
Dynamic Diameter in High-Dimensions against
Adaptive Adversary and Beyond∗

Kiarash Banihashem†

University of Maryland
College Park, MD, USA
kiarash@umd.edu

Jeff Giliberti†
University of Maryland
College Park, MD, USA
jeffgili@umd.edu

Samira Goudarzi†
University of Maryland
College Park, MD, USA
samirag@umd.edu

MohammadTaghi Hajiaghayi†
University of Maryland
College Park, MD, USA
hajiagha@umd.edu

Peyman Jabbarzade†
University of Maryland
College Park, MD, USA
peymanj@umd.edu

Morteza Monemizadeh†

TU Eindhoven
Eindhoven, The Netherlands
M.Monemizadeh@tue.nl

Abstract

In this paper, we study the fundamental problems of maintaining the diameter and
a k-center clustering of a dynamic point set P ⊂ Rd, where points may be inserted
or deleted over time and the ambient dimension d is not constant and may be high.
Our focus is on designing algorithms that remain effective even in the presence of
an adaptive adversary—an adversary that, at any time t, knows the entire history
of the algorithm’s outputs as well as all the random bits used by the algorithm up
to that point. We present a fully dynamic algorithm that maintains a 2-approximate
diameter with a worst-case update time of poly(d, log n), where n is the length
of the stream. Our result is achieved by identifying a robust representative of the
dataset that requires infrequent updates, combined with a careful deamortization.
To the best of our knowledge, this is the first efficient fully-dynamic algorithm
for diameter in high dimensions that simultaneously achieves a 2-approximation
guarantee and robustness against an adaptive adversary. We also give an improved
dynamic (4 + ϵ)-approximation algorithm for the k-center problem, also resilient
to an adaptive adversary. Our clustering algorithm achieves an amortized update
time of k2.5d · poly(ϵ−1, log n), improving upon the amortized update time of
k6d · poly(ϵ−1, log n) by Biabani et al. [NeurIPS’24].

1 Introduction

Maintaining representative properties of a dynamic point set, such as its current diameter and k-center
clusters, is a fundamental computing task. Given a set of points P in a d-dimensional Euclidean space,
with P subject to insertions and deletions, our goal is to efficiently compute and maintain approximate
diameter, minimum enclosing ball and k-center clustering. We are interested in algorithms that are
robust against an adaptive adversary, that is, the algorithm performance is evaluated against an
instance that adapts to the previous choices of the algorithm.

Approximating the diameter of a dataset—the greatest pairwise distance—is a fundamental geometric
operation with direct relevance to machine learning. It is commonly used in clustering to measure

∗The work is partially supported by DARPA QuICC, ONR MURI 2024 award on Algorithms, Learning,
and Game Theory, Army-Research Laboratory (ARL) grant W911NF2410052, NSF AF:Small grants 2218678,
2114269, 2347322.

†Equal Contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

the spread of a cluster, where a smaller diameter indicates that data points within a cluster are more
similar to each other. In hierarchical clustering algorithms, diameter thresholds are often used to
determine whether clusters should be merged or split [Liu et al., 2012]. In outlier detection, points
that substantially increase the diameter of a dataset can be flagged as anomalies [Aggarwal, 2016].
Diameter also arises in approximate furthest neighbor queries [Pagh et al., 2015], and in active
learning, where it quantifies the uncertainty over hypotheses [Tosh and Dasgupta, 2017]. These
applications become particularly challenging in high-dimensional settings, where exact diameter
computation is expensive and geometric properties often degrade [Indyk, 2000, Goel et al., 2001],
making standard distance-based methods less effective and harder to analyze [Indyk and Motwani,
1998, Har-Peled et al., 2012].

Minimum Enclosing Ball (MEB) is closely related to diameter and plays a central role in high-
dimensional data analysis, particularly in one-class SVMs [Tax and Duin, 2004] and Support Vector
Data Description (SVDD) [Frandi et al., 2010]. A MEB captures the spread of the data by enclosing
it in the smallest possible hypersphere, whose center and radius define the classifier’s parameters and
decision boundary. In dual SVM formulations, solving the MEB corresponds to identifying support
vectors that lie on the boundary of the ball. Fast and efficient MEB computation is thus crucial for
scaling SVM training to large, high-dimensional datasets [Badoiu and Clarkson, 2003, Clarkson,
2010, Clarkson et al., 2012], where the cost of exact geometric operations can become a bottleneck.

Diameter Problem. Designing dynamic algorithms for approximating the diameter of a point set
in Euclidean space is particularly challenging when facing an adaptive adversary—one that reacts to
the algorithm’s internal randomness or past outputs. A folklore (dynamic) 2-approximation algorithm
(e.g., Chan and Pathak [2014]) picks a random anchor point p ∈ P and maintains its furthest neighbor
throughout updates. This strategy has O(d log n) amortized update time, since the anchor is deleted
with probability 1/n for n = |P |.
However, the algorithm is fragile: if the adversary deletes p, the guarantee fails, and the procedure
must be restarted—potentially requiring Ω(n) time. Surprisingly, the update time of this is simple
and vulnerable method remains the best known when faced with an adaptive adversary. Developing a
robust, fully dynamic algorithm with any non-trivial approximation that has worst-case poly(d log n)
update time remains an important open problem. We summarize existing bounds in Table 1.

Approximation Update Time Guarantee Adversary Algorithm
2 O(d log n) Amortized Oblivious Folklore

1 + ϵ O(d · n1/(1+ϵ)2) Worst-case Oblivious [Indyk, 2003]
1 + ϵ ϵ−Θ(d) Worst-case Deterministic [Zarrabi-Zadeh, 2011]√
2 + ϵ O(d log n) Amortized Oblivious [Chan and Pathak, 2014]

2 O(d5 log3 n) Worst-case Adaptive This paper
Table 1: State-of-the-art algorithms for fully-dynamic diameter.

k-Center Clustering. The k-center problem seeks k representative points that minimize the maxi-
mum distance to any point in the dataset, and is a well-studied objective in clustering. In the static
setting, a simple greedy algorithm achieves a 2-approximation [Gonzalez, 1985, Hochbaum and
Shmoys, 1986], which is NP-hard to improve for any constant factor [Hsu and Nemhauser, 1979]; in
Euclidean spaces, this can be refined to 1.822 [Feder and Greene, 1988, Bern and Eppstein, 1997].
Dynamic variants of k-center clustering have attracted significant interest (e.g., Charikar et al. [1997],
Chan et al. [2018], Bateni et al. [2023], Łącki et al. [2024]), with a focus on balancing approxi-
mation quality, update time, and robustness. Similar to the diameter problem, key performance
measures include: (1) the approximation ratio; (2) per-update time (amortized or worst-case); and (3)
resilience to different adversary models (oblivious, adaptive, or deterministic). Table 2 summarizes
the state-of-the-art across these dimensions; see Appendix A for additional discussion.

Despite recent advances, the complexity of fully dynamic k-center clustering against an adaptive
adversary remains poorly understood. In particular, there is a significant gap between the nearly
optimal approximation and update time guarantees in the oblivious setting [Bateni et al., 2023] and
the recent (4 + ε)-approximation by [Biabani et al., 2024], which incurs an amortized update time of
Õ(k6)—prohibitively large even for small k. Sacrificing update time further, [Goranci et al., 2021]
achieve a 2 + ε approximation with update time exponential in d, which is practical only for small

2

Approximation Update Time Guarantee Adversary Algorithm

2 + ϵ 2O(d) · Õ(1) Worst-case Deterministic [Goranci et al., 2021]
2 + ϵ Õ(k/ϵ) Amortized Oblivious [Bateni et al., 2023]

O(min{k, log(n/k)
log logn }) Õ(k) Amortized Deterministic [Bateni et al., 2023]

O(1) poly(n, k) Worst-case Deterministic [Łącki et al., 2024]
4 + ϵ Õ(k6) Amortized Adaptive [Biabani et al., 2024]

4 + ϵ Õ(k2.5) Amortized Adaptive This paper
Table 2: State-of-the-art algorithms for fully dynamic k-center clustering. The Õ(·) notation hides d
and poly log(k, n, ρ, ϵ) factors, where ρ denotes the spread ratio of the dataset. Our algorithm is for
Euclidean spaces, while the other results are for general metric spaces. The algorithm of [Biabani
et al., 2024] is developed for k-center with outliers.

dimensions. More recently, Łącki et al. [2024], Forster and Skarlatos [2025] obtained deterministic
O(1)-approximation algorithms with polynomial update time in n.

Adaptive adversary. Dynamic algorithms [Onak and Rubinfeld, 2010, Baswana et al., 2018,
Abraham et al., 2016] have commonly assumed an oblivious adversary, that is, the adversary must
choose in advance an instance against which the algorithm is evaluated. Unfortunately, it turns out
that the assumption of an oblivious adversary is problematic in many natural scenarios. This is the
case when a dynamic algorithm is used as a subroutine inside another algorithm, when a database
update depends on a previous one, or when the algorithm is faced with adversarial attacks.

In theoretical computer science and machine learning, several notions of adaptive adversary have
been studied extensively. We consider an adaptive adversary who has full knowledge of the algorithm
and can see its random choices up to that point, but not future ones. This is a natural and a central
notion of adversary: it is the strongest possible adversary against which a randomized algorithm
can be evaluated. The adversary is able to decide future updates based on the past decisions of the
algorithm, and its updates might force the algorithm to misbehave, by either producing an incorrect
answer or taking a long time to run. This definition of adversary closely reflects the white-box
adversarial model in robust machine learning [Ilyas et al., 2019, Madry et al., 2018].

In the white-box setting, an adversary has access to the internal structure of a machine learning
model, including its parameters and training data, such as its parameters or training weights. This
level of access makes the adversary particularly powerful: recent work has shown that even subtle
input perturbations can mislead the model into making incorrect predictions (see [Biggio et al.,
2013, Athalye et al., 2018] and references therein). As a result, developing algorithms that are
robust to white-box adversarial attacks has become a central focus in robust machine learning [Ilyas
et al., 2019, Madry et al., 2018, Tramèr et al., 2018, Kurakin et al., 2017, Liu et al., 2017], as well
as in dynamic [Nanongkai and Saranurak, 2017, Cherapanamjeri and Nelson, 2020, Wajc, 2020],
streaming [Ben-Eliezer and Yogev, 2020, Ajtai et al., 2022], and other BigData settings [Mironov
et al., 2008, Bogunovic et al., 2017].

The robustness of fully-dynamic algorithms against adaptive adversaries has recently received
significant attention [Nanongkai and Saranurak, 2017, Wajc, 2020, Bateni et al., 2023, Roghani
et al., 2022]. Similar notions have also been studied in the streaming model [Ajtai et al., 2022, Feng
and Woodruff, 2023, Feng et al., 2024]. We emphasize that our notion of adaptive adversary is
significantly stronger than the commonly studied model, where the adversary can observe the outputs
of the algorithm over time but not its internal random choices. To distinguish the two, we refer to our
stronger model as the randomness-adaptive adversary and the weaker one as the output-adaptive
adversary. This distinction parallels the difference between white-box and black-box adversarial
attacks in machine learning.

A key distinction is that, under an output-adaptive adversary, one can often design algorithms that
carefully manage dependencies between internal randomness and observable outputs, thus preventing
information leakage. Such techniques, however, break apart when the adversary has visibility into the
random choices themselves. For many problems—including diameter and k-center clustering—the
gap between output-adaptive and randomness-adaptive adversaries remains poorly understood.

3

1.1 Our Contribution

We design a fully-dynamic algorithm for approximating the diameter in high-dimensional Euclidean
spaces that is robust to an adaptive adversary. The same algorithm extends to maintaining a minimum
enclosing ball (MEB) that encloses the given point set. Our main result is the following:

Theorem 1.1. For the diameter and minimum enclosing ball (or 1-center) problems in d dimensions,
there exists a fully-dynamic algorithm that achieves a 2-approximation with success probability
at least 1 − δ. The algorithm works against a randomness-adaptive adversary and guarantees a
worst-case update time of O

(
d5 log1.5(d) log1.5(n/δ)

)
, where n is the length of the update stream.

Our algorithm is the first to be resilient against a randomness-adaptive adversary, while achieving a
non-trivial constant approximation in high dimensions. Previously, efficient algorithms were known
only for small values of d [Zarrabi-Zadeh, 2011].

We extend some techniques developed for the diameter problem to the k-center clustering problem for
k ≥ 2, resulting in the following result that improves the amortized update time k6·poly(d, ε−1, log n)
of [Biabani et al., 2024].

Theorem 1.2. Let k ∈ N and 0 < ε ≤ 1. For the k-center problem in d dimensions, there exists
a fully-dynamic algorithm that achieves a (4 + ε)-approximation with success probability at least
1− δ. The algorithm works against a randomness-adaptive adversary and guarantees an amortized
update time of k2.5d · poly(log n, ε−1, δ), where n is the length of the update stream.

Overview of our techniques. One of our main technical contributions is the development of
algorithms that remain resilient to adversarial updates, even when the adversary has full knowledge
of the current state of the algorithm. To withstand such an adversary, our algorithms cannot rely
on random decisions; instead, their decisions must be provably robust. This requirement rules out
many commonly used techniques in dynamic algorithms for achieving fast update times or black-box
robustness. In particular, it eliminates the use of random decisions Chan and Pathak [2014] (e.g.,
an adversary deletes a randomly chosen point from P with probability 1/|P |), as well as the use of
differential privacy [Cherapanamjeri et al., 2023, Hassidim et al., 2022] that includes reporting noisy
answers and obfuscating the state of the algorithm through multiple copies with varying randomness.

Although our dynamic algorithms are randomized, randomness is used solely to accelerate the
decision-making process. This contrasts fundamentally with prior dynamic algorithms against
oblivious adversaries [Indyk, 2003, Chan and Pathak, 2014, Bateni et al., 2023], where randomness
is typically used to make decisions that adversaries cannot exploit.

For both the diameter and k-center problems, we quantify the robustness of a “decision” by the
number of updates it can withstand. Intuitively, a decision requiring O(T) time to compute is
considered ϵ-robust if it remains valid after applying O(ϵT) changes to the underlying dataset, for
some 0 < ϵ < 1. Beyond O(ϵT) updates, the data may have changed significantly, making even a
robust decision irrelevant. Thus, the algorithm must re-compute and establish a new “robust” decision
capable of withstanding the subsequent updates. Our dynamic diameter and k-center algorithms both
rely on this iterative approach.

In the case of the diameter problem, we compute an ε-robust representative point (Definition 2.2) that
continues to be representative of the surviving point set (i.e., points that are inserted but not deleted
in the dynamic setting) even after O(εT) deletions. However, it is not immediately obvious whether
such ε-robust representatives exist or whether they can be computed efficiently. The core novelty of
our framework lies in showing that such points can indeed be constructed and maintained efficiently.
The construction step relies on the notion of centerpoint [Har-Peled and Jones, 2020, Clarkson et al.,
1993] (see Definition 2.5). Informally, a centerpoint is a point that lies “deep” within a point set. To
our knowledge, this is the first application of centerpoints in dynamic algorithms, and we believe this
technique has broader potential in developing dynamic and streaming algorithms resilient to adaptive
adversaries.

For the k-center problem, the robustness of a cluster center c is quantified by the number of nearby
points—those within some distance D. Since any point lies within distance at most OPT of an
optimal center c∗, a previously opened center c that still retains a nearby point (within distance D)
can cluster all points assigned to c∗ using radius D + 2OPT . This idea is also used in prior work on

4

k-center clustering [Biabani et al., 2024, Cohen-Addad et al., 2016]. Our main contribution for this
problem is a faster update time through a more careful random sampling, which we overview below.

To find robust centers, we sample Õ(k) points and, for each sampled point, measure the fraction of
other sampled points that lie within a ball of radius 2 · OPT around it. This identifies a sampled
point that is robust with respect to the sample in total time Õ(k2). This procedure is efficient when
the number of clusters is relatively small. If k ≤ n2/3 the above sampling and pairwise coverage
tests suffice, giving an overall cost of Õ(k2).

When k > n2/3, we reduce the sample size to Õ(
√
k) and change the robustness test: rather than

testing coverage among sampled points, we test for each sampled point the fraction of original points
in P that lie within radius 2 ·OPT , incurring an overall cost of Õ(

√
k n). Two scenarios now cover

all possibilities. First, if the largest
√
k clusters each contain at least n/k points, then with high

probability each such large cluster is represented in the sample; estimating robustness against the
original dataset then finds robust centers from these clusters. Second, if the remaining k−

√
k clusters

together contain at most n/t points for some constant t (e.g. t = 4), then the large clusters account
for at least (1− 1/t)n points and, by the pigeonhole principle, at least one large cluster must contain
Ω
(
n/
√
k
)

points. Sampling Õ(
√
k) points uniformly at random then ensures (with high probability)

that we include a point from this large cluster, and we can verify its robustness against the full dataset.

Finally, another technical ingredient is a de-amortization technique that converts the amortized update
time of a Monte Carlo algorithm [Motwani and Raghavan, 1999] into a worst-case update time.
We use it to obtain a worst-case guarantee for the diameter problem. We also note that a similar
de-amortization framework (although not directly applicable to our problems/setting) was recently
proposed by Bernstein et al. [2021] for dynamic spanner and maximal matching problems.

1.2 Preliminaries

In this section, we introduce some notation, the problems, and necessary definitions that will be used
throughout the paper.

Let P ⊆ Rd be a set of points in d dimensions. Define dist(p, p′) as the distance between two points
p, p′ ∈ P . Let dist(p, C) = minc∈C dist(p, c) be the minimum distance between p ∈ P and C ⊆ P ,
and F (c, P) = maxp∈P dist(c, p) be the furthest neighbor from a point c ∈ P . With a slight abuse
of notation, we may use F (c, P) to refer to argmaxp∈P dist(c, p) as well. Further, denote B(p, r)
as the ball of radius r centered at p, MEB(P) as the minimum enclosing ball of P , and conv(P) as
the convex hull of P . Finally, let n be the total length of the stream given in input. We remark that n
is used only for the analysis, our algorithms will not need to know n.

We are now ready to state the exact definition of the problems being studied.

Definition 1.3 (Diameter Problem). Given a set of points P , the goal of the algorithm is to return an
estimate diameter that is as close as possible to diam(P) = maxp,p′∈P dist(p, p′).

Definition 1.4 (k-Center Problem). Given a set of points P , the goal of the algorithm is to choose a
set of k points C ⊆ P such that maxp∈P dist(p, C) is minimized.

The 1-center problem corresponds to the problem of minimum enclosing ball. For simplicity, we
state the fully-dynamic version of the k-center problem below. The diameter problem is analogous
with OPT (P) being the diameter of P instead.

Definition 1.5 (Dynamic α-Approximate k-Center against an Adaptive Adversary). Given a set of
points P and a sequence of n updates (insertions and deletions), the goal of the algorithm is to return
at any point in time an answer d̃ such that d̃ ∈ [OPT (P), α ·OPT (P)], for a constant α ≥ 1, with
OPT (P) being the radius of an optimal solution to the k-center problem.

The failure probability of the algorithm, i.e., the probability that at any point in time the algorithm
returns a wrong answer, should be at most δ, for arbitrary δ ∈ (0, 1). Moreover, the approximation
factor and the update time should hold with a sequence of updates that are chosen by an adaptive
adversary who sees the random bits used by the algorithm.

5

2 Robust representative of a point set

As mentioned in the introduction, if we do not need adaptiveness, then we can obtain a 2-
approximation for the diameter by maintaining the maximum distance from a fixed point in the
dataset. The key intuition here is that each point in the dataset is (approximately) representative of the
entire set for the purposes of calculating the diameter. Our first ingredient to develop our algorithms
is a characterization of the property for a point x ∈ Rd of being representative of the set P , even if
x /∈ P .
Definition 2.1 (Representative Point). A point x ∈ Rd is representative of a point set P if
maxy∈P dist(x, y) ≤ diam(P).

h

c

c′

Figure 1: Representativeness and robustness in a point
set of size 12. The red point, c′, is representative but
not robust. The blue point, c, not part of the dataset,
is both representative and ϵ-robust for ϵ = 1/4. In fact,
one can verify that any subset of 9 or more points from
the original dataset will still contain c in its convex hull.
This is because c has Tukey depth 4, i.e., every halfspace
passing through c contains at least 4 points. The shaded
region indicates one such halfspace. (See Section 2.1 for
corresponding definitions.)

By definition, if we can maintain the maximum distance from a representative point, we always
have an approximation for the diameter. In the dynamic setting however, the underlying set P is
going through updates and as such, any fixed point may not remain representative after some updates.
Indeed, while any x ∈ P satisfies the property of being representative, if the adversary removes x,
we will need to choose a new point. To deal with this issue, we characterize the robustness of a
representative point with respect to the point set.
Definition 2.2 (ϵ-Robust Representative Point). A point x ∈ Rd is an ϵ-robustly representative of P
if x is a representative point of all P ′ that satisfies |P ′ ∩ P | > (1− ϵ)|P |, for an ϵ ∈ (0, 1).

In the above definition, the same point x should be representative of every set P ′ that include at least
a (1− ϵ)-fraction of points in P . Hence, P ′ might also include an arbitrary number of points that are
not in P . We refer to Fig. 1 for an illustration of these concepts.

The following lemma demonstrates the importance of an ϵ-robust representative point. It essen-
tially states that maintaining the maximum distance from a robust representative point gives a
2-approximation of the diameter, even when the original set undergoes any number of insertions and
up to ⌊ϵ|P |⌋ deletions.

Lemma 2.3. Assume that x ∈ Rd is an ϵ-robustly representative of P . For any set P ′ with
|P ′ ∩ P | > (1− ϵ)|P |, we have diam(P ′)/2 ≤ maxy∈P ′ dist(x, y) ≤ diam(P ′).

2.1 Robust reprentatives and centerpoints

While the definition of robust representatives is fairly natural given our problem, it is not clear whether
such points exists and, importantly, whether they can be found efficiently. In this section, we show a
construction of robustly representative points using so-called centerpoints, points sufficiently “deep”
in the data. To formalize this, we need to introduce the notion of Tukey depth.
Definition 2.4 (Tukey Depth [Tukey, 1975]). Given a set of n points P ∈ Rn×d, the Tukey’s depth
of a point x is the smallest number of points in any closed halfspace that contains x.

It is a known fact that every set of points (with no duplicates) always has a point, which need not be
one of the data points, of Tukey depth at least n/(d+ 1), and this may be tight. Such a point can be
thought of as a higher-dimensional median of the point set; in d = 1 the median has in fact Tukey
depth at least n/2. It is useful to relate the Tukey depth of a point with the size of the point set, as
captured by the following definition.
Definition 2.5 (α-centerpoint). An α-centerpoint c of a point set of size n is a point that has Tukey
depth at least ⌈αn⌉, for any α ∈ [1n ,

1
d+1].

6

To gain familiarity with the definition, the one-dimensional median is a 1/2-centerpoint. In higher
dimensions, an α-centerpoint point essentially divides a set of points in two subsets such that the
smaller part has at least an α fraction of the points.

There are several known algorithms to compute a centerpoint with runtime depending on the quality
of the centerpoint and the number of dimensions. Ideally, we would like to find a (1/d+1)-centerpoint,
but this requires O(nd−1 + n log n) time by Chan [2004b], which is claimed to be probably optimal.
The work of Clarkson et al. [1993] shows that an approximate 1/poly(d)-centerpoint can be computed
in poly(d) time with high probability. Their algorithm is based on iteratively replacing sets of d+ 2
points with their Radon point, which is any point that lies in the intersection of the convex hulls of
these sets and is due to Radon [1921]. The fastest known algorithm is due to [Har-Peled and Jones,
2020] and has the following randomized guarantee.

Theorem 2.6 (Theorem 3.9 of [Har-Peled and Jones, 2020]). Given an arbitrary set P of n points
in Rd, there is a randomized Monte Carlo algorithm that computes a 1

3d2 -centerpoint of P in
O(d7 log3 d log3 φ−1) time with probability at least 1− φ.

We next show that an α-centerpoint satisfies two key requirements: (i) it is representative, i.e., it leads
to a 2 approximation of the diameter, and (ii) it is robust, i.e., it continues to provide a 2-approximation
even after Ω(α|P |) deletions. We begin by proving the following lemma which shows that any point
in the convex hull is representative.

Lemma 2.7. Let c be a point in the convex hull of P . Then, F (c, P) ∈ [diam(P)
2 ,diam(P)].

Let r(·) denote the radius of a set. We immediately obtain the following corollary.

Corollary 2.8. Let c be a point in the convex hull of P . Then, F (c, P) ∈ [r(MEB(P)), 2r(MEB(P))].

Lemma 2.9. Any point c with Tukey depth at least 1 with respect to a set P lies in its convex hull.

Combining Lemma 2.7 and Lemma 2.9 proves that any point with Tukey depth 1 is representative.
Next, we show that the Tukey depth of a centerpoint for P can be lower bounded, even if P goes
through ε|P | adversarial updates.

Lemma 2.10. Let P be a set of n points and c be an α-centerpoint of P . For any set P ′, the point c
has Tukey depth at least ⌈αn− t⌉ with respect to P ′ where t = |P \ P ′|.
In the special case where |P ′ ∩ P | > (1− ε)|P | is satisfied, for ε < α, the point c has Tukey depth
at least 1 with respect to P ′.

Combining Lemma 2.7, Lemma 2.9, and Lemma 2.10, we obtain the following.

Corollary 2.11. Any α-centerpoint of P is ϵ-robustly representative for any ϵ < α.

3 Dynamic algorithm for the diameter problem

We are now ready to explain how to compute and maintain a 2-approximation to the diameter of a
dynamic point set P , against an adaptive adversary. Let ε = 1/4d2 be a parameter, δ be an upper
bound on the desired failure probability, and t denote the current timestep, i.e., the number of updates
occurred so far.

If the size of the current point set is small, say at most d4, we can obtain a 2-approximation without a
centerpoint. The algorithm picks an arbitrary point in P and computes its furthest neighbor in O(d5)

When the size of P is larger than d4, we compute an α-centerpoint c that will be kept as a representa-
tive point until roughly α|P | deletions occur. Once we have a centerpoint c, we maintain F (c, P)
using a balanced BST (e.g., implemented as an AVL tree) that contains the distances of all points
from the centerpoint. We then use a counter to keep track of the number of deletions that P has
undergone since the computation of c, so that another centerpoint will be computed as soon as c stops
being representative. We give a more detailed pseudocode below: queries are handled by Algorithm 1,
insertions by Algorithm 2, and deletions by Algorithm 3.

7

Algorithm 1 APPROXIMATEDIAMETERQUERY(P, d, ε, t, δ)
1: if P.counter > 0 then ▷ The previously computed centerpoint is still representative
2: return F (P.centerpoint, P)

3: if |P | ≤ d4 then ▷ Use an arbitrary point
4: Pick an arbitrary point p ∈ P
5: return F (p, P)

6: P.counter← ε|P | ▷ Compute a new centerpoint
7: P.centerpoint← Find 1/3d2-centerpoint of P via Theorem 2.6 with φ = δ/2t2

8: P.distances← build a balanced BST on
⋃

p∈P dist(c, p)

9: return F (P.centerpoint, P)

Algorithm 2 APPROXIMATEDIAMETERINSERTION(P, p)
1: insert p into P
2: if P.counter > 0 then
3: insert dist(P.centerpoint, p) into P.distances

Algorithm 3 APPROXIMATEDIAMETERDELETION(P, p)
1: delete p from P
2: if P.counter > 0 then
3: delete dist(P.centerpoint, p) from P.distances
4: P.counter← P.counter - 1

We establish the approximation guarantee achieved by our algorithm in the next lemma.

Lemma 3.1. Given a sequence S of n updates by an adaptive adversary, with each update being
either an insertion or a deletion of a point, let Pt be the set obtained after the first t updates. The
algorithm APPROXIMATEDIAMETERQUERY (Algorithm 1) returns a 2-approximate diameter of Pt,
at any point in time t ∈ [n], with probability at least 1− δ.

Next, we prove an amortized bound on the cost of each operation performed by our algorithm.

Lemma 3.2. Given a sequence S of n possibly adversarial updates, let Pt be the set obtained after
applying the first t updates. The amortized update time per operation is O(d5 log3 d log3(n/δ)).

We are now ready to prove a worst-case bound on the update time. By the discussion above, it is
enough to guarantee that at all times a centerpoint is available, so that we do not need to compute
one from scratch before answering a query. We explain how to maintain a valid centerpoint at all
times when |Pt| = Ω(d4 log1.5 d log1.5 φ−1). If the latter assumption is not respected, we can answer
each query on the fly in O(d5 log1.5 d log1.5 φ−1). To build some intuition, consider a centerpoint
c computed at time t. Point c will be valid for the next ε|Pt| updates. Rather than waiting ε|Pt|
timesteps, we initiate the computation of the next centerpoint c′ at time t+3/4·ε|Pt|. The computation
of c′ is being spread over the next 1/4 · ε|Pt| iterations in which c is still valid. This process can be
implemented as shown in Algorithm 4, where each iteration of the for loop corresponds to an update.

8

Algorithm 4 DE-AMORTIZEDCENTERPOINTCOMPUTATION(d, ε)
1: centerpoint← ∅
2: expiration_time← 0 ▷ When the current centerpoint stops being representative
3: update_time← 0 ▷ When to start computing the next centerpoint
4: next_centerpoint← ∅
5: next_expiration_time← 0

6: for t = 1, . . . n do
7: if t equals expiration_time then ▷ The next centerpoint takes over
8: centerpoint← next_centerpoint
9: expiration_time← next_expiration_time

10: if t equals update_time then ▷ The computation of the next centerpoint starts
11: do in the background within T timesteps (cf. Lemma 3.3)
12: Create a copy of Pt (filter newer points)
13: next_centerpoint← (1/3d2)-centerpoint of Pt with φ = δ/2t2

14: Compute all distances from next_centerpoint (include newer points)
15: next_expiration_time← t+ ε|Pt|
16: update_time← t+ 3/4 · ε|Pt|

Lemma 3.3. The worst-case update time of Algorithm 1 combined with the centerpoint computation
of Algorithm 4 is O(d5 log1.5 d log1.5(n/δ)). This update time holds deterministically, regardless of
the adversarial nature of the updates.

Finally, Theorem 1.1 follows from combining Lemma 3.1 with Lemma 3.3.

4 Dynamic algorithm for k-center clustering

In this section, we describe our dynamic algorithm for the k-center problem. Our approach is to
identify as a measure of robustness the number of points within a certain radius from each candidate
center. Since this would be computationally expensive to calculate exactly, we use random sampling
to either find candidate centers or estimate the density of each candidate. We will prove that the point
with the highest density provides a robust center. We then cluster all points close to such a center
(breaking ties assigning always to the lexicographically smaller). The dynamic maintenance of each
cluster will follow from the robustness of the chosen center, defined as follows.

Definition 4.1 ((ℓ, β)-robust center). Given a point set P ⊂ Rn×d, a point x ∈ Rd is an (ℓ, β)-robust
center of P if |P ∩B(x, 2(1 + ε)ℓ| ≥ β, for ℓ ∈ [L], β ∈ [n], and some error parameter ε > 0.

Our approach will reduce the dynamic k-center problem to maintaining an ordered sequence of at
most k instances I1, . . . , Ik, where: (1) each instance is associated with a robust-center, (2) instance
Ii is constructed recursively after completing instances I1, . . . , Ii−1, and (3) if, at any point during
the dynamic process, an instance Ii must be reconstructed, then all subsequent instances Ii, . . . , Ik
are rebuilt as well. We first introduce a static algorithm and then discuss its robust dynamization. The
pseudocode of all our algorithms is included in the appendix.

Static k-center algorithm Let ρ =
maxp,q∈P dist(p,q)
minp,q∈P dist(p,q) denote the spread ratio of the point set

P ⊂ Rd. We consider guesses ℓ ∈ [L], where L = ⌈log(1+ε) ρ⌉, for the optimal radius OPT (P),
and run the following procedure in parallel for each guess.

For each guess (1 + ε)ℓ, we uniformly sample a set Sℓ of O(k logL log(n/δ)) points from P ; the
actual size of the Sℓ may be optimized based on the number of unclustered points. For each sample
point s ∈ Sℓ, we compute how many other sample points lie within distance 2(1 + ε)ℓ+1, i.e.,∣∣B(s, 2(1 + ε)ℓ+1) ∩ Sℓ

∣∣. The sample point sℓ with the highest count is chosen as a center. If ℓ is a
good guess (i.e., close to OPT (P)), then there is at least one optimal large cluster that contains at
least n/k points, which will provide a (ℓ,Ω(n/k))-robust center.

Once the sample point sℓ with the largest neighborhood is selected, we gather all points in P within
B(sℓi , 4(1 + ε)ℓ+1), where the radius is doubled to ensure complete coverage. We then define the

9

corresponding cluster Cℓ
i with cℓi := sℓ as P ∩ B(cℓ, 4(1 + ε)ℓ+1), and remove its points from P

before recursing. If P becomes empty within k iterations, we have a good guess; otherwise, the
guess is marked as low-value. We always return the smallest good guess. See the appendix for the
pseudocode.

Robust dynamization We now adapt the static algorithm to the dynamic setting. We maintain
L parallel copies of the dataset—one per guess—denoted P ℓ. For each cluster Cℓ

i , we maintain
two counters: nℓ

i tracks the cluster size, and mℓ
i counts how many updates can be performed before

rebuilding the cluster. When mℓ
i hits zero, we rebuild Cℓ

i and all subsequent clusters for guess ℓ.

On insertion of a point p, we add it to each P ℓ. If p falls within a current cluster Cℓ
i , we add it to such

a cluster and increment mℓ
i if p is close to its center. If p is not covered by any existing cluster, we

add it to the remainder set Qℓ. These remainder sets allow us to detect increases in OPT (P) over
time. In such cases, we extract the solution from a clustering associated with a higher guess.

Deletions are handled similarly. When a point p is deleted, we remove it from each P ℓ and determine
whether it belonged to a cluster Cℓ

i . If it has distance at most 2(1 + ε)ℓ+1 from cℓi , we decrement mℓ
i

and rebuild if needed. If p was part of the remainder set Qℓ, we remove it from Qℓ and check whether
to resume a previously suspended clustering for guess ℓ. This is because the deletion may reduce
OPT (P), making a previously invalid guess (1 + ε)ℓ now feasible. If so, we resume clustering from
the iteration it was halted.

Handling small guesses A subtle but important issue arises when the guess (1+ ε)ℓ is significantly
smaller than OPT (P). In such cases, all sample neighborhoods B(s, 2(1+ε)ℓ+1) may contain fewer
than O(ε−2 log n) sample points, making them too sparse to be useful. To address this, whenever we
observe that all sample neighborhoods in Sℓ are too sparse, we suspend the clustering process. We
resume it only when a sample point in Sℓ gains enough neighbors (at least O(ε−2 log n)), indicating
that the guess may now be viable.

Let C∗ = {c∗1, . . . , c∗k} be the set of optimal centers and let C∗ = {C∗
1, . . . ,C

∗
k} be the set of optimal

clusters. The approximation achieved by our algorithm is established via the following invariants.

Definition 4.2. At all times, our algorithm satisfies the following two invariants:

• disjointedness: For any i ∈ [k − 1], the set B(ci, 4(1 + ε)OPT (P)) ∩ Cj = ∅, j > i.

• closeness: for every i ≤ k, it holds that dist(cℓi ,C
∗
i) ≤ 2(1 + ε)OPT (P), that is, there

exists a point p from C∗
i that is “close” to our center.

The bound on the update time follows the same line of reasoning as that developed for the diameter.
We refer to the appendix for the details of our algorithm for k-center.

References
I. Abraham, D. Durfee, I. Koutis, S. Krinninger, and R. Peng. On fully dynamic graph sparsifiers.

In I. Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 335–344. IEEE
Computer Society, 2016. doi: 10.1109/FOCS.2016.44. URL https://doi.org/10.1109/FOCS.
2016.44.

P. K. Agarwal and R. Sharathkumar. Streaming algorithms for extent problems in high dimensions.
Algorithmica, 72(1):83–98, 2015.

P. K. Agarwal and H. Yu. A space-optimal data-stream algorithm for coresets in the plane. In
Proceedings of the twenty-third annual symposium on Computational geometry, pages 1–10, 2007.

P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of points.
Journal of the ACM (JACM), 51(4):606–635, 2004.

C. C. Aggarwal. Outlier Analysis. Springer, 2nd edition, 2016.

10

https://doi.org/10.1109/FOCS.2016.44
https://doi.org/10.1109/FOCS.2016.44

M. Ajtai, V. Braverman, T. Jayram, S. Silwal, A. Sun, D. P. Woodruff, and S. Zhou. The white-
box adversarial data stream model. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 15–27, 2022.

A. Alokhina and J. van den Brand. Fully dynamic shortest path reporting against an adaptive adversary.
In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
3027–3039. SIAM, 2024.

A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesizing robust adversarial examples. In
International conference on machine learning, pages 284–293. PMLR, 2018.

M. Badoiu and K. L. Clarkson. Smaller core-sets for balls. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA,
pages 801–802. ACM/SIAM, 2003. URL http://dl.acm.org/citation.cfm?id=644108.
644240.

M. Bădoiu and K. L. Clarkson. Optimal core-sets for balls. Computational Geometry, 40(1):14–22,
2008.

S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in o(log n) update time
(corrected version). SIAM J. Comput., 47(3):617–650, 2018. doi: 10.1137/16M1106158. URL
https://doi.org/10.1137/16M1106158.

M. Bateni, H. Esfandiari, M. Fischer, and V. Mirrokni. Extreme k-center clustering. Proceedings of
the AAAI Conference on Artificial Intelligence, 35(5):3941–3949, May 2021. doi: 10.1609/aaai.
v35i5.16513. URL https://ojs.aaai.org/index.php/AAAI/article/view/16513.

M. Bateni, H. Esfandiari, H. Fichtenberger, M. Henzinger, R. Jayaram, V. Mirrokni, and A. Wiese.
Optimal fully dynamic k-center clustering for adaptive and oblivious adversaries. In Proceedings
of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2677–2727.
SIAM, 2023.

A. Beimel, H. Kaplan, Y. Mansour, K. Nissim, T. Saranurak, and U. Stemmer. Dynamic algorithms
against an adaptive adversary: generic constructions and lower bounds. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, pages 1671–1684, 2022.

O. Ben-Eliezer and E. Yogev. The adversarial robustness of sampling. In Proceedings of the 39th
ACM SIGMOD-SIGACT-SIGAI symposium on principles of database systems, pages 49–62, 2020.

O. Ben-Eliezer, R. Jayaram, D. P. Woodruff, and E. Yogev. A framework for adversarially robust
streaming algorithms. ACM Journal of the ACM (JACM), 69(2):1–33, 2022.

M. Bern and D. Eppstein. Approximation algorithms for geometric problems. Approximation
algorithms for NP-hard problems, pages 296–345, 1997.

A. Bernstein and S. Chechik. Deterministic decremental single source shortest paths: beyond the o
(mn) bound. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pages 389–397, 2016.

A. Bernstein, J. v. d. Brand, M. P. Gutenberg, D. Nanongkai, T. Saranurak, A. Sidford, and H. Sun.
Fully-dynamic graph sparsifiers against an adaptive adversary. arXiv preprint arXiv:2004.08432,
2020.

A. Bernstein, S. Forster, and M. Henzinger. A deamortization approach for dynamic spanner and
dynamic maximal matching. ACM Transactions on Algorithms (TALG), 17(4):1–51, 2021.

S. Bhattacharya, M. Costa, N. Garg, S. Lattanzi, and N. Parotsidis. Fully dynamic k-clustering
with fast update time and small recourse. In 65th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024, pages 216–227. IEEE,
2024a. doi: 10.1109/FOCS61266.2024.00023. URL https://doi.org/10.1109/FOCS61266.
2024.00023.

S. Bhattacharya, M. Costa, S. Lattanzi, and N. Parotsidis. Fully dynamic k-center clustering made
simple. arXiv preprint arXiv:2410.11470, 2024b.

11

http://dl.acm.org/citation.cfm?id=644108.644240
http://dl.acm.org/citation.cfm?id=644108.644240
https://doi.org/10.1137/16M1106158
https://ojs.aaai.org/index.php/AAAI/article/view/16513
https://doi.org/10.1109/FOCS61266.2024.00023
https://doi.org/10.1109/FOCS61266.2024.00023

L. Biabani, A. Hennes, D. La Gordt Dillie, M. Monemizadeh, and M. Schmidt. Improved guarantees
for fully dynamic k-center clustering with outliers in general metric spaces. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in
Neural Information Processing Systems, volume 37, pages 89278–89306. Curran Associates,
Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
a2825fc792a1ebfdd45051b01aa5a180-Paper-Conference.pdf.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli. Evasion
attacks against machine learning at test time. In Machine learning and knowledge discovery in
databases: European conference, ECML pKDD 2013, prague, czech Republic, September 23-27,
2013, proceedings, part III 13, pages 387–402. Springer, 2013.

I. Bogunovic, S. Mitrović, J. Scarlett, and V. Cevher. Robust submodular maximization: A non-
uniform partitioning approach. In International Conference on Machine Learning, pages 508–516.
PMLR, 2017.

A. Borodin, R. Ostrovsky, and Y. Rabani. Subquadratic approximation algorithms for clustering
problems in high dimensional spaces. In Proceedings of the thirty-first annual ACM symposium on
Theory of computing, pages 435–444, 1999.

M. Ceccarello, A. Pietracaprina, and G. Pucci. Solving k-center clustering (with outliers) in
mapreduce and streaming, almost as accurately as sequentially. Proc. VLDB Endow., 12(7):
766–778, Mar. 2019. ISSN 2150-8097. doi: 10.14778/3317315.3317319. URL https:
//doi.org/10.14778/3317315.3317319.

T. H. Chan, A. Guerqin, and M. Sozio. Fully dynamic k-center clustering. In Proceedings of the
2018 World Wide Web Conference, pages 579–587, 2018.

T.-H. H. Chan, S. Lattanzi, M. Sozio, and B. Wang. Fully dynamic k-center clustering with outliers.
Algorithmica, 86(1):171–193, 2024.

T. M. Chan. Faster core-set constructions and data stream algorithms in fixed dimensions. In
Proceedings of the twentieth annual symposium on Computational geometry, pages 152–159,
2004a.

T. M. Chan. An optimal randomized algorithm for maximum tukey depth. In SODA, volume 4, pages
430–436, 2004b.

T. M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries.
J. ACM, 57(3), Mar. 2010. ISSN 0004-5411. doi: 10.1145/1706591.1706596. URL https:
//doi.org/10.1145/1706591.1706596.

T. M. Chan and Q. He. More Dynamic Data Structures for Geometric Set Cover with Sublinear
Update Time. In K. Buchin and E. Colin de Verdière, editors, 37th International Symposium
on Computational Geometry (SoCG 2021), volume 189 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 25:1–25:14, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. ISBN 978-3-95977-184-9. doi: 10.4230/LIPIcs.SoCG.2021.25. URL
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.25.

T. M. Chan and V. Pathak. Streaming and dynamic algorithms for minimum enclosing balls in high
dimensions. Computational Geometry, 47(2):240–247, 2014.

M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic information
retrieval. In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing,
pages 626–635, 1997.

Y. Cherapanamjeri and J. Nelson. On adaptive distance estimation. Advances in Neural Information
Processing Systems, 33:11178–11190, 2020.

Y. Cherapanamjeri, S. Silwal, D. P. Woodruff, F. Zhang, Q. Zhang, and S. Zhou. Robust algorithms on
adaptive inputs from bounded adversaries. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=I29Kt0RwChs.

12

https://proceedings.neurips.cc/paper_files/paper/2024/file/a2825fc792a1ebfdd45051b01aa5a180-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a2825fc792a1ebfdd45051b01aa5a180-Paper-Conference.pdf
https://doi.org/10.14778/3317315.3317319
https://doi.org/10.14778/3317315.3317319
https://doi.org/10.1145/1706591.1706596
https://doi.org/10.1145/1706591.1706596
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.25
https://openreview.net/forum?id=I29Kt0RwChs

J. Chuzhoy and S. Khanna. A new algorithm for decremental single-source shortest paths with
applications to vertex-capacitated flow and cut problems. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, pages 389–400, 2019.

J. Chuzhoy and R. Zhang. A new deterministic algorithm for fully dynamic all-pairs shortest paths.
In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pages 1159–1172,
2023.

K. L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM Trans.
Algorithms, 6(4):63:1–63:30, 2010. doi: 10.1145/1824777.1824783. URL https://doi.org/
10.1145/1824777.1824783.

K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H. Teng. Approximating center
points with iterated radon points. In Proceedings of the ninth annual symposium on Computational
geometry, pages 91–98, 1993.

K. L. Clarkson, E. Hazan, and D. P. Woodruff. Sublinear optimization for machine learning. J. ACM,
59(5):23:1–23:49, 2012. doi: 10.1145/2371656.2371658. URL https://doi.org/10.1145/
2371656.2371658.

E. Cohen, X. Lyu, J. Nelson, T. Sarlós, M. Shechner, and U. Stemmer. On the robustness of
countsketch to adaptive inputs. In International conference on machine learning, pages 4112–4140.
PMLR, 2022.

V. Cohen-Addad, C. Schwiegelshohn, and C. Sohler. Diameter and k-center in sliding windows. In
43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), pages
19–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

S. Coy, A. Czumaj, and G. Mishra. On parallel k-center clustering. In Proceedings of the 35th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’23, page 65–75, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450395458. doi:
10.1145/3558481.3591075. URL https://doi.org/10.1145/3558481.3591075.

A. Czumaj, G. Gao, M. Ghaffari, and S. H.-C. Jiang. Fully scalable mpc algorithms for euclidean
k-center. arXiv preprint arXiv:2504.16382, 2025.

M. De Berg, L. Biabani, and M. Monemizadeh. k-center clustering with outliers in the mpc and
streaming model. In 2023 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 853–863. IEEE, 2023.

Ö. Egecioglu and B. Kalantari. Approximating the diameter of a set of points in the euclidean space.
Information Processing Letters, 32(4):205–211, 1989.

J. Evald, V. Fredslund-Hansen, M. Probst Gutenberg, and C. Wulff-Nielsen. Decremental apsp in
unweighted digraphs versus an adaptive adversary. In 48th International Colloquium on Automata,
Languages, and Programming (ICALP 2021), volume 198, page 64. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2021.

T. Feder and D. Greene. Optimal algorithms for approximate clustering. In Proceedings of the
twentieth annual ACM symposium on Theory of computing, pages 434–444, 1988.

Y. Feng and D. Woodruff. Improved algorithms for white-box adversarial streams. In International
Conference on Machine Learning, pages 9962–9975. PMLR, 2023.

Y. Feng, A. Jain, and D. P. Woodruff. Fast white-box adversarial streaming without a random oracle.
In Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

D. V. Finocchiaro and M. Pellegrini. On computing the diameter of a point set in high dimensional
euclidean space. Theoretical Computer Science, 287(2):501–514, 2002.

S. Forster and A. Skarlatos. Dynamic consistent k-center clustering with optimal recourse. In
Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
212–254. SIAM, 2025.

13

https://doi.org/10.1145/1824777.1824783
https://doi.org/10.1145/1824777.1824783
https://doi.org/10.1145/2371656.2371658
https://doi.org/10.1145/2371656.2371658
https://doi.org/10.1145/3558481.3591075

E. Frandi, M. G. Gasparo, S. Lodi, R. Ñanculef, and C. Sartori. A new algorithm for training svms
using approximate minimal enclosing balls. In I. Bloch and R. M. Cesar, editors, Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications - 15th Iberoamerican Congress
on Pattern Recognition, CIARP 2010, Sao Paulo, Brazil, November 8-11, 2010. Proceedings,
volume 6419 of Lecture Notes in Computer Science, pages 87–95. Springer, 2010. doi: 10.1007/
978-3-642-16687-7_16. URL https://doi.org/10.1007/978-3-642-16687-7_16.

A. Goel, P. Indyk, and K. R. Varadarajan. Reductions among high dimensional proximity problems. In
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 769–778,
2001.

T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical computer
science, 38:293–306, 1985.

G. Goranci, M. Henzinger, D. Leniowski, C. Schulz, and A. Svozil. Fully dynamic k-center clustering
in low dimensional metrics. In 2021 Proceedings of the Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 143–153. SIAM, 2021.

M. P. Gutenberg and C. Wulff-Nilsen. Decremental sssp in weighted digraphs: Faster and against an
adaptive adversary. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2542–2561. SIAM, 2020.

S. Har-Peled and M. Jones. Journey to the center of the point set. ACM Transactions on Algorithms
(TALG), 17(1):1–21, 2020.

S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor: Towards removing the curse
of dimensionality. Theory Comput., 8(1):321–350, 2012. doi: 10.4086/TOC.2012.V008A014.
URL https://doi.org/10.4086/toc.2012.v008a014.

A. Hassidim, H. Kaplan, Y. Mansour, Y. Matias, and U. Stemmer. Adversarially robust streaming
algorithms via differential privacy. J. ACM, 69(6), Nov. 2022. ISSN 0004-5411. doi: 10.1145/
3556972. URL https://doi.org/10.1145/3556972.

D. S. Hochbaum and D. B. Shmoys. A unified approach to approximation algorithms for bottleneck
problems. Journal of the ACM (JACM), 33(3):533–550, 1986.

W.-L. Hsu and G. L. Nemhauser. Easy and hard bottleneck location problems. Discrete Applied
Mathematics, 1(3):209–215, 1979.

A. Ilyas, L. Engstrom, and A. Madry. Prior convictions: Black-box adversarial attacks with bandits
and priors. In International Conference on Learning Representations, 2019.

P. Indyk. Dimensionality reduction techniques for proximity problems. In Proceedings of the eleventh
annual ACM-SIAM symposium on Discrete algorithms, pages 371–378, 2000.

P. Indyk. Better algorithms for high-dimensional proximity problems via asymmetric embeddings.
In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages
539–545, 2003.

P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimension-
ality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (STOC),
pages 604–613. ACM, 1998. doi: 10.1145/276698.276876.

H. Kaplan, Y. Mansour, K. Nissim, and U. Stemmer. Separating adaptive streaming from oblivious
streaming using the bounded storage model. In Annual International Cryptology Conference,
pages 94–121. Springer, 2021.

A. Karczmarz, A. Mukherjee, and P. Sankowski. Subquadratic dynamic path reporting in directed
graphs against an adaptive adversary. In Proceedings of the 54th Annual ACM SIGACT Symposium
on Theory of Computing, pages 1643–1656, 2022.

P. Kumar, J. S. Mitchell, and E. A. Yildirim. Approximate minimum enclosing balls in high
dimensions using core-sets. Journal of Experimental Algorithmics (JEA), 8:1–1, 2003.

14

https://doi.org/10.1007/978-3-642-16687-7_16
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.1145/3556972

A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial machine learning at scale. In International
Conference on Learning Representations, 2017.

J. Łącki, B. Haeupler, C. Grunau, R. Jayaram, and V. Rozhoň. Fully dynamic consistent k-center
clustering. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3463–3484. SIAM, 2024.

W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. In Proceedings of the 28th
International Conference on Machine Learning (ICML), 2012.

Y. Liu, X. Chen, C. Liu, and D. Song. Delving into transferable adversarial examples and black-box
attacks. In International Conference on Learning Representations, 2017.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant
to adversarial attacks. In International Conference on Learning Representations, 2018.

G. Malkomes, M. J. Kusner, W. Chen, K. Q. Weinberger, and B. Moseley. Fast distributed k-center
clustering with outliers on massive data. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/8fecb20817b3847419bb3de39a609afe-Paper.pdf.

I. Mironov, M. Naor, and G. Segev. Sketching in adversarial environments. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 651–660, 2008.

R. Motwani and P. Raghavan. Randomized algorithms. In M. J. Atallah, editor, Algorithms and
Theory of Computation Handbook, Chapman & Hall/CRC Applied Algorithms and Data Structures
series. CRC Press, 1999. doi: 10.1201/9781420049503-C16. URL https://doi.org/10.1201/
9781420049503-c16.

D. Nanongkai and T. Saranurak. Dynamic spanning forest with worst-case update time: adaptive,
las vegas, and o (n1/2-ε)-time. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1122–1129, 2017.

D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen. Dynamic minimum spanning forest with sub-
polynomial worst-case update time. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 950–961. IEEE, 2017.

K. Onak and R. Rubinfeld. Maintaining a large matching and a small vertex cover. In L. J. Schulman,
editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 457–464. ACM, 2010. doi: 10.1145/1806689.1806753.
URL https://doi.org/10.1145/1806689.1806753.

R. Pagh, F. Silvestri, J. Sivertsen, and M. Skala. Approximate furthest neighbor in high dimensions.
In Proceedings of the 31st International Conference on Data Engineering (ICDE), 2015.

P. Pellizzoni, A. Pietracaprina, and G. Pucci. Adaptive k-center and diameter estimation in sliding
windows. International Journal of Data Science and Analytics, 14(2):155–173, 2022.

M. Probst Gutenberg, V. Vassilevska Williams, and N. Wein. New algorithms and hardness for
incremental single-source shortest paths in directed graphs. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, pages 153–166, 2020.

J. Radon. Mengen konvexer körper, die einen gemeinsamen punkt enthalten. Mathematische Annalen,
83(1):113–115, 1921.

M. Roghani, A. Saberi, and D. Wajc. Beating the Folklore Algorithm for Dynamic Matching. In
M. Braverman, editor, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022),
volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages 111:1–111:23,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-
217-4. doi: 10.4230/LIPIcs.ITCS.2022.111. URL https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.ITCS.2022.111.

15

https://proceedings.neurips.cc/paper_files/paper/2015/file/8fecb20817b3847419bb3de39a609afe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8fecb20817b3847419bb3de39a609afe-Paper.pdf
https://doi.org/10.1201/9781420049503-c16
https://doi.org/10.1201/9781420049503-c16
https://doi.org/10.1145/1806689.1806753
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.111
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.111

M. Schmidt and C. Sohler. Fully dynamic hierarchical diameter k-clustering and k-center. arXiv
preprint arXiv:1908.02645, 2019.

M. Stoeckl. Streaming algorithms for the missing item finding problem. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 793–818. SIAM, 2023.

D. M. J. Tax and R. P. W. Duin. Support vector data description. Mach. Learn., 54(1):45–66,
2004. doi: 10.1023/B:MACH.0000008084.60811.49. URL https://doi.org/10.1023/B:
MACH.0000008084.60811.49.

C. Tosh and S. Dasgupta. Diameter-based active learning. In Proceedings of the 34th International
Conference on Machine Learning (ICML), 2017.

F. Tramèr, D. Boneh, A. Kurakin, I. Goodfellow, N. Papernot, and P. McDaniel. Ensemble adversarial
training: Attacks and defenses. In 6th International Conference on Learning Representations,
ICLR 2018-Conference Track Proceedings, 2018.

J. W. Tukey. Mathematics and the picturing of data. In Proceedings of the international congress of
mathematicians, volume 2, pages 523–531. Vancouver, 1975.

D. Wajc. Rounding dynamic matchings against an adaptive adversary. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, pages 194–207, 2020.

D. P. Woodruff and S. Zhou. Tight bounds for adversarially robust streams and sliding windows
via difference estimators. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 1183–1196. IEEE, 2022.

H. Zarrabi-Zadeh. An almost space-optimal streaming algorithm for coresets in fixed dimensions.
Algorithmica, 60:46–59, 2011.

H. Zarrabi-Zadeh and T. M. Chan. A simple streaming algorithm for minimum enclosing balls. In
Proceedings of the eighteenth annual Canadian Conference on Computational Geometry, pages
139–142, 2006.

16

https://doi.org/10.1023/B:MACH.0000008084.60811.49
https://doi.org/10.1023/B:MACH.0000008084.60811.49

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly and accurately state the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The assumptions made in the paper as well as the results are clearly stated and
therefore the limitations are clear.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

17

Justification: A complete proof of theoretical results is provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper makes a significant theoretical contribution and does not include
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18

Answer: [NA]
Justification: The paper makes a significant theoretical contribution and does not include
experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper makes a significant theoretical contribution and does not include
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper makes a significant theoretical contribution and does not include
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper makes a significant theoretical contribution and does not include
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Conforms to the guidelines
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is theoretical in nature and does not have societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

20

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

21

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not use crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

22

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs were used in conducting the research or generating the results.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

A Further related work

Concerning the diameter problem in high-dimensions, a better-than-two approximation can be
achieved in the oblivious adversary setting. A long line of work [Borodin et al., 1999, Egecioglu and
Kalantari, 1989, Finocchiaro and Pellegrini, 2002, Goel et al., 2001, Indyk, 2000, 2003] culminated
in a fully dynamic (1 + ϵ)-approximate algorithm with amortized update time Õ(n

1
(1+ϵ)2) by Indyk

[2003]. A (
√
2 + ϵ)-approximation with O(d log n) amortized update time is achieved by the works

of [Agarwal and Sharathkumar, 2015, Chan and Pathak, 2014].

While our focus is on high-dimensional spaces, the diameter problem is well-understood for low, fixed
dimensions. Indeed, it is relatively simple to obtain a (1 + ϵ)-approximation by maintaining 1/ϵO(d)

different directions [Agarwal et al., 2004, Agarwal and Yu, 2007, Chan, 2004a, Zarrabi-Zadeh, 2011].
The number of dimensions can often be reduced by using dimensionality reduction, however, the
above approaches struggle even with log n dimensions, due to the exponential dependency on d,
which renders them inapplicable in practical scenarios.

Another line of work considered the closely related problem of minimum enclosing ball (MEB).
It corresponds to the 1-center problem, and a c-approximate MEB directly implies a (

√
2 · c)-

approximate diameter, for d large enough. A number of streaming and dynamic MEB algorithm
have been developed [Egecioglu and Kalantari, 1989, Agarwal and Sharathkumar, 2015, Chan and
Pathak, 2014, Zarrabi-Zadeh and Chan, 2006]. The best known dynamic MEB algorithm is a 1.22-
approximation by Chan and Pathak [2014] that builds upon the streaming algorithm of Agarwal and
Sharathkumar [2015], which is based on coresets [Bădoiu and Clarkson, 2008, Kumar et al., 2003].

The k-center problem was first studied by Charikar et al. [1997] in the incremental setting (where the
points are inserted and the goal is to maintain an approximate solution), who introduced the doubling
algorithm, achieving an 8-approximation with an amortized update time of O(k). Subsequent work
by Chan et al. [2018] presented a randomized algorithm that maintains a (2 + ε)-approximation, with
O(k2/ϵ log ρ) amortized time per update, with ρ being the aspect ratio. For low-dimensional spaces,
the work of [Goranci et al., 2021] provides a (2+ε)-approximate deterministic algorithm with update
time (2/ε)O(d+lg lg ρ). Most recently, Bateni et al. [2023] extended these results to general metric
spaces, providing an optimal (2 + ε)-approximate randomized algorithm with amortized update time
O(k · poly log(n,∆)). Additionally, they developed a deterministic algorithm with approximation
factor O(min{k, log(n/k)

log logn }). Another closely related line of work on consistent k-center clustering
has focused on algorithms for k-center with small recourse [Łącki et al., 2024, Bhattacharya et al.,
2024a,b, Forster and Skarlatos, 2025].

There is a large body of work on dynamic problems against an adaptive adversary. These include
convex hull in two and three dimensions [Chan, 2010], geometric set cover [Chan and He, 2021],
and numerous graph problems such as matching [Wajc, 2020, Roghani et al., 2022], spanning
forest [Nanongkai and Saranurak, 2017, Nanongkai et al., 2017], spanners [Bernstein et al., 2020],
incremental single-source shortest path [Probst Gutenberg et al., 2020, Alokhina and van den Brand,
2024], decremental single source shortest path [Bernstein and Chechik, 2016, Chuzhoy and Khanna,
2019, Gutenberg and Wulff-Nilsen, 2020], general single source shortest-path [Karczmarz et al.,
2022], and all pairs shortest paths [Evald et al., 2021, Beimel et al., 2022, Chuzhoy and Zhang, 2023].

Several notions of black-box and white-box adaptive adversaries have been studied in the streaming
model [Ben-Eliezer et al., 2022, Kaplan et al., 2021, Cohen et al., 2022]. The white-box streaming
model was recently introduced by Ajtai et al. [2022]. Research in the white-box model has focused
on graph matching and heavy hitters (See e.g., [Ajtai et al., 2022, Alokhina and van den Brand, 2024,
Stoeckl, 2023, Feng and Woodruff, 2023, Feng et al., 2024]).

There are also a number of other algorithms for distance and clustering related problems in various
models of computations, including dynamic [Chan et al., 2018, Schmidt and Sohler, 2019, Goranci
et al., 2021, Chan et al., 2024, Biabani et al., 2024], streaming Ceccarello et al. [2019], De Berg
et al. [2023], sliding window [Cohen-Addad et al., 2016, Woodruff and Zhou, 2022, Pellizzoni et al.,
2022], and massively parallel computation Malkomes et al. [2015], Bateni et al. [2021], Coy et al.
[2023], Czumaj et al. [2025]. These results however do not apply to our more stringent setting of
high dimensions against an adaptive adversary.

24

B Missing Proofs and Pseudocode

B.1 Robust representative

Lemma 2.3. Assume that x ∈ Rd is an ϵ-robustly representative of P . For any set P ′ with
|P ′ ∩ P | > (1− ϵ)|P |, we have diam(P ′)/2 ≤ maxy∈P ′ dist(x, y) ≤ diam(P ′).

Proof. Recall F (x, P) := maxy∈P dist(x, y) from Section 1.2. The first inequality follows from
the triangle inequality. For a diametral pair y, z ∈ P ′ with dist(y, z) = diam(P ′), we have

diam(P ′) = dist(y, z) ≤ dist(y, x) + dist(z, x) ≤ 2max
y∈P ′

dist(x, y) = 2F (x, P).

Then, the second inequality follows from the fact that x is a robust representative point of P and
|P ′∩P | > (1− ϵ)|P |. That is, x is a representative point of P ′, so F (x, P ′) ≤ diam(P ′) holds.

Lemma 2.7. Let c be a point in the convex hull of P . Then, F (c, P) ∈ [diam(P)
2 ,diam(P)].

Proof. If c ∈ P , then the claim follows trivially. Suppose that c /∈ P and let p ∈ P be the furthest
point from c such that p = F (c, P). The inequality F (c, P) ≥ diam(P)/2 follows from the triangle
inequality. We now prove that F (c, P) ≤ diam(P) by showing that there is a point c′ such that: (i)
c′ ∈ P and (ii) dist(c′, p) ≥ dist(c, p). This will finish the proof since diam(P) ≥ dist(c′, p) by
definition.

Observe that the ℓ2-distance function dist(x, p) is continuous and convex with respect to x ∈ conv(P)
for a fixed point p. The convex hull is non-empty because it contains c and is compact because it
is a closed and bounded set. Moreover, by the extreme value theorem, we know that the function
dist(x, p) attains its maximum on any compact set. Observe however that dist(x, p) is a convex
function, which means it attains its maximum value over the convex hull on one of the vertices. Since
c ∈ conv(P), this means that there exists at least one vertex c′ such that dist(c′, p) ≥ dist(c, p).
Since any vertex of conv(P) is in P , this proves that

F (c, P) = dist(c, p) ≤ dist(c′, p) ≤ F (c′, P) ≤ diam(P).

Corollary 2.8. Let c be a point in the convex hull of P . Then, F (c, P) ∈ [r(MEB(P)), 2r(MEB(P))].

Proof. The ball B centered at c with radius F (c, P) encloses all the points. Moreover, by the above
proof, a ball that encloses both c′ and F (c, P) must have radius at least F (c, P)/2.

Lemma 2.9. Any point c with Tukey depth at least 1 with respect to a set P lies in its convex hull.

Proof. Suppose that c lies outside of the convex hull of P , i.e., c and conv(P) are disjoint. Since
conv(P) is a closed and compact convex set and so is {c}, we can apply the following version of
the hyperplane separation theorem: If two disjoint convex sets are closed and at least one of them is
compact, then there is a hyperplane h that strictly separates them. Then, we observe that the existence
of h contradicts the fact that c has Tukey depth at least 1. This is because the halfspace defined by h
from c’s side contains c and has no point from P , which would mean that c has Tukey depth zero.

Lemma 2.10. Let P be a set of n points and c be an α-centerpoint of P . For any set P ′, the point c
has Tukey depth at least ⌈αn− t⌉ with repsect to P ′ where t = |P \ P ′|.
In the special case where |P ′ ∩ P | > (1− ε)|P | is satisfied, for ε < α, the point c has Tukey depth
at least 1 with respect to P ′.

Proof. Since c is an α-centerpoint of P , any closed halfspace h containing c has at least ⌈αn⌉ points
from P . Then, h contains at least ⌈αn⌉ − t points from P ′, since at most t points from P are not in
P ′. Therefore, c has Tukey depth at least ⌈αn⌉ − t = ⌈αn− t⌉ with respect to P ′. For the second
part of the Lemma, observe that if ε < α then

⌈αn− t⌉ ≥ αn− |P\P ′| = αn− (n− |P ∩ P ′|) = αn− n+ (1− ε)n = αn− εn > 0.

Since ⌈αn− t⌉ is an integer, it follows that it is at least 1.

25

B.2 Diameter

Lemma 3.1. Given a sequence S of n updates by an adaptive adversary, with each update being
either an insertion or a deletion of a point, let Pt be the set obtained after the first t updates. The
algorithm APPROXIMATEDIAMETERQUERY (Algorithm 1) returns a 2-approximate diameter of Pt,
at any point in time t ∈ [n], with probability at least 1− δ.

Proof. Fix an arbitrary t ∈ [n]. We prove that our algorithm returns a 2-approximate diameter by
either computing it statically (Line 5) or by using a centerpoint (Lines 2 and 9). In the first case,
when the algorithm returns F (p, Pt) for some p ∈ Pt, a 2-approximation of the current diameter
immediately follows.

If a centerpoint c is available, then the algorithm returns F (c, Pt). Suppose that c was computed at
time t0 for Pt0 . By Theorem 2.6, c is an (1/3d2)-centerpoint of Pt0 , with probability at least 1− φ.
By Corollary 2.11, c is also an ε-robust representative of Pt0 where ε = 1/4d2. We now show that c
is a representative point of the current point set. To this end, we prove that |Pt ∩ Pt0 | > (1− ε)|Pt0 |.
It is easy to verify that the following invariant holds

|Pt ∩ Pt0 | = |Pt0 | − |Pt \ Pt0 | ≥ |Pt0 | − (ε|Pt0 | − P.counter) > (1− ε)|Pt0 |,

since, any time that a point is deleted, P.counter is decremented by one and P.counter can only take
on values in {1, . . . , ε|Pt0 |}. With the above, Pt satisfies Definition 2.2 and thus c is a representative
point of Pt. We conclude that by Lemma 2.3, F (c, Pt) gives a two approximation to diam(Pt).

It remains to bound the probability of failure. The only randomness used is in Theorem 2.6, and if
the algorithm succeeds, the 2-approximation holds for all updates, even adaptive ones. Specifically,
the success of a query at time t depends only on whether c was a (1/3d2)-centerpoint of Pt0 . Since
Theorem 2.6 uses fresh randomness independent of Pt0 , the adversary cannot influence its outcome.
In particular, the adversary cannot retroactively change Pt0 . This means that each centerpoint
computation fails with probability at most φ, independently of the adversarial nature of the updates.
By taking a union bound over the at most n centerpoint computations, we have

Pr[Algorithm 1 fails] ≤ Pr[∃ “bad” centerpoint] ≤
n∑

t=1

δ

2t2
≤ δ.

Lemma 3.2. Given a sequence S of n possibly adversarial updates, let Pt be the set obtained after
applying the first t updates. The amortized update time per operation is O(d5 log3 d log3(n/δ)).

Proof. Note that insertions and deletions are handled in O(d log n) time by Algorithm 2 and Al-
gorithm 3. When the adversary issues a query at time t ∈ [n], there are three possible cases. If
P.counter is not zero, then the query time is given by a simple O(1)-time lookup operation (Line 2).
If P.counter is zero and |Pt| = O(d4), then the query time is O(d|Pt|) = O(d5).

The most interesting case is when P.counter is zero and |Pt| > d4, which will be proved by
induction on the number of centerpoints. For the base case, the first centerpoint computation takes
O(d7 log3 d log3(n/δ) + d|Pt| log |Pt|) and can be amortized over the first |Pt| ≥ d4 insertions. For
the inductive step, we amortize the computation of the (i+ 1)-th centerpoint at time ti+1 over the
updates that occurred between time ti+1 and time ti, when the computation of the i-th centerpoint
occurred. By induction, the computation of the i-th centerpoint is amortized over updates prior to
ti, so it does not affect the amortization on subsequent updates. The total computation to amortize
is O(d7 log3 d log3(n/δ) + d|Pti+1

| log |Pti+1
|). Now, recall that ti+1 − ti ≥ ε|Pti | ≥ d2 by the

centerpoint property, and observe that

|Pti+1
|

ti+1 − ti
≤ |Pti |+ ti+1 − ti

ti+1 − ti
≤ O(1/ε),

proving the claimed amortized time.

Lemma 3.3. The worst-case update time of Algorithm 1 combined with the centerpoint computation
of Algorithm 4 is O(d5 log1.5 d log1.5(n/δ)). This update time holds deterministically, regardless of
the adversarial nature of the updates.

26

Proof. The computation of a new centerpoint c′ at time t happens sequentially in three steps:

1. Create of a copy of Pt in T1 timesteps, incurring (|Pt|+ T1) ·O(d log |Pt|) operations. To
avoid conflicts, we add to each point an entry specifying the time in which it was inserted
and another entry for the time in which it was deleted (if any). Moreover, we also maintain
the points that were deleted in subsequent timesteps t′ ∈ [t, t+ T1] in a separate array, so
that creating a copy of Pt does not conflict with P ′

t . The number of extra operations required
is O(T1d log n), which we account for in the total complexity of this step.

2. Compute a new centerpoint c′ in T2 timesteps, incurring O(d7 log3 d log3(n/δ)) operations.

3. Scan all of the points present to build an AVL tree with all distances from c′ in T3 timesteps,
incurring (|Pt|+ T1 + T2 + T3) ·O(d log |Pt|) operations. For this step, we use the same
strategy as earlier to avoid creating any conflicts. The overhead incurred to handle extra
copies of recently deleted and newly added points is at most O(T1 + T2 + T3d log n).

This computation starts at time t and finishes at time t+T = t+T1+T2+T3, and, at each timestep,
up to C · d5 log1.5 d log1.5(n/δ) operations can be performed, for some constant C > 0. For our
worst-case update time guarantee to hold, we need to prove: (1) the computation of c′ finishes before
the expiration of the current centerpoint; (2) no two centerpoint computations overlap. We prove
both conditions by induction of the number of centerpoints. We assume that the computations of
centerpoints are consecutive, since whenever the size of the dataset drops within O(d4), we can
compute the diameter on the fly. For the base case, we observe that the first centerpoint is being
computed when |Pt| = Θ(d4), by the previous reasoning. Therefore, the algorithm can spend O(d4)
iterations to compute it, while resorting to the on-the-fly computation before the centerpoint is ready.

For the inductive step, let t0 be the point in time when the current centerpoint c was computed. The
total computation is O(d7 log3 d log3(n/δ) + d|Pt| log |Pt|+ dT log |Pt|). For (1), the computation
of c′, which starts at t = 3ε/4|Pt0 |, should finish within T ≤ ε/4|Pt0 | iterations. This is verified since

d7 log3 d log3(n/δ) + d|Pt| log |Pt|+ dT log |Pt|
C · d5 log1.5 d log1.5(n/δ)

≤ d2

C
log1.5 d log1.5(n/δ)+

|Pt|+ T

Cd4
<

ε|Pt0 |
12

,

where the last inequality follows from |Pt0 | ≥ Ω(d4 log1.5 d log1.5(n/δ)) and |Pt| + T < 3|Pt0 |.
For (2), we have that the computation of the successor of c′ will start at time t+ 3ε/4|Pt|, which is
always greater than t+ ε/4|Pt0 | because |Pt| ≥ (1− ε)|Pt0 | >

|Pt0 |
2 .

B.3 k-center clustering

Algorithm 5 INIT(P, d, k, ε)
Input: The input set P , the dimension d and the error parameter ϵ.

1: for ℓ = 0 to L do
2: P ℓ ← P is a copy of the point set P
3: Initialize two sets Cℓ ← ∅ and Cℓ ← ∅ as the set of centers and clusters
4: Cℓ, Qℓ,Cℓ ← CLUSTERING(Pℓ, d, ε, ℓ, 1)
5: The remainder set Qℓ is maintained as a too low certificate for the guess (1 + ε)ℓ

6: Let l ∈ [L] be the smallest index for which Ql is empty
7: Return Cl and Cl

B.3.1 Proofs

B.4 Correctness Analysis

This section is devoted to proving that our algorithm computes and maintains a 4(1+ε) approximation.
We first introduce some notation. Recall that we consider L guesses (1+ ε)0, (1+ ε)1, · · · , (1+ ε)L

for the optimal k-center radius OPT (P). Throughout, we fix the guess (1 + ε)ℓ
∗ ≤ OPT (P) <

(1 + ε)ℓ
∗+1.

27

Algorithm 6 CLUSTERING(X, d, ε, ℓ, i← 1)
Input: The input set X , the dimension d, the error parameter ϵ, the guess ℓ.
Output: It (re-)constructs clusters Cℓ

i , · · · ,Cℓ
k, while clusters Cℓ

1, · · · ,Cℓ
i−1 are fixed.

1: Let Y ← X be a copy of X
2: while Y is not empty and i ≤ k do
3: Let Sℓ

i be a set sampled u.a.r. from Y (cf. Lemma B.3)
4: cℓi ← argmaxq∈Sℓ

i
|B(q, 2(1 + ε)ℓ+1) ∩ (|Y | or |Sℓ

i |)|
5: if |B(cℓi , 2(1 + ε)ℓ+1) ∩ (|Y | or |Sℓ

i)|| < (1− ε) · (|Y |
4(k−i) then

6: The guess (1 + ε)ℓ is small for OPT (P)
7: Break the while-loop
8: Cℓ

i ← B(cℓi , 4(1 + ε)ℓ+1) ∩ Y , cluster around cℓi
9: mℓ

i ← |B(q, 2(1 + ε)ℓ+1) ∩ Y |, robustness of cℓi
10: nℓ

i ← |(B(cℓi , 4(1 + ε)ℓ+1) ∩ Y)|, number of points in Cℓ
i

11: Add cℓi to Cℓ, and let Y ← Y \(B(cℓi , 4(1 + ε)ℓ+1) ∩ Y)
12: i← i+ 1
13: Return Cℓ, Y , and the clusters Cℓ ← {Cℓ

1, · · · ,Cℓ
i}

Algorithm 7 CLUSTERINGINSERTION(P 1, · · · , P ℓ, p, Cℓ,Cℓ where ℓ ∈ [L])

Input: ℓ copies P 1, · · · , P ℓ of the set of points that have been inserted but not deleted before the
insertion of p. The sets Cℓ and Cℓ are the set of centers and clusters for the guess ℓ ∈ L.

1: for ℓ = 0 to L do
2: Insert p into P ℓ

3: if there is an argmini∈[k] for which p ∈ B(cℓi , 4(1 + ε)ℓ+1) then
4: Insert p into cluster Cℓ

i

5: if p ∈ B(cℓi , 2(1 + ε)ℓ+1) then
6: mℓ

i ← mℓ
i + 1

7: else ▷ p is not covered by the current set of clusters for the guess (1 + ε)ℓ.
8: if there are j < k clusters then
9: Cℓ, Qℓ,Cℓ ← Cℓ, Qℓ,Cℓ∪ CLUSTERING({p}, d, ε, ℓ, j)

10: else
11: Add p to the remainder set Ql

12: Let l ∈ [L] be the smallest index for which Ql is empty
13: Return Cl and Cl

For any point p ∈ P , let c∗(p) denote the optimal center assigned to p, i.e., the center c∗i such that
p ∈ C∗

i . Similarly, given any set of k centers C = {c1, . . . , ck} ⊂ Rd, let c(p) ∈ C denote the center
to which p is assigned in the clustering induced by C, i.e., the center ci such that p ∈ Ci. For the
guess (1 + ε)ℓ

∗
, the offline algorithm INIT(P, d, k, ε) returns a set Cℓ∗ = {cℓ∗1 , . . . , cℓ

∗

f } of f ≤ k
centers. Our goal is to maintain both the disjointedness and the closeness invariant.

Note that it immediately follows from Definition 4.1 that a (ℓ∗, 1)-robust center of C∗
i respects the

closeness invariant.

Lemma B.1. If both invariants hold for all clusters Cℓ∗

i for i ∈ [f], we have a 4(1 + ε)-approximate
solution for the k-center clustering of the point set P .

Proof. For the approximation factor, for every i ≤ f and for every point p ∈ Cℓ∗

i , the closeness
invariant guarantees that

dist(p, ci) ≤ dist(p, c∗(p)) + dist(c∗(p), cℓ
∗

i) ≤ OPT (P) +OPT (P) + dist(cℓ
∗

i ,C∗
i),

is at most 4(1 + ε)OPT (P). To show that all points are clustered, we construct a set {p1, . . . , pk}
with each point at pairwise distance greater than 2OPT (P). Let pi ∈ Cℓ∗

i be the point closest to
cℓ

∗

i , for which it holds that dist(pi, cℓ
∗

i) ≤ 2(1 + ε)OPT (P). For any pj with j ̸= i, it holds that

28

Algorithm 8 CLUSTERINGDELETION(P 1, · · · , P ℓ, p, Cℓ,Cℓ where ℓ ∈ [L])

Input: ℓ copies P 1, · · · , P ℓ of the set of points that have been inserted but not deleted before the
insertion of p. The sets Cℓ and Cℓ are the set of centers and clusters for the guess ℓ ∈ L.

1: for ℓ = 0 to L do
2: Delete p from P ℓ

3: if there exists an i ∈ [k] for which p ∈ Ci then
4: Delete p from cluster Cℓ

i

5: if p ∈ B(cℓi , 2(1 + ε)ℓ+1) then
6: mℓ

i ← mℓ
i − 1

7: if mℓ
i equals zero then

8: Cℓ, Qℓ,Cℓ
i ← CLUSTERING(∪kj=iC

ℓ
j , d, ε, ℓ, i)

9: else ▷ p ∈ Qℓ, i.e., is not covered by the current set of clusters for the guess (1 + ε)ℓ.
10: Qℓ ← Qℓ \ p ▷ Delete p from the remainder set Qℓ

11: Let i← |Cℓ| be the number of clusters stored for the guess (1 + ε)ℓ

12: Cℓ, Qℓ,Cℓ
i ← CLUSTERING(Qℓ, d, ε, ℓ, i+ 1)

13: Let l ∈ [L] be the smallest index for which Qj is empty
14: Return Cl and Cl

dist(pj , c
ℓ∗

i) ≥ 4(1 + ε)OPT (P) by the disjointedness property. Therefore,

dist(pi, pj) ≥ dist(pj , c
ℓ∗

i)−dist(pi, c
ℓ∗

i) ≥ 4(1+ ε)OPT (P)− 2(1+ ε)OPT (P) > 2OPT (P).

This means that each pi belongs to a different optimal cluster C∗
i . Hence, all optimal clusters are

covered.

Thus, to prove correctness, it is enough to show that our invariants hold throughout. We will need a
few auxiliary definitions and lemmas.

The centers Cℓ∗ = {cℓ∗1 , . . . , cℓ
∗

f } are ordered according to the iteration in which they were found
by Algorithm 6; that is, cℓ

∗

1 is computed first, followed by cℓ
∗

2 , and so on up to cℓ
∗

f . Observe that the
centers cℓ

∗

1 , . . . , cℓ
∗

f are obtained from sampled points aℓ
∗

1 , . . . , aℓ
∗

f that are sampled from optimal
clusters. Suppose we order the optimal clusters so that aℓ

∗

1 is sampled from the optimal cluster C∗
1,

and so on up to aℓ
∗

f that is sampled from the optimal cluster C∗
f . Observe that if f < k, there are

optimal clusters from which we have not sampled any point. In particular, we place these clusters
arbitrarily after the last optimal cluster C∗

f for which we have the last sampled point aℓ
∗

f .

We first prove that the Algorithm INIT (Lemma B.4) satisfies both invariants and that it constructs
centers that are (ℓ∗, 1

2 |S
ℓ
i ∩ C∗

i |)-robust. Consider an iteration i ∈ [f] of Alg. 6. We now prove that
aℓ

∗

i , if sampled, is a robust center for C∗
i .

Lemma B.2. At iteration i, let aℓ
∗

i be the point that is sampled from the optimal cluster C∗
i . The

point aℓ
∗

i is an (ℓ∗, |Sℓ
i ∩ C∗

i |)-robust center. That is, it satisfies C∗
i ⊂ B(aℓ

∗

i , 2(1 + ε)ℓ
∗+1).

Proof. Since aℓ
∗

i ∈ C∗
i and the cluster C∗

i that is centered at the optimal center c∗i has radius
OPT (P ℓ∗), we conclude that dist(q, aℓ

∗

i) ≤ dist(q, c∗i) + dist(c∗i , a
ℓ∗

i) ≤ 2OPT (P ℓ∗) ≤ 2(1 +

ε)ℓ
∗+1 for any point q ∈ C∗

i . Thus, the claim of this lemma holds.

Let us define inactive points IN ℓ∗

i−1 = ∪i−1
t=1C

ℓ∗

t and active point ACℓ
∗

i−1 = P ℓ∗\IN ℓ∗

i−1. In the first
iteration i = 1, we have IN ℓ∗

0 = ∅ and ACℓ
∗

0 = P ℓ∗ . We say that an optimal cluster C∗
j is active at

iteration i if C∗
j ̸⊂ IN

ℓ∗

i−1; otherwise, C∗
j is an inactive cluster. Next, we prove that if there is a center

sufficiently robust, then we expect to be able to identify it through our sampling process.
Lemma B.3. Consider a timestep t ∈ [n] and an iteration i ∈ [f] of Algorithm CLUSTERING. Define
Ni−1 = ACℓ

∗

i−1 and N j = |C∗
j∩AC

ℓ∗

i−1|. With failure probability at most δ, we identify a (ℓ∗, Ni−1

4(k−i))-
robust center successfully through our sampling process. Moreover, the total computational cost of
sampling and counting is bounded by Õ(min{(k − i)2,

√
(k − i)Ni−1}).

29

Proof. We consider two possible cases based on the value of k − i. If (k − i) ≤ N
2/3
i−1, set

|Sℓ
i | = C(k − i) logL log(n/δ), for some sufficiently large constant C > 0. Then, using a simple

Chernoff bound argument, it is easy to verify that with probability at least 1 − δ
log(1+ε)(ρ)·n4 , our

sampling process satisfies the following two conditions:

• If an optimal active cluster is small, i.e., N j < Ni−1

4(k−i) , then |Sℓ
i ∩ C∗

j | <
|Sℓ

i |
3(k−i) .

• If an optimal active cluster is large, i.e., N j ≥ Ni−1

2(k−i) , then |Sℓ
i ∩ C∗

j | ≥
|Sℓ

i |
3(k−i) .

Since there exists an optimal cluster with at least Ni−1

(k−i) unclustered points, if the above conditions

hold, then the cluster with the highest count provides a sample point that is (ℓ∗, Ni−1

4(k−i))-robust. The

cost of this process is bounded by Õ(|Sℓ
i |2) = Õ((k − i)2) = Õ(

√
kNi−1), by the assumption on k.

In the other case, (k − i) ≥ N
2/3
i−1, we use a lower sampling probability and show that we can still

find a robust center. Let us set |Sℓ
i | = C

√
(k − i) logL log(n/δ). We compute exactly for each

q ∈ Sℓ
i the value of |B(q, 2(1 + ε)ℓ

∗+1) ∩ Y | and select the point with the highest count. To show
that we find a robust center, we proceed with a case distinction. If there are at least

√
(k − i) clusters

of size at least Ni1/4(k − i), through a similar Chernoff bound argument, we are ensured that there
is a sample point from one such clusters which provides the desired robust center. Otherwise, the
smallest (k − i)−

√
(k − i) clusters contain at most Ni−1/4 points out of Ni−1. This means that

the largest cluster has at least Ni−1/2
√
(k − i) points, and, through an analogous Chernoff bound

argument, we can prove that one such point will be clustered. The cost of this process is bounded by
Õ(|Sℓ

i |Ni−1) = Õ(
√
(k − i)Ni−1) = Õ((k − i)2).

By a union bound over the at most k clusters and k iterations per guess ℓ ∈ [L], the probability that
none of them fail, is at least 1− k2·L

log(1+ε)(ρ)·n4 ≥ 1− δ
2n2 , since k ≤ n. Further, by a final union bound

on the number of timesteps t ∈ [n], the probability of failure is at most δ. Finally, we remark that the
algorithm does not need to know n in advance; the same guarantee can be obtained by replacing n
with t, as in the diameter case. We also note that the failure of this randomized process cannot be
affected by an adversary.

Lemma B.4. After we invoke Algorithm INIT(P, d, k, ε), each center cℓ
∗

i is (ℓ∗, |ACℓ
∗

i−1|/4(k − i))-
robust and both of our invariants hold.

Proof. Let us consider the iterations of Algorithm CLUSTERING for the guess (1 + ε)ℓ
∗

such that
(1 + ε)ℓ

∗ ≤ OPT (P) < (1 + ε)ℓ
∗+1. We proceed by induction.

For i = 1 and ACℓ
∗

0 = P ℓ∗ , by Lemma B.3, we find an (ℓ∗, n/4k)-robust center, which we can
label C∗

1 without loss of generality. Let Cℓ∗

1 denote the set of points in B(cℓ
∗

1 , 4(1 + ε)ℓ
∗+1) ∩ ACℓ

∗

0 .
According to Lemma B.2, we have (C∗

1 ∩ AC
ℓ∗

0) = C∗
1 ⊆ Cℓ∗

1 . Therefore, the optimal cluster C∗
1,

which was active before iteration i, becomes inactive in this iteration. The disjointedness invariant is
vacuous for i = 1.

For i > 1, assume that both invariants holds for the clusters found so far. Since all points within
distance 4(1 + ε)ℓ

∗+1 from the previous centers have been removed, the disjointedness invariant

continues to hold. There must exist one active optimal cluster with at least |ACℓ∗
i−1|

4(k−i) points. (If no
such cluster exists, the process terminates and nothing more needs to be proven.) By Lemma B.3, we
obtain an (ℓ∗, |ACℓ

∗

i−1|/4(k− i)-robust center, which we can label by C∗
i . Define Cℓ∗

i as B(cℓ
∗

i , 4(1 +

ε)ℓ
∗+1)∩ACℓ

∗

i−1. Then, by Lemma B.2, we have (C∗
i ∩AC

ℓ∗

i−1) ⊆ Cℓ∗

i . Thus, the optimal cluster C∗
i ,

which was active before iteration i, becomes inactive at this iteration. The disjointedness invariant
also holds since we filter all points within the desired radius.

30

Next, we prove that our invariants are respected at any time t, upon insertion or deletion of an
arbitrary point p after invoking Algorithms CLUSTERINGINSERTION or CLUSTERINGDELETION,
respectively.
Lemma B.5. Suppose both of our invariants hold before time t. If an arbitrary point p is inserted or
deleted at time t, both invariants will also hold after invoking Algorithm CLUSTERINGINSERTION or
CLUSTERINGDELETION.

Proof. Let us consider the disjointedness invariant first. The deletion of a point cannot violate it. For
the case of insertion, we assign the newly inserted point to the lexicographically smallest cluster that
contains it (if any), which ensures disjointedness.

For the closeness invariant, the insertion of a point cannot violate it. In the case of a deletion of a
point at distance at most 2(1+ ε)OPT (P) from cℓi , the counter mℓ

i is updated and, if zero is reached,
we recompute subsequent clusters using INIT. Since the invariant for clusters i′ < i are not affected,
the execution of INIT will establish the invariants again for cluster i and subsequent ones.

B.5 Runtime Analysis

Lemma B.6. The running time of Algorithm CLUSTERING(P, d, ε, ℓ, i) is Õ(d(k − i)1.5|ACℓi |)3.

Proof. The algorithm consists of (k − i) iterations for a fixed guess (1 + ε)ℓ. Each iteration
j = i, . . . , k takes Õ(d

√
k − jACℓj) by Lemma B.3. Therefore, the total computation is bounded by

Õ(d(k − i)1.5|ACℓi |).

Lemma B.7. Consider a sequence S of n possibly adversarial updates, and let Pt be the point set
obtained after applying the first t updates. The amortized update time per operation is Õ(dk2.5).

Proof. The total number of guesses L incurs only an extra Õ(1) factor, so we can consider an
arbitrary ℓ. Note that insertions are handled in Õ(dk) time and that if at any time the size of the point
set is Õ(k1.25), then we can obtain a 2-approximation by computing all pairwise distances. When a
point p is deleted, there are three possible cases.

If p belongs to some cluster i and p is within distance 2(1 + ε)ℓ+1 from its center, then mℓ
i will be

decreased by one. If mℓ
i > 1, then the update time is Õ(dk). If mℓ

i = 1, then the i-th cluster along
with subsequent ones need to be reconstructed. Consider first cluster i = 1. We prove the amortized
bound by induction on the number of robust centers w that are computed throughout the algorithm
for cluster i = 1. For w = 1, we obtain an (ℓ, |Pt|/4k) centerpoint in Õ(d

√
k|Pt|) time as the first

robust center and proceed to compute the remaining k − 1 clusters. The total computation cost of
Õ(dk1.5|Pt|) can be amortized over the first |Pt| insertions, resulting in Õ(dk1.5) charge. For the
inductive step, we amortize the computation of the (w + 1)-th robust center at time tw+1 over two
operations: (1) the decreases that mℓ

i experienced and (2) the updates that occurred between time
tw+1 and time tw, when the computation of the w-th robust center occurred. Since the computation
of the w-th centerpoint is amortized over updates prior to tw, it does not affect the amortization
on subsequent updates. The total computation to amortize is Õ(dk1.5|Ptw+1

|). Now, recall that
tw+1 − tw ≥ |Pt|/4k by the robust center property, and observe that

|Ptw+1 |
tw+1 − tw

≤ |Ptw |
tw+1 − tw

+
tw+1 − tw
tw+1 − tw

= Õ(k) + Õ(1).

This means that the points who caused mℓ
i to decrement receive a charge of Õ(dk2.5) from cluster

i = 1, while all other points (which did not cause mℓ
i to drop) receive a charge of Õ(d) from cluster

i = 1.

Consider now i > 1. The induction proceeds in a similar way. The amortization of the first robust
center for the i-th cluster is straightforward. For the inductive step, we again amortize the computation
of the (w + 1)-th robust center of cluster j > 1 at time tw+1 over the decrements as well as updates
that occurred between time tw+1 and time tw. It is worth noting that deletions of points from clusters

3Õ hides the polynomial factors of ε−1, log(n), logφ−1.

31

j > i cannot affect mℓ
i at all, whereas deletions from clusters j < i can only positively affect mℓ

i since
they might reset it without additional amortization charges. Let N tw

i−1 be the number of active points
at time tw at the beginning of iteration i. The total computation to amortize is Õ(d(k − i)1.5N

tw+1

i−1).
Now, recall that tw+1 − tw ≥ N tw

i−1/4(k − i) by the robust center property, and observe that

N
tw+1

w−1

tw+1 − tw
≤ N tw

tw+1 − tw
+

tw+1 − tw
tw+1 − tw

= Õ(k − i) + Õ(1).

Again, the points who caused mℓ
i to decrement receive a charge of Õ(dk2.5) from some cluster i > 1,

while all other points (which did not cause mℓ
i to drop) receive a charge of Õ(d) from any other

cluster i > 1. Since each point belongs to a single cluster, it receives one charge of Õ(dk2.5) from its
own cluster, at most k − 1 charges of Õ(d) from other clusters, and at most k charges of Õ(dk1.5)
when a cluster is created for the first time, proving the claimed amortized update time.

It remains to discuss the case in which p does not belong to any cluster and it is deleted from the
remainder set. If the invocation of CLUSTERING creates a new robust center for some i, we can apply
induction as before. If the new cluster was created for the first time, we can charge the insertions of
those points. If the cluster previously had a robust center, we can use the same argument as above.
Finally, if the guess is too low and no cluster can be created, there is a one-time charge of O(k2) for
running Lemma B.3, after which the computation is halted.

32

	Introduction
	Our Contribution
	Preliminaries

	Robust representative of a point set
	Robust reprentatives and centerpoints

	Dynamic algorithm for the diameter problem
	Dynamic algorithm for k-center clustering
	Further related work
	Missing Proofs and Pseudocode
	Robust representative
	Diameter
	k-center clustering
	Proofs

	Correctness Analysis
	Runtime Analysis

