
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POINT-IT-OUT: BENCHMARKING EMBODIED REASON-
ING FOR VISION LANGUAGE MODELS IN MULTI-STAGE
VISUAL GROUNDING

Anonymous authors
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Q: Where should the gripper 
act to open the top drawer?

(A)       (B)       (C)        (D)

A
B

C

D

Q: Is the green curve good to 
close the door of the cabinet?

(A) Yes                   (B) No

S1

S3

S2

Object Localization

Task-Driven Grounding

Visual Trace Prediction

The answer is (B)

The answer is (A)

(a) Multiple-Choice-based ER Benchmark (b) Visual Grounding-based ER Benchmark

House-hold Kitchen

Robot Manipulation Auto-Driving

ü Cover 4 Scenarios 
ü Human-annotated
ü 600 + QAs
ü Fine-Grained Score
ü 10+ Candidate VLMs

Locate the paper cup.

Where to act to open the top drawer?

The trajectory to 
close the open door

What can I use to 
please my child?

The bounding box [128, 240, 150, 249].
The point is [(128, 138)]
The trace is [(128, 128), (128, 130), ….].

Figure 1: Unlike prior benchmarks that rely on indirect evaluation (a), Point-It-Out (PIO) directly
assesses embodied reasoning (ER) by prompting VLMs to generate precise visual groundings—such
as points, bounding boxes, or trajectories—in a hierarchical manner as shown in (b). To our
knowledge, PIO is the first benchmark to offer pixel-level grounding for ER, spanning diverse
embodied tasks across multiple real-world scenarios.

ABSTRACT

Vision-Language Models (VLMs) have demonstrated impressive world knowledge
across a wide range of tasks, making them promising candidates for embodied
reasoning applications. However, existing benchmarks primarily evaluate the
embodied reasoning ability of VLMs through multiple-choice questions based on
image annotations – for example, selecting which trajectory better describes an
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event in the image. In this work, we introduce the Point-It-Out (PIO) benchmark,
a novel benchmark designed to systematically assess the embodied reasoning
abilities of VLMs through precise visual grounding. We propose a hierarchical
evaluation protocol spanning three stages (S1: referred-object localization, S2:
task-driven pointing, and S3: visual trace prediction), with data collected from
critical domains for embodied intelligence, including indoor, kitchen, driving, and
robotic manipulation scenarios. Extensive experiments with over ten state-of-the-
art VLMs reveal several interesting findings. For example, strong general-purpose
models such as GPT-4o, while excelling on many benchmarks (e.g., language,
perception, and reasoning), underperform compared to some open-source models
in precise visual grounding; models such as MoLMO perform well in S1 and S2
but struggle in S3, where requires grounding combined with visual trace planning.

1 INTRODUCTION

Large-scale vision–language models (VLMs) (1; 5; 10; 15; 22) inherit the broad world knowledge
and powerful instruction-following abilities of large language models (LLMs) while grounding
them in visual inputs. Because these models can describe what they see and reason about how the
world works, they have quickly become the backbone of many embodied-AI systems: e.g. robot
manipulation (54; 13; 6; 36; 18; 17; 19), navigation (55; 41; 49) and autonomous-driving (38; 50; 31;
50).

Despite the rapid adoption, there are still challenges in understanding the capacities of embodied
reasoning (ER) of VLMs, particularly in tasks requiring fine-grained visual grounding. Existing
benchmarks primarily focus on input-side understanding and perception, typically using usually
evaluate models with either multiple-choice questions (MCQs), e.g., “Which of these trajectories
reaches the mug?” (12; 43; 4), or closed-set skill selection from predefined actions (48; 27), or
language based planning (48; 2; 56). They either assume that the correct answers are in a list
of choices or only provide language-based planning. However, they overlook the crucial step of
grounding the outputs back into the visual space, which completes the perception–action loop.
Without this visual grounding, it is difficult to assess whether a model can truly reason and act in the
physical world. Precise visual grounding is therefore essential for evaluating embodied reasoning in
a realistic and interpretable manner. Such MCQs and language-based evaluation fail to examine the
VLM’s capability for fine-grained visual grounding and precise planning, which is critical for ER.

Claim: Current Embodied Reasoning benchmarks (Table 1) offer partial insights by focusing on
grounded inputs or language-based planning, but they overlook the need for precise pixel-level
grounding— a crucial step for making VLMs interpretable and actionable interfaces in real-world
embodied tasks (Section 3).

To bridge this gap, we propose to include visual grounding (52; 33; 35) as a natural complement to
language-based planning in embodied reasoning benchmarks. Here, we adapt the definition of visual
grounding from (45) into embodied reasoning tasks: by prompting models to localize pixel-space
bounding boxes, points, or trajectories based on language-described tasks, we directly assess their
accuracy against ground-truth human annotations, providing a clear measure of their embodied
reasoning capabilities under precise visual grounding settings. In this paper, we focus on 2D pixel
coordinates because precise 2D visual grounding is a scalable, cost-effective proxy task that isolates
core embodied reasoning from control dynamics, enabling efficient evaluation.

We propose PIO, a benchmark designed to systematically evaluate VLMs’ embodied reasoning
through precise visual grounding tasks across diverse real-world settings. PIO employs a hierarchical
evaluation protocol that decomposes embodied reasoning into three stages of increasing complex-
ity: (S1) referred object localization, (S2) task-driven pointing, and (S3) visual trace prediction
for spatiotemporal grounding. This structure mirrors the natural complexity of embodied tasks
progressively from simple object detection to more challenging tasks such as affordance prediction,
spatial reasoning, and task understanding. We further divide S1 and S2 into finer sub-categories, with
all labels annotated by humans, providing rich signals for assessing the ER capabilities of VLMs.

Our benchmark includes data from four key domains critical for embodied intelligence: household
rooms, kitchen environments, driving scenes, and robotic manipulation tasks. These scenarios require
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Table 1: Comparison of PIO with Existing Embodied Reasoning Benchmarks: We compare
benchmarks across five dimensions: (i) the range of scenarios covered, where icons denote robot
manipulation , household environments , kitchens , and driving scenes ; (ii) the total
number of tasks or questions; (iii) whether the benchmark requires pixel-grounded outputs (e.g.,
bounding boxes or keypoints); (iv) the presence of multi-modal input (e.g., vision and language); and
(v) the question type or expected model output format. While prior work predominantly focuses on
language-based or multiple-choice evaluation formats, PIO provides fine-grained, human-annotated
pixel-level signal across diverse embodied domains and task types (S1, S2, S3; see Section 3).

Benchmark Scenarios # Tasks Pixel Grounded Multi-modality Question Type

Cosmos-Reason1 (4) 600 ✗ ✓ Mutiple-Choices or T/F
Gemini-ERQA (43) 400 ✗ ✓ Mutiple-Choices
EmbodiedBench (48) (sim) 1200 ✗ ✓ Mutiple-Choices
EmbAgentInterface (27) (sim) 438 ✗ ✗ Language Plan
EmbSpatial-Bench (12) 3640 ✗ ✓ Language Plan & Skill Choose
Where2Place (54) 231 points ✓ Vacant Space Placement
RoboRefIt (32) 10k bbox ✓ Location
RefSpatial-Bench (58) 200 points ✓ Location / Placement

PIO (ours) 600 points,bbox,visual trace ✓ S1,S2,S3 (Section 3)

varying degrees of perceptual grounding, object understanding, spatial navigation, and physical
interaction, which are core capabilities for any vision-language agent operating in the real world.

We conduct extensive experiments across a wide range of state-of-the-art VLMs, including gen-
eral VLM e.g. GPT-4o (1), Claude-3.7 (3), Gemini 2.0-flash (22), Qwen2.5-VL (5), MoLMo-
7B (10);some strong reasoning models such as GPT-o3 (37) and Gemini-2.5 (22). Also, we test
models that are specifically fine-tuned on grounding tasks e.g RoboRefer (58) and MolmoAct (26).
Models explicitly trained for grounding tasks, such as Roborefer, Qwen2.5-VL and Molmo, consis-
tently outperform more general-purpose VLMs, including GPT-o3 and Claude-3.7. For all models,
our results reveal that there are still large performance gaps in precise visual grounding within
embodied reasoning settings, particularly in tasks requiring fine-grained localization and reasoning
about object affordances or physical contact.

In conclusion, our contributions are listed as follows:

1. We introduce precise visual grounding as a critical and scalable proxy for embodied reasoning,
addressing the limitations of existing benchmarks that primarily rely on multiple-choice evaluations
(Table 1).

2. We introduce PIO, a three-stage hierarchical benchmark (Section 3) spanning referred-object
localization, task-driven pointing, and visual trace prediction. The benchmark includes over 600+
human-annotated datapoints across diverse embodied scenarios (Section 4).

3. We evaluate over ten candidate vision-language models (VLMs) and uncovering key limitations
in their precise visual grounding capabilities for embodied reasoning. Our findings highlight the
need for targeted data to improve model grounding-aware capabilities (Section 5).

2 BACKGROUND AND RELATED WORKS

2.1 VISUAL GROUNDING OF VISION-LANGUAGE MODELS

Before large-scale Vision–Language Models (VLMs) emerged, visual grounding research is focused
on referring-expression comprehension (REC) (47; 52; 33). Pioneering datasets such as ReferItGame
(23) and RefCOCO (52) framed the task as localizing the image region that matches a unstructured
language description. Modern VLMs have pushed REC performance to new heights thanks to their
strong multi-modal understanding and instruction-follownig, making them much more generalized
in REC tasks. Many recent VLMs now build visual grounding directly as an important training
objectives: Kosmos-2 (39), Qwen-VL (5), and Gemini (15; 22) are trained with bounding boxes
annotations, whereas MoLMo (10) and RoboPoint (54) specialise in point-based localization. While
REC datasets (23; 52; 33; 44; 30; 40) serve as a useful reference for evaluating the localization
capabilities of VLMs, they primarily focus on basic object-level grounding in everyday scenes.
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S1 : Localize Referred Object
Different constraints e.g. granularity, 

location, color, material

S2: Task-Driven Grounding
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affordance, recommendation, prediction 

S3: Trajectory Prediction
Combine S1 and S2 to predict a 

trajectory to complete certain tasks
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The handle of the [left cup].

Where to act to open the [top
Drawer] of the rightmost storage 
cabinet?
The point to pick up the green 
[cup].

I am hungry, what can help me?

Open the second [drawer] from 
the bottom of the leftmost
storage cabinet.
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e

Class Ans(Object):
Explanations: … 
Ans: …

Calculate Scores

S1

S2

Figure 2: A Hierarchical Framework for Visual Grounding in Embodied Reasoning. We propose
a three-stage progression: S1 (object localization) localize objects explicited referred to in the text,
with some conditions like granularity and appearance; S2 (task-driven grounding) builds on S1 to
infer locations used in specific task, which may not be explicitly referred to in the text ; and S3 (visual
trace prediction) combines S1 and S2 to generate executable motion plans. Underlined text denotes
the referred object that needs to be localized (S1), while yellow highlights indicate task-contexts in
task-oriented reasoning (S2/S3).

Moreover, they lack coverage of embodied scenarios that require more nuanced forms of grounding
critical for task-related understanding: e.g., task-driven localization, affordance grounding, and visual
trace prediction.

2.2 BENCHMARKING VISION-LANGUAGE MODELS FOR EMBODIED REASONING

As Vision-Language Models (VLMs) are increasingly applied to embodied tasks, a growing number
of benchmark studies have been introduced to evaluate their reasoning capabilities. However, as
shown in Table 1, most existing benchmarks either rely on indirect evaluation formats such as
multiple-choice questions (4; 12; 43), generate high-level language-based plans (48; 27), or reduce
actions to predefined skill sets (48). Localization in robotic scenarios has been explored by (32; 54),
but these efforts are limited to indoor environments and focus only on simple object localization
or vacant space detection, where we will show is not enough as visual grounding for embodied
tasks (Section 3). The most recent benchmark is RefSpatial (58), but it focuses only on spatial
relations, including localizing objects and placement. In our work, we aim to construct a hierarchical
benchmark to evaluate critical visual grounding abilities essential for embodied reasoning, which
provides rich and meaningful signal for the ability of current models.

3 HIERARCHICAL DEFINITION OF VISUAL GROUNDING FOR EMBODIED
REASONING

In this section, we present a three-stage hierarchical framework that captures essential visual ground-
ing capabilities for embodied reasoning. The stages are arranged in increasing complexity, with
each level building upon previous ones. For example, the hierarchy derived from a household-robot
task is shown in Figure 2, with additional examples from other domains illustrated in Figure 3. For
each stage, we (i) define the specific visual grounding abilities it encompasses, (ii) provide relevant
subclasses and scenario-specific examples, and (iii) highlight its importance by identifying existing
embodied policy approaches that depend on these capabilities, either directly or indirectly.

3.1 S1: REFERRED OBJECT LOCALIZATION

Stage S1 focuses on identifying and localizing the specific objects in a scene as referenced by the
language instruction. S1 aligns closely with referring expression comprehension (REC) (47) tasks
commonly studied in the literature (47; 23; 32). In practice, language often includes additional
constraints to disambiguate the target object, such as spatial cues, color, or material properties.
Moreover, references may vary in granularity, ranging from whole objects to object parts (44). For
example, in the household task shown in Figure 2, “the middle pile of paper cups” includes a location-
based constraint, while “the handle of the left cup” involves both part-level and spatial restrictions.
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We further divide S1 into three main categories: object without ambiguity (single object), object with
constraints, and object part (See Figure 4 for examples of different subclasses).

S1 represents the most fundamental visual grounding capability required for embodied tasks: mapping
language references to visual entities. It is an essential skill for nearly all open-vocabulary, language-
guided policies, e.g. RT-series (7; 6; 36), OpenVLA (25),VIMA (21) and SayCan (2). As these
models must first localize the referred object implicitly or explicitly before reasoning about or
interacting with it.

3.2 S2: TASKED-DRIVEN GROUNDING

S2 goes beyond the explicit reference grounding in S1 by moving to a task-driven visual grounding:
determining which object or part of an object is relevant for the task and pinpointing where to interact
with it. Unlike S1, the entity to be localized may not be explicitly mentioned in the instruction, so it
needs reasoning over target object and understanding of the action affordance.

S2 challenges the model to recognize action-relevant locations such as handles, buttons, or lids—based
on contextual cues, even when these are not directly referred to in the instruction. For example, the
command “open the top drawer” requires the model to (1) identify which drawer is being referred to
(as in S1), and (2) localize the appropriate part to interact with (e.g., the handle). In another example,
when given “I’m hungry, help me,” the model must infer that a visible food item should be retrieved
and localize where to grasp it. Thus, the essence of S2 lies in perceiving the affordances of objects
and leveraging the task context to ground where to act. We further divide S2 into three categories:
affordance, contact, and recommendation/safety grounding (See Figure 4).

Stage S2 highlights how embodied visual grounding differs from standard computer-vision grounding.
A model that excels here shows a basic sense of how to interact with the physical world, links its
perception to the task, and reasons simply about where to act. S2 itself captures visual affordance
understanding, a key ingredient for general-purpose manipulation (11; 34; 18). Beyond that, it
underpins many modern, versatile robot policies, e.g. VLAs (25; 36): even when the policy is not
asked to output an affordance map, the robot still must know the right spot to act on.

3.3 S3: TASK-DRIVEN VISUAL TRACE PREDICTION

Building on the capabilities developed in S1 and S2, stage S3 assesses if VLM can plan accordingly
to complete the instructed tasks. Given a task, the model must produce a coarse 2D visual trace
that outlines how the task should be completed. Extending beyond S2, S3 introduces a temporal
component: the agent must integrate object understanding, affordance reasoning, and prior decisions
into a good motion path. While models proficient in S2 may handle simple pick-and-place tasks, S3
demands a more complete understanding of how to act e.g. generating a visual trace to wipe a table
with a sponge or open and close a drawer requires movement beyond a fixed action spot.

Visual trace is an important intermediate policy disentangled from low-level motor actions. In
particular, 2D visual traces have emerged as an increasingly valuable form of high-level intermediate
representation. For example, RT-Trajectory (16) and Robotic Visual Instruction (29) use 2D trajec-
tories as human-interpretable instructions to guide robots in task execution. Similarly, works such
as ATM (46), Hamster (28), TraceVLA (57), Im2Flow2Act, Motion-before-Action (42), General-
Flow (53) and Molmo-Act (26) incorporate 2D visual trace prediction as a critical stage, enhancing
policy interpretability and enabling broader generalization compared to purely language-based or
implicit state representations. Robobrain (20) includes predicting visual traces as an important
fine-tuning stage to train planners in robotics tasks.

4 BENCHMARK CURATION, CANDIDATE MODELS AND EVALUATION
METRICS

Our benchmark is made up of datapoints like (S, subclass, ⟨Img⟩, ⟨question⟩, ⟨mask⟩
)
,

where S ∈ {S1, S2, S3}. subclass defines which specific subclass in the stage this datapoint
belongs to. The left three attributes represent the input image, the question (description of the task),
and the ground-truth polygon-based segmentation mask for the question.
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The license plate of the [car] in front 
of me

The [road sign] of my right lane.

Which [lane] should I switch to to turn 
right?

Which [car] will be in front of me if I 
switch to the right lane?

The [utensil] to the left of the white plate.

The [utensil] to the right of the white plate.

What may I use to hold some water to drink?

Where should I act to use the fork?

The trajectory to pick up the cup and put it 
on the plate.

The [carrot] on the table.

What can I use to clean the sink?

Where’s my right hand holding the 
vegetable?
The trajectory to pick up the knife and 
put it on the cut board.

The trajectory to turn-off the [faucet].

The [soda can] on the table.

Where should I act to open the [top drawer]?

Which object is about to fall from the table?

The trajectory to pick up the object that is 
about to fall from the table.

S1: Localize Referred Object
Different constraints e.g. granularity, 

location, color, material

S2: Task-Driven Grounding
Rely on S1, task-driven reasoning e.g.

affordance, recommendation, prediction 

S3: Trajectory Prediction
Combine S1 and S2 to predict a 

trajectory to complete certain tasks

Figure 3: More Examples for Three-Stages Grounding across Embodied Tasks: We illustrate
more examples across driving, kitchen, and robotic domains that align with our three-stage hierarchy.

Where to pick up 
the black pot?

Where am I holding 
the spatula?

Which object is 
about to fall from 

the table?

What is the gripper 
going to grasp?

Where can I pour 
the water into?

The white car in 
front of me. The bowl on the 

upper left corner.
The lowest key of the 

piano.

The right wheel of 
the black car.

The backrest of 
the closest chair.

Object
w/o

Ambiguity
Object 

Part

Constraints

Affordance

Safety

Prediction

Contact

S1 S2

Recommendation

Figure 4: Examples and Distributions of S1 and S2 Subclasses: here we show examples of
subclasess for S1 (object w/o ambiguity, object part, and object with constraints in e.g. locations,
color) and S2 (affordance, prediction, safety, contact and recommendation); and also the % of them
in the each stage.

For S1 and S2, we collect 501 question–answer (QA) pairs across five diverse datasets (around 230
for S1 and 270 for S2): Where2Place (54) (Apache 2.0), Ego4D–EPIC-Kitchens (9) (CC BY-NC
4.0), BDD100K (51) (CC BY-NC), AgiBot (8) (CC BY-NC-SA 4.0), and RT-1 (7) (CC BY-NC-SA
4.0). Each dataset contributes around 50 images and corresponding QA pairs, covering domains such
as indoor scenes, kitchen manipulation, autonomous driving, and robotic control. This multi-domain
composition ensures diversity in both visual context and embodied reasoning challenges.

We construct our benchmark around four key embodied tasks, using data from the following datasets:
robot manipulation from RT-1 (7), DROID (24), and AgiBot (8); household environments
from Where2Place (54); kitchen activities from EPIC-Kitchens (9); and driving scenes from
BDD-100K (51). From these datasets, we extract image frames and select high-quality sample (e.g.
filtering out those with motion blur or unclear visuals) o build our benchmark.

Annotation: For the first two stages, each datapoint is manually annotated using standard polygon-
based segmentation tools (14). Guided by example prompts and a predefined set of stages and
subclasses for each dataset, human annotators generate a natural language question, assign the
appropriate stage and subclass, and provide an accurate polygon-based mask as the ground-truth
answer. To reduce potential bias in language descriptions, we use GPT-4o (1) to rewrite prompts in a
clearer and more formal manner, helping to minimize ambiguity and errors.

For S1 and S2, we collect 501 question–answer (QA) pairs across five diverse datasets (around 230
for S1 and 270 for S2): Where2Place, Ego4D-EpicKitchen, BDD100K, AgiBot, and RT-1. For S3,
we extract frames on the AgiBot, DROID, and RT-1 datasets, collecting 100 questions targeting
visual trace prediction tasks for robotic arms in images. In addition to the question and the predicted
visual trace, we annotate the starting 2D position of the robot arm to guide the model with the initial
configuration. We put more details and more examples about the dataset in the appendix.

Candidates Models The candidate models can be categorized by their output format. While most
general instruction-following vision-language models are capable of both point and bounding box
predictions, they tend to perform significantly better on one format over the other according to (54).
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Still far from human level

Figure 5: Performance on S1 and S2 for Different VLMs. (Left) Model scores on S1 and S2 tasks.
RoboRefer-SFT-8B, MoLMO-7B, Gemini-2.5-Pro, and Qwen-2.5-VL significantly outperform other
models. (Right) Average scores across S1 and S2 of different model in four distinct scenarios.

🤖

Figure 6: Per-subclass performance: (Left) In S1, every model shows a clear drop in accuracy
when localizing object parts. (Right) In S2, the contact and affordance (afd) subclasses remain the
most challenging, whereas recommendation is relatively easier for most models because it relies on
simple language-level reasoning. MoLMO (10) and Qwen-VL (5) attains the highest score on most
subclasses.

For instance, MoLMO (10) and RoboPoint (54) excel at point prediction but struggle with bounding
box outputs, whereas GPT-4o (1) more easily produces bounding boxes than points.

(VLMs that Output BoundingBoxes): We have strong black-box models: GPT-4o/4o-
mini (1), GPT-o3/o4-mini (37) (API version), Claude-3.7-Sonnet (3), Gemini-2.0-Flash (15), Gemini-
2.5-Flash/Pro (22); and also strong close sourced model like Qwen-2.5-VL-32B-Instruct (5). For
these models we prompt them to output only one bounding box that best match the location described
in the language descrption.

(VLMs that Output Points): Recent models try to do fine-tuning based on point-based
grounding due to its scalability (10). We include Molmo-7B-D (10) as a general-purpose-pointing
model, and RoboPoint (54), which is carefully fine-tuned using robotic data. For these models, we
prompt them to output one or a few points that best correspond to the target described in the language
input. All prompt templates used for evaluation are provided in the Appendix C.

Evaluation Metrics To ensure fair comparison across different output formats (points vs. bounding
boxes), we propose a normalized IoU metric for S1 and S2 that accounts for the difficulty of covering
irregular masks with rectangular boxes. This improves upon the biased point-in-mask evaluation
used in prior work (54). For S3, we evaluate visual trace quality using two methods: human ratings
on a 1–5 scale and GPT-o4-mini based assessments guided by predefined criteria (e.g. the overall
direction of the trajectory, the keypoint coverage, and the task feasibility). Further implementation
details can be found in the Appendix D.

5 EXPERIMENTS

In this section, we present several key insights derived from quantitative evaluations and visualizations
based on testing different VLMs on the PIO benchmark. We organize this section into blocks of key
findings, each followed by supporting evidence and analysis.
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What can tell me whether it is
allowed to turn right here?

Where should the right gripper 
grip to hand over the red chip?

Where is the right hand 
holding the pot?

Where can I act on 
to open the stove?

Where can I act on 
to pick up the 

rightmost mug?

The drawer on the
top layer.

Figure 7: Example predictions from different models on S1 and S2 tasks: here we show some
visualization of predicted bounding boxes and points of different VLMs for S1 and S2. More
visualizations of more models are put in the Appendix 9 and 10 .

4o
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2.5-pro

7B-D

2.5-VL

Lift the tray Pick up the green chip 
bag on the table

Take a piece of tissue from 
the green tissue box

Print the button of the 
water dispenser

Pick up the white cup 
and place it on the table

Turn off the faucet to 
stop the water flow

Pick up the right glove 
and put it on table

Close the top drawer by 
pushing the handle

Pick up the coke can on 
the second layer

1 2 3 40 5

MolmoAct

Figure 8: Visualizations and Scores on S3: We present visualizations of S3 visual trace predictions
from different models. The scores are shown on the right. Gemini-2.5-Pro, MolmoAct and GPT-o3
outperform other models, while MoLMO and Qwen, despite their strong performance on S1 and S2,
struggle with temporal visual trace prediction compared to stronger general-purpose models.

Finding 1: For S1 and S2, models that incorporate explicit grounding supervision such as
RoboRefer, MoLMO-7B-D, Gemini-2.5-Pro, and Qwen-2.5-VL consistently achieve the highest,
outperforming more general-purpose VLMs such as GPT-4o and Claude-3.7. This underscores
the importance of grounding data when precise spatial reasoning is required .

Figure 5 illustrates the overall performance of all candidate models on S1 (Referred Object Localiza-
tion) and S2 (Task-Driven Localization). RoboRefer, MoLMO and Qwen consistently outperform
other models across both tasks. Within the GPT series, GPT-o3 achieves the best results, likely due
to its enhanced reasoning capabilities, whereas smaller variants such as GPT-o4 mini and GPT-4o
mini perform noticeably worse. In the Gemini family, Gemini-2.5 Pro significantly outperforms both
Gemini-2.0 Flash and Gemini-2.5 Flash, and also slightly surpasses RoboPoint.

Although GPT-4o and Claude-3.7 have demonstrated strong performance in language-based embodied
reasoning on prior benchmarks (27; 48), they fall short on PIO where previse visual grounding is
needed.
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Finding 2: (i) Across all subclasses, every model exhibits a clear performance drop from S1 to
S2. (ii) Two critical embodied skills suffer most: in S1 they often miss the correct object part to
point to, and in S2 they struggle with affordance and contact prediction.

Looking at the performance of different subclasses in S1 and S2 (Figure 6), we find that most models
do not show much performance drop on tasks that only require simple language reasoning—such as
"object with restriction" in S1 and "recommendation" in S2. This is likely because the models can
handle basic reasoning before predicting the bounding box or point.

However, when it comes to more detailed tasks like localizing object parts, most models perform
significantly worse (left side of Figure 6). Even strong models like Qwen (5) and MoLMO (10) score
below 0.5. In S2, while most models handle recommendation well, they struggle with affordance and
contact prediction. Although MoLMO is the best in affordance, it still scores below 0.4.

These findings suggest that more attention should be paid to improving the grounding abilities of
models, especially for fine-grained tasks such as object part localization, affordance, and contact.
These are crucial skills if vision-language models are to truly act as grounded agents capable of
interacting with the real world.

Finding 3: S3 requires models to integrate single-target grounding into coherent visual trace
generation. While S1 and S2 are necessary prerequisites, they are not sufficient for a model to
succeed in S3. Gemini-2.5-pro shows promising results in S3 and also performs well in S1 and
S2. In contrast, MoLMO and Qwen, the top-performing models in S1 and S2, fail in S3.

To evaluate the performance in S3 (visual trace prediction), we visualize model outputs together
with human ratings and GPT-based assessments in Figure 8. Unlike S1 and S2, where fine-tuned
models such as MoLMO and Qwen show strong grounding capabilities, these models underperform
in visual trace generation. This suggests that although they can localize specific targets effectively,
they struggle to extend this capability into multi-step, temporally coherent planning.

In contrast, we find that Gemini-2.5-Pro (22) and GPT-o3 (26) (slightly outperforming GPT-4o)
generate more reasonable trajectories that (1) follow the correct overall direction and (2) successfully
reach the target objects. Gemini-2.5-Pro achieves almost 4 out of 5 in Figure 8 (right), it can be
attributed to the inclusion of embodied data and grounding data in the strong model (43). This
indicates that strongly pre-trained VLMs such as GPT-based models excel at handling complex
tasks that involve both grounding and planning, even without fine-tuning over 2D trajectory data.
In comparison, smaller models like MoLMO-7B and Qwen, while effective at isolated grounding
tasks, struggle to jointly perform grounding and visual trace planning, limiting their utility in more
integrated embodied scenarios (28; 16; 26).

Guideline for Model Users: For task does not require action generation (e.g. pick and place
based on points), prioritize models that perform well on S1 and S2. If the goal is to train a
robot policy using a VLM backbone, models that perform well on S3 - even if weaker on S1 /
S2, could be better candidates. Furthermore, users might consider adding grounding data and
fine-tuning to further improve performance for different stages.

6 CONCLUSIONS

In this work, we introduce PIO, a new benchmark designed to evaluate vision-language models
(VLMs) in precise visual grounding and embodied reasoning tasks. By decomposing the evaluation
into three stages, referred object localization (S1), task-driven localization (S2), and visual trace
prediction (S3), our benchmark reveals fine-grained insights into embodied reasoning ability of
different VLMs in regard of precise grounding. Through extensive quantitative and qualitative
evaluations of over ten state-of-the-art VLMs, we uncover several key findings: models fine-tuned
with grounding supervision excel at S1 and S2, but struggle with S3; in contrast, strong generalist
models perform better in multi-step reasoning and planning tasks, despite weaker spatial precision.
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[41] D. Shah, B. Osiński, S. Levine, et al. Lm-nav: Robotic navigation with large pre-trained models
of language, vision, and action. In Conference on robot learning, pages 492–504. PMLR, 2023.

[42] Y. Su, X. Zhan, H. Fang, Y.-L. Li, C. Lu, and L. Yang. Motion before action: Diffusing object
motion as manipulation condition. arXiv preprint arXiv:2411.09658, 2024.

[43] G. R. Team, S. Abeyruwan, J. Ainslie, J.-B. Alayrac, M. G. Arenas, T. Armstrong, A. Balakr-
ishna, R. Baruch, M. Bauza, M. Blokzijl, et al. Gemini robotics: Bringing ai into the physical
world. arXiv preprint arXiv:2503.20020, 2025.

[44] W. Wang, T. Yue, Y. Zhang, L. Guo, X. He, X. Wang, and J. Liu. Unveiling parts beyond objects:
Towards finer-granularity referring expression segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12998–13008, 2024.

[45] Z. Wang, Z. Zhou, J. Song, Y. Huang, Z. Shu, and L. Ma. Towards testing and evaluating
vision-language-action models for robotic manipulation: An empirical study. arXiv preprint
arXiv:2409.12894, 2024.

[46] C. Wen, X. Lin, J. So, K. Chen, Q. Dou, Y. Gao, and P. Abbeel. Any-point trajectory modeling
for policy learning. arXiv preprint arXiv:2401.00025, 2023.

[47] L. Xiao, X. Yang, X. Lan, Y. Wang, and C. Xu. Towards visual grounding: A survey. arXiv
preprint arXiv:2412.20206, 2024.

[48] R. Yang, H. Chen, J. Zhang, M. Zhao, C. Qian, K. Wang, Q. Wang, T. V. Koripella, M. Movahedi,
M. Li, et al. Embodiedbench: Comprehensive benchmarking multi-modal large language models
for vision-driven embodied agents. arXiv preprint arXiv:2502.09560, 2025.

[49] Z. Yin, C. Cheng, et al. Navigation with vlm framework: Go to any language. arXiv preprint
arXiv:2410.02787, 2024.

[50] J. You, H. Shi, Z. Jiang, Z. Huang, R. Gan, K. Wu, X. Cheng, X. Li, and B. Ran. V2x-vlm:
End-to-end v2x cooperative autonomous driving through large vision-language models. arXiv
preprint arXiv:2408.09251, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[51] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, T. Darrell, et al. Bdd100k: A diverse
driving video database with scalable annotation tooling. arXiv preprint arXiv:1805.04687,
2(5):6, 2018.

[52] L. Yu, P. Poirson, S. Yang, A. C. Berg, and T. L. Berg. Modeling context in referring expressions.
In ECCV, 2016.

[53] C. Yuan, C. Wen, T. Zhang, and Y. Gao. General flow as foundation affordance for scalable
robot learning. arXiv preprint arXiv:2401.11439, 2024.

[54] W. Yuan, J. Duan, V. Blukis, W. Pumacay, R. Krishna, A. Murali, A. Mousavian, and D. Fox.
Robopoint: A vision-language model for spatial affordance prediction for robotics. arXiv
preprint arXiv:2406.10721, 2024.

[55] J. Zhang, K. Wang, R. Xu, G. Zhou, Y. Hong, X. Fang, Q. Wu, Z. Zhang, and H. Wang.
Navid: Video-based vlm plans the next step for vision-and-language navigation. arXiv preprint
arXiv:2402.15852, 2024.

[56] W. Zhang, M. Wang, G. Liu, X. Huixin, Y. Jiang, Y. Shen, G. Hou, Z. Zheng, H. Zhang, X. Li,
et al. Embodied-reasoner: Synergizing visual search, reasoning, and action for embodied
interactive tasks. arXiv preprint arXiv:2503.21696, 2025.

[57] R. Zheng, Y. Liang, S. Huang, J. Gao, H. Daumé III, A. Kolobov, F. Huang, and J. Yang.
Tracevla: Visual trace prompting enhances spatial-temporal awareness for generalist robotic
policies. arXiv preprint arXiv:2412.10345, 2024.

[58] E. Zhou, J. An, C. Chi, Y. Han, S. Rong, C. Zhang, P. Wang, Z. Wang, T. Huang, L. Sheng, et al.
Roborefer: Towards spatial referring with reasoning in vision-language models for robotics.
arXiv preprint arXiv:2506.04308, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILS OF BENCHMARK CURATION

We collect frames from the following datasets:

• Driving

– BDD-100k (51): front camera view of driving scenes, CC BY-NC

• Household

– Where2Place (54): object placement in indoor scenes, Apache 2.0

• Kitchen

– EPIC-Kitchens (9): egocentric kitchen interactions, CC BY-NC 4.0

• Robot Manipulation

– RT-1 (7): real-world robot arm manipulation, CC BY-NC-SA 4.0

– DROID (24): real-world robot arm manipulation, MIT License

– AgiBot (8): real-world humanoid robot manipulation, CC BY-NC-SA 4.0

A.1 DATA COLLECTION FOR S1 AND S2

We use RoboFlow (14) to collect human-annotated masks in polygonal format, using images from
BDD100K, Where2Place, EPIC-Kitchens, RT-1 and AgiBot. The initial prompts for S1 and S2 are
generated by human annotators following a structured hierarchy and guided by subclass examples.
Table 2 summarizes the number of annotated images and question-answer (QA) pairs across different
datasets. Also, Table 3 shows examples of questions of different stages and sub-classes.

Dataset #Images #QAs
Where2Place 50 157
Epic-Kitchen 50 108
BDD-10k 51 135
AgiBot 36 45
RT-1 54 56

Total 241 501

Table 2: Number of annotated images and QA pairs for each dataset used in S1 and S2.

A.2 DATA COLLECTION FOR S3

For S3, we concentrate on robot manipulation, as it is the most suitable domain for visual trace
generation. We collect roughly 50 tasks from three datasets: AgiBot (8), DROID (24), and RT-1 (7).
Each task is posed to the models evaluated as a question paired with an image; examples are given
in Table 4. We did not include ground-truth trajectories because robot-manipulation problems are
inherently multimodal: A single objective can be achieved through many valid trajectories. Providing
a canonical answer would be potentially misleading.

B TESTED MODELS

We show all candidate models used in this paper in Table 5. For open-sourced models we ran them
locally on one Nvidia-A6000 GPU, for close-sourced models we use the provided API.
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Table 5: Models evaluated in this study.
Model Name Model ID Size Link
GPT-4o gpt-4o Unknown [link]
GPT-4o-mini gpt-4o-mini Unknown [link]
OpenAI o3 o3 Unknown [link]
OpenAI o4-mini o4-mini Unknown [link]
Claude-3.7-Sonnet claude-3-7-sonnet Unknown [link]
Gemini 2.0 Flash gemini-2.0-flash Unknown [link]
Gemini 2.5 Flash gemini-2.5-flash-preview-05-20 Unknown [link]
Gemini 2.5 Pro gemini-2.5-pro-preview-05-06 Unknown [link]
Molmo-7B-D allenai/Molmo-7B-D-0924 7B [link]
RoboPoint wentao-yuan/robopoint-v1-vicuna-v1.5-13b 13B [link]
Qwen 2.5 VL-32B Instruct Qwen/Qwen2.5-VL-32B-Instruct 32B [link]
Robobrain BAAI/RoboBrain 7B [link]
RoboRefer RoboRefer-8B-SFT 8B [link]
MolmoAct allenai/MolmoAct 7B [link]

C PROMPTS

Here we provide all the prompts used in this paper including:

• S1, S2 prompts for different models
• S3 prompts for selected models
• S3 auto evaluation prompts

S1 S2 Prompt - GPT

You are an agent skilled in spatial reasoning and object localization.
Given an image and a text description, output **only** the bounding box

that best matches the description, formatted as a tuple of
normalized integers: ‘(min_x, min_y, max_x, max_y)‘.

- Coordinates follow OpenCV format: ‘x‘ = column index, ‘y‘ = row index.
- **All values must be normalized to [0, 1]**.
- **Do not include any additional text or explanation.**

The output should be in the format of:

class ReturnedCoordinate(BaseModel):
explanations: str
min_x: float
min_y: float
max_x: float
max_y: float

> Image and description are provided below.
> Language description:
{question}
> Answer:

S1 S2 Prompt - Qwen

Locate to the bounding box of the area / object described in the
following question in json format: {question}.

- Do not output "there are none", the object always exists!
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- Please only output one bounding box !

S1 S2 Prompt - MoLMO

Point to one or more points that best correspond to the following
question:

{question}
Note: The object referenced in the question always exists, so do not

respond with "I don’t know." / "There are none"

Please DO NOT output any other texts besides points!

S1 S2 Prompt - RoboPoint

Please locate several points better fit the following question: {
question},

Your answer should be formatted as a list of tuples, i.e. [(x1, y1), (x2
, y2), ...], where each tuple contains the x and y coordinates of a
point satisfying the conditions above.

The coordinates should be between 0 and 1, indicating the normalized
pixel locations of the points in the image.

S3 Prompt - GPT

You are an agent to help me generate rough 2D visual trace to guided the
robot to compelte the tasks. Given a observation image, you are

told the current 2D location of the end-effector (marked in red in
the image).

You need to output a sequence of 2D points starting from the current
position as the rough trajectory to complete the task.

# Return Format
class ReturnedTrajectory():

explanations: str # analyzing process, e.g. decompose the task
trajectory: [(float, float)] # normalized points starting from red

marker

# Some Tips:
(1) take care of the contact point when interacting with the object, e.g

. handle of cup and bottle
(2) the trajectory should faithfully reflect the scale on the 2D pixel

space
(3) you can first detect the important point and put the reasoning

process in the explanations

# Task Description
{task}

# Current End-effector 2D position (marked in red in the image)
{eepose}

# You Answer as 2D Trajectory to Complete the Task

S3 Prompt - Qwen

Given the task description and the image observation, you need to output
a sequence of 2D points that can complete the task.
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You will also be offered the starting points of the current end-effector
(annotated in red marker in the given image) and its accurate 2D

position.
You need to return 5~10 points (x,y) as trajectory starting from the

current position. Do not return anything but points!

- Do not output "there are none", the trajectory always exists!

## Task Description:
{task}

## Current End-effector 2D position (marked in red in the image):
{eepose}

Please return your answer here, the format should be:
{’explanation’:’...’, ’trajectory’:[(x1, y1), (x2, y2), ...]}

# Answer:

S3 Prompt - MoLMO

Based on the input image, points to a sequence of 2D points in format of
html points as a rough trajectory to complete the following task: {

task},
the starting point is annotated in red in the image, and the position is

{eepose}.
Your output trajectory should start from it.

Your answer is:

S3 AutoScore Prompt

### Role
You are the evaluator responsible for scoring a model-generated

trajectory.

### Input
- **Image**: Shows the current scene.

- The task description is displayed at the top of the image.
- The trajectory originates at the red point (robot gripper) and

gradually shifts to blue as it progresses.

### Output
Provide:
1. **Score** - an integer from **1 to 5**.
2. **Rationale** - a brief explanation (2-3 sentences) justifying the

score.

| Score | Interpretation |
|-------|----------------|
| 1 | Poor trajectory - nonsensical path that cannot accomplish the task

. |
| 2 | Direction shows faint promise, but overall execution is

unsatisfactory. |
| 3 | General direction and keypoints are reasonable, yet important

flaws remain. |
| 4 | Largely correct; minor inaccuracies at some keypoints. |
| 5 | Excellent - visits all required keypoints and should successfully

complete the task. |

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

### Evaluation Criteria
- **Directional accuracy**
- **Keypoint coverage**
- **Task feasibility**

*(Keep explanations concise and focused on these criteria.)*

### Return Format
class Ans(BaseModel):

explanation: str # include your explanations
score: int # a score from 1 to 5

### Your Answer

D EVALUATION METRICS

S1 and S2: It is straight-forward to compare VLMs that output the same format (e.g. use IoU for
boundingboxes), it need more careful design to handle cases where models have different formats
of outputs. In (54), the authors evaluate performance using the percentage of predicted points that
fall within annotated masks. For bounding boxes, they uniformly sample points within the box to
enable comparison. Although it may not affect the final ranking in (54), the metric itself is flawed: it
introduces a bias toward point-based methods, the irregular shape of the mask makes it challenging
for bounding boxes to achieve high scores, as they cannot fully cover the masked area. In our
experiments for S1 and S2, we propose a normalized IoU metric to replace the evaluation method
used in (54). Specifically, we normalize the IoU score between the predicted bounding box and the
ground-truth mask using a reference term: the IoU between the tightest bounding box enclosing
the ground-truth mask and the mask itself. The final score is defined as: s =

IoU(bbxpred,mask)
IoU(bbxtight,mask) . This

normalization accounts for the inherent difficulty of tightly covering irregular-shaped masks with
rectangular boxes, allowing for a fairer comparison.

S3: To evaluate the quality of the proposed trajectories generated in S3, we employ two evaluation
metrics. First, human annotators are asked to score the outputs of various VLMs on a scale from 1 to
5. Second, we leverage GPT-o4-mini to assess and rate the trajectories based on prompts guided by
predefined evaluation criteria. The prompts we used are in Section C.

E MORE EXAMPLES OF S1 S2 PREDICTIONS

We show more examples in Figure 9 for underperformed models like GPT-4o, GPT-4o-mini, Claude-
3.7, Gemini-2.0-flash, GPT-4o and in Figure 10 for top rated models e.g. Qwen, Molmo and
Gemini-2.5-pro.

F MORE EXAMPLES OF S3 RESULTS

In Figure 11, we show more model prediction visualizations of trajectory prediction in S3.
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Figure 9: Model prediction visualization for GPT-4o, GPT-4o-mini, Claude-3.7, Gemini-2.0-flash,
GPT-4o, which underperform other models.
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Figure 10: Model prediction visualization for top rated models, e.g. Qwen, Molmo and Gemini-2.5-
pro.
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4o

o3

2.5-pro

7B-D

2.5-VL

4o

o3

2.5-pro

7B-D

2.5-VL

Figure 11: More model prediction visualizations of S3
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Stage Subclass Datasource Prompt
S1 object epickitchen The hand holding the spatula
S1 object agibot The empty space in the center of the wooden tray.
S1 object bdd10k The stop sign in front of me
S1 object where2place an empty pot
S1 object rt1 The green bag of chips on the table.
S1 object where2place the toothpaste
S1 object agibot The gripper holding the cup
S1 object bdd10k the lane to my right
S1 object epickitchen the sink
S1 object where2place a pair of scissors
S1 object bdd10k Car covered with multiple text inscriptions
S1 object bdd10k the black pickup truck to my right
S1 object epickitchen The only utensil on the table
S1 object bdd10k the nearest black trash bag
S1 object part bdd10k the left turn signal light of the car in front of me
S1 object part rt1 The handle of the second-level drawer
S1 object part epickitchen hand holding the spatula
S1 object part epickitchen sink strainer
S1 object part where2place The tail of the pink balloon dog.
S1 object part where2place The bottom left handle of the controller.
S1 restriction agibot The candies on the plate.
S1 restriction where2place the first flight of the staircase
S1 restriction bdd10k the car straddling the lanes
S1 restriction where2place the non-empty mug
S1 restriction bdd10k the black car turning left at the crossroads
S1 restriction where2place the pillow at the leftmost position on the sofa
S2 afd agibot Where should I press to flush the toilet?
S2 afd agibot Where can I place the fork after dinner?
S2 afd where2place Where should you act to open the second-highest

drawer?
S2 afd bdd10k The vacant space between the two cars in the left lane
S2 afd where2place Where should I act to pick up the portafilter?
S2 afd rt1 Where should I push to close the drawer?
S2 afd where2place Where should I interact with the fork in order to pick

it up?
S2 afd where2place Where should I act to open the bottom drawer?
S2 afd bdd10k Switch into the left-turn lane.
S2 afd where2place Where should I interact with the mug to open its cap?
S2 predict bdd10k Where will the car ahead of me be if I switch one lane

to the left?
S2 predict rt1 What is the robot arm going to grasp?
S2 predict bdd10k Which car will be in front of me if I switch to the left

lane?
S2 predict rt1 What is the robot arm going to grasp?
S2 recommend agibot What is the best gripper to use for picking up a carrot?
S2 recommend where2place What can I use to hold water for drinking?
S2 recommend epickitchen Where should I place my new pan for cooking?
S2 recommend where2place My hand is wet. What can I use to dry it?
S2 recommend where2place I’m feeling sleepy but I need to keep working. What

can help me feel more energetic?
S2 recommend bdd10k Which lane should I switch to if I follow the black car?
S2 recommend where2place What can I use to hold some water?
S2 contact agibot The point where the right gripper grasps the tray?
S2 safety bdd10k What should I check before making a U-turn here?
S2 safety bdd10k If something goes wrong with my car, where should I

park it to wait for help?

Table 3: Example 50 out of 500 prompts in S1 and S2
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Datasource Image ID Prompts

agibot 0 Pick up the kettle and pour water into the cup.
Pick up the kettle and put it to the right of the cup.
Pick up the cup.

agibot 1 Pick up the corn on the left and place it into the shopping cart.
Pick up the corn on the right and place it into the shopping
cart.
Move the trolley to the right.
Move the trolley to the left.

agibot 2 Wipe the surface of the toilet lid with a cloth.
Wipe the tank lid of the toilet with a cloth.

agibot 3 Pick up the coke bottle and place it to the left of the ice red
tea bottle.
Pick up the coke bottle and place it to the right space on the
table.

agibot 4 Lift the tray.
agibot 5 Reach to the key on the left gripper.

Open the door.
droid 0 Press the button on the water dispenser to stop the water flow.

Pick up the white cup and place it on the table.
droid 1 Turn off the faucet to stop the flow of water.

Pick up the right rubber glove and place it on the table.
droid 2 Clean the table with the cloth.
droid 3 Pick up the cup under the drinking machine and place it on

the table.
droid 4 Take a piece of tissue from the green tissue box.

Pick up the red cup and place it on the table.
rt1 0 Pick up the bottle on the table.

Pick up the green chip bag on the table.
rt1 1 Pick up the white bowl on the table and put it in the bottom

drawer.
rt1 2 Close the top drawer by pushing the handle.
rt1 3 Pick up the green soda can on the table and put it to the left of

the silver can.
rt1 4 Pick up the apple and put it to the left of the water bottle.

Pick up the apple and put it to the right of the water bottle.
Pick up the water bottle and put it to the right of the apple.
Pick up the water bottle and put it to the left of the apple.

rt1 5 Pick up the soda can in the drawer and put it on the vacant
space on the top half of the table.
Pick up the blue chip bag and put it inside the drawer.
Open the top drawer by pulling the handle.
Close the bottom drawer by pushing the handle.

rt1 9 Pick one orange and put it on the table.
I am hungry, please put something on the table for me to eat.

rt1 10 Clean the table using existing object on the table.
rt1 11 Pick up the coke on the top layer.

Pick up the coke on the second layer.

Table 4: Examples of questions in S3: Visual trace prediction
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