
MMT4: Multi Modality To Text Transfer Transformer
Amir Tavanaei

atavanae@amazon.com
Amazon

Seattle, WA, USA

Karim Bouyarmane
bouykari@amazon.com

Amazon
Seattle, WA, USA

Iman Keivanloo
imankei@amazon.com

Amazon
Seattle, WA, USA

Ismail Tutar
ismailt@amazon.com

Amazon
Seattle, WA, USA

ABSTRACT
Recent studies have demonstrated the ability of auto-regressive and
seq-to-seq generative models to reach state-of-the-art performance
on various Natural Language Understanding (NLU) and Natural
Language Processing (NLP) tasks. They operate by framing all the
tasks in a single formulation: text auto-completion or text-to-text
encoding-decoding. These models can be trained on the products
corpus in order to understand the information in the e-commerce
products listings. In this paper, we present a new generative model
to involve different modalities (e.g. text and vision). The proposed
model is an encoder-decoder model with the T5 (Text To Text
Transfer Transformer) foundation in which the non-text compo-
nents are fused to the text tokens. Specific relative positional and
token type embeddings are used in the encoder part, while the de-
coder generates new text corresponding to diverse tasks. Hence, we
name the proposed model MMT4:MultiModality To Text Transfer
Transformer. The experiments are done over our proprietary e-
commerce catalog involving image and text, with the rationale
that the image of a product provides more information about the
product. One of the main advantages of this model is to generate
product attributes (product specifications) that can be either solely
inferred from the text or the image, or both. In the experiments, we
pre-train and fine-tune MMT4 to solve a number of downstream
tasks: attribute generation, image-text matching (ITM), and title
(product name) generation from product’s image (captioning). The
experimental results show up to 35% accuracy improvement in
comparison with the fine-tuned T5 in the attribute generation task.
Product title generation also showsmore than 3% higher Rouge-1 re-
call than the fine-tuned state-of-the-art captioning model. Although
we fine-tuned our model on less than 2M samples in a generative
mode, its performance is only 2% area under the precision-recall
curve lower than the state-of-the-art ITM model.
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1 INTRODUCTION
Following the success of transformers in encoding the natural
language data and text representation [5, 13, 19, 32], recent re-
search focused on using the pre-trained text encoders in down-
stream tasks such as sentence encoding [26], classification, seman-
tic analytics [23, 26], question answering [28], and named entity
recognition [30]. For each task, separate fine-tuning and model
customization are required to provide task-specific models. Addi-
tionally, in classification tasks, the number of classes is pre-defined
and the model should be re-trained after adding a new label to
the task. To address these concerns, sequence-to-sequence trans-
formers [15, 18, 25, 33] provide a unique framework to support
multi-task learning and additional class labels by generating text
using their decoder component. T5 (Text To Text Transfer Trans-
former) [25] is one of the popular generative models that offers
a unified architecture across multiple tasks and has shown great
performances in different applications [2, 7, 10, 21].

Encoder-based transformers have been customized to encode
other modalities and use the self-attention mechanism [32] in multi-
modal frameworks. There are a series of multimodal transformers
in the literature which perform early/late fusion in vision and lan-
guage modeling such as ViLBERT [20], ViLT [12], MMBT [11],
and ALBEF [16] or two-tower vision and language models such as
CLIP [24], and ALIGN [9]. Data2Vec [1] is the most recent trans-
former that encodes text, image, and speech. It is pre-trained using
mask prediction and latent target representation using teacher
signal to learn individual representations of the modalities and it
does not perform multimodal training. Although these multimodal
networks performed well in learning from joint or individual modal-
ities, they inherit the same limitations in multi-task learning and
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Figure 1: T5 versus MMT4 facing complete and incomplete
product titles to generate product attributes. The MMT4 uses
image information to compensate information lack in the
text. ‘?’ means that themodel fails to predict correct response.

Figure 2: Title generation and image-title/text matching de-
cision using MMT4.

unseen label recognition. Thus, in this work, we propose a new
generative model to encode different modalities and generate de-
sired output texts. The proposed model architecture is a customized
T5 in which the non-text (e.g. image) components are fused to the
text tokens with specific relative positional and token type embed-
dings in the encoder section while the decoder generates new texts
corresponding to diverse tasks specified by keywords (prompts).
We name our model Multi Modality To Text Transfer Transformer
(MMT4). Fig. 1 shows an example of the MMT4’s application and
its superiority over T5 where the image input provides information
to compensate the lack of information in the text. For instance,
if the text input does not include the shirt’s color or pattern, the
image input can help to generate (or correct) these important at-
tributes in the product’s details. MMT4 can also be used in other
downstream tasks such as title generation from other sources of
data, title completion, cross-modality matching, and so on. Fig. 2
shows two examples of title generation from image and image-title
matching (as a specific case of cross-modality matching).

This work is inspired from the multimodal generative model
introduced in [3] which unifies tasks involving both text and image
using generative models. [3] uses 36 Faster-RCNN [27] image re-
gions as regions of interest to calculate the vision embeddings and
pre-trains the model using self-supervised learning approaches and
downstream tasks given specific prompts. Using an object detec-
tion algorithm for visual embedding preparation is computationally
expensive and this network limits the inputs to only text and image.
The proposed approach in MMT4, on the other hand, does not need
to know the regions of interest as input and it learns to find them
through self and cross attention layers which results in latency
reduction in inference.

Figure 3: MMT4 architecture. 𝐷𝑝 is the non-text feature di-
mension, 𝐷ℎ is the transformer hidden dimension, and L is
the sequence length. Text and non-text inputs are fused in
the encoder using early fusion method and the encoder’s last
hidden state is used in the decoder for text generation.

In summary, our contributions in this work are to build a gen-
eral sequence-to-sequence generative model architecture that can
support different kinds of modalities, provide an efficient multi-
task, multimodal framework to improve the text-only generative
models, and address a number of problems in e-commerce using
the proposed model (MMT4).

2 MMT4 MODEL ARCHITECTURE
MMT4 is a customized and augmented version of T5 [25] where
the input is not limited to text and can be chosen from different
modalities. Fig 3 shows the model architecture where the input is
the combination of an input text and another source of input (e.g.
corresponding image to the text). The “Modality Feature Represen-
tator” pre-processes the non-text input and extracts a sequence of
feature vectors representing the new modality. For instance, the
image input can be divided into image patches flattened to 𝐷𝑝 -
dimensional feature vectors; or a voice signal can be represented
by a number of Mel Frequency Cepstral Coefficient (MFCC) [22]
feature vectors. This component can also be a neural network archi-
tecture processing the raw input. For example, a vision transformer
or convolutional neural network (CNN) can extract sequential fea-
ture vectors from images. The “Projection” component adjusts the
modality feature vector dimension to the T5 hidden layer dimension
(e.g. 768 for T5-base) using a linear layer followed by a normaliza-
tion layer (LayerNorm). At this point, the new modality’s input
features are ready to be passed to the embedding and transformer
layers next to the embedded text tokens. Eq. 1 shows the modality
component (𝑃𝑖 ) obtained by the modality (𝑉 ) feature representator
(𝑓𝑣 ) that is projected by a linear NN (𝑊𝑝𝑟𝑜 𝑗 ) followed by normaliza-
tion, 𝛾 .

𝑃𝑖 = 𝑓𝑣 (𝑉 )𝑖 , 𝐼𝑖 = 𝛾 (𝑊𝑝𝑟𝑜 𝑗 .𝑃𝑖 ) (1)

The token type (segment) embedding (SE) in this architecture
separates different modalities and helps the model distinguish in-
formation flow from different input segments. Each modality in
this architecture gets a unique token type id (in this figure 0 and 1)
as shown in Eq 2. The embedded inputs for the text (𝑋 𝑡 ) and the
other modality (𝑋 𝑣 ) are concatenated to prepare a single sequence



MMT4: Multi Modality To Text Transfer Transformer SIG-KDD, Workshop on Content Understanding and Generation for E-commerce, August 14–18, 2022, Washington, DC

Figure 4: Three approaches for image feature representation
before fusion. 1: Simple image patching and flattening. 2: ViT
over image patches. 3: CNN feature map vectors.

fed to the T5 encoder.

𝑋 𝑣
𝑖 = 𝐼𝑖 + SE(0) (2)

𝑋 𝑡
𝑖 = WE(𝑇𝑖 ) + SE(1), WE : Word Embedding

Following the T5 architecture, we also employ the relative posi-
tional embedding (RPE) [25, 29] computed according to the input
length for each input segment/modality (as shown in Eq. 3) and
is incorporated in the self-attention computation. The positional
embedding utilizes the relative pairwise distance between tokens
so that it can handle long sequences and better generalize to se-
quences with different lengths than the lengths seen in the training
data [29]. The RPE of the input vectors (𝑎𝑖 𝑗 ) is shared with the other
encoder blocks.

𝑎𝑣𝑖 𝑗 = RPE(ℎ𝑒𝑎𝑑, 𝐿𝑣, 𝐿𝑣) , 𝑎𝑡𝑖 𝑗 = RPE(ℎ𝑒𝑎𝑑, 𝐿𝑡 , 𝐿𝑡 ) (3)

𝑎𝑖 𝑗 = concat(𝑎𝑣𝑖 𝑗 , 𝑎
𝑡
𝑖 𝑗 )

The embedded features are concatenated and fed to the encoder
layers including multi-head self-attention layers. The last hidden
state of the encoder is a sequence of (𝐿𝑣+𝐿𝑡 )𝐷ℎ-dimensional feature
vectors passed to the decoder as key-value for the cross-attension
calculation in the decoder layers. The “Linear Head” of the decoder
section maps the decoder’s last hidden state to token IDs based
on the casual language modeling masking. In this study, we only
focus on the text generation, thus, the “Linear Head” is used in all
the experiments. In the case that the other modality generation is
expected, the “Linear Head” may or may not be used according to
the modality type and the task.

3 EXPERIMENTAL METHOD: IMAGE+TEXT
In this paper, we focus on image as the additional modality so that
an encoder input involves a product’s title and its corresponding
image. In this studywe experiment three different image feature rep-
resentation approaches as explained in the following paragraphs.

Image Patching: The image patching component divides the im-
age to squared patches with the shape of [𝑝𝑎𝑡𝑐ℎ×𝑝𝑎𝑡𝑐ℎ×𝑐ℎ𝑎𝑛𝑛𝑒𝑙]
where 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 3 (RGB channels). The flattened patches represent
the image component features, 𝑃𝑖 , as demonstrated in Fig. 4.1.

VisionTransformer (ViT): The Vision Transformer (ViT)model
[6] trains a transformer encoder on ImageNet [4] by dividing the
image to squared patches (e.g. 16x16 or 32x32) as input feature

Figure 5: Pre-training sample row examples. The first row
shows a span prediction example and the second row shows
an MLM example.

vectors. ViT has outperformed the CNN models in image classi-
fication tasks and has been widely used for visual and language
transformers [12, 16, 24]. In this study, we use the ViT pre-trained
on 224x224 images that are divided into 32x32 patches. This model
represents an image by𝑚+1 feature vectors where𝑚 is the number
of patches and 1 is for the [CLS] token in this architecture as shown
in Fig. 4.2.

Convolutional Neural Networks: CNN as a well known NN
architecture for image processing [8, 14] has shown great success
in cooperating with the multi-modal transformers for encoding
visual and natural language data [11, 16]. In this study, we use
EfficientNet-B4 [31] as a high performance and efficient CNNmodel
to extract visual features of images before fusing them to the text
token features in the encoder. The visual features are acquired from
the last convolutional layer of the EfficientNet-B4 in which each
point across 1792 feature maps represent one image component.
Fig. 4.3 depicts the image components extracted by the EfficientNet-
B4. Given an image with the size of [380x380], the last convolutional
layer’s output consists of 1792 feature maps with the size of [12x12].
Thus, this image feature representator extracts 144 features vectors
with the dimension of 1792.

4 EXPERIMENTS AND RESULTS
The modalities in the experiments are product’s title and image
where the image modality is represented by the three approaches
mentioned above. The training dataset includes 1.92M titles and
their corresponding images and the validation dataset includes 7720
titles and corresponding images from different products than the
training dataset. Pre-training and fine-tuning tasks are performed
using the same training hyper-parameters with learning rate=2e-
4 decayed linearly, training epochs=2, and batch size=288. This
section describes the experiments and results of the pre-training
and fine-tuning tasks.

4.1 Pre-training
Pre-training of MMT4 involves self-supervised span prediction and
masked language modeling (MLM). The span prediction replaces
several, random token spans by special tokens and the MLM re-
places random tokens by a mask token. T5 tokenizer provides 100
extra special tokens names <extra-token-0> to <extra-token-99>
where 99 of those are used for the span prediction task and <extra-
token-99> is used as the [MASK] token in MLM. Fig. 5 shows an
example of the pre-training data and expected generated texts. In
the span prediction task, the noise density is 0.2 and the average
span length is 2 tokens. The MLM mask density is 0.3. In both tasks,
the cross entropy loss (ce) of the generated text and the target text
is calculated and equally weighted for pre-training. Eq. 4 shows the
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Figure 6: Loss value trend during training. Left: all the steps.
Right: steps 1000-12000.

loss function.

Loss = ce(𝑝𝑠𝑝 , 𝑦𝑠𝑝 ) + ce(𝑝𝑚𝑙𝑚, 𝑦𝑚𝑙𝑚) , (4)

ce = −Σ𝐿𝑡=1Σ
𝑀
𝑐=1𝑦𝑡,𝑐 log(𝑝𝑡,𝑐 )

where, 𝑝 denotes the softmax of the language model head’s output,
L is the length of output text, 𝑀 is the vocabulary size, and 𝑦

shows the target tokens. The smoothed training loss values for
three MMT4 architectures including different image representation
components are shown in Fig. 6. The CNN and ViT visual feature
extraction methods have shown lower loss values than the raw
image patches during training.

4.2 Fine-tuning: Attribute Generation
The aim of MMT4 is mainly to improve the performance of down-
stream tasks and to provide a new network architecture to address
questions that cannot be solved by text-only models. One of the
main concerns in attribute generation/extraction from the product
title (and description) is the lack of relevant information pinpointing
the attributes. For instance, generating the “sleeve-type” attributes
from a shirt’s title (and other descriptions) that does not reveal any
information about the sleeve type of the shirt is almost impossible.
However, the other modalities (e.g. image of the product) can solve
this problem. Additionally, even if the textual data include required
target tokens, additional modality can improve the model’s per-
formance and correct the attribute values. To assess the impact of
the image in information generation, we pre-process the dataset
according to the task and remove the tokens of interest from the
input data.

The attributes selected for the attribute generation task are color,
brand, style, material, sleeve-type, number-of-items, and pattern.
These attributes are the examples of attributes that may be discov-
ered from the image if the attribute is not in the text input (title).
The number of samples for each task may be different from other
tasks because not all attributes are valid for all the products (for
instance, shoes do not have sleeve-type).

The MMT4 is fine-tuned to generate the attributes mentioned
above given themodified titles followed by task prompts (e.g. color:).
To evaluate the fine-tuned MMT4, the validation dataset includ-
ing 7700 samples is used. As shown in Table 1, in average, using ViT
as image representation slightly outperforms the other methods.
The accuracy of the number-of-items generation is greater than
99% because most of the values are 1. If we only take the number-
of-items>1 into account, our model is 31% (12 out of 39) matched
with the labels.

Table 1: Attribute generation performance of MMT4 based
on incomplete titles.

Model Attributes (Evaluation Accuracy %)
Color Material Pattern Style Brand Sleeve Items

MMT4 (Image Patch) 78.00 71.54 63.37 47.78 30.32 81.94 94.89
MMT4 (EffNet) 74.75 72.61 63.38 51.45 29.59 85.17 95.53
MMT4 (ViT) 79.92 71.20 69.43 50.87 30.15 86.34 95.53

Number of samples 3018 2337 314 519 6518 681 626

Figure 7: MMT4’s impact in generating relevant attributes by
relying on both image and title. This figure shows examples
for color, pattern, and sleeve-type attribute generation.

To compare MMT4 with T5 in this task, we fine-tuned the pre-
trained T5 (t5-base) using the same training dataset and hyper-
parameters as MMT4. Table 2 shows the T5 and MMT4 perfor-
mances on the validation dataset in three folds: 1) all the titles
are pre-processed as explained in Section 4.2, 2) only 20% of titles
are pre-processed, and 3) the original titles are used. As expected,
MMT4 outperforms T5 since it receives more information (image
and text) from input, especially in detecting/generating attributes
that can be easily obtained from the image. Even if the original
titles are used (fold 3 in Table 2), MMT4 outperforms T5 in all the
attribute generation tasks.

Figs. 7 and 8 visualize the impact of MMT4 in correcting and
completing the product’s attributes using both title and image.
This impact is better demonstrated in the titles that miss many
attributes. Table 3 shows a detailed comparison between fine-tuned
T5 and MMT4. In this analysis, for each attribute, we reported the
true positive rates for frequent values belonging to each attribute.
For example, out of 73 different “patterns”, the test dataset has
31 products with “Striped Pattern” and out of 31 striped pattern
products, MMT4’s correctness ratio was 20/31 and T5’s correctness
ratio was 1/31. In both comparisons, MMT4 outperforms T5 due
to its multimodal framework. To further compare our model with
the state-of-the-art generative models, we tested pre-trained mul-
timodal VL-T5 [3] for image-text matching and color generation
tasks. However, the performance of the zero-shot VL-T5 was very
poor in these tasks on our validation dataset (<60% PR-AUC) so that
we did not take that comparison into account in this manuscript.

4.3 Fine-tuning: Title Generation from Image
To evaluate MMT4 for title generation from image, we used 6819
product images from the validation dataset. The generated titles are
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Table 2: Fine-tuned T5 versus fine-tuned MMT4 for attribute generation. First, all the titles are pre-processed (i.e. the attribute
values in the titles are removed). Second, 20% of titles are pre-processed. Third, Original titles are used.

Titles Pre-processed Model Attributes (Evaluation Accuracy)%
Color Sleeve_type Pattern Material Style Brand

All of the titles T5 39.5 78.9 55.7 66.3 43.2 21.2
MMT4 74.8 85.2 63.4 72.6 51.4 29.6

20% of the titles T5 75.9 85.8 69.1 74.2 54.1 58.8
MMT4 87.3 88 72.6 77.2 58.4 61

No pre-processing T5 84.2 87.7 72 76.2 57 68.3
MMT4 89.8 88.1 73.9 78 60 68.7

Figure 8: Material, style, and brand attribute generation examples in which MMT4 uses visual features to outperform T5. The
visual features of the product image help MMT4 to pick the right value for the attributes.

compared with the reference titles using the Rouge-1 metrics [17].
Rouge-1 shows what percentage of unigrams are in both generated
and reference texts. The MMT4 with EfficientNet and ViT image
representators showed 18% Rouge-1 recall. It means, in average, 18%
of the words in each title is generated by our model. We compared
the generated titles by MMT4 with the generated titles by the state-
of-the-art captioning model, X-VLM [34]. The zero-shot X-VLM
reported 13.3% and the fine-tuned (using the same data as MMT4)
X-VLM reported 14.9% Rouge-1 recall. Fig. 9 shows some examples
of the reference and generated titles. As shown in this figure, the
type of shirt (t-shirt or tank top), item type (curtain, shows, shirt,
pants, ...), phone model (Samsung, iPhone), and other attributes
such as color and pattern are well addressed in the generated titles.

4.4 Fine-tuning: Image-Text Matching
Another application of the multimodal generative model is clas-
sification in generative mode. That is, the output class name is
generated instead of being selected from a list of classes. In this
task, the input data includes the product image and title followed by
“match:” prompt. The output in this task is either “yes” or “no”. The
performance of MMT4 for image-text matching of 6819 validation

data is shown in Table 4. The confusion matrix, precision-recall
curve, and ROC of this test are shown in Fig. 10. As shown in Ta-
ble 4, CLIP outperforms MMT4. This is mostly because of different
training process where CLIP is pre-trained on 400 million image-
text pairs using metric learning while MMT4 is only trained on 1.9
M samples in a multi-task generative schema. Thus, only 2% PR-
AUC performance drop is a green light showing that MMT4 can be
applied to classification tasks in multi-task problems. Additionally,
using task-specific discriminators for classification is limited to a
pre-defined set of classes and cannot extract out-of-box information
from the input whereas MMT4 can generate new words that well
explain the input data from multiple modalities.

5 CONCLUSION
This paper introduces a new multimodal generative model named
MMT4 to generate text given different modalities as input. Involv-
ing more than one modality in catalog data processing improves
the downstream tasks performance by providing more information
about the product. The experimental results of attribute genera-
tion showed that MMT4 outperforms the text-only model (T5) in
attribute generation, given that the attribute values do not always
exist in the text. Thus, the results of this application can be used for
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Figure 9: Examples of the generated titles by MMT4 given product images.

Table 3: Examples of attribute values generated byMMT4 and
T5. The "Labels" for each attribute shows the number of valid
values in the ground truth for that specific attribute. Data
size shows the number of products with the corresponding
attribute value in the ground truth. [Brand names are hidden
for the sake of privacy].

Attribute Attribute Value Labels Data Size T5 TP MMT4 TP

Sleeve-Type
Long Sleeve

5
220 172 206

Short Sleeve 344 320 322
Sleeveless 53 39 41

Color
Red 27 187 27 159
White 514 210 369

Pattern
Striped

73
31 1 20

Solid 74 59 63
Print 88 82 81

Material
Wood

230
53 28 37

Ceramic 71 61 64
Cotton 373 277 305

Style
Classic

102
45 28 29

Modern 96 65 68
Art Deco 35 28 35

Brand
P***

4000

51 7 33
S*** 58 58 58
H*** 45 45 45

Table 4: Performance of MMT4 in image-text matching in
comparison with CLIP.

Model ROC-AUC PR-AUC R@0.80 R@0.85 R@0.90 R@0.95 R@0.97

MMT4 0.979 0.975 0.996 0.991 0.972 0.873 0.763
CLIP [24] 0.996 0.995 0.999 0.996 0.993 0.980 0.963

attribute correction and validation, especially where text sources
miss attribute values. Additionally, title generation from image out-
performed the state-of-the-art captioning model by generating key
phrases in the title. Those can be used for improving Search in e-
commerce. Although image-text matching as a generation problem

Figure 10: Confusionmatrix and ROC/PR curves showing the
performance of the image-text matching task using MMT4.

did not perform better than framing it as classification problemwith
CLIP, the 98% PR-AUC attained after only fine-tuning MMT4 on
less than 2M samples warrants taking the next steps in fine-tuning
the model on larger datasets.

As the next steps, we are planning to pre-train and fine-tune
MMT4 on larger datasets (with more attributes). The fine-tuned
model will be used for a series of downstream tasks such as product
data inconsistency detection and attribute correction and the results
will be compared with the state-of-the-art models. Finally, we will
use the fine-tuned MMT4 to provide more information for other
models to improve their performance (teacher pseudo-labeling).
For example, generated product type from image and text can help
the product type classification pipeline in the e-commerce data
warehouse.
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