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Abstract

Despite its success in various image-text tasks like zero-shot classification on ImageNet, CLIP
has been shown to overlook important details in images and captions. This limitation hinders
its performance in fine-grained image-text matching tasks. In this paper, we approach this
issue through the lens of false negatives (incorrect negative pairs) and data noise (i.e.,
mislabeled data), which can prevent the model from learning critical details, especially in
downstream tasks with a limited number of classes. To address this, we introduce a new
loss term incorporating additional supervision to emphasize true negatives. Additionally,
we modify the InfoNCE loss to mitigate the impact of data noise. We show that our new
method is provably effective under fewer data assumptions than previous approaches, making
it particularly suited to noisy multi-modal data. Using the counting task as an example and
CLEVR-Count as the benchmark, we demonstrate the performance improvements achieved
by our algorithm without requiring extra labeled data.

1 INTRODUCTION

As a milestone in multi-modal contrastive learning, CLIP (Radford et al.,2021) effectively learns correspon-
dences between images and text, enabling it to handle a wide range of downstream tasks in a zero-shot
manner without prior exposure to labeled examples (Radford et all |2021)). Recently, CLIP has garnered
interest on the theoretical side as well (Ren & Lij, 2023} |Chen et al., 2023 [Nakada et al. 2023} |Zhang et al.
2023; |Xue et al., |2023)), with |Chen et al.| (2023)) providing insights into its zero-shot transfer capabilities
under certain assumptions about data distributions.

However, recent studies indicate that CLIP performs poorly on fine-grained image-text tasks, such as match-
ing spatial relationships (Kamath et al., [2023a)), numerical details (Paiss et al., 2023), and compositional
semantics (Yuksekgonul et al., |2023; [Thrush et al., |2022). For these tasks, CLIP’s zero-shot capabilities
appear limited. These studies propose several hypotheses and solutions, including fine-tuning CLIP on
additional relevant data, hard negative mining, and adding inductive biases to address these issues.

In our work, we approach this problem by examining the effects of false negatives and data noise during CLIP
training. First, CLIP treats all non-paired image-text combinations as negative pairs, which can introduce
incorrect negative pairs. This issue has been studied in both uni-modal (Huynh et al., 2022b; |Chen et al.
2021) and multi-modal contrastive learning contexts (Zolfaghari et al., [2021; Morgado et al., |2021). We
observe that for fine-grained tasks with a limited number of classes (e.g., numbers, colors, and directions),
the occurrence of false negatives is higher compared to classification tasks with many classes, which can
impede the model’s ability to learn fine-grained correspondences.

Additionally, using noisy, web-crawled datasets for CLIP training can introduce low-quality positive samples,
such as misaligned image-text pairs and ambiguous keywords, further complicating the learning of fine-
grained details. For instance, numbers in a caption might refer to dates (“Year two”), counts (“Two cats”),
or be irrelevant (“Image Two”). Figure [1] illustrates examples of false negatives and data noise from the
DataComp-small dataset (Gadre et al.,|2024)) in the context of counting: Given the reference image-text pair
(a), (b) represents a false negative in the original CLIP training, while (d) is a true negative. Sample (c) is
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Figure 1: Examples in the DataComp-small Dataset

mislabeled as it lacks the concept of “two” in the image, and (e) is an unrelated sample with no numerical
information.

Our Contributions: We propose a novel multi-modal contrastive training objective to mitigate these
issues in CLIP training. Identifying true and false negatives is generally ill-defined but feasible for specific
downstream tasks where labels can be obtained through keyword matching. For example, in tasks with
labeled image-text pairs, pairs with different labels can be treated as negative samples, allowing us to apply
an additional contrastive loss that emphasizes true negatives relevant to the downstream task. Furthermore,
we find that modifying the InfoNCE loss could possibly reduce the impact of data noise. Our theoretical
analysis derives an upper bound on the top-r loss and explains the effect of this modification using two
toy models. Compared to existing analyses of CLIP training (Chen et all [2023), our approach does not
depend on embedding consistency assumptions given shared information, and our framework generalizes to
a broader class of contrastive loss objectives.

For our experiments, we use the counting task as an example, comparing our method against the baseline
CLIP on the CLEVR-Count benchmark. In this task, we extract numbers from captions as supervised labels
and treat image-text pairs with differing numbers as negatives. We observe improved performance when
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training with these supervised labels. Additionally, modifying the InfoNCE loss yields performance gains
for both the original and supervised CLIP training methods. While our experiments focus on counting, our
algorithm is flexible and can be extended to other tasks where supervised labels for image-text pairs are
obtainable.

Organization: The paper is organized as follows: Section[2]covers related work, Section [3] formally describes
the problem setting and introduces the new loss objective, Section [] provides a theoretical analysis, and
Section [f] presents two toy examples. Our experimental results are detailed in Section [6} and we conclude
our findings in Section [7}

2 RELATED WORK

Improved CLIP Training for Fine-Grained Tasks Although OpenAl's CLIP (Radford et all 2021)
and its variants (Ilharco et al., [2021} Zhai et all, 2023; |Sun et al., [2023)) demonstrate impressive zero-shot
classification and retrieval capabilities on popular benchmarks like CIFAR10/100 (Krizhevsky et al., |2009)
and ImageNet (Deng et all 2009; Recht et al., |2019), they have been shown to struggle with fine-grained
image-text matching tasks. Such tasks require the model to capture subtle details in both images and
text (Thrush et al., 2022 Hsieh et al., |2024; Schiappa et al., [2024; [Yuksekgonul et al. 2023} |Zhao et al.,
2022} [Tong et al., [2024a3b} Kamath et al., 2023b). Since CLIP is pretrained on noisy, web-crawled image-
text pairs with retrieval as the primary optimization goal, several studies have attributed these challenges
to CLIP’s dependence on high-quality positive and negative samples. Efforts to address this include hard
negative mining for CLIP fine-tuning via keyword replacement (Yuksekgonul et al., [2023; Kamath et al.
and data cleaning through object detection for tasks like counting (Paiss et al., [2023). However, such
approaches rely on external models or data augmentation techniques that may be difficult to generalize to
other tasks.

In this work, we explore the potential of leveraging the original training data without constructing new
samples, and we provide a theoretical analysis to support this approach. Unlike the detection-based data-
cleaning method, our approach does not depend on another model, making it potentially more adaptable to
a broader range of downstream tasks.

Tackling False Negatives in Contrastive Learning There are many existing works discussing how to
tackle false negatives. (Huynh et all 2022a} [Li et al.| [2023} 2021}; |Chun) 2024} [Khosla et al.,[2021]). However,
none of them provided theoretical analysis.

In this work, we provided theoretical analysis of our method, with assumption that the correct negative can
be eliminated through supervised labels.

Tackling Data Noises RINCE (Ching-Yao et al., 2022) provided an alternate loss function to tackle data
noises. It regards data noises as a noise distribution added to the correct data.

In this paper, we regard data noises as mislabeled data, so the analysis of RINCE is not applicable.

Theoretical Analysis of Multi-Modal Contrastive Learning Previous theoretical studies on multi-
modal contrastive learning, particularly as applied to CLIP, have examined its zero-shot transferability
2023), advantages over uni-modal contrastive learning (Zhang et all, [2023; [Nakada et all [2023),
effectiveness with non-isotropic multi-view data , and robustness to distribution shifts (Xue

ot L} [2023).

Our work builds upon the theoretical framework established in |Chen et al| (2023)), which relies on two key
assumptions: (1) Conditional independence, which assumes that the image x and text y are conditionally
independent given a discrete, sparse shared feature z, and (2) (a, 8, 7y)-Completeness, which constrains the
data distribution by assuming an ideal embedding that, with high probability (1 — «), makes embeddings
from different z values distinguishable (by a margin of 7), while embeddings from the same z do not vary
excessively (within a variance 5). We extend this analysis to encompass a broader class of contrastive loss
objectives, showing that the o parameter required by different loss functions can vary. Furthermore, we
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demonstrate that using supervised labels allows us to relax the constraint on variance (8), enhancing the
flexibility of the theoretical framework.

3 PRELIMINARIES

In this section, we introduce the notations and the problem setup, formalize the assumptions on data
distribution used in theoretical analysis, and review the original contrastive loss for CLIP training.

Notations Let [n] = {1,2,--- ,n}. We use | f| to denote the Lo, norm of the function f. We use the
standard O(-) to hide constant factors, and O(-) to hide log factors.

3.1 Data Distribution

For data distribution of image x and text y, we follow the conditional independence assumption in previous
work (Chen et al., |2023)), but add a new variable £ to represent the supervised signal. For a relevant data
point, its supervised signal is its label in the downstream task. In practice, this supervised signal can be
obtained through keyword matching for many tasks. For example, we can use English cardinal numbers as
the keywords for the counting task. Note that only a portion of the data has such a supervised signal, and
the rest of the data is irrelevant to the target task.

Assumption 3.1. Let (x,y,{) be generated from the joint distribution Dxxyxe. We assume z to be a shared
feature of x,y satisfying x L y | (z,£), and € is either z or 0. We further denote (x,y,z,¢) with marginal
distributions Dxxyxzxe-

We further assume z to be a nonzero, discrete and sparse random variable z € V = {v1,va, -+ , Vi } with
pr=Pl=z=vi|,qx =Pl =0,2=vg], ¢ = .
k

Remark 3.2. z is the shared feature between image x and text 'y, which could be subject names, object

counts, or background details. £ = 0 means that the shared feature of the data point is irrelevant to the
downstream task, i.e., the test distribution is Dyyxyxzje+0-

3.2 Learning via Contrastive Loss

Original CLIP adopts the following loss function

exp(f(xs,¥:)/7)
> exp(f(xi,y;)/7)

Ls(f,7)= % Zlog

€S’ jes
1 exp(f(xi,y:)/7)
525" | 5 el (2)
J

In practice, there are two encoders fimage and fieze, and f(x,y) = sim(fimage(X), frext(y)). The similarity
function sim(-,-) could be many similarity functions, such as cosine similarity. Below, we use s(x;,y;) as a
shorthand for exp(f(xi,y;)/7).

4 NEW ALGORITHM AND THEORETICAL ANALYSIS

In this section, we first introduce our new algorithm for CLIP training. Then, we prove that this new
algorithm does not rely on the consistency assumption in previous analysis (Chen et al., [2023) and explain
how the choice of function g affects the bound on top-r error in the downstream task.
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4.1 Our Loss Function Using Supervised Labels

Our training pipeline is the same as the original CLIP: In each iteration, we sample a batch of image-text
pairs S’ = {x;,yi, 4} 2, from the dataset S and learns a score function f(x,y) that minimizes a contrastive
loss objective on batchs. We only vary the loss function, and the time complexity should remain unchanged.
The new loss function is defined as follows:

Definition 4.1. Let g be a concave, monotonically increasing function s.t. 0 < g(x) < x for all x > 0, we
define

Lg,S'(ﬁ T)
Yo L4 # li)s(xi,y5)

1 JES L;#0
~B Z 9

i€S’,0;£0

Remark 4.2. Note that when g =log(1 + x), the loss function is

1
Lg,S’ (fa T) = E Z
1€S’,0;,#0
s(xi,yi)+ > Ll # 4)s(xi,y;5)
JESTL;7#0

log
s(xi,¥i)

This is similar to the first part of the original loss function of CLIP (in ), which can be transformed as
follows

-1 S(X;,Y:
§Zlog Z( Yi)

I S(XhY')
€S jes J
= l Zlo jes”
B & 8 5(Xi, i)

Intuitively, Ly s/ (f, T) is to apply a contrastive loss to the data points relevant to the downstream task with
the guarantee that there is no false negative, because samples with the same supervised signals (¢; = ¢;) do
not appear in the numerator for contrast. Hence, this loss emphasizes the true positives and negative pairs.
Note that this loss is asymmetric in that we only apply it to matching images with positive and negative
texts in the batch. This is because we extracted the supervised labels only based on texts, so the labels
would be much more reliable for picking true negative texts compared with picking the images.

4.2 Theoretical Analysis about Correctness

We first show that the empirical loss L, s/ (f,7) := (1/N) > ke[N] Lg.s,(f,7) concentrates on the population
loss when N is large enough. The population loss of Ly s/ (f, T) is

Lg,'DB (fa7_>
> 1l # 1)s(x1,y4))

i€S’ ;40

=1(¢; # 0)g s(x1,¥1)

Similar to the analysis for the original CLIP loss in |Chen et al.| (2023), we have the following results.
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Theorem 4.3. Suppose § € (0,1), and g and N satisfy

sup g(zexp(er)) — g(z) < €¢/4,and
z>0

N > (2¢7%g((B — 1) exp(2M /7)) log (2N (F, e17/2) /5),
then with probability at least 1 — §, we have
|Lg,s(f,7) = Lypr (f,7)] <

for all f € F and |f| < M, where N'(F,¢) is the covering number of F.

The proof is deferred in the supplementary material. We now state the new assumption for realizability.

Assumption 4.4 ((«,v)-Completeness). There exists a score function f* bounded by M such that for any
z#7, 0, and V', let

x~D(x|zl),y ~D(y|z?)
xX' ~D'|Z,0),y ~Dy' |Z,¢)

With probability at least 1 — «, we have f*(x',y) < f*(x,y) — v and f*(x,y’') < f*(x,y) — 7.

Remark 4.5. v is the error margin of data with different shared features z. The parameter o allows part of
the data to be incorrectly encoded for the best encoding functions. Note that in datasets of web-crawled noisy
image-text pairs, a could be quite large due to misaligned image-text pairs.

This realizability assumption eliminates the consistency assumption in (o, 8, v)-Completeness in the previous
work (Chen et al. 2023), which was formalized as

B,

Ey o[Vary.(f*(x,y))]
E f A.

x,¥))] <
z[vary\z( *(X7 y))] <

x7

This is to ensure that when false negatives (x;,y;) for the pair (x;,y;) appear in the same batch, the score
function would not assign a much larger score to the pairs (x;,y;) and (x;,y;), which is not favored by the
contrastive learning mechanism. This is possible, especially when the unique features count a lot for the
resulting encoding. Our algorithm circumvents this issue by restricting the comparison between positives
and true negative samples in the loss term.

Now we present the theoretical guarantee for the “good score function” f* achieving low training loss.

Lemma 4.6. Let f* be the function satisfies Assumption [{.4), we have:

E[Lype(f*,7)] < ¢*Blag(exp(2M /7)) + exp(—7/T))
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Proof of Lemma[4.6 Let the event & be the case that z; # z1 and f*(x1,y:) — f*(z1,y1) < —v, then by
(a, y)-assumption we have Pr[l # 0, Ef|z1, 41, 2, 4] < qa for all (zq, £y, 24, Ct)

Lg,DB(f*aT)
=E[L(6 #0)g( > 1l # 0,2, # 21, &)

te[B]
exp((f*(x1,y1) = [ (%1, 1)) /7)
—|—Z Et#O Zt7éZ175t)

te[B]
exp((f*(x1,¥¢) — [F(x1,¥1))/7))]
E[L(6y #0)g( Y L(l # 0,2 # 71, &)

te[B]

exp((f*(x1,¥¢) — f*(x1,¥1))/7)
+ Z (by # 0,2 # 21,&)

te[B]

exp((f*(x1,y¢) — f*(x1,¥1))/7))]
<E[L(6y #0)g( > 1(ly # 0,2 # 21, EF) exp(2M /7)

te[B)
+ Z (by # 0,2 # 21,&) exp(—7/T))]
te[B]
E[L(6: #0)( ) L6 # 0,2, # 21, )g(exp(2M/7))
te[B]

+ Z (¢ # 0,2¢ # 21, &) exp(—7/7))]
< q2B<ag<exp<2M/T>> +exp(—y/7))
O

The key observation in the proof is that the “bad” event only happens for mistaking the positive and the
true negatives.

Combined with Theorem this leads to our main result below:

Theorem 4.7. Suppose ﬁlssumption@ hold and we can find an e-approzimate fe F with respect to the
temperature T such that f is bounded by M and Ly ps(f,7) < L, ps(f*,7) + €, then:

For (x,2) ~ Dxxzjt=z, 1Yk ~ Dyjt=v, }, , let y* = > 1(z = vk)yk, we have:
ke[K]

1+ Z exp((Fx.ye) — Flxy™) /) < ¢

where € = (Cp + 2) - (¢B(ag(exp(2M /7)) + exp(—v/7)) + ¢ t¢), and Cp = 5(maxkp,;1/B).

Proof of Theorem 4.5. First, by Lemma we have

Lyps(f.7) < e+ ¢*Blag(exp(2M /7)) + exp(—v/T))
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Notice that:

Lg,DB (f? T)
=E[1(¢1 # 0)g( Z 1(¢; # 0,2 # z1)
te[B]

exp((f(x1,¥¢) — F(x1.31))/7)]
=Pr[L(6; # O)E[g( Y 1(6r # 0,2, # 21)

te[B]

exp((f(x1,yt) — f(X1,Y1))/T>|£1 # 0]
=qElg( Y L(t #0,2: # 1)

te[B]

exp((f(x1,y:) = f(x1,y1))/7)€x # O]
So, we have
Elg( Y 16 # 0,2, # 21)
te[B]
exp((f(x1,y0) — f(x1.31))/7)|t1 # 0]
< ¢ e+ qB(ag(exp(2M /7)) + exp(—v/7))

We generate sequences (z1,4}), (25, 05),- -+ ,(2z7,£}), with L = [log(2K)/ min py]|, then with probability at
least % it will cover all vy.

Then, we introduce [L/(B — 1)] copies of (zg), Eg)), (zél),éél)), I (zg), ég)), then by concavity and mono-
tonicity of g, we have

[L/(B—=1)]E[g( > 1(t # 0,2, # 1)
te[B]

exp((f(x1,y:) — Fx1,31))/7)[1 # 0, 1]
>Elg( Y 1(t: # 0,2, # 1)

te[L]
exp((f(x1,¥1) — A(X17Y1))/T)|41 #0,21]
>SBlg(-1+ Y exp((Flxye) — Flxy*)/m)l]
ke[K]
Let Cp = 2[L/(B — 1)], we complete the proof. O

This result can be translated into the bound on the top-r error of the downstream task: We calculate the
image-text score for a given image x and a set of texts yy for all k € [K], and then pick the top-r highest
score to check if the correct text is included.

Corollary 4.8. Suppose the results of Theorem @ hold for the learned function f, then the top-r error
is bounded by €' /g(r).

We can see that the theoretical guarantee of our new loss objective is not constrained by /3 since €’ is not
related to 5. Hence, we prove that through additional comparison between positives and true negatives, the
consistency assumption on image-text pairs with the same supervised label is relaxed.

On the other hand, our theoretical results hold for function g beyond the original choice (log(1 + z)). We
note that for different available functions g, the theoretical guarantee on the top-r error varies.

Remark 4.9 (Choice of Function g). If a > 0, choosing a better function g will probably result in a smaller
g(exp(2M/1))/g(r), and consequently, a smaller top-r error.
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Figure 2: Illustration of Example 1

When « is large, e.g., in a noisy dataset, this effect is more prominent. In practice, researchers can determine
the best choice of g by performance on a validation set. We demonstrate the effect of the function choice in
the experiment part.

5 CASE STUDY

In this section, we demonstrate the effect of the function g’s choice and the comparison of positive and true
negatives with two specific examples.

5.1 Choice of Function g

We mainly focus on two specific cases of function g: g1(z) =log(1 + z), g2(z) = 13-

Since go(exp(2M /1)) <1, g1(exp(2M /7)) > 2M /7. we expect that g performs better than g; when o > 0,
and 2M /7 is large enough. Intuitively, the incorrect data in the dataset will have less influence on the loss
function with g2(z) = 7.
The following example shows a situation where using g = {7 is better than using g1 = log(1 +z). An
illustration of this example is in Figure 2]
Definition 5.1 (Example 1). Let £ =z € R! be random variable uniformly drawn from V = {vi = 0.5, vy =
—0.5}. Sety =z. And x € R? is generated with the following probability:

Pr[x = (1.01,1) | z = 0.5]

= Pr[x = (0.01,0) | z = 0.5] = 0.499,

Prix = (0,10) | z = 0.5] = 0.002,

Prix =(1,1) | z = —0.5]

=Pr[x=(0,0) |z=-0.5]=0.5

The hypothesis space is fopc(x = (z1,22),y) =y(a-z1 +b- 22 + C).



Under review as submission to TMLR

We can verify that f* = fo.1,—0.1,—0.0005 satisfies (a,y)-Completeness with M =1, = 0.002,~ = 0.0005.
So, by Theorem we have:

€ = (Cg+2)- (B(0~0029(6Xp(2/7—))
+ exp(—0.0005/7)) + €)

If B=2, g=g2, 7=0.00005, ¢ < 0.001, we have Cp < 6:

¢ = (Cp+2)-(B(0.002g(exp(2/7))
+ exp(—0.0005/7)) + €)
< 8-(2-(0.002g(exp(2/7)) + exp(—10)) + 0.001)
< 8-(2-(0.002 + exp(—10)) + 0.001)
< 0.05

the second inequality comes from the fact that ga(z) < 1 for all g.

By Corollary the top-1 error of f is bounded by € /g(1) < 0.05/0.5 = 0.1.

However, if we use g = g1, we would probably get a ~ 3.7 x 1076,b ~ —5.6 x 1076, ¢ ~ 0.8 x 1077, which
has the minimum loss, but the top-1 error is 0.4995.

The intuitive understanding of this example is that the data ((0,10),0.5,0.5) is incorrect, and it has a
larger influence on the loss function with ¢ = g;. In the noisy web-crawled dataset, the incorrectly-paired
image-text data appear very often and can have a heavy negative impact on training. Previously, a common
approach was to perform data filtering before training, but this relies on building heuristics about “good
data.” We suggest that changing the function in the contrastive loss objective could possibly tackle this issue
from a different perspective.

5.2 Effect of Additional Supervision

Since we change the original assumption (a, 8,7)-Completeness to the assumption (c,~y)-Completeness in
our proof, we expect that the additional supervision is helpful when the good score function satisfies the
(a, 7)-Completeness, but not the («, 3, v)-Completeness. In other words, since the original model tend to get
a function with a small E, .[Var,.(f*(z,y))] and E, .[Var,.(f*(z,y))], if we have a problem setting that
similarity functions with small E, .[Var,.(f*(z,y))] and E; .[Vary.(f*(z,y))] have bad performances, we
can expect that our new method leads to better models.

The following example shows that the new loss adapts better than the original CLIP loss in this case. An
illustration of the example is shown in Figure [3]

Definition 5.2 (Example 2). Let £ =z € R! be random variable drawn from V = {vi = 1,vy = —1}, with
Prlz = 1] = p1,Prlz = —1] = po,p1 +p2 = L,p2 < 1. Set x = z. Andy € [—m, 7] is generated with the
following probability:

Pr[y:—é’o\Z=1]=Pr[y:90|z:1]:]M7
2p1
Prly = —500 | z = 1] = 22,
P1

Prly=36p|z=-1]=1

where Oy is a parameter satisfying 0 < 0y < 75-

The hypothesis space is fo(x,y) = xcos(y + ) for 6 € [—m, 7).

Then, if —0y < 0 < 0y, 8 < —7 + 0y or 6 > 7w — By, then the top-1 error is at least po.

Let B = 2, the following theorem shows that the performance of the original CLIP is not satisfying:

10
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Figure 3: Tllustration of Example 2 (6 = {%)

Theorem 5.3. there is a constant 8’ and a constant C' such that:

For anyps <6,0<71<1,0¢€[—m+ 60y, —0] Ul[by,  — O] we have:

Lps(fo,7) > Lps(fo,7) + CI/T

The theorem shows that if LDB(]/C\, 7) < Lpe(fo,7) + C'/7, then 6 € [—m, —m + 0p) U (=0, 00) U (7 — o, 7),
and thus the top-1 error is at least ps. The proof is deferred to the supplementary material.

In other words, the theorem shows that all "good" similarity functions have large losses. So, by minimizing
the loss, we would probably get a bad similarity function.

However, if we use our loss function, then f* = fgfgeo, satisfies (a,7)-Completeness with a = 0,7 =

2sin(%0), though with a large 3.

11
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Table 1: Accuracies for Varied Methods

n gi(z) =log(l1+2) ga2(z) =5

0 (baseline) 0.1405(+0.0051)

100 0.1448(40.25) 0.1401(+0.026)
1000 0.1669(40.021) 0.1575(+0.002)

Table 2: Accuracies of an Alternative Loss Function

n gi(z) =log(l+z) ga(x) = 75

0 (baseline) 0.1405(+0.0051)

100 0.1508(£0.046)  0.1385(£0.022)
1000 0.1367(£0.010)  0.1481(%0.018)

So, by Theorem we have:

¢ =(Cp+2)- (Bexp(—7/7) +¢)
= O(exp(=7/7) + ¢

which will be less than pog(2) when 7 and € are small enough. By Corollary the top-1 loss will be less
than ps.

6 EXPERIMENT

In this section, we conduct experiments on using our new loss for CLIP’s pretraining. We show that empha-
sizing the contrastive loss between positives and true negatives benefits the corresponding downstream task.
We further discuss how the choice of function g and the denominator affects training as ablation studies.

Experiment Settings We train the ViT-B/32 models by minimizing the loss Ly s/(f,n,7) = Lg/(f,T) +
nLg s/ (f, 7). We primarily focus on DataComp-small as the training dataset with batch size B = 4096,
temperature parameter 7 = 0.07 learning rate= 5 x 10~%, warmup= 500. Our choice of hyperparameters
follows the setting in the DataComp-small challenge (Gadre et al.,[2024). To obtain the supervised signal, we
use English cardinal numbers from “two” to “twenty” (e.g, “two”, “three”, “four”, “five”, ...) as the keywords
and perform keyword matching on captions to find whether one of a word in the text caption is a keyword.
We use CLEVR-Count as the benchmark and evaluate the top-1 correctness. We trained the baseline twice
and each variation of our methods three times on a single A40 GPU, and computed the average loss along
with standard error.

Additional supervised labels bring improvements over baseline CLIP. Table [I| shows the top-1
accuracy on the CLEVR-Count benchmark for varied methods. We observe that using the additional loss
term (n # 0) with either choice of g helps the model perform better than the baseline in the counting task on
average. This implies that in the baseline training setting, the numerical comparison between samples was
not fully utilized. Additionally, it verifies that our supervised labels for picking positives and true negatives
are simple yet effective. We note that the keyword matching strategy can be further applied to obtaining
similar fine-grained supervised labels like directions and colors.

Using false negatives in the denominator. Another possible loss term to better utilize the false
negatives is to use them as positive samples. We try this idea in CLIP’s pretraining too. Instead of using

12



Under review as submission to TMLR

the loss function

Lg,S’(fﬂ T)
> Lt # 4i)s(xi,y5)
_l Z JES’ £;#0
_B g )

i€S7 4,0 S(XHYL)

we use
ng,S’ (fﬂ T)
> L # li)s(xi,yy)

1 JES L;#0
=5 > ¢ R
B i€S’,0; 40 iS40 ]1(@ = fz)s(xuyj)

Actually it is the method £;"? shown in [Khosla et al.| (2021
m

We find that this strategy yields stronger models than the baseline as well but is less effective than our loss
term. The possible reason could be that the false negatives differ from the positives in aspects other than
numbers, such as the subject type. Hence, forcing the alignment of their embeddings might undermine the
model’s ability to form holistic representations. This suggests that the counting task is not separated from
other perception and visual reasoning tasks.

Choice of Function g. We test two different function g in the additional loss term: g;(z) = log(1 + )
(used in original CLIP loss) and g2(z) = 17;. The results are shown in the two columns of Table [1f and
Table [2l The performance of go(z) = Tt- is not as good as we expect. Maybe this loss function is harder to
train than g; () = log(1 + ). However, in 7 = 1000 case, we find that the g2(x) = {7, model’s performance

is more stable.

Performance on other benchmarks. We also tested our model on other common benchmarks for CLIP
evaluation. The results are detailed in Appendix [C] Since these tasks are not about counting, we cannot
expect the performance to be better than the baseline. We found that the performance is not worsened too
much.

7 CONCLUSION

In this work, we propose a novel contrastive loss objective designed to enhance performance on downstream
tasks involving image-text pairs with supervised labels. Our theoretical analysis suggests that this objective
can improve model robustness by reducing the impact of false negatives and mitigating data noise. Em-
pirically, we validate the effectiveness of our approach through experiments on the counting benchmark,
demonstrating notable improvements. We hope this work inspires further exploration into optimizing CLIP
training with noisy image-text data for specific downstream tasks.

Limitations and future work Our current experiments are primarily conducted using the Datacomp-small
training dataset and evaluated on the CLEVR-Count test dataset. Future work should extend this analysis
to a broader range of datasets to better understand the generalizability of our approach. Additionally, we
have only explored the new loss objective in the context of CLIP pretraining. It would be valuable to
investigate its potential in CLIP finetuning, especially for adapting the model to specific tasks. Another
promising direction for future research is to explore the application of this contrastive loss framework to
other multi-modal learning models, potentially broadening its impact across various domains and tasks.
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A MISSING PROOFS

A.1 Proof of Results in Section 4

In this section, we present the detailed proof of results in Section 4.

Proof of Theorem 4.3. First, we have

Lys(fim) =5 Z (4; #0 (Z 1(4; # 0,65 # &) exp((f (zi,y;) — f(xuyz‘))/T))

€S’ JES’

Z g ( > exp 2M/T))

zES JES! jF#1
—Zg B —1)exp(2M/7))
€S’

= 9((B —1)exp(2M/T))

Then, for any ||f1 — f2| < €17/2, we have

]1 (0; #0,4; # £;) exp((fi(zi,y;) — f)l(l"myi))/T))
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By definition of covering number, we can cover F by K = N(F,e;7/2) subsets By, Bs, -, Bgk, where
Bi1,Bs,- -, Bk are balls with radius €;7/2 centered at fi, fo, -+, fK. So, we have

Lo (f.7) = Lyps(f,7 )’Ze‘|

Pr ?161?: LgS’(f7 ) QDB(fa )‘2€‘| Skg]Pr [;gg;k
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With K = N (F,e17/2) and N > (2 2g((B — 1) exp(2M/7))) log(2/N (F, €17/2)/5), we complete the proof.

O
Proof of Corollary 4.8. Let € be the event that all the top-r choices give the wrong prediction.
By Lemma 4.6, we have
¢ > Elg 1—|—Zexp (x,¥¢) £ )/7))]
ke[K]
1—|—Z xyt xy)>0])]
ke[K]
> ()P Uf(xye) — Flxy) 200 2 1+7]
ke[K]
(r) Pri€]
O

A.2 Proof of Results in Section 5

In this section, we present the detailed proof of results in Section 5.

Proof of Theorem 5.3. Let £ be the event that x; = xo = 1,y1,y2 € {—60,6p}. Then for any f, We have

Lps(f,7) = E[log (1 4+ exp((f(x1,y2) — f(x1,¥1))/7)) + log (1 + exp((f(x2,y1) — f(x1,¥1))/7))]
= Pr[€]E[log (1 + exp((f(x1,¥y2) — f(x1,¥1))/7)) + log (1 + exp((f(x2,y1) — f(x1,¥1))/7)) |€]
+ Pr[€°IE[log (1 + exp((f(x1,¥y2) — f(x1,¥1))/7)) + log (1 + exp((f(x2,y1) — f(x1,¥1))/7)) |€°]
= Pr[€]E[log (1 + exp((f(x1,y2) — f(x1,¥1))/7)) + log 2|€]
+ Pr[€°]E[log (1 + exp((f(x1,y2) — f(x1,¥1))/7)
(1 —2ps)*(E[log (1 + exp((f (x1,y2) — f(x1,¥1
Pr[E°]E[log (1 + exp((f(x1,¥2) — f(x1,¥1))/7)
(1 —2p2)*(E[log (1 + exp((f(x1,y2) — f(x1,¥1
(4p2 — p3)(21og(1 +2/7))
(1 —2p2)*(Elog (1 + exp((f(x1,¥2) — f(x1,¥1))/7)) [€] + log 2) + 24p, /7

+1log (1 + exp((f(x2,y1) — f(x1,¥1))/7)) |E]
)/7)) €] +log 2)
+log (1 + exp((f(x2,y1) — f(x1,¥1))/7)) |€]
)/7)) €] +log2)

IN + AN+l

where the third equality comes from the fact that x; = x5 when £ happens.

Since fo(1,6p) = fo(1,—6), we have

Loz (fo,7) < (1 = 2p2)*(Eflog (1 + exp((f(x1,¥2) — f(x1,¥1))/7)) [€] +log 2) + 24p2 /7

(
2(1 — 2ps)?log 2 + 24ps /7

For any 6 € [—m + 0y, —0p] U [0, ™ — 6], we have |cos(6 + 0y) — cos(6 — 0p)| > 1 — cos(26p). So, we have
E flog (1+ exp((fo(x1.¥2) — fols1.¥0))/7)) €] = 5 log 2 +  log (1 + exp((fo(1.60)  fo(1. ~60))/7))

+ o (1-+ exp(~(fol1,00) ~ fo(1, ~00))/7))

%logQ + —log(1 + exp((1 — cos(260))/7)

i log(1 + exp(—(1 — cos(26y))/7))
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And

Los (fo,7) 2 (1= 2p2)2(Bllog (1-+ exp((fo (x1,¥2) — folx1,31)/7)) €] + log2)
>(1- 2p2)2(g log2 + i(log(l + exp((1 — cos(26p))/7) + log(1 4+ exp(—(1 — cos(26p))/7))))
So, we have
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=(1- 2p2)2(—% log2 + i(log(l + exp((1 — cos(26p))/7) + log(1 + exp(—(1 — cos(260))/7))))
— 24py /T
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where F(0y,1/7) = —4log2 + 1(log(1 + exp((1 — cos(26))/7) + log(1 + exp(—(1 — cos(26))/7)))-

Since F'(6p,1/7) > 0 and F(0y,1/7) = ©(1/7) when 7 — 0, there is a constant C such that F'(6y,1/7) < C/7.
Let C" = C/8 and ¢’ = C'/192, we complete the proof. O

B DETAILS OF EXPERIMENTS

We use the DataComp-small as the training set, released by DataComp (https://www.datacomp.ai/)
under Creative Common CC-BY-4.0 license. We develop based on the codebase in https://github.com/
mlfoundations/datacomp, licensed under MIT License.

C ADDITIONAL RESULTS

Figure [4 and Figure [5] show the results of our models on commonly used CLIP benchmarks.
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Figure 4: Results of other datasets with g(z) = log(1 + z).
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