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Abstract
In this paper, we investigate the impact of test-
time adversarial attacks on linear regression
models and determine the optimal level of ro-
bustness that any model can reach while main-
taining a given level of standard predictive per-
formance (accuracy). Through quantitative es-
timates, we uncover fundamental tradeoffs be-
tween adversarial robustness and accuracy in dif-
ferent regimes. We obtain a precise characteriza-
tion which distinguishes between regimes where
robustness is achievable without hurting standard
accuracy and regimes where a tradeoff might be
unavoidable. Our findings are empirically con-
firmed with simple experiments that represent a
variety of settings. This work covers feature co-
variance matrices and attack norms of any nature,
extending previous works in this area.

1. Introduction
Machine learning models are known to be highly sensi-
tive to small perturbations known as adversarial exam-
ples (Szegedy et al., 2013), which are often impercepti-
ble to humans. While various strategies such as adversarial
training (Madry et al., 2018) can mitigate this vulnerability
empirically, the situation remains highly problematic for
many safety-critical applications like autonomous vehicles
or health, and motivates a better theoretical understanding
of what mechanisms may be causing this.

From a theoretical perspective, the case of classification
is rather well-understood. (Tsipras et al., 2019) showed
that adversarial robustness could be at odds with accuracy.
The hardness of classification under adversarial attacks has
been crisply characterized (Bhagoji et al., 2019; Bubeck
et al., 2018). In the special case of linear classification,
explicit lower-bounds on sample complexity have been ob-
tained (Schmidt et al., 2018; Bhattacharjee et al., 2021).
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However, the case of linear regression is relatively under-
studied. Recently, in the setting of Euclidean-norm at-
tacks on isotropic features, (Javanmard et al., 2020) has
initiated a theoretical study of a possible tradeoff between
standard risk (a.k.a. generalization error) and adversarial
risk (a.k.a. robust generalization error) for linear regression
with isotropic features, where an adversary is allowed to at-
tack the input data point at test-time. The authors computed
exact Pareto optimal curves that reveal a tradeoff between
standard and adversarial risk.

Our work mostly considers the following question:

Question 1. In the context of linear regression, if a model
has ”small” standard risk, how ”small” can its adversarial
risk be? Is it possible to be robust while being accurate?

In the context of classification, an analogous question was
considered in (Tsipras et al., 2019), where the authors
constructed a high-dimensional problem for which every
model with standard accuracy 1 − ϵ has adversarial accu-
racy at most cϵ, where c is an absolute constant. Such a
result is reminiscent of a tradeoff between accuracy and ro-
bustness, and our results have the same flavor.

Summary of Our Contributions. The main contribu-
tions of this work precise quantitative estimates which dis-
tinguishes between regimes where robustness is achievable
without hurting standard accuracy and regimes where a
tradeoff might be unavoidable. Importantly, unlike previ-
ous works like (Javanmard et al., 2020; Xing et al., 2021),
our analysis applies to general attack norms (not just Eu-
clidean) and covariance matrices (not just isotropic). Our
main findings can be broken down as follows.

• Analytic Formula for Optimal Robustness. As a func-
tion of the attack strength, we obtain analytic esti-
mates of the optimal adversarial risk. Importantly,
the model which attains optimal robustness is a reg-
ularized version of the generative model (the labelling
function) with explicit regularization parameter. In the
special case of Euclidean-norm attacks, it is a ridge
estimator, and we recover a simplified formulation of
the result obtained in (Xing et al., 2021).

• Free Lunch and Tradeoffs for Robustness. At any
given attack strength, we establish a threshold on the
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standard risk above which no tradeoff between stan-
dard accuracy and robustness is needed. These re-
sults answer Question 1 quantitatively. Importantly,
we show that the model achieving the above accu-
racy / robustness tradeoff is a regularized estimate of
the ground-truth / generative model, with regulariza-
tion parameter given explicitly in terms of the attack
strength and the accuracy tolerance.

• Phase-Transition Diagrams. Our analytic results
identify phase-transitions for robustness in different
regimes. As concrete examples, we focus on two set-
tings: (i) the case of Euclidean-norm attacks on lin-
ear regression under polynomially-decaying spectral
and source conditions, and (ii) the setting of ℓp-norm
attacks on distributions where the covariance matrix
is isotropic, with various structural assumptions on
the generative model. For both settings, we compute
the complete phase-transition diagram illustrating the
tradeoffs between standard accuracy and adversarial
robustness.

Implications of Our Results. Trade-offs between stan-
dard and adversarial risk provide valuable insights on the
problem of adv. robustness and how it interferes with the
standard objective of training models which perform well
w.r.t to standard risk (non-robust test error). Indeed, from
a conceptual viewpoint, such trade-offs mean that practi-
tioners should treat the problem of robustness as seriously
as the problem of good performance (in the classical sense
of achieving good test error), and not as some minor quirk
/ side effect. From the practical standpoint, such tradeoffs
provide guidance for deciding which loss function or algo-
rithm (e.g regularization / no regularization; adv. training
or normal training; etc.) to use. For example, our work
shows that it is always optimal to consider a regularized
model (see definition of (9) and its implication in our main
results. In the case of Euclidean-norm attacks, this trans-
lates to early-stopping gradient-descent at an intermediate-
time.

Related Work. The theoretical understanding of adver-
sarial examples is now an active area of research. Below
we discuss the works which are most relevant to our cur-
rent paper. A more detailed overview of the literature can
be found in Appendix A.

In the setting of classification, (Tsipras et al., 2019) consid-
ers a specific data distribution where good accuracy implies
poor robustness. (Shafahi et al., 2018; Mahloujifar et al.,
2018; Gilmer et al., 2018; Dohmatob, 2019) show that for
high-dimensional data distributions which have concentra-
tion property (e.g., multivariate Gaussians, distributions
satisfying log-Sobolev inequalities), an imperfect classifier
will admit adversarial examples. (Dobriban et al., 2020)

studies tradeoffs in Gaussian mixture classification prob-
lems, highlighting the impact of class imbalance. Addition-
ally, (Yang et al., 2020) observed empirically that natural
images are well-separated, and so locally-lipschitz classi-
fiers should not suffer from potential attacks.

In the setting of linear regression, (Xing et al., 2021) stud-
ied Euclidean-norm attacks with general covariance matri-
ces. They showed that the optimal robust model is a ridge
regression whose ridge parameter depends implicitly on the
strength of the attacks. (Javanmard et al., 2020) studied
tradeoffs between ordinary and adversarial risk in linear
regression, and computed exact Pareto optimal curves in
the case of Euclidean-norm attacks on isotropic features.
Their results show a tradeoff between standard and adver-
sarial risk for adversarial training. (Javanmard & Mehrabi,
2021) also revisited this tradeoff for latent models and show
that this tradeoff is mitigated when the data enjoys a low-
dimensional structure.

The study of robustness in linear regression for general
norms and feature covariance matrices has been initiated
in (Scetbon & Dohmatob, 2023) which gave sufficient con-
ditions for the generative model w0 and gradient-descent
based estimators to be robust. However, the the question of
tradeoffs was not considered.

Finally, (Dohmatob & Bietti, 2022) established tradeoffs
between accuracy and robustness to Euclidean-norm at-
tacks on two-layer neural networks in different regimes.

2. Problem Formulation
Notations. Given a positive-definite matrix M , the in-
duced Mahahanobis norm ∥ · ∥M is define by ∥z∥M :=
∥M1/2z∥2. The notation f(d) = O(g(d)), also written
f(d) ≲ g(d), means there exists an absolute constant K
such that f(d) ≤ K · g(d). Likewise, f(d) = Ω(g(d))
(or f(d) ≳ g(d)) means g(d) = O(f(d)). We write
f(d) ≍ g(d) to mean f(d) ≲ g(d) ≲ f(d). Finally,
f(d) = od(g(d)) (also written f(d) ≪ g(d)) means
f(d)/g(d) → 0 when d → +∞. In particular, f(d) =
od(1) means that f(d) → 0.

2.1. Data Distribution

In this work, we consider linear regression problem given
by the following distribution P over a d-dimensional fea-
ture vector x ∈ Rd and labels y ∈ R

(Features) x ∼ Px := N(0,Σ),

(Label) y = x⊤w0 + z, with z ∼ N(0, σ2) indep. of x.
(1)

Thus, the marginal distribution Px of the features is a mul-
tivariate Gaussian with d × d positive-definite covariance
matrix Σ. The generative model for the labels is a linear
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model defined by x 7→ fw0
(x) := x⊤w0, for some fixed

vector of parameters w0 ∈ Rd. To avoid trivialities, we
will assume WLOG that w0 ̸= 0. The scalar σ ≥ 0 is
the strength of the label-noise z ∼ N(0, σ2). The input-
dimension d is not assumed fixed, and in fact, for the large
part of this paper, we shall consider phenomena happening
in the limit d → ∞. One should keep in mind that in such a
case, we are actually considering a sequence of problems,
i.e. distributions P (d) indexed by d.

Such a data distribution is also the setup of previous works
like (Javanmard et al., 2020; Xing et al., 2021; Scetbon &
Dohmatob, 2023). Note however that in (Javanmard et al.,
2020), the covariance matrix is identity, i.e. Σ = Id. In
contrast, as in (Scetbon & Dohmatob, 2023), our work con-
siders general covariance matrices Σ.

2.2. Linear Models, Standard and Adversarial Risks

This work considers regression over linear models
fw(x) := x⊤w, parametrized by a weights vector w ∈ Rd.
An adversarial attack replaces a clean data point (x, y) ∼
P by a perturbed version (x+ δ, y). The size of the pertur-
bation δ = δ(x, y) is measured w.r.t a pre-specified norm
∥ · ∥ on the feature space Rd. Note that the attacker is only
allowed to change the feature vector x, and not the label y.
By an attack of strength r ≥ 0, we mean that the constraint
∥δ∥ ≤ r is enforced. The goal of the attacker is to make the
prediction fw(x+ δ) on the corrupted feature vector x+ δ
deviates from the ground-truth label y of clean feature vec-
tor x, as much as possible.

Definition 2.1 (Standard and Adversarial Risks). Given
w ∈ Rd, attack budget r ≥ 0 w.r.t a arbitrary norm ∥ · ∥ on
Rd, the adversarial risk of the linear model fw is

E(w, r) := E

[
sup

∥δ∥≤r

(fw(x+ δ)− y)2

]
, (2)

for (x, y) ∼ P . Also, recall the definition of the standard
risk of fw, namely

E(w) := E[(fw(x)− y)2] = ∥w − w0∥2Σ + σ2. (3)

Of course, E(w, r) ≥ E(w, 0) = E(w) for any w ∈ Rd

and r ≥ 0, with equality if r = 0.

Remark 2.1. Note that by definition, E(w, r) depends on
the attacker’s norm ∥ · ∥. To simplify notations, we omit its
dependency and precise the norm when needed.

Let ∥ · ∥⋆ be the dual of ∥ · ∥, defined by ∥w∥⋆ :=
sup∥δ∥≤1 δ

⊤w. The following lemma established in
(Scetbon & Dohmatob, 2023) gives an analytic formula for
the adversarial risk which will be useful in the sequel.

Lemma 2.1. For any w ∈ Rd and r ≥ 0, it holds that
E(w, r) = E(w) + r2∥w∥2⋆ + 2

√
2/πr∥w∥⋆

√
E(w).

Imperceptible Adversarial Attacks. In practice, one is
usually only concerned with adversarial attacks which are
small to the eye. Formally, this means that the attack
strength r is restricted to be much smaller than the aver-
age norm of a random data point, i.e.

r = od(R(Σ)), with R(Σ) := E ∥x∥ for x ∼ Px. (4)

For example, in the case of Euclidean-norm attack on
isotropic features with covariance matrix Σ = Id, we have
R(Σ) = R(Id) ≍

√
tr Σ ≍

√
d in the limit d → ∞. Thus,

in this case, an attack is only small in the sense of the above
definition i.f.f r/

√
d = od(1). For example, r =

√
d/ log d

would be small. On the other hand, if Σ = (1/d)Id, then
R(Σ) ≍

√
tr Id/d = 1, thus, a Euclidean-norm attack

would be small i.f.f r = od(1).

3. Analysis of the Optimal Robustness
Definition 3.1. Given an attack strength r ≥ 0, let Eopt(r)
be the optimal adversarial risk,

Eopt(r) := min
w∈Rd

E(w, r). (5)

Furthermore, let wopt(r) denotes any w ∈ Rd achieving
this optimum.

Observe that the expression for adversarial risk E(w, r)
given in Lemma 2.1 exhibits a tension between the standard
risk E(w), which is minimized by the generative model
w0, and the dual norm ∥w∥⋆, which is minimized by the
null model w = 0. Thus, for a given attack strength r, one
would expect that the optimal robust model wopt(r) would
have to somehow interpolate between w0 and 0. In this sec-
tion, we show that this is indeed the case (Theorem 3.1).

3.1. Adversarial Risk Proxies

Even though the adversarial risk functional E admits an an-
alytic formula thanks to Lemma 2.1, that expression does
not lend itself well to analysis. Following (Scetbon &
Dohmatob, 2023), we shall resort to multiplicative approx-
imations defined as follows. For any linear model w ∈ Rd

and attack strength r ≥ 0, set

E(w, r) := σ2 + ∥w − w0∥2Σ + r2∥w∥2⋆, (6)

Ẽ(w, r) := σ2 +K(w, r)2, (7)

with K(w, r) := ∥w − w0∥Σ + r∥w∥⋆. Note that just like
E, both E and Ẽ implicitly depend on the underlying norm
∥·∥. The following lemma shows that E(w, r) and Ẽ(w, r)
are indeed proxies (i.e. multiplicative approximations) of
the adversarial risk E(w, r).

Lemma 3.1. There exists absolute constants c1 and c2 such
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that for a general attacker norm ∥ · ∥, and w ∈ Rd, r ≥ 0,

Ẽ(w, r) ≤ E(w, r) ≤ c1Ẽ(w, r),

E(w, r) ≤ E(w, r) ≤ c2E(w, r).
(8)

The first part was established in (Scetbon & Dohmatob,
2023). The second part follows similar arguments as the
first one. See Appendix 3.1 for the proof, including explicit
values c1 and c2.

Remark 3.1. The multiplicative approximations given in
Lemma 3.1 suffice for our purposes whereby we only are
interested in the orders of magnitude of the adversarial risk
of models relative to the optimum value Eopt(r), as a func-
tion of the attack strength r.

3.2. Robustness via Regularization

For any λ ≥ 0, let wprox(λ) be the unique minimizer of
E(w,

√
λ) over w ∈ Rd, that is

wprox(λ) := arg min
w∈Rd

∥w − w0∥2Σ + λ∥w∥2⋆. (9)

Thus, wprox(λ) is the proximal operator w.r.t the squared-
Mahalanobis norm ∥ · ∥2Σ, of the square of rescaled squared
dual norm λ∥ · ∥2⋆ , evaluated at the point w0. Of course,
it implicitly depends on the choice of the norm ∥ · ∥ of the
attacker. For example, in the special case of Mahalanobis-
norm attacks w.r.t. any positive definite matrix B, that is
when ∥ · ∥ = ∥ · ∥B , we have the closed-form expression
wprox(λ) = (Σ + λB−1)−1Σw0.

Define auxiliary functions

G(λ) = G∥·∥(λ) := ∥wprox(λ)− w0∥2Σ,
F (r, λ) = F ∥·∥(r, λ) := G(λ) + r2∥wprox(λ)∥2⋆,

(10)

The following result which holds for any choice of the at-
tacker’s norm ∥ · ∥ is one of our main results.

Theorem 3.1. With λ = r2, it holds that Eopt(r) ≍
E(wprox(λ), r) ≍ σ2 + F (r, r2). That is, up to within
multiplicative absolute constants, wprox(λ = r2) attains
the optimal adversarial risk Eopt(r).

Note that the above result is valid for any attacker norm.
The special case of Euclidean-norm attacks was handled
in (Xing et al., 2021) where it was shown that wopt(r) =
(Σ + λId)

−1Σw0, for some λ ∈ [0,∞] which depends on
r, w0, and Σ, via a fixed-point equation that must be solved
numerically. Even, in this scenario, our result above gives
a much clearer understanding, since it proposes to use the
explicit ridge parameter λ = r2, which clearly highlights
the dependence on the attack strength r.

4. Phase-Transitions and Accuracy vs
Robustness Tradeoffs

4.1. Preliminaries

In view of addressing Question 1, our objective is to com-
pute bounds on the optimal adversarial risk with respect to
any given norm over all linear models which attain a cer-
tain level of standard risk. For any linear model w ∈ Rd,
let ∆(w) := (E(w) − σ2)/∥w0∥2Σ be the normalized ex-
cess standard risk of w. The division by ∥w0∥2Σ ensures
that ∆(w0) = 0 while ∆(0) = 1.

Optimal Robustness of Accurate Models. For any
r, ϵ ≥ 0, let Wϵ be the set of all ϵ-accurate models, i.e.

Wϵ := {w ∈ Rd | ∆(w) ≤ ϵ2}
= {w ∈ Rd | ∥w − w0∥Σ ≤ ϵ∥w0∥Σ},

(11)

and let Eopt(r, ϵ) be the optimal adversarial risk of such
models against attacks of strength r, i.e.

Eopt(r, ϵ) := min
w∈Wϵ

E(w, r). (12)

Finally, let wopt(r, ϵ) denotes any w ∈ Rd achieving the
optimum in (12). Eopt(r, ϵ) will be the main object of study
of our paper as it captures the sacrifice in robustness that
must be made by accurate models.

The following lemma shows that this constrained formula-
tion of the adversarial risk minimization problem can only
differ from the unconstrained one when ϵ ∈ [0, 1).

Lemma 4.1. For any r ≥ 0 and ϵ ≥ 1, it holds that
Eopt(r, ϵ) = Eopt(r).

Thus, when ϵ ≥ 1, Wϵ contains an optimally robust linear
model achieving the optimal adversarial risk over all the
linear models. Let us now introduce a critical value for ε.

Free Lunch Threshold. Given any r ≥ 0, the quantity
ϵFL(r) ∈ [0, 1] defined by

ϵFL(r) :=
√
∆(wprox(r2)) =

√
G(r2)/∥w0∥Σ, (13)

will be called the ”free lunch” threshold for attacks of
strength r, a terminology that will become clear shortly in
Theorem 4.1. In addition we also need to introduce the
following lemma.

Lemma 4.2. For any r ≥ 0 and 0 ≤ ϵ ≤ ϵFL(r), the
scalar equation

G(λ) = ϵ2∥w0∥2Σ (14)

has a unique solution λopt(r, ϵ) in [0, r2].

We extend the definition of λopt(r, ϵ) to all ϵ ∈ [0, 1] by
setting λopt(r, ϵ) = r2 whenever ϵ ≥ ϵFL(r).
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4.2. Main Result

We are now ready to present the main result of this work
and show in the following theorem tradeoffs between stan-
dard accuracy and adversarial robustness in the setting of
general feature covariance matrix Σ and attacker norm ∥·∥.

Theorem 4.1. For any attack strength r ≥ 0 and tolerance
ϵ ∈ [0, 1], the following hold.

(A) (Accuracy vs Robustness Tradeoff) It holds that

Eopt(r, ϵ) ≍ E(wprox(λopt(r, ϵ)), r),

where λopt(r, ϵ) ∈ [0, r2] is as in Lemma 4.2 and wprox(λ)
is as defined in (9). That is, up to within multiplicative
absolute constants, with the choice λ = λopt(r, ϵ) the vec-
tor wprox(λ) attains the optimal adversarial risk Eopt(r, ϵ)
over all ϵ-accurate models.

(B) (Free Lunch) If ϵ ≥ ϵFL(r), then it holds that
Eopt(r, ϵ) ≍ Eopt(r). That is, no accuracy / robustness
tradeoff is needed when the excess risk level ϵ is greater
than the threshold ϵFL(r): there is always an ϵ-accurate
model which achieves the absolute optimal (up to within
multiplicative absolute constants) adversarial risk Eopt(r).

Comparison to (Javanmard & Soltanolkotabi, 2022).
Note that the above theorem is more general that the re-
sults of (Javanmard & Soltanolkotabi, 2022). Indeed, the
latter only focuses on Euclidean-norm attacks on isotropic
features where Σ = Id. In contrast, Theorem 4.1 (and
corollaries) covers the case of general covariance matrices
Σ and general attack norms (not just Euclidean). Also, the
techniques used in our work are very different from those
in (Javanmard & Soltanolkotabi, 2022). Indeed, the analy-
sis in the latter is based on Gordon’s Comparison Inequal-
ity (Gordon & Milman, 1988; Thrampoulidis et al., 2015;
2018), which is a very versatile tool in the analysis of regu-
larized estimators but fails to produce analytic results when
one deviates from the setting of Euclidean-norm attacks on
isotropic features. In contrast, our analysis is based on ba-
sic Langrangian duality. It relies on some approximations
which turn out to only introduce multiplicative absolute
constants in the final result, but are completely harmless
for the final analysis and interpretation.
Remark 4.1. Note that our Theorem 4.1 can be put in the
language of Pareto fronts as discussed in the Appendix H.

5. Some Direct Consequences of Our Results
We now apply our Theorems 3.1 and 4.1, to obtain some
concrete consequences in a variety of settings. Section
6 will provide some empirical confirmation of these pre-
dicted consequences.

5.1. When the Ground-Truth is Sparse

Consider the case where the feature covariance matrix Σ
and the generative model w0 are given by

Σ = (1/d)Id, wj = 1∀j ≤ s, wj = 0∀j ≥ s+ 1, (15)

for some sparsity parameter s ∈ [d]. We consider ℓp-
norm attacks, for some fixed p ∈ [1,∞]. First observe,
that for ℓ∞-norm attacks of strength r, the adversarial
risk of the generative mode w0 is given by E(w0, r) =
σ2+r2∥w0∥21 = σ2+s2r2, while for ℓp-norm attacks with
p ∈ [1,∞), we have

E(w0, r) = σ2 + r2∥w0∥2q = σ2 + r2s2/q,

where q :=∈ [1,∞] is the harmonic conjugate of p.

Theorem 5.1. Recall the notations of Theorem 4.1. Let the
attack norm be an ℓp with p ∈ [1,∞]. For any r ≥ 0 and
ϵ ∈ [0, 1], the robustness profile is given as in Table 1.

In particular, in the limit d → ∞, we have that, if

– p ∈ [1,∞), 1 ≪ s ≤ d, and we take r ≍ 1/s1/q , OR

– p = ∞,
√
d/ log d ≪ s ≤ d, and we take r ≍ 1/s,

then for ϵ ∈ [0, 1), it holds that

Eopt(r) = od(1), and Eopt(r, ϵ) = Θ((1− ϵ)2). (16)

5.2. Polynomial Spectral Decay

Let Σ =
∑

k≥1 λkϕkϕ
⊤
k be the spectral decomposition of

the feature covariance matrix Σ and ck = ϕ⊤
k w0 be the

k-th alignment coefficient of the generative model w0, so
that w0 =

∑
k≥1 ckϕk. We place ourselves in the high-

dimensional setting (d → ∞), and assume spectral infor-
mation (λk, ck)k≥1 is given by the following polynomial
(aka power-law) scalings

λk ≍ k−β , and c2k ≍ k−δ for all k, (17)

where β > 1 and δ ≥ 0 are constants. This model is well-
studied in the literature (Caponnetto & Vito, 2007; Liang
& Rakhlin, 2020) because (1) it usually leads to tractable
analysis, and (2) it can be used to approximate the the
macroscopic structure of certain neural networks in the ker-
nel regime (Bahri et al., 2021; Cui et al., 2022; Wei et al.,
2022). In this setting, observe that tr(Σ) ≍

∑
k k

−β =
Θ(1), ∥w0∥2Σ ≍

∑
k k

−β−δ = Θ(1), while

∥w0∥22 ≍
∑
k

k−δ ≍


d1−δ, if 0 ≤ δ < 1,

log d, if δ = 1,

1, if δ > 1.

(18)
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ϵFL(r) λopt(r, ϵ) Eopt(r) Eopt(r, ϵ)

p = 2 r2/(1 + r2) ϵ/(1− ϵ) σ2 + (s/d)min(r
√
d, 1)2 σ2 + (s/d)H(r

√
d, ϵ)2

p ̸= 2 – – σ2 + (s/d)min(r/r0(p), 1)
2 σ2 + (s/d)H(r/r0(p), ϵ)

2

Table 1. Details of Theorem 5.1. Here, r0(p) = s1/p−1/2/
√
d. In particular, r0(2) = 1/

√
d, r0(∞) = 1/

√
sd. The function H is

defined by H(r, ϵ) = r if r ≤ 1; else H(r, ϵ) = ϵ+ (1− ϵ)r.

Also note that for Euclidean-norm attacks, we have
R(Σ) ≍

√
tr(Σ) = Θ(1).

The following result is one of our main contributions.
Theorem 5.2. For Euclidean-norm attacks of small
strength r > 0, the conclusions of Theorem 4.1 prevail, and
the quantities ϵFL(r), λopt(r, ϵ), Eopt(r), and Eopt(r, ϵ)
are as given in Table 2.

Consider the particular regime where 0 ≤ δ ≤ 1. For small
σ2 ≥ 0, ϵ > 0, and r = r(ϵ) given by

r =

{
ϵϕ, if 0 ≤ δ < 1,√

1/ log(1/ϵ), if δ = 1
(19)

with θ := (1− δ)/β ≥ 0, ϕ := θ/(1− θ) ≥ 0, it holds that

Eopt(r) = o(1), Eopt(r, ϵ) = Θ(1). (20)

Thus, as regards robustness, δ = 1 is a critical value for
the source exponent in (17): For δ ∈ [0, 1], accuracy (con-
trolled by the excess risk tolerance ϵ) has to be traded for
robustness, while for δ ∈ (1,∞), the generative model w0

is so smooth that robustness and accuracy are aligned. In
the regime 0 ≤ δ < 1, the theorem predicts that even
though robustness to imperceptible attacks is achievable
in this setting, accurate models (especially the generative
model w0 itself) are non-robust.

Therefore, there is a phase-transition at δ = 1 whereby
accurate models switch from non-robust to robust. This is
also empirically confirmed in Section 6. Notice the power-
law behavior dependence on Eopt(r, ϵ) on 1/ϵ in the case
of nonsmooth ground-truth models w0 where δ ∈ [0, 1).

5.3. A Non-Euclidean Setting

Let us now present an example of non-Euclidean setting
where generative model w0 fails to be robust to genuinely
small adversarial perturbations. Still in high dimensions
(d → ∞), consider the setting where the feature covariance
matrix is Σ = Id while the coefficients of the generative
model have the ”harmonic” distribution w0, i.e

d → ∞, Σ = Id, (w0)k = 1/k, for all k ∈ [d]. (21)

For sup-norm (i.e ℓ∞-norm) attacks, observe that R(Σ) ≍√
log trΣ ≍

√
log d. We have the following.

Theorem 5.3. Consider the setting (21). For ℓ∞-norm at-
tacks of strength r with 1/

√
d ≤ r = o(1), it holds that

Eopt(r) ≍ σ2 + r2 log(1/r)2. (22)

In particular, for r ≍ 1/ log d and σ2 = o(1), it holds that

E(w0, r) = Θ(1), Eopt(r) = o(1). (23)

That is, even though robustness is achievable, the genera-
tive model w0 is itself non-robust.

5.4. What about Neural Networks ?

Notwithstanding, our theoretical insights carry over to wide
neural networks in the so-called kernel regime (e.g infinite-
width NTK). In this limit, the model is y = ⟨ϕ(x), w0⟩H +
N(0, σ2), where ϕ(x) is a feature corresponding to the
RKHS H induced by the limiting kernel K. Such a
regime has been considered in [25] in the study of scal-
ing laws for test error in neural networks. If we assume
ϕ(x) ∼ N(0,Σ) as in (Cui et al., 2022), then we can use
section 3 of our paper to obtain insights on the robustness-
accuracy tradeoffs for this regime. Applying this to the set-
tings considered in Section 5 of (Cui et al., 2022), namely
MNIST and FashionMNIST with kernel K(x, z) = (1 +
10−3x⊤z)5 (the task is to predict the class label via kernel
regression), we see from Table 1 of (Cui et al., 2022) that
δ = 1+α(2r−1) = 1+1.3(2(0.13)−1) = 0.038 ∈ (0, 1)
for MNIST and δ = 1+α(2r−1) = 1+1.2(2(0.15)−1) =
0.16 ∈ (0, 1) for FashionMNIST. Equipped with this back-
of-envelop calculation, Theorem 5.2 of our paper (refer to
the first row of Table 2 therein) then predicts that for both
of these kernelized NN settings, there is an unavoidable
tradeoff between accuracy and robustness.

6. Empirical Verification
We provide a series of simple experiments on simulated
data to empirically verify our theoretical results. Addi-
tional experiments are provided in the appendix.

Experiment 1 (Verification of Theorem 5.1). For this
experiment, we fix the input dimension d = 400, while
the covariance matrix Σ and generative model w0 are
as in (15) for different values of the sparsity parameter
s ∈ {10, 20, d = 400}. For different values of sample
size n from d to 104, we generate (5 runs) an iid dataset
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Regime ϵFL(r) λopt(r, ϵ) Eopt(r) Eopt(r, ϵ) Free lunch ?
0 ≤ δ < 1 r2(1−θ) ϵ2/(1−θ) σ2 + r2(1−θ) σ2 + ϵ2 + r2ϵ−2ϕ No
δ = 1 r4 log(1/r) eW (−Θ(ϵ2))/2 σ2 + r2 log(1/r) σ2 + ϵ2 + r2 log(1/ϵ) No
δ > 1 r4 ϵ σ2 + r2 σ2 + ϵ2 + r2 Yes!

Table 2. Details for Theorem 5.2. Here, W is an appropriate branch of the Lambert function. Note that except for the first column, all
the entries in the table are given only within multiplicative absolute constants. The last column records whether there is free lunch (FL),
wherein robustness is achievable without sacrificing accuracy.

(a) Euclidean-norm (i.e. p = 2) attack. Here we take r = 1/
√
s.

(b) ℓ∞-norm attack. Here we take r = 1/s.

Figure 1. (Experiment 1) Empirical verification of Theorem 5.1, for different levels of sparsity s of the generative model w0. Here the
input dimension is set to d = 400 and n is the sample size. The theoretical curves Eopt(r) and Eopt(r, ϵ) are as given by the theorem.
Error bars correspond to 5 different runs of computing ŵn (OLS). Notice the conformity with the theorem’s predictions.

Figure 2. (Experiment 2) Empirical verification of Theorem 5.2. Here β = 2 and d = 104, while n is the sample size. Error bars
correspond to 5 different runs of computing the OLS estimator ŵn. The curves Eopt(r) and Eopt(r, ϵ) are as given by the theorem.
Notice the conformity of these empirical results with the theorem.

Dn = {(x1, y1), . . . , (xn, yn)} and construct a ordinary
least-squares (OLS) estimate ŵn for w0. Note that this es-
timator is known to be consistent in the regime considered.
Next, we compute the excess standard risk of ŵn, namely
ϵ = ϵn := (∥ŵn − w0∥2Σ − σ2)/∥w0∥2Σ. We consider ℓp-
norm attacks with p ∈ {2,∞}. The attack strength r is
set as in the second part of Theorem 5.1. We compute the
adversarial risk of ŵn, alongside the adversarial risk of the

generative model w0, via the formula given in Lemma 2.1.
We approximate the optimally robust ϵ-accurate model via
the regularization scheme (9) with λ = λopt(r, ϵ) given as
in Theorem 5.1. The results for this experiment are shown
in Figure 1. From the figure, we clearly see that the predic-
tions of Theorem 5.1 are confirmed.

Experiment 2 (Verification of Theorem 5.2). The setup

7
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Figure 3. (Experiment 2) Empirical validation of Theorem 5.2 for the case ϵ = 0. Notice the conformity of the results with the theorem.

Figure 4. Failure of ground-truth model w0 to be robust to small adversarial perturbations (indicated by the separation between the solid
and the broken curves). From left to right, the plots show results for Experiment 3(a–c). Notice perfect confirmation of Theorem 5.1
for ϵ = 0 and p ∈ {2,∞} (Left and Middle plots), and Theorem 5.3 (Right plot).

for this experiment is as in Experiment 1, but with input
dimension d = 104, feature covariance matrix Σ and gen-
erative model w0 given as in (17). We consider Euclidean-
norm attacks with strength r as given in Theorem 5.2. The
results for the experiment are shown in Figure 2. As pre-
dicted by the theorem, we see that for δ ∈ [0, 1], the
ground-truth model w0 is non-robust. Furthermore, for
δ > 1, w0 becomes robust to small adversarial perturba-
tions (blue curve and broken black line coincide) as pre-
dicted. As n → ∞, the adversarial risk E(ŵn, r) of the
estimator ŵn approaches that of the ground-truth model,
namely E(w0, r); we see from the figure that is optimal in
the smooth regime where δ > 1, but catastrophic in the
non-smooth regime (δ ∈ [0, 1]), in conformity the theorem.

We also consider the case ϵ = 0, corresponding the ground-
truth model, and vary the attack strength r. The results are
shown in Figure 3. Here again, the predictions of Theorem
5.2 are confirmed.

Experiment 3: Non-Robustness of Generative Model
w0. This experiment is meant to verify Theorem 5.3 and
Theorem 5.1 for the case ϵ = 0 (corresponding to the gen-
erative model w0). We fix the input dimension to d = 400
as Experiment 1, and consider 3 different scenarios for the
attacker’s norm ∥ · ∥, the generative model w0, and the fea-
ture covariance matrix Σ.

• Experiment 3(a): Here, the feature covariance matrix
is Σ = (1/d)Id and the generative model is w0 =
1d = (1, . . . , 1). The attacker’s norm is Euclidean,

i.e. p = 2 in Theorem 5.1.

• Experiment 3(b): Here, Σ = (1/d)Id and w0 is as
in (15) with s = 20. The attacker’s norm is ℓ∞, i.e.
p = ∞ in Theorem 5.1.

• Experiment 3(c): Here, Σ and w0 are as in Theorem
5.3 and the attacker’s norm is ℓ∞.

For different values of attack strength r, we compute the
adversarial risk E(w0, r) of the generative model w0 and
compare it to the optimum adversarial risk Eopt(r). The
results of the experiment are shown in Figure 4. We see that
the predictions of Theorem 5.1 (Left and Middle plots) and
Theorem 5.3 (Right plot) are perfectly confirmed.

7. Concluding Remarks
Our work has considered the problem of adversarial robust-
ness in linear regression and have obtained precise quanti-
tative estimates that allow us to uncover fundamental trade-
offs between adversarial robustness and standard accuracy
in different regimes. Unlike previous works, our results ap-
ply to arbitrary covariance structures and attack norms.

Future Directions. An interesting future direction of our
work will be to extend the scope to neural networks in lin-
earized regimes like random features. As in (Hassani &
Javanmard, 2022), such an analysis would rely on a careful
application of random matrix theory, to reduce things to the
linear case.
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Impact Statement
This paper is dedicated to advancing the field of Machine
Learning, specifically by enhancing the theoretical under-
standing of adversarial robustness—a critical, yet unre-
solved issue poised to become even more prominent in the
era of large language models (LLMs) and ChatGPT. We
carefully examine the societal implications of our research,
confidently asserting that our contributions are entirely pos-
itive. Through a detailed exploration of adversarial robust-
ness, our work not only addresses a fundamental challenge
but also sets the stage for more secure and reliable AI sys-
tems in the face of evolving adversarial threats. This re-
search is particularly relevant as we enter a period marked
by the widespread adoption of LLMs, underscoring the ur-
gent need for advancements in our theoretical frameworks
to safeguard the integrity and utility of these powerful tools.

References
Bahri, Y., Dyer, E., Kaplan, J., Lee, J., and Sharma, U.

Explaining neural scaling laws. ArXiv, abs/2102.06701,
2021.

Bauschke, H. H. and Combettes, P. L. Convex Analysis and
Monotone Operator Theory in Hilbert Spaces. Springer
Publishing Company, Incorporated, 1st edition, 2011.

Bhagoji, A. N., Cullina, D., and Mittal, P. Lower bounds
on adversarial robustness from optimal transport, 2019.

Bhattacharjee, R., Jha, S., and Chaudhuri, K. Sample
complexity of robust linear classification on separated
data. In International Conference on Machine Learning
(ICML), 2021.

Blais, E., Canonne, C. L., and Gur, T. Distribution testing
lower bounds via reductions from communication com-
plexity. ACM Trans. Comput. Theory, 11(2), feb 2019.

Bubeck, S. and Sellke, M. A universal law of robustness via
isoperimetry. In Advances in Neural Information Pro-
cessing Systems, 2021.

Bubeck, S., Price, E., and Razenshteyn, I. P. Adversar-
ial examples from computational constraints. CoRR,
abs/1805.10204, 2018.

Bubeck, S., Li, Y., and Nagaraj, D. A law of robust-
ness for two-layers neural networks. arXiv e-prints, art.
arXiv:2009.14444, September 2020b.

Caponnetto, A. and Vito, E. D. Optimal rates for the regu-
larized least-squares algorithm. Found. Comput. Math.,
2007.

Cui, H., Loureiro, B., Krzakala, F., and Zdeborová, L. Gen-
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Appendix / Supplementary Material
Precise Accuracy / Robustness Tradeoffs in Regression: Case of General Norms

A. Detailed Overview of Related Works
Adversarial Examples From High-Dimensional Geometry. In the setting of classification, (Tsipras et al., 2019) con-
siders a specific data distribution where good accuracy implies poor robustness. (Shafahi et al., 2018; Mahloujifar et al.,
2018; Gilmer et al., 2018; Dohmatob, 2019) show that for high-dimensional data distributions which have concentration
property (e.g., multivariate Gaussians, distributions satisfying log-Sobolev inequalities, etc.), an imperfect classifier will
admit adversarial examples. (Dobriban et al., 2020) studies tradeoffs in Gaussian mixture classification problems, high-
lighting the impact of class imbalance. On the other hand, (Yang et al., 2020) observed empirically that natural images are
well-separated, and so locally-lipschitz classifiers should not suffer any kind of test error vs robustness tradeoff.

The Impact of Over-Parametrization. (Gao et al., 2019; Bubeck et al., 2020b; Bubeck & Sellke, 2021) show that over-
parameterization may be necessary for robust interpolation in the presence of noise. In contrast, our paper considers a
structured problem with noiseless signal and infinite training data, where the network width m and the input dimension
d tend to infinity proportionately. In this under-complete asymptotic setting, our results show a systematic and precise
tradeoff between approximation (test error) and robustness in different learning regimes. Thus, our work nuances the
picture presented by previous works by exhibiting a nontrivial interplay between robustness and test error, which persists
even in the case of infinite training data where the resulting model isn’t affected by label noise. (Dohmatob, 2021; Hassani
& Javanmard, 2022) study the tradeoffs between interpolation, predictive performance (test error), and robustness for finite-
width over-parameterized networks in kernel regimes with noisy linear target functions. In contrast, we consider structured
quadratic target functions and compare different learning settings, including SGD optimization in a non-kernel regime, as
well as lazy/linearized models.

Precise Analysis of Robustness in Linear Regression. (Xing et al., 2021) studied Euclidean-norm attacks with general
covariance matrices. They showed that the optimal robust model is a ridge regression whose ridge parameter depends
implicitly on the strength of the attacks. (Javanmard et al., 2020) studied tradeoffs between ordinary and adversarial risk
in linear regression, and computed exact Pareto optimal curves in the case of Euclidean-norm attacks on isotropic features.
Their results show a tradeoff between ordinary and adversarial risk for adversarial training. (Javanmard & Mehrabi, 2021)
also revisited this tradeoff for latent models and show that this tradeoff is mitigated when the data enjoys a low-dimensional
structure. The analysis in (Javanmard et al., 2020) is based on Gordon’s Comparison Inequality (Gordon & Milman, 1988;
Thrampoulidis et al., 2015; 2018), which is a very versatile tool in the analysis of regularized estimators but fails to produce
analytic results when one deviates from the setting of Euclidean-norm attacks on isotropic features. In contrast, our analysis
is based on basic Langrangian duality. It relies on some approximations which turn out to only introduce multiplicative
absolute constants in the final result, but are completely harmless for the final analysis and interpretation.

Finally, the study of robustness of gradient-descent in the context of linear regression under general-norms attacks and
feature covariance matrices has been initiated in (Scetbon & Dohmatob, 2023) which gave sufficient conditions for the
generative model w0 (and its estimators like gradient descent, ridge regression, etc.) to be robust. However, the the
question of tradeoffs was not considered.

B. Additional Experimental Results
We provide further empirical confirmation for Theorem 5.2. Figures 5 and 6 are complementary to Figures 2 and 3
respectively in the main text. They show results for Experiment 2 (refer to Section 6) for other values of the exponents β
and δ. We stress that all experiments in our paper were run on a single modern CPU laptop. See attached Jupyter (Python)
notebook.
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Figure 5. (Experiment 2, extended) Empirical verification of Theorem 5.2. Here β = 1.4 and d = 104. As in Figure 2, notice the
conformity of the results with the theorem, namely: if the the model ŵn is accurate (small ϵ), then it is robust (compared to the optimal
achievable adversarial risk Eopt(r)) for δ ∈ (1,∞), but non-robust for δ ∈ [0, 1).

Figure 6. (Experiment 2, extended) Empirical validation of Theorem 5.2 for the case when ϵ = 0. Here β = 1.4. As in Figure 3,
notice the conformity of the results with the theorem, namely: the generative model w0 is robust (compared to the optimal achievable
adversarial risk Eopt(r)) for δ ∈ (1,∞) but non-robust for δ ∈ [0, 1).

C. Proof of Theorem 4.1 (Main Result) and Theorem 3.1
Theorem 4.1. For any attack strength r ≥ 0 and tolerance ϵ ∈ [0, 1], the following hold.

(A) (Accuracy vs Robustness Tradeoff) It holds that

Eopt(r, ϵ) ≍ E(wprox(λopt(r, ϵ)), r),

where λopt(r, ϵ) ∈ [0, r2] is as in Lemma 4.2 and wprox(λ) is as defined in (9). That is, up to within multiplicative
absolute constants, with the choice λ = λopt(r, ϵ) the vector wprox(λ) attains the optimal adversarial risk Eopt(r, ϵ) over
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all ϵ-accurate models.

(B) (Free Lunch) If ϵ ≥ ϵFL(r), then it holds that Eopt(r, ϵ) ≍ Eopt(r). That is, no accuracy / robustness tradeoff
is needed when the excess risk level ϵ is greater than the threshold ϵFL(r): there is always an ϵ-accurate model which
achieves the absolute optimal (up to within multiplicative absolute constants) adversarial risk Eopt(r).

Proof. Write Eopt(r, ϵ) := infw∈Wϵ
E(w, r), where we recall that

Wϵ := {w ∈ Rd | ∆(w) ≤ ϵ2} = {w ∈ Rd | ∥w − w0∥2Σ ≤ ϵ2∥w0∥2Σ}.

Thus, if ϵ ≥ ϵFL(r) :=
√
∆(wprox(r2)) =

√
G(r2)/∥w0∥Σ, then wprox(r2) ∈ Wϵ, and so we deduce from Lemma 3.1

that

Eopt(r, ϵ) ≍ Eopt(r, ϵ) = E(wprox(r2), r) ≍ E(wprox(r2), r). (24)

Henceforth, suppose 0 ≤ ϵ ≤ ϵFL(r). First observe that, for every λ ∈ [0, r2],

F (r, λ) = inf
∥w−w0∥2

Σ≤G(λ)
E(w, r). (25)

Indeed, let w ∈ Rd such that ∥w−w0∥2Σ ≤ G(λ) := ∥wprox(λ)−w0∥2Σ. Let t ≥ 0 such that λ = r2/(1+t). By definition
of wprox(λ) in (9), one has

F (r, λ) + tG(λ) = ∥wprox(λ)− w0∥2Σ + r2∥wprox(λ)∥2⋆ + t∥wprox(λ)− w0∥2Σ
= (1 + t)(∥wprox(λ)− w0∥2Σ + λ∥wprox(λ)∥2⋆)
≤ (1 + t)(∥w − w0∥2Σ + λ∥w∥2⋆)
≤ (1 + t)(∥w − w0∥2Σ + λ∥w∥2⋆) by definition of wprox(λ)

= E(w, r) + t∥w − w0∥2Σ,

and it follows that E(wprox(λ), r) = F (r, λ) ≤ E(w, r) + t(∥w − w0∥2Σ −G(λ)) ≤ E(w, r).

Now, equipped with (25) and the definition of Eopt(r, ϵ), observe that

– If G(λ) ≤ ϵ2∥w0∥2Σ, then Eopt(r, ϵ) ≥ F (r, λ).

– Analogously, if G(λ) ≥ ϵ2∥w0∥2Σ, then Eopt(r, ϵ) ≤ F (r, λ).

On the other hand, Lemma 4.2 tells us that the equation G(λ) = ϵ2∥w0∥2Σ has a unique solution λopt(r, ϵ) in [0, r2]. Thus,
Eopt(r, ϵ) = E(wprox(λopt(r, ϵ)), r) and we deduce from Lemma 3.1 that

Eopt(r, ϵ) ≍ Eopt(r, ϵ) = E(wprox(λopt(r, ϵ)), r) ≍ E(wprox(λopt(r, ϵ)), r),

which completes the proof.

C.1. Proof of Theorem 3.1

Theorem 3.1. With λ = r2, it holds that Eopt(r) ≍ E(wprox(λ), r) ≍ σ2 + F (r, r2). That is, up to within multiplicative
absolute constants, wprox(λ = r2) attains the optimal adversarial risk Eopt(r).

Proof. Indeed, by Lemma 4.1 we know that Eopt(r) = Eopt(r, 1). Also, by Lemma 4.2, we know that λopt(r, 1) = r2.
Combining these with part (A) of Theorem 4.1 then gives the result.
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C.2. A Corollary: Isotropic Features

As an important corollary to Theorem 4.1 (not stated in the main manuscript), consider the case of isotropic features
considered in (Javanmard et al., 2020), where Σ = Id.

Theorem C.1. Consider the isotropic setting where Σ = Id. For Euclidean-norm attack of strength r ≥ 0, it holds for any
tolerance level ϵ ∈ [0, 1] that

(i) (Free Lunch Threshold) ϵFL(r) = r2/(1 + r2) ∈ [0, 1).

(ii) (Free Lunch) If ϵ ≥ ϵFL(r), then the optimal regularization is λopt(r, ϵ) = r2, and we have

Eopt(r, ϵ) ≍ Eopt(r) ≍ σ2 + ∥w0∥22 min(r2, 1). (26)

(ii) (Accuracy / Robustness Tradeoff) If ϵ < ϵFL(r), then the optimal regularization parameter is given by λopt(r, ϵ) =
ϵ/(1− ϵ), and we have

Eopt(r, ϵ) ≍ σ2 + ∥w0∥22(ϵ2 + (1− ϵ)2 min(r2, 1)). (27)

D. Structure of Optima
In this section, we explore the structure of the curve λ 7→ wprox(λ) given in (9) for some notable choices of the attacker’s
norm ∥ · ∥.

D.1. Mahalanobis-Norm Attacks

Suppose the attacker’s norm ∥ · ∥ is the Mahalanobis norm ∥ · ∥B induced by a positive-definite d× d matrix B. Then, for
any λ ≥ 0, wprox(λ) minimizes ∥w − w0∥2Σ + λ∥w∥2⋆ = ∥w − w0∥2Σ + λ∥w∥2B−1 , which gives the closed-form solution

wprox(λ) = (Σ + λB−1)−1Σw0 = (BΣ+ λId)
−1BΣw0. (28)

Also, note that the functions F and G defined in (10) are now reduced to

G(λ) := ∥wprox(λ)− w0∥2Σ = ∥((Σ + λB−1)−1Σ− Id)w0∥2Σ
= λ2∥(BΣ+ λId)

−1w0∥2Σ
F (r, λ)−G(λ) = r2∥wprox(λ)∥22 = r2∥(Σ + λB−1)−1Σw0∥22

= r2∥(BΣ+ λId)
−1BΣw0∥22.

(29)

Link with (Scetbon & Dohmatob, 2023). Note that (28) recovers the structure established in (Scetbon & Dohma-
tob, 2023), where 1/λ should be thought of as the time parameter in the population-wise adapted (i.e. pre-conditioned)
gradient-flow (GD+) proposed in that work, with the choise M = B1/2. We deduce the following:

• GD+ started from zero and run for time O(1/r2) achieves the optimal adversarial risk Eopt(r) (up to within multi-
plicative absolute constants). This follows from Theorem 3.1 and the preceding argument.

• More generally, for a tolerance parameter ϵ ∈ [0, 1], GD+ started from zero and run for time O(1/λopt(r, ϵ)) achieves
the optimal adversarial risk, where λopt(r, ϵ) ∈ [0, r2] is as given in Lemma 4.2.

Link with (Xing et al., 2021). In particular, for Euclidean-norm attacks corresponding to B = Id, (28) reduces to

wprox(λ) = (Σ + λId)
−1Σw0, (30)

which recovers the structure established in (Xing et al., 2021).
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D.2. ℓp-norm Attacks on Diagonal Feature Covariance Matrix

Suppose the feature covariance matrix is Σ = diag(λ1, . . . , λd) and the attacker’s norm is ∥ · ∥p, for some p ∈ [1,∞]. Let
q ∈ [1,∞] be the harmonic conjugate of p. By (9), wprox(λ) is the minimizer of ∥w − w0∥2Σ + λ∥w∥2q over w ∈ Rd. If
Rq(λ) := ∥wprox(λ)∥q , then by first order optimality conditions, we have Σw0 ∈ Σw + λR(λ)∂∥ · ∥q(w), i.e

wprox(λ) = (I +Rq(λ)λ∂∥ · ∥q)−1(Σw0) = proxtq(λ)∥·∥q
(Σw0), (31)

where tq(λ) := Rq(λ)λ.

The Case of ℓ∞-Norm Attacks. In the special case where p = ∞, we have q = 1, giving

wprox(λ)k = ST(µk; t1(λ)) =


µk + t1(λ), if µk < −t1(λ),

0, if |µk| ≤ t1(λ),

µk − t1(λ), if µk > t1(λ),

(32)

where µk := λk · (w0)k for all k ∈ [d] (i.e µ = Σw0) and ST is the well-known soft-thresholding (ST) operator. Thus, if
t1(λ) ≥ ∥µ∥∞, then wprox(λ) = 0. This means that we can always restrict our search of the optimal threshold t1(λ) to a
compact interval,

t1(λ) ∈ [0, ∥µ∥∞]. (33)

The structure of the optimal (32) is instructive: components (w0)k of w0 corresponding to to features with small values of
|µk| are zeroed-out.

E. Well-Conditioned Problems
E.1. Estimating Eopt(r)

We now give a complete analysis of Eopt(r) for the case of so-called ”well-conditioned” problems (formally defined later).
To develop an intuition, first consider the simple case of Euclidean-norm attacks on isotropic features (i.e. Σ = Id). In this
case, Lemma I.1 tells us that

G(λ) = λ2∥w0∥22/(1 + λ)2, F (r, λ) = G(λ) + r2∥w0∥22/(1 + λ)2. (34)

Theorem 3.1 then predicts that

Eopt(r) ≍ σ2 + F (r, r2) = σ2 +
r4

(1 + r2)2
∥w0∥22 +

r2

(1 + r2)2
∥w0∥22

= σ2 +
r2

1 + r2
∥w0∥22 ≍ σ2 + ∥w0∥22 min(r2, 1) ≍ min(E(w0, r), E(0, r)).

(35)

Thus, for r ≤ 1, the generative model w0 attains the optimal adversarial risk Eopt(r) (upto within multiplicative constant);
for r ≥ 1, the optimal adversarial risk is attained by the null model w = 0. This recovers a result of (Scetbon & Dohmatob,
2023).

We now consider the situation of general norms and covariance matrices. Define r0, r1, η > 0 by

r0 := ∥w0∥Σ/∥w0∥⋆, r1 := ∥Σw0∥/∥w0∥Σ, η0 := r1/r0. (36)

Note that η0 ≥ 1 by Cauchy-Schwarz inequality. This scalar should be thought of as a kind of condition number for Σ w.r.t
the attacker’s norm ∥ · ∥. In particular, when this norm is Euclidean, then η0 is upper-bounded by the usual linear-algebraic
condition number of Σ. In general, r1 = r0η0 ≥ r0, with equality when η0 = 1, which is the case when for example one
considers Euclidean-norm attacks on isotropic features, i.e. Σ = Id.

Definition E.1. By well-conditioned problems, we mean scenarios where η0 = O(1).
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Theorem E.1. For an attack strength r ≥ 0 w.r.t a general norm ∥ · ∥, it holds that

σ2 + ∥w0∥2Σ min(r/r1, 1)
2 ≲ Eopt(r) ≲ σ2 + ∥w0∥2Σ min(r/r0, 1)

2. (37)

In particular, for well-conditioned problems (i.e. η0 = O(1)), it holds that

Eopt(r) ≍ σ2 + ∥w0∥2Σ min(r/r0, 1)
2 ≍ min(E(w0, r), E(0, r)). (38)

Thus, for well-conditioned problems, the generative model w0 is optimally robust (up to an absolute multiplicative con-
stant) for small values of r (i.e. r ≤ r0), while for large values of r (r ≥ r0), the null model w = 0 is optimally robust (up
to an absolute multiplicative constant).

E.2. Estimating Eopt(r, ϵ)

We now generalize the results of the previous subsection and establish some results which are complementary to the results
in Sections 4. These use different techniques but arrive at qualitatively and quantitatively similar results in certain settings.

Define an auxiliary function H : R+ × R+ → R+ by

H(r, ϵ) :=

{
r, if 0 ≤ r < 1,

δ + (1− δ)r, else,
, (39)

where δ = δ(ϵ) := min(1, ϵ). This is the same function which appears in Theorem 5.1 (see Table 1). Note that r =
H(r, 0) = H(r, ϵ) ≥ H(r, 1) = min(r, 1), for all r ≥ 0 and ϵ ∈ [0, 1]. The following which holds for any attacker norm,
is one of our main contributions.

Theorem E.2. For any r ≥ 0 and ϵ ∈ [0, 1], the following bounds hold

σ2 + ∥w0∥2ΣH(r/r1, ϵ)
2 ≲ Eopt(r, ϵ) ≲ σ2 + ∥w0∥2ΣH(r/r0, ϵ)

2, (40)

where r0 and r1 are as defined in (36). In particular, if r0 ≍ r1, then Eopt(r, ϵ) ≍ σ2 + ∥w0∥2ΣH(r/r0, ϵ)
2.

Note that when ϵ = 1, we have H(r, ϵ) = H(r, 1) = min(r, 1) for any r ≥ 0, and the above result recovers Theorem E.1
as a special case.

E.3. The Case of Euclidean-Norm Attacks

In the special case of Euclidean-norm attacks, one computes

1 ≤ η0 =
r0
r1

=
∥Σw0∥2∥w0∥2

∥w0∥2Σ
=

∥Σ1/2Σ1/2w0∥2
∥Σ1/2w0∥2

∥w0∥2
∥Σ1/2w0∥2

≤
√
κ(Σ),

where κ(Σ) is the ordinary condition number of the covariance matrix Σ.

A Well-Conditioned Example. In particular, in the case of isotropic features where Σ = Id, we have r0 = r1 =
∥Σ1/2∥op = 1 and η0 = 1, and Theorem E.2 then gives

Eopt(r, ϵ) ≍ σ2 + ∥w0∥2Σ ·H(r/r0, ϵ)
2 = σ2 + (ϵ2 + (1− ϵ)2r2)∥w0∥2Σ, (41)

for all r ≥ r0. This is exactly the result obtained in Theorem C.1.

A Case of Failure for Theorem E.2. Note that even in the Euclidean case, Theorem E.2 might become vacuous when
the ”condition number” η0 is too large. This is for example, the case of polynomial decaying eigenvalues of the covariance
matrix Σ, considered in Section 5.2. Indeed, that example with δ ∈ (1,∞), one easily computes r0 = ∥w0∥Σ/∥w0∥2 → 0
in the limit δ → 1+, and r1 = ∥Σw0∥2/∥w0∥Σ = Θ(1), and the lower-bound in (40) becomes vacuous. However, the
results of Section 5.2 (Theorem 5.2) remain valid even in this ill-conditioned limit.
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E.4. Sketch of Proof of Theorem E.2

We now outline the key ideas underlying the proof of Theorem E.2, split into various steps. The details are provided in
Section F.

Step 1: Proxy for Adversarial Risk. From Lemma 3.1, we know that E(w, r) ≍ Ẽ(w, r), and so

Eopt(r, ϵ) ≍ σ2 +Kopt(r, ϵ)
2, (42)

where Ẽ(w, r) := ∥w − w0∥2Σ + r2∥w∥2⋆ and Kopt(r, ϵ) := infw∈Wϵ K(w, r).

Step 2: Restricting the Search to a Chord. Computing Kopt(r, ϵ), even though conceivably easier than Eopt(r, ϵ), is
still difficult. Instead, we will restrict the optimization to a line / chord in Wϵ, parallel to the generative model w0. It
will turn out that up to within multiplicative constants, this strategy gives the correct value of Kopt(r, ϵ) as a function of
all relevant problem parameters. To this end, let Kshrink(r, ϵ) be the optimal adversarial risk achieved by a linear model
which is co-linear with the generative model w0, i.e

Kshrink(r, ϵ) := inf
w∈Wϵ∩⟨w0⟩

K(w, r), (43)

where ⟨w0⟩ := {tw0 | t ∈ R} is the one-dimensional subspace of Rd spanned by the generative model w0.
Proposition E.1. For any r, ϵ ≥ 0, the following bounds hold

Kshrink(rη0, ϵ) ≤ Kopt(r, ϵ) ≤ Kshrink(r, ϵ). (44)

This auxiliary result, which is the main component of the proof of Theorem E.2, is proved in Section F.

Step 3: Computing the Value of Kshrink(r, ϵ). To complete the proof of Theorem E.2, it remains to show that the proxy
Kshrink(r, ϵ) equals H(r/r0, ϵ)

2 up to within multiplicative absolute constants. The proof of Theorem E.2 would then
follow upon plugging such estimates into the bounds given in Proposition E.1.
Proposition E.2. For any r, ϵ ≥ 0, it holds that

Kshrink(r, ϵ)

∥w0∥2Σ
≍ K(toptw0, r)

∥w0∥2Σ
≍ H(

r

r0
, ϵ)2, (45)

where where the function H is as defined in (39), and r0 is the scalar defined in (36), and topt = topt(r/r0, ϵ) ∈ [0, 1] is
the optimaland where the function T is as defined in (46).

Comparing Propositions E.1 and E.2, it becomes clear how the function H and T enter the bounds in Theorem E.2.

F. Details of the Proof of Theorem E.2
Theorem E.2. For any r ≥ 0 and ϵ ∈ [0, 1], the following bounds hold

σ2 + ∥w0∥2ΣH(r/r1, ϵ)
2 ≲ Eopt(r, ϵ) ≲ σ2 + ∥w0∥2ΣH(r/r0, ϵ)

2, (40)

where r0 and r1 are as defined in (36). In particular, if r0 ≍ r1, then Eopt(r, ϵ) ≍ σ2 + ∥w0∥2ΣH(r/r0, ϵ)
2.

The proof was sketched in Section E.4 with the help of auxiliary propositions, namely Proposition E.1 and E.2. Here we
just need to provide the proofs for these propositions.

F.1. Proof of Proposition E.2

Proposition E.2. For any r, ϵ ≥ 0, it holds that

Kshrink(r, ϵ)

∥w0∥2Σ
≍ K(toptw0, r)

∥w0∥2Σ
≍ H(

r

r0
, ϵ)2, (45)

where where the function H is as defined in (39), and r0 is the scalar defined in (36), and topt = topt(r/r0, ϵ) ∈ [0, 1] is
the optimaland where the function T is as defined in (46).
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Proof. Define an auxiliary function topt : R2
+ → R+ by

topt(r, ϵ) :=

{
1, if 0 ≤ r < 1,

1− δ, if r ≥ 1,
(46)

with δ = δ(ϵ) := min(1, ϵ) as before. Also define Kshrink(r, ϵ) by

Kshrink(r, ϵ) := inf
w∈Wϵ∩⟨w0⟩

K(w, r). (47)

By definition of the set Wϵ, note that w ∈ Wϵ ∩ ⟨w0⟩ iff w = tw0 for some t ∈ R such that |t− 1| ≤ ϵ. Thus, noting that
K(w, r) := ∥w − w0∥2Σ + r2∥w∥2⋆ ≍ (∥w − w0∥Σ + r∥w∥⋆)2, one computes√

Kshrink(r, ϵ) := inf
w∈Wϵ∩⟨w0⟩

√
K(w, r)

≍ inf
|t−1|≤ϵ

∥w0∥Σ|t− 1|+ r∥w0∥⋆|t|

= ∥w0∥Σ · inf
|t−1|≤ϵ

|t− 1|+ r∥w0∥⋆
∥w0∥Σ

|t|

= ∥w0∥Σ · inf
|t−1|≤ϵ

|t− 1|+ r

r0
|t|

= ∥w0∥Σ ·H(r/r0, ϵ),

where the last line is thanks to Lemma G.3.

F.2. Proof of Proposition E.1

Proposition E.1. For any r, ϵ ≥ 0, the following bounds hold

Kshrink(rη0, ϵ) ≤ Kopt(r, ϵ) ≤ Kshrink(r, ϵ). (44)

Proof. Let C = ⟨w0⟩ := {tw0 | t ∈ R} ⊆ Rd be the one-dimensional subspace spanned by the generative model w0, and
let PC,Σ : Rd → C be the projection operator onto C, w.r.t the the Mahalanobis norm ∥ · ∥Σ. Then, by non-expansiveness
of PC,Σ (see (Bauschke & Combettes, 2011), for example), one has for any w ∈ Rd,

∥PC,Σ(w)− w0∥Σ = ∥PC,Σ(w)− PC,Σ(w0)∥Σ ≤ ∥w − w0∥Σ.

Now, for any w ∈ Rd, we have PC,Σ(w) = tw0, where t ∈ R minimizes f(t) := ∥w−tw0∥2Σ. Now, f ′(t) = 2w⊤
0 Σ(tw0−

w) = 2(∥w0∥2Σt− w⊤Σw0). Thus, the optimal t is w⊤Σw0/∥w0∥2Σ, and so

PC,Σ(w) =
w⊤Σw0

∥w0∥2Σ
w0. (48)

Let us now bound the operator norm of PC,Σ w.r.t the dual norm ∥ · ∥⋆. For any w ∈ Rd, one has

∥PC,Σ(w)∥⋆
∥w∥⋆

=
∥(w⊤Σw0)w0∥⋆
∥w∥⋆∥w0∥2Σ

=
|w⊤Σw0|

∥w∥⋆∥w0∥Σ
∥w0∥⋆
∥w0∥Σ

≤ ∥Σw0∥
∥w0∥Σ

∥w0∥⋆
∥w0∥Σ

=: η0,

where the second line is an application of the Cauchy-Schwarz inequality. We deduce that√
K(PC,Σ(w), r) ≍ ∥PC,Σ(w)− w0∥Σ + r∥PC,Σ(w)∥⋆

≤ ∥w − w0∥Σ + rη0∥w∥⋆ ≍
√

K(w, rη0).

Thus, K(w, r) ≳ K(PC,Σ(w), r/η0). On the other hand, if w ∈ Wϵ, then the non-expansiveness of PC,Σ (again!) gives

∥PC,Σ(w)− w0∥Σ = ∥PC,Σ(w)− PC,Σ(w0)∥Σ ≤ ∥w − w0∥Σ ≤ ϵ∥w0∥Σ,
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that is, PC,Σ(w) ∈ Wϵ. Putting things together yields: for any w ∈ Wϵ, there exists z ∈ Wϵ ∩ C such that K(z, r/η0) ≤
K(w, r). Therefore,

Kopt(r, ϵ) := inf
w∈Wϵ

K(w, r) ≳ inf
z∈Wϵ∩C

K(z, r/η0) =: Kshrink(r/η0, ϵ).

This establishes the lower-bound Proposition E.1.

As for the upper-bound, one computes

Kopt(r, ϵ) := inf
w∈Wϵ

K(w, r) ≤ inf
w∈Wϵ∩C

K(w, r) =: Kshrink(r, ϵ),

as claimed.

G. Technical Proofs
G.1. Proof of Lemma 2.1: Analytic Formula for Adversarial Risk

Lemma 2.1. For any w ∈ Rd and r ≥ 0, it holds that E(w, r) = E(w) + r2∥w∥2⋆ + 2
√

2/πr∥w∥⋆
√
E(w).

For the proof, we will need the following auxiliary lemma.

Lemma G.1. For any x,w ∈ Rd, r ≥ 0, and y ∈ R, the following identity holds

sup
∥δ∥≤r

|(x+ δ)⊤w − y| = |x⊤w − y|+ r∥w∥⋆. (49)

Proof. Note that h(x, y, δ)/2 = η(x, y)2/2 + g(x, y, δ)/2, where g(x, y, δ) := w(δ)2 − 2η(x, y)w(δ), and η(x, y) :=
w(x) − y, and w(x) := x⊤w. Now, because the real function z 7→ z2/2 is its own Fenchel-Legendre conjugate, we can
”dualize” our problem as follows

sup
∥δ∥≤r

g(x, y, δ)/2 = sup
∥δ∥⋆≤r

−η(x, y)w(δ) + sup
z∈R

zw(δ)− z2/2

= sup
z∈R

−z2/2 + sup
∥δ∥≤r

(z − η(x, y))w(δ)

= sup
z∈R

r∥w∥⋆|z − η(x, y)| − z2/2

= sup
s∈{±1}

sup
z∈R

rs(z − η(x, y))− z2/2

= sup
s∈{±1}

−r∥w∥⋆sη(x, y) + sup
z∈R

r∥w∥⋆sz − z2/2

= sup
s∈{±1}

−r∥w∥⋆sη(x, y) + r2∥w∥2⋆/2

= r∥w∥⋆|η(x, y)|+ r2∥w∥2⋆/2.

We deduce that

sup
∥δ∥≤r

h(x, y, δ)/2 = η(x, y)2/2 + r∥w∥⋆|η(x, y)|+ r2∥w∥2⋆/2 = (|η(x, y)|+ r∥w∥⋆)2/2,

from which the result follows.

Proof of Lemma 2.1. Indeed, thanks to Lemma G.1, one has

E(w, r) := E sup
∥δ∥≤r

h(x, y, δ) = E[(η(x, y) + r∥w∥⋆)2], (50)

19



Precise Accuracy / Robustness Tradeoffs in Regression: Case of General Norms

where the functions h and η are as in the proof of Lemma G.1. The result then follows upon noting that, for x ∼ N(0,Σ)
and y|x ∼ N(x⊤w0, σ

2),

E[η(x, y)2] = E[(x⊤w − y)2] = E(w) = ∥w − w0∥2Σ + σ2,

E|η(x, y)| = Ex|x⊤w − y| = c0

√
∥w − w0∥2Σ + σ2 = c0

√
E(w),

where c0 :=
√

2/π as in the lemma.

G.2. Proof of Lemma 3.1

Lemma 3.1. There exists absolute constants c1 and c2 such that for a general attacker norm ∥ · ∥, and w ∈ Rd, r ≥ 0,

Ẽ(w, r) ≤ E(w, r) ≤ c1Ẽ(w, r),

E(w, r) ≤ E(w, r) ≤ c2E(w, r).
(8)

We will need the following elementary lemma.

Lemma G.2. For any a, b, c ≥ 0 with c ≤ 1, it holds that

(a+ b)2 ≥ a2 + b2 + 2abc ≥ 1 + c

2
(a+ b)2,

a2 + b2 ≤ a2 + b2 + 2abc ≤ (1 + c)(a2 + b2).
(51)

Proof. Let h(a, b, c) := a2 + b2 +2abc. For the LHS, it suffices to observe that h(a, b, c) ≤ h(a, b, 1) = (a+ b)2. For the
RHS, WLOG assume that a ̸= 0, and set t := b/a ≥ 0. Observe

1 ≥ h(a, b, c)

(a+ b)2
=

1 + t2 + 2ct

(1 + t)2
,

and the RHS is minimized when t = 1, because 0 ≤ c ≤ 1 by assumption. We deduce that h(a, b, c)/(a + b)2 ≥
(1 + 1 + 2c)/(1 + 1)2 = (1 + c)/2. This proves the first line of inequalities in the lemma.

On the other hand, observe that

1 ≤ h(a, b, c)

a2 + b2
=

1 + t2 + 2ct

1 + t2
= 1 +

2ct

1 + t2
. (52)

Clearly, the RHS attains a maximum value of 1 + c at t = 1. This proves the second line of inequalities in the lemma.

We are now ready to proof Lemma 3.1.

Proof of Lemma 3.1. From Lemma G.2 above applied with c = c0 =
√
2/π, we deduce that Lemma 3.1 holds with

c1 = 2/(1 + c0) ≈ 1.11 and c2 = 1 + c0 ≈ 1.8.

G.3. Proof of Lemma 4.1

Lemma 4.1. For any r ≥ 0 and ϵ ≥ 1, it holds that Eopt(r, ϵ) = Eopt(r).

Proof. Recall that Eopt(r) := infw∈Rd E(w, r) and Eopt(r, ϵ) := infw∈Wϵ
E(w, r), where

Wϵ := {w ∈ Rd | ∥w − w0∥Σ ≤ ϵ∥w0∥Σ}.

Observe that, if w ∈ Rd \W1, then ∥w − w0∥Σ > ∥w0∥Σ. We deduce that

E(w, r) ≥ E(w) = ∥w − w0∥2Σ + σ2 > ∥w0∥2Σ + σ2 = E(0) = E(0, r).
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On the other hand, if ϵ ≥ 1, then 0 ∈ W1 ⊆ Wϵ. Combining with the above inequality gives

Eopt(r, ϵ) = inf
w∈Wϵ

E(w, r) = min

(
inf

w∈W1

E(w, r), inf
w∈Wϵ\W1

E(w, r)

)
= inf

w∈W1

E(w, r) =: Eopt(r, 1).

and the proof is complete.

G.4. Proof of Lemma 4.2

Lemma 4.2. For any r ≥ 0 and 0 ≤ ϵ ≤ ϵFL(r), the scalar equation

G(λ) = ϵ2∥w0∥2Σ (14)

has a unique solution λopt(r, ϵ) in [0, r2].

We extend the definition of λopt(r, ϵ) to all ϵ ∈ [0, 1] by setting λopt(r, ϵ) = r2 whenever ϵ ≥ ϵFL(r).

Proof. Indeed, thanks to (Sra, 2011, Lemma 4) and the definition of wprox(λ) in (9) and G(λ) in (10), the function G is
increasing on [0, r2] with minimal value G(0) = and maximal value G(r2) = ϵFL(r)∥w0∥2Σ. Thus, if 0 ≤ ϵ ≤ ϵFL(r),
then 0 ≤ ϵ2∥w0∥2Σ ≤ G(r2), and so ϵ2∥w0∥2Σ is in the range of G over λ ∈ [0, r2].

G.5. On the Auxiliary Function H

Remark G.1. The following properties of the function H are easily verified

(i) H(r, ϵ) ≥ δ + (1− δ)r for all r ≥ 1 and ϵ ≥ 0.

(ii) H(r, ϵ) = H(r, 1) = min(r, 1) for all r ≥ 0 and ϵ ≥ 1.

(iii) H(ηr, ϵ) ≥ ηH(r, ϵ) for all r, ϵ, η ≥ 0.

The functions H and T are linked by the following lemma.

Lemma G.3. For any r, ϵ ≥ 0, we have

inf
|t−1|≤ϵ

k(t) = H(r, ϵ) = k(topt(r, ϵ)), (53)

where k : R → R is the function defined by k(t) := |t− 1|+ r|t|.

Proof. First notice that k(−t) ≥ k(t) and | − t − 1| = t + 1 ≥ |t − 1| if t ≥ 0. Thus, WLOG we may assume
t ≥ 0 in the optimization problem. Now, consider the change of variable t = t(u) := 1 −

√
u, for u ∈ [0, 1], so that

k(t) = h(u) :=
√
u+ r(1−

√
u). Note that |t− 1| ≤ ϵ iff 0 ≤ u ≤ δ2, where δ = δ(ϵ) := min(1, ϵ).

Now, 2h′(u) = (1− r)/
√
u. We deduce that h is non-decreasing if r ∈ [0, 1) and non-increasing if r ≥ 1. Thus,

inf
|t−1|≤ϵ

k(t) = inf
0≤u≤δ2

h(u) =

{
h(0) = r, if 0 ≤ r < 1,

h(δ2) = δ + r(1− δ), if r ≥ 1.

=: H(r, ϵ),

as claimed.

To conclude the proof, one manually checks that k(T (r, ϵ)) = H(r, δ) = H(r, ϵ).
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H. An Alternate View of Theorem of Results in terms of Pareto Fronts
Let us now link results to the idea of Pareto Fronts employed in (Javanmard et al., 2020). For any r ≥ 0, consider the
Pareto Front Cr ⊆ R2

+ of the standard risk E(w) and the adversarial risk proxy E(w, r), i.e.

Cr =
{(

E(w(r, t)), E(w(r, t), r)
) ∣∣ t ≥ 0

}
, (54)

where w(r, t) is the unique minimizer of Lt(w, r) := tE(w)+E(w, r) over w ∈ Rd, and E(w, r) := ∥w−w0∥2Σ+r2∥w∥2⋆
as defined in (6).

Proposition H.1. For an attack strength r ≥ 0 w.r.t to general norm ∥ · ∥, it holds that

Cr =
{(

σ2 +G(λ), σ2 + F (r, λ)
)
| 0 ≤ λ ≤ r2

}
, (55)

Cr =
{(

σ2 + ϵ2∥w0∥2Σ, F (r, λopt(r, ϵ))
)
| 0 ≤ ϵ ≤ 1

}
(56)

=
{(

σ2 + ϵ2∥w0∥2Σ, F (r, λopt(r, ϵ))
)
| 0 ≤ ϵ ≤ ϵFL(r)

}
∪ Lr, (57)

where λopt(r, ϵ) ∈ [0, r2] is as defined in (14) and Lr ⊆ R2
+ the horizontal line segment defined by

Lr :=
{(

σ2 + ϵ2∥w0∥2Σ, F (r, r2)
) ∣∣ ϵFL(r) ≤ ϵ ≤ r

}
.

Proof. Consider the bijective map t 7→ λ(r, t) := r2/(1 + t) from [0,∞] to [0, r2] and observe that w(r, t) =
wprox(λ(r, t)). The first part of the result then follows from the definition of Cr.

For the second part, observe from the definition of λopt(r, ϵ) in Lemma 4.2 that G(λopt(r, ϵ)) = ϵ2∥w0∥2Σ. The result then
follows from the first part.

For example, consider the setting of Euclidean-norm attacks on isotropic features. We know that wprox(λ) = (Σ +
λId)

−1Σw0 = w0/(1 + λ).

G(λ) := ∥wprox(λ)− w0∥2Σ =

(
λ

1 + λ

)2

,

F (r, λ) = G(λ) + r2∥wprox(λ)∥22 =
λ2 + r2

(1 + λ)2
.

(58)

The Free Lunch threshold is then ϵFL(r) :=
√
(G(r2)/∥w0∥2Σ = r2/(1 + r2). Now, given ϵ ∈ [0, 1], if ϵ ≤ ϵFL(r), then

solving G(λ) = ϵ2∥w0∥2Σ = ϵ2 for λ ∈ [0, r2] gives λ = ϵ/(1− ϵ). We deduce that

λopt(r, ϵ) =

{
ϵ/(1− ϵ), if 0 ≤ ϵ ≤ ϵFL(r),

r2, if ϵFL(r) ≤ ϵ ≤ 1.
(59)

We deduce that

F (r, λopt(r, ϵ)) =

{
F (r, ϵ/(1− ϵ)) = ϵ2/(1−ϵ)2+r2

(1+ϵ/(1−ϵ))2 = ϵ2 + r2(1− ϵ)2, if ϵ ≤ ϵFL(r),

F (r, r2) = r4+r2

(1+r2)2 = r2

1+r2 ≍ min(r2, 1), else
. (60)

Thus, the Pareto front is

Cr =
{
(σ2 + ϵ2, ϵ2 + r2(1− ϵ)2)

∣∣ 0 ≤ ϵ ≤ ϵFL(r)
}
∪ Lr, (61)

with Lr =
{(

σ2 + ϵ2,min(r2, 1)
) ∣∣ ϵFL(r) ≤ ϵ ≤ 1

}
.
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I. Spectral Analysis of Euclidean-Norm Attacks
In the case of Euclidean-norm attacks, it turns out that the functions F and G are completely given in terms of spectral
information as we now show. Let Σ =

∑
k≥1 λkϕkϕ

⊤
k be the eigenvalue-decomposition of the feature covariance matrix

Σ and ck = ϕ⊤
k w0 be the kth alignment coefficient of the generative model w0, so that w0 =

∑
k≥1 ckϕk. We shall

occasionally consider the infinite-dimensional case where d = ∞, and we will require

tr(Σ) =
∑
k

λk < ∞, (62)

which ensures that the covariance operator Σ is of trace class. Furthermore, it is easy to see that

∥w0∥22 =
∑
k

c2k, ∥w0∥2Σ =
∑
k

λkc
2
k. (63)

In this setting, the following result shows that the functions F and G (10) are given explicitly in terms of the spectral
information (λk, c

2
k)k≥1.

Lemma I.1. For Euclidean-norm attacks, it holds for any r, λ ≥ 0 that

G(λ) = λ2
∑
k

λkc
2
k

(λk + λ)2
, F (r, λ) = G(λ) + r2

∑
k

λ2
kc

2
k

(λk + λ)2
. (64)

In particular, for λ = r2, it holds that

F (r, r2) = r2
∑
k

λkc
2
k

λk + r2
. (65)

The proof (which will be provided shortly) relies on observing that wprox(λ) = (Σ + λI)−1Σw0.

I.1. Robustness and Statistical Dimension

Recall that, for any λ ≥ 0, the statistical dimension of Σ is defined by dΣ(λ) := tr(Σ(Σ + λI)−1) =
∑

k λk/(λk + λ).
The following result highlights the role of the statistical dimension on adversarial robustness in the case of uniform source
condition.
Corollary I.1. If c2k ≍ c2 for some constant c > 0, then Eopt(r) ≍ σ2 + c2r2dΣ(r

2) for all r ≥ 0.

Proof. Indeed, applying the second part of Lemma I.1 gives

F (r, r2) = r2
∑
k

λkc
2
k/(λk + r2) = c2r2dΣ(r

2).

The result then follows directly from Theorem 3.1.

I.2. Proof of Lemma I.1

Indeed, in this setting, for any λ ≥ 0, the solution of (9) is explicitly given by wprox(λ) = (Σ+ λI)−1Σw0. Plugging this
into the definition of F and G given in (10) respectively then gives

G(λ) = ∥wprox(λ)− w0∥2Σ = ∥(Σ + λId)Σw0 − w0∥2Σ

= λ2∥(Σ + λI)−1w0∥2Σ = λ2
∑
k

λkc
2
k

(λk + λ)2

and

F (r, λ) = G(λ) + r2∥wprox(λ)∥22 = G(λ) + r2∥(Σ + λI)−1Σw0∥22

= G(λ) + r2
∑
k

λ2
kc

2
k

(λk + λ)2
,
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which proves the first part of the claim.

For the second part, applying the first part with λ = r2 gives

F (r, r2) =
∑
k

(r4λk + r2λ2
k)c

2
k

(λk + r2)2
= r2

∑
k

λkc
2
k

λk + r2
, (66)

where the second step is a basic algebraic manipulation.

I.3. Proof of Theorem C.1

Theorem C.1. Consider the isotropic setting where Σ = Id. For Euclidean-norm attack of strength r ≥ 0, it holds for any
tolerance level ϵ ∈ [0, 1] that

(i) (Free Lunch Threshold) ϵFL(r) = r2/(1 + r2) ∈ [0, 1).

(ii) (Free Lunch) If ϵ ≥ ϵFL(r), then the optimal regularization is λopt(r, ϵ) = r2, and we have

Eopt(r, ϵ) ≍ Eopt(r) ≍ σ2 + ∥w0∥22 min(r2, 1). (26)

(ii) (Accuracy / Robustness Tradeoff) If ϵ < ϵFL(r), then the optimal regularization parameter is given by λopt(r, ϵ) =
ϵ/(1− ϵ), and we have

Eopt(r, ϵ) ≍ σ2 + ∥w0∥22(ϵ2 + (1− ϵ)2 min(r2, 1)). (27)

Proof. Indeed, for any λ ≥ 0, one easily computes

G(λ) = λ2
d∑

k=1

c2k
(1 + λ)2

=
λ2∥w0∥2Σ
(1 + λ)2

, (67)

F (r, λ) = G(λ) + r2
d∑

k=1

c2k
(1 + λ)2

=
(r2 + λ2)∥w0∥2Σ

(1 + λ)2
. (68)

Now, one easily computes the free lunch threshold as ϵFL(r) =
√

G(r2)/∥w0∥Σ = r2/(1 + r2) ∈ [0, 1]. Observe that
ϵFL(r) ≍ min(r2, 1) ∈ [0, 1]. We then deduce from Theorem 4.1 that the absolute optimal adversarial risk is given by

Eopt(r) ≍ σ2 + F (r, r2) = σ2 +
r2 + r4

(1 + r2)2
∥w0∥22 = σ2 +

r2

1 + r2
∥w0∥22

≍ σ2 +min(r2, 1)∥w0∥2Σ.

Moreover, if ϵ ≥ ϵFL(r), then Eopt(r, ϵ) ≍ Eopt(r) and there is free lunch: no tradeoff is required between accuracy and
robustness. On the other hand, if ϵ ∈ [0, ϵFL(r)), then solving the equation G(λ) = ϵ2∥w0∥2Σ, we deduce that the optimal
regularization parameter is given by

λopt(ϵ) =
ϵ

1− ϵ
. (69)

Consequently, Theorem 4.1 tells us that that

Eopt(r, ϵ) ≍ σ2 + F (r, λopt(ϵ)) = σ2 +
(r2 + ϵ2/(1− ϵ)2))∥w0∥2Σ

(1 + ϵ/(1− ϵ))2

= σ2 + ∥w0∥2Σ(ϵ2 + (1− ϵ)2r2)

= σ2 + ∥w0∥2Σ(ϵ2 + (1− ϵ)2r2),

from which the result follows.
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Regime ϵFL(r) λopt(r, ϵ) Eopt(r) Eopt(r, ϵ) Free lunch ?
0 ≤ δ < 1 r2(1−θ) ϵ2/(1−θ) σ2 + r2(1−θ) σ2 + ϵ2 + r2ϵ−2ϕ No
δ = 1 r4 log(1/r) eW (−Θ(ϵ2))/2 σ2 + r2 log(1/r) σ2 + ϵ2 + r2 log(1/ϵ) No
δ > 1 r4 ϵ σ2 + r2 σ2 + ϵ2 + r2 Yes!

Table 3. Details for Theorem 5.2. Here, W is an appropriate branch of the Lambert function. Note that except for the first column, all
the entries in the table are given only within multiplicative absolute constants. The last column records whether there is free lunch (FL),
wherein robustness is achievable without sacrificing accuracy.

I.4. Proof of Theorem 5.2

Theorem 5.2. For Euclidean-norm attacks of small strength r > 0, the conclusions of Theorem 4.1 prevail, and the
quantities ϵFL(r), λopt(r, ϵ), Eopt(r), and Eopt(r, ϵ) are as given in Table 2.

Consider the particular regime where 0 ≤ δ ≤ 1. For small σ2 ≥ 0, ϵ > 0, and r = r(ϵ) given by

r =

{
ϵϕ, if 0 ≤ δ < 1,√

1/ log(1/ϵ), if δ = 1
(19)

with θ := (1− δ)/β ≥ 0, ϕ := θ/(1− θ) ≥ 0, it holds that

Eopt(r) = o(1), Eopt(r, ϵ) = Θ(1). (20)

We will need the following crucial lemma.

Lemma I.2. Let the sequence (λk)k≥1 of positive numbers be such that λk ≍ k−β for some constant β > 0, and let
m,n ≥ 0 with nβ > 1. Then, for D ≫ 1, it holds that

∞∑
k=1

λn
k

(1 +Dλk)m
≍ D−c

{
logD, if m = n− 1/β,

1, else,
(70)

where c := min(m,n− 1/β) ≥ 0.

Proof. First observe that

λn
k/(1 +Dλk)

m ≍ λn
k min(1, (Dλk)

−m)

=

{
λn
k = k−nβ , if Dλk < 1, i.e if k > D1/β ,

D−mλ
−(m−n)
k = D−mk(m−n)β , else.

We deduce that

∞∑
k=1

λn
k

(1 +Dλk)m
≍ D−m

∑
1≤k≤D1/β

k(m−n)β +
∑

k>D1/β

k−nβ . (71)
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By comparing with the corresponding integral, one can write the first sum in (71) as

D−m
∑

1≤k≤D1/β

k(m−n)β ≍ D−m

∫ D1/β

1

u(m−n)βdu

≍ D−m


(D1/β)1+(m−n)β = D−(n−1/β), if n− 1/β < m,

logD, if m = n− 1/β,

1, else.

=


D−(n−1/β), if n− 1/β < m,

D−m logD, if m = n− 1/β,

D−m, else.

= D−c

{
logD, if m = n− 1/β,

1, else,

where c ≥ 0 is as given in the lemma.

Analogously, one can write the second sum in (71) as∑
k>D1/β

k−nβ ≍
∫ ∞

D1/β

u−nβdu ≍ (D1/β)1−nβ = D−(n−1/β),

and the result follows upon putting things together.

Corollary I.2. Let β and δ be as Theorem 5.2. For any r ≥ 0 and small λ > 0, the functions G and F defined in (10)
satisfy

G(λ) ≍


λ1−θ, if 0 ≤ δ < β + 1,

λ2 log(1/λ), if δ = β + 1,

λ2, if δ > β + 1.

(72)

F (r, λ) ≍



λ1−θ + r2λ−θ, if 0 ≤ δ < 1,

λ1−θ + r2 log(1/λ), if δ = 1,

λ1−θ + r2, if 1 < δ < β + 1,

λ2 log(1/λ) + r2, if δ = β + 1,

λ2 + r2, if δ > β + 1.

. (73)

Moreover, for small r > 0, it holds that

F (r, r2) ≍


r2(1−θ), if 0 ≤ δ < 1,

r2 log(1/r), if δ = 1,

r2, if δ > 1.

(74)

Proof. Set D := 1/λ. One can write

G(λ) = λ2
∑
k≥1

λkc
2
k

(λ+ λk)2
=

∑
k≥1

λkc
2
k

(1 +Dλk)2
≍

∑
k≥1

λ
1+δ/β
k

(1 +Dλk)2
, (75)

where we have used the fact that λkc
2
k ≍ k−β−δ = k−(1+δ/β)β ≍ λ

1+δ/β
k . Applying Lemma I.2 with n = 1 + δ/β and

m = 2, we deduce that

G(λ) ≍ D−c

{
logD, if m = n− 1/β, i.e if δ = β + 1,

1, else,
(76)
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where c = min(m,n− 1/β) = min(2, 1 + δ/β − 1/β) = min(2, 1− θ). This proves (72).

Analogously, one can rewrite

(F (r, λ)−G(λ))/r2 =
∑
k≥1

λ2
kc

2
k

(λ+ λk)2
= D2

∑
k≥1

λ2
kc

2
k

(1 +Dλk)2
≍ D2

∑
k≥1

λ
2+δ/β
k

(1 +Dλk)2
.

Applying Lemma I.2 to the RHS with n = 2 + δ/β and m = 2 then gives

(F (r, λ)−G(λ))/r2 ≍ D2
∑
k≥1

λ
2+δ/β
k

(1 +Dλk)2
≍ DC

{
logD, if m = n− 1/β, i.e if δ = 1,

1, else,

where C = 2−min(m,n− 1/β) = 2−min(2, 2− θ) = −min(0,−θ) = max(θ, 0). Combining with (72) proves (73).

Finally, (74) follows by pluggin λ = r2 in (73) and simplifying.

We are now ready to prove Theorem 5.2

Proof of Theorem 5.2. Equipped with Corollary I.2, first observe that if δ > 1, then Eopt(r) ≍ σ2 + F (r, r2) ≍ σ2 + r2

which matches E(w0, r) ≍ σ2 + r2∥w0∥22 ≍ σ2 + r2, and so no tradeoff is needed: the ground-truth model w0 achieves
the optimal level of robustness Eopt(r).

Now, if δ ∈ [0, β + 1), we deduce that for r = o(1), the free lunch threshold is given by

ϵFL(r) :=

√
G(r2)

∥w0∥Σ
≍ r(1−θ) = o(1). (77)

For ϵ ∈ [0, ϵFL(r)), solving the equation G(λ) = ϵ2∥w0∥2Σ for λ ∈ [0, r2] gives

λopt(r, ϵ) ≍ ϵ2/(1−θ). (78)

On the other hand, if δ = β + 1, then G(λ) ≍ λ2 log(1/λ) for λ = o(1), and so

ϵFL(r) :=

√
G(r2)

∥w0∥Σ
≍ r2 log(1/r). (79)

For ϵ ∈ [0, ϵFL(r)), solving (14) for λ ∈ [0, r2] then gives

λopt(r, ϵ) ≍ eW (−Θ(ϵ2))/2, (80)

where W is an appropriate branch of the Lambert function.

Finally, if δ > β + 1, then G(λ) ≍ λ2 for λ = o(1), and so

ϵFL(r) :=

√
G(r2)

∥w0∥Σ
≍ r2. (81)

For ϵ ∈ [0, ϵFL(r)), solving (14) for λ ∈ [0, r2] then gives

λopt(r, ϵ) ≍ r. (82)

Combining with Theorem 4.1 and putting things together gives the estimates stated in Table 2.
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J. Other Proofs
J.1. Proof of Theorem 5.1

Theorem 5.1. Recall the notations of Theorem 4.1. Let the attack norm be an ℓp with p ∈ [1,∞]. For any r ≥ 0 and
ϵ ∈ [0, 1], the robustness profile is given as in Table 1.

In particular, in the limit d → ∞, we have that, if

– p ∈ [1,∞), 1 ≪ s ≤ d, and we take r ≍ 1/s1/q , OR

– p = ∞,
√
d/ log d ≪ s ≤ d, and we take r ≍ 1/s,

then for ϵ ∈ [0, 1), it holds that

Eopt(r) = od(1), and Eopt(r, ϵ) = Θ((1− ϵ)2). (16)

Proof. First observe that ∥w0∥2Σ = ∥w0∥22 = s and ∥Σw0∥p = ∥w0∥p = s1/p. We deduce that r0 := ∥w0∥Σ/∥w0∥⋆ =
s1/2/∥w0∥q = s1/2−1/q . Likewise, r1 := ∥Σw0∥/∥w0∥Σ = s1/p−1/2 = r0, since 1/p + 1/q = 1 by definition. We
conclude that the problem is well-conditioned in the sense of Section xyz, and the claimed formulae for Eopt(r) and
Eopt(r, ϵ) follow from Theorem E.1.

Furthermore, in the special case of Euclidean-norm attacks (i.e p = 2), the claimed formula for the free lunch threshold
ϵFL(r) and the optimal regularization parameter λopt(r, ϵ) follow from Theorem C.1.

To conclude the proof, we know establish (16). Indeed, if σ2 = o(1), p ∈ [1,∞), and 1 ≪ s ≤ d and we take r ≍ 1/s1/q

in the limit d → ∞, then we see from Table 1 that Eopt(r) ≍ (s/d)min(r
√
d, 1)2 ≍ σ2 + (s/d)min(s1/q

√
d, 1)2 =

σ2 + (s/d) = o(1) since σ2 = o(1) and s/d = o(1).

Also from the same table, one reads Eopt(r, ε) ≍ (s/d)H(r/r0(p), ϵ)
2 with r0(p) = s1/p−1/2/

√
d. Now, for any fixed

ϵ ∈ [0, 1), one computes

H(r/r0(p), ϵ) ≍ H(s1/2−1/p−1/q
√
d, ϵ) = H(

√
d/s, ϵ) = (ϵ+ (1− ϵ)

√
d/s) ≍ (1− ϵ)

√
d/s,

and so Eopt(r, ϵ) ≍ (s/d)H(r/r0(p), ϵ)
2 ≍ (1− ϵ)2 as claimed.

J.2. Proof of Theorem 5.3

Theorem 5.3. Consider the setting (21). For ℓ∞-norm attacks of strength r with 1/
√
d ≤ r = o(1), it holds that

Eopt(r) ≍ σ2 + r2 log(1/r)2. (22)

In particular, for r ≍ 1/ log d and σ2 = o(1), it holds that

E(w0, r) = Θ(1), Eopt(r) = o(1). (23)

That is, even though robustness is achievable, the generative model w0 is itself non-robust.

Proof. For any a ∈ Rd and t ≥ 0, define κa(t) := infu∈Rd t∥u − a∥2 + ∥u∥1. Let Hd :=
∑d

k=1 1/k ≍ log d be dth
harmonic number. In the particular case where a = (1/(kHd))k∈[d] ∈ Rd, it was shown in (Blais et al., 2019) that:

κa(t) =
2 log t+O(1)

log d
for 1 ≪ t ≤

√
d. Noting that w0 = Hda and taking t = 1/r, we deduce that

K(w, r) := inf
w∈Rd

∥w − w0∥2 + r∥w∥1 = inf
w∈Rd

Hd∥w/Hd − a∥2 + rHd∥w/Hd∥1

= rHd · inf
u∈Rd

r−1∥u− a∥2 + ∥u∥1 with change of variable u = w/Hd

= rHd · κa(1/r).

(83)

28



Precise Accuracy / Robustness Tradeoffs in Regression: Case of General Norms

Thus, for 1/
√
d ≤ r = o(1), taking t = 1/r gives

K(w, r) =
r(log(1/r) +O(1))Hd

log d
≍ r(log(1/r) + o(1)),

from which the first part of the claim follows.

For the second part, taking r = 1/ log d gives

Eopt(r) ≍ σ2 + r2 log(1/r)2 = σ2 + (log2 d/ log d)2 = σ2 + o(1) = o(1).

On the other hand, it is clear that for any r ≥ 0,

E(w0, r) = σ2 + r2∥w0∥21 = σ2 + r2(

d∑
k=1

1/k)2 ≍ σ2 + (r log d)2,

Thus, for r = 1/ log d and σ2 = o(1), then E(w0, r) ≍ σ2 + 1 = Θ(1).
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