These findings underscore the risks of data
contamination: even when the original model exhibits limited performance on benchmarks, expo-
sure to the benchmark evaluation data can artificially inflate its performance. Consequently, the
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Table 5: The results for validating the resilience against data contamination. base means the perfor-
mance on base static benchmark questions, and @K means extended questions at the K-th interation.

Models MedQA MultiHop-RAG
base @1 @2 @3 base @1 @2 @3

Llama3-8B-Instruct 62.17 69.94 67.72 69.77 48.77 28.30 28.38 29.15
Llama3-sft 82.53 65.59 65.80 65.42 88.45 29.59 29.19 29.79

∆ 20.34 -4.35 -1.92 -4.35 39.69 1.29 0.81 0.65

Mistral-7B-Instruct-v0.3 57.91 59.40 58.76 56.97 59.51 37.75 38.60 37.22
Mistral-sft 62.73 53.18 51.98 51.98 92.17 32.74 32.58 32.62

∆ 4.82 -6.23 -6.78 -4.99 32.66 -5.01 -6.02 -4.60

Qwen2.5-7B-Instruct 85.93 78.04 75.44 77.31 46.31 20.59 21.64 21.48
Qwen2.5-sft 94.20 78.00 75.78 77.27 88.90 26.60 25.56 24.75

∆ 8.27 -0.04 0.34 -0.04 42.59 6.02 3.92 3.27

Figure 5: The cross-validation results of extended questions versus seed questions on MedQA.
ACC1 and ACC2 indicate the accuracy before and after evaluation. ∆ = ACC2 − ACC1 refers to
the overall accuracy improvement. All the values are percentages. @K represents the results of the
questions expanded at the K-th round.

model’s genuine capabilities may be obscured by overestimated benchmark performance, leading to
misapplication in scenarios beyond the actual capabilities.

In contrast, when evaluated on extended questions generated by JudgeAgent, the fine-tuned models
and base models show little difference in performance. Additionally, fine-tuning even resulted in
a decline on the MedQA benchmark. These results suggest that under the Agent-as-Interviewer
dynamic evaluation paradigm, the generated questions maintain the validity of evaluation, even when
the original questions have been exposed to the target model. Furthermore, under the same setting
of LLM and benchmark, there is a marked gap between the performance gain on base questions and
extended questions after fine-tuning, demonstrating that Agent-as-Interviewer exhibits considerable
resilience to data contamination.

E.2 CROSS VALIDATION OF THE EVALUATION SUGGESTIONS

Do the suggestions provided by Agent-as-Interviewer only take effect for the seed questions?
To address this question, we designed cross-validation experiments from two perspectives.

First, considering that the evaluation suggestions are derived from a comprehensive evaluation of the
responses to both the seed questions and their extended questions, we evaluated and compared the
accuracy improvement of the suggestions on the extended questions versus the seed questions, aim-
ing at verifying that the suggestions do not contain ”cheating information” specific to seed questions
in the scenario after evaluation. The results are shown in Figure 5.

Secondly, we transferred the evaluation suggestions derived from seed questions to other questions
with related knowledge concepts in the benchmark, to verify the effectiveness of the suggestions
within the same knowledge domain. Specifically, we categorized questions based on the knowledge
entities they contain, formalized as follows: given the context graph G, for two questions q1 and q2
with knowledge entities E1 = {e|e ∈ q1 ∧ e ∈ G} and E1 = {e|e ∈ q2 ∧ e ∈ G}, if E1 and E2 have
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a non-empty intersection, then q1 and q2 are considered related questions. In this experiment, the
suggestions for a question were constructed from the suggestions of its related questions, excluding
suggestions from the question itself, to assess and validate the transferability of the suggestions
provided by the Agent-as-Interviewer. We screened out questions without relevant questions and
those with only relevant questions based on non-knowledge entities, such as male, female, 2 years,
etc. The results are shown in Table 6.

Table 6: The cross-validation results of transferring suggestions to related questions. All the values
are percentages. Non-transfer refers to suggestions being applied to the seed questions, whereas
Transfer refers to them being applied to related questions.

Target ACC1 Non-transfer Transfer
ACC2 CR↑ CtE↓ ∆ ↑ ACC2 CR↑ CtE↓ ∆ ↑

GLM4-Flash 78.42 87.49 18.30 9.23 9.07 85.56 16.98 9.84 7.13
GPT-4.1 84.21 91.09 10.23 3.35 6.88 89.78 9.50 3.93 5.57
Qwen3 92.44 96.06 5.96 2.34 3.62 95.17 5.17 2.44 2.73

First, we analyze the difference in the effectiveness of evaluation suggestions on seed questions
versus extended questions. As shown in Figure 5, suggestions effectively improve performance for
both seed questions and extended questions, with a relatively small gap in the degree of improve-
ment. Notably, when Qwen3 and GPT-4.1 are used as target models, the first round of Qwen3 and
the second round of GPT-4.1 exhibit even greater improvement than seed questions. These results
indicate that although the suggestions only supplement knowledge for several key concepts, such as
the case in Figure 7, such concise suggestions can still benefit both seed and extended questions,
demonstrating that Agent-as-Interviewer is capable of identifying and addressing knowledge gaps
in the target model, rather than simply providing ”cheating information” specific to seed questions.

Furthermore, it is observed that the effectiveness of suggestions for third-round questions is consis-
tently low in the experiments. This may be because, by the third round, knowledge path sampling
has expanded beyond the scope of knowledge related to seed questions to a broader range. As a
result, the generated questions diverge more significantly in core knowledge from earlier questions,
thereby reducing the effectiveness of the knowledge guidance provided in the suggestions.

Next, we analyze the difference in the effectiveness of suggestions on questions that share the same
knowledge concepts. As shown in Table 6, compared to their effectiveness on seed questions, the
suggestions exhibit a slight decrease when applied to related questions, as indicated by a decline in
CR and ∆, and an increase in CtE. But the difference is minor, and the improvement remains notable,
suggesting that the suggestions can be effectively transferred to other questions involving the same
knowledge concepts. This further demonstrates that Agent-as-Interviewer can provide suggestions
that do not simply serve as “cheating information” specific to seed questions.

However, the slight decline in evaluation effectiveness also indicates that the knowledge guidance
provided in the suggestions is not fully aligned with the related questions. This may be because the
overlapping entities between these related questions and seed questions do not correspond to core
knowledge concepts. For example, suggestions centered on ”blood type” may be transferred to a
question where ”serum” is the core knowledge concept, resulting in a partial mismatch.

The above experiment results demonstrate that the evaluation suggestions provided by Agent-as-
Interviewer are not only applicable to seed questions but can also be transferred to other questions
that share relevant core knowledge concepts.

E.3 SUPPLEMENTARY PARAMETER ANALYSIS

What is the impact of batch size in the Benchmark Grading stage on the evaluations of the
Agent-as-Interviewer? In Benchmark Grading stage, questions are divided into batches to com-
prehensively assess the target’s capabilities in a base level. These batches are also the basic units
for question extension and evaluation feedback. Given a fixed rounds, the batch size is inversely
proportional to the number of batches, extended questions, and evaluation suggestions, thereby in-
fluencing the time and resource consumption of the entire evaluation process. Can the batch size be
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maximized to reduce resource consumption while maintaining the effectiveness of evaluations?
To address this question, we conducted a parameter analysis experiment, examining the evaluation
effectiveness and time consumption under different batch sizes. The results are shown in Figure 6.

Figure 6: The results of different batch sizes on MedQA. ACC1 and ACC2 indicate the accuracy
before and after receiving evaluations. Time Cost is the average time consumption for each question.

As observed from the trend of the curves in Figure 6, both the target’s accuracy after receiving evalu-
ation suggestions (ACC2) and the average time consumption per question for evaluation (Time Cost)
decrease as the batch size increases. Among them, the decline rate in ACC2 gradually accelerates
with larger batch sizes, while the decline rate in Time Cost gradually slows, exhibiting a marginal
effect. The reason for the marginal effect in Time Cost lies in the fact that the time required for
the target model to answer the seed questions, which is a component of the overall evaluation pro-
cess, varies little with changes in batch size. As a result, there is a threshold beyond which further
reductions in time cost have diminishing returns.

The decline in ACC2 with increasing batch size can be attributed to the expansion of the question’s
knowledge domain. As the batch size grows, the generated questions during evaluation become
more heterogeneous and less coherent with the knowledge relevant to seed questions, making it
difficult for JudgeAgent to identify appropriate knowledge guidance from the dispersed question-
answer pairs. Moreover, when the batch size exceeds the number of extension rounds, the disorder
of knowledge scopes intensifies more rapidly, ultimately leading to a sharp drop in accuracy. The
results in Figure 6 show that when the batch size reaches 9, the evaluation suggestions even become
counterproductive (ACC2 < ACC1), interfering with the normal reasoning of the target model.

Therefore, considering both the evaluation time cost and effectiveness, we selected a batch size of 3
in our experiments as a balanced choice.

F ALGORITHM

To clarify the entire workflow of JudgeAgent, we use pseudocode to show the dynamic evaluation
process in Algorithm 1, the validation process of evaluation in Algorithm 2, the construction of
context graph in Algorithm 3, and the generation of extended questions in Algorithm 4.

G PROMPTS

We show the detailed prompt for Entity Extraction in Prompt 7, the prompt for generating extended
questions in Prompt 8, the prompt for evaluating the performance of the target LLM in Prompt 9,
and the prompt for querying the target LLM with suggestions in Prompt 10.

H DETAILED CONTENT OF CASE STUDY

The detailed content of the comparative case in section 4.6 is shown in Figure 7.
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Figure 7: The detailed content of the case.
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Algorithm 1 Dynamic evaluation process of JudgeAgent

1: Input: Target LLM Mt, Base dataset D = {(qi, ai, di)}Ni=1 (each item include question q,
answer a, and difficulty d), Knowledge bases K = {k1, k2, ...}, Core LLM of JudgeAgentMc,
Predefined batch capacity NB , Max extension round RNDe, Max hop of sampling H

2: Output: Evaluation Score sc, Batched dataset with suggestions DS = {(B1 , s1) , . . . }
// Construct context graph

3: G ←CONSTRUCT CONTEXT GRAPH(K ,Mc)
// Split base dataset into batches

4: {B1 = {(q1i, a1i, d1i)}NB
i=1 , . . . } ←SPLIT BATCHES(D , NB)

// Begin Evaluation
5: sc← 0 , Ntotal ← 0
6: DS ← {}
7: for B ← {B1 , B2 , . . . } do
8: scB ← 0
9: RNDtotal ← 0

10: Qtested ← {}
// Stage1: Benchmark Grading

11: for (q, a, d)← B do
12: Get answer aM ←QUERY LLM(q ,Mt)
13: if aM is correct based on q and a then
14: scB ← scB+DIFFICULTY SCORE(d)
15: end if
16: RNDtotal ← RNDtotal + 1
17: Add (q, a, d, aM) to Qtested

18: end for
19: Decide difficulty de ←DECIDE DIFFICULTY(scB , RNDtotal)

// Stage2: Interactive Extension
20: for i← {1, 2, . . . , RNDe} do
21: (qe, ae, t)←GENERATE EXTENDED QUESTIONS(B , G ,Mc , H , de)
22: Get answer aM ←QUERY LLM(qe ,Mt)
23: if aM is correct based on qe and ae then
24: scB ← scB+DIFFICULTY SCORE(de)
25: end if
26: RNDtotal ← RNDtotal + 1
27: Add (qe, ae, de, aM) to Qtested

28: Decide difficulty de ←DECIDE DIFFICULTY(scB , RNDtotal)
29: end for

// Stage3: Evaluation Feedback
30: Get evaluation suggestions s←EVALUATE(Qtested ,Mc)
31: Add (B, s) to DS
32: sc← sc + scB
33: Ntotal ← Ntotal +RNDtotal

34: end for
35: sc← sc /Ntotal

36: return sc , DS
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Algorithm 2 Validation process of evaluation results from JudgeAgent

1: Input: Target LLM Mt, Batched dataset with suggestions DS = {(B1 , s1) , . . . }, in which
Bi = {(qi1, ai1, di1) , . . . } is a batch of base dataset D, and Si = {si1 , . . . } is relevant sug-
gestions from JudgeAgent.

2: Output:Accuracy of target LLM before evaluation acc1, Accuracy after evaluations acc2, Cor-
rection Rate cr, Correct-to-Error Rate ce
// Initialize counter of questions

3: Nacc1 ← 0 , Nacc2 ← 0 , Ncr ← 0 , Nce ← 0 , Ntotal ← 0
4: for (B, s)← DS do
5: NB ←LEN(B)
6: Ntotal ← Ntotal +NB
7: for i← {1, 2, . . . , NB} do
8: (q, a, d)← B[i]
9: Get answer1 a1 ←QUERY LLM(q ,Mt)

10: Get answer2 a2 ←QUERY LLM WITH SUGGESTIONS(q , s ,Mt)
11: correct1←whether a1 is correct based on q and a
12: correct2←whether a2 is correct based on q and a
13: if correct1 then
14: Nacc1 ← Nacc1 + 1
15: if not correct2 then
16: Nce ← Nce + 1
17: end if
18: end if
19: if correct2 then State Nacc2 ← Nacc2 + 1
20: if not correct1 then
21: Ncr ← Ncr + 1
22: end if
23: end if
24: end for
25: end for
26: acc1 ← Nacc1/Ntotal , acc2 ← Nacc2/Ntotal , cr ← Ncr/Ntotal , ce← Nce/Ntotal

27: return acc1 , acc2 , cr , ce

Prompt for Entity Extraction
Please identify and label the entities in the following multiple sentences, and return the entity label-
ing results for each sentence.
The results for each sentence should be independent, in JSON format, containing the sentence num-
ber, sentence text, and the list of recognized entities (including entity text, type, and position).
Return format is a dictionary, with only one key ’labeled data’, and the value is a list, each element
is a dictionary containing the sentence text and the entity list.
{{

”labeled data”:
[
{{”text”:”Sentence 1”, ”entity list”: [{{”entity text”: ””, ”entity type”: ””}}]}},
{{”text”:”Sentence 2”, ”entity list”: [{{”entity text”: ””, ”entity type”: ””}}]}},
...

]
}}
Notice that ”text” should be only the sentence, not the whole article. Sentence list:
{ Sentences }

Table 7: Prompt for entity extraction.
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Algorithm 3 Construction process of context graph

1: Input: Knowledge Base of Dataset K = {k1 , k2 , . . . }, an LLMM
2: Output: Context Graph G = (N , E), in which N is the node set, and E is the edge set.
3: N ← {} , E ← {} // Initialize node set and edge set as empty dictionary
4: for k ← K do

// Spliting text into chunks
5: C = {c1, c2, . . . } ←SPLIT TO CHUNKS(k)

// Prompting LLM to label entities
6: Pe ← ∅
7: for c← {c1, c2, . . . } do
8: Se = {e1, e2, . . . } ←LABEL ENTITY(c ,M)
9: for e← Se do

10: if e not in N then
11: N [e]← (e , C = ∅ , D = ∅)
12: E [e]← ∅
13: end if
14: Add c to set N [e].C
15: Add k to set N [e].D
16: Expand set E [e] with Se

17: end for
18: Expand set Pe with Se

19: end for
20: for e← Pe do
21: Expand set E [e] with Pe

22: end for
23: end for
24: G ← (N , E)
25: return G

Algorithm 4 Generation process of extended questions

1: Input: Base Question Q = {q1, q2, . . . }, Context Graph G = (N , E), LLMM, Max hop of
path H , Difficulty d

2: Output: Extended question with its answer and background text (qe , ae , t)
// Prompting LLM to label entities from Q

3: Se ← {}
4: for q ← Q do
5: sete = {e1, e2, . . . } ←LABEL ENTITY(q ,M)
6: Add sete to Se

7: end for
8: e←RANDOM SAMPLE({e1, e2, . . . } , 1)

// Sample knowledge paths
9: e′ ←the most similar entity in N of G

10: Evisited ← {e′}
11: t←RANDOM SAMPLE(N [e′].C , 1)
12: for i← {1, 2, . . . ,H − 1} do
13: Ecandidate ←the most similar 5 entities to e′ in E [e′] that not in Evisited

14: e′ ←RANDOM SAMPLE(Ecandidate , 1)
15: Ccandidate ←the most similar 5 chunks to q in N [e′].C
16: c←RANDOM SAMPLE(Ccandidate , 1)
17: Concatenate c to new line of t
18: Add e′ to Evisited

19: end for
20: (qe, ae)←GENERATE QUESTION(t ,M)
21: return (qe , ae , t)
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Prompt for Generating Extended Questions
As an interviewer, you are tasked with designing questions based on the provided texts. Your role
involves crafting questions and correct answers that fulfill the following criteria:

1. **Focus on the Entity**: Ensure all questions consistently center around the specified entity from
the article.
2. **Ensure Accuracy and Conciseness of Answers**: Verify that the provided answer is both
correct for your designed question within the context and logic of the given text fragments, and
ensure the answer is sufficiently concise—presented as a word or phrase, avoiding redundancy.
3. **Conform to difficulty requirements**: You need to design questions for the required difficulty
levels, with specific requirements as follows:

(1). [easy]: **Encourage Knowledge Memorization**, design questions that assess whether
respondents have memorized relevant knowledge. Create questions by directly extracting and blank-
ing out content from the given passage.

(2). [medium]: **Encourage Knowledge Comprehension**: Design questions that prompt
respondents to dissect and comprehend concepts involved in the topic. Avoid assessing only super-
ficial knowledge retention.

(3). [hard]: **Encourage Knowledge Deep Analysis**: Design questions that prompt respon-
dents to engage in deep thinking and analysis. Avoid merely testing knowledge recall or conceptual
comprehension; do not simply extract fragments from the given passage to create fill-in-the-blank
items. Encourage respondents to focus on entities within the question and employ logical skills for
complex reasoning.

Here are examples:
{ Examples }

Now, given the following text fragments:
{ context }

Based on the provided texts, please generate questions by following the requirements above and
referencing the examples.
Output in the specified JSON format below: {{

”generated question”:
[
{{

”question”: ”Generated Question”,
”answer”: ”Correct Answer of Generated Question”

}},
...
]

}}

Table 8: Prompt for generating extended questions based on different difficulties.
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Prompt for Evaluation
The following is the performance of an LLM in answering a series of questions:

{ list of questions, correct answers, and LLM’s answers }

Please evaluate and analyze the interviewee’s performance based on the above performance us-
ing concise language from the following perspectives, and provide suggestions that help the LLM
answer the same questions better. Suggestions should provide specific and detailed guidance on
logical thinking steps, required knowledge, and abilities, ensuring the LLM can answer correctly for
the same questions.
Output in the following JSON format:
{{

”flaws knowledge”: ”The lack of background knowledge.”,
”flaws capability”: ”The flaws in logic and capability.”,
”comprehensive performance”: ”The Comprehensive performance of all questions.”,
”suggestions”: ”Suggestions that help the LLM answer questions bette”

}}

Table 9: Prompt for evaluating the performance of the target LLM.

Prompt for Querying LLM with suggestions
Please complete the following question:
[question]: { question }

In your previous responses to these questions, the interviewer has provided the following suggestions
for you to help you answer better:
[suggestions]: { suggestions }

Please consider the above [suggestions], and answer the above [question], in the following JSON
format:
{{”answer”: ”Your answer”}}

Table 10: Prompt for querying the target LLM with suggestions.
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