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Figure 1: Unlike prior benchmarks that rely on indirect evaluation (a), Point-It-Out (PI0) directly
assesses embodied reasoning (ER) by prompting VLMs to generate precise visual groundings—such
as points, bounding boxes, or trajectories—in a hierarchical manner as shown in (b). To our
knowledge, PTO is the first benchmark to offer pixel-level grounding for ER, spanning diverse
embodied tasks across multiple real-world scenarios.

ABSTRACT

Vision-Language Models (VLMs) have demonstrated impressive world knowledge
across a wide range of tasks, making them promising candidates for embodied
reasoning applications. However, existing benchmarks primarily evaluate the
embodied reasoning ability of VLMs through multiple-choice questions based on
image annotations — for example, selecting which trajectory better describes an
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event in the image. In this work, we introduce the Point-It-Out (P I0) benchmark,
a novel benchmark designed to systematically assess the embodied reasoning
abilities of VLMs through precise visual grounding. We propose a hierarchical
evaluation protocol spanning three stages (S1: referred-object localization, S2:
task-driven pointing, and S3: visual trace prediction), with data collected from
critical domains for embodied intelligence, including indoor, kitchen, driving, and
robotic manipulation scenarios. Extensive experiments with over ten state-of-the-
art VLMs reveal several interesting findings. For example, strong general-purpose
models such as GPT-40, while excelling on many benchmarks (e.g., language,
perception, and reasoning), underperform compared to some open-source models
in precise visual grounding; models such as MoLMO perform well in S1 and S2
but struggle in S3, where requires grounding combined with visual trace planning.

1 INTRODUCTION

Large-scale vision—language models (VLMs) (1; 5; 10; 15; 22) inherit the broad world knowledge
and powerful instruction-following abilities of large language models (LLMs) while grounding
them in visual inputs. Because these models can describe what they see and reason about how the
world works, they have quickly become the backbone of many embodied-Al systems: e.g. robot
manipulation (54; 13; 6; 36; 18; 17; 19), navigation (55; 41; 49) and autonomous-driving (38; 50; 31;

).

Despite the rapid adoption, there are still challenges in understanding the capacities of embodied
reasoning (ER) of VLMs, particularly in tasks requiring fine-grained visual grounding. Existing
benchmarks primarily focus on input-side understanding and perception, typically using usually
evaluate models with either multiple-choice questions (MCQs), e.g., “Which of these trajectories
reaches the mug?” (12; 43; 4), or closed-set skill selection from predefined actions (48; 27), or
language based planning (48; 2; 56). They either assume that the correct answers are in a list
of choices or only provide language-based planning. However, they overlook the crucial step of
grounding the outputs back into the visual space, which completes the perception—action loop.
Without this visual grounding, it is difficult to assess whether a model can truly reason and act in the
physical world. Precise visual grounding is therefore essential for evaluating embodied reasoning in
a realistic and interpretable manner. Such MCQs and language-based evaluation fail to examine the
VLM’s capability for fine-grained visual grounding and precise planning, which is critical for ER.

Claim: Current Embodied Reasoning benchmarks (Table 1) offer partial insights by focusing on
grounded inputs or language-based planning, but they overlook the need for precise pixel-level
grounding— a crucial step for making VLMs interpretable and actionable interfaces in real-world
embodied tasks (Section 3).

To bridge this gap, we propose to include visual grounding (52; 33; 35) as a natural complement to
language-based planning in embodied reasoning benchmarks. Here, we adapt the definition of visual
grounding from (45) into embodied reasoning tasks: by prompting models to localize pixel-space
bounding boxes, points, or trajectories based on language-described tasks, we directly assess their
accuracy against ground-truth human annotations, providing a clear measure of their embodied
reasoning capabilities under precise visual grounding settings. In this paper, we focus on 2D pixel
coordinates because precise 2D visual grounding is a scalable, cost-effective proxy task that isolates
core embodied reasoning from control dynamics, enabling efficient evaluation.

We propose PI0, a benchmark designed to systematically evaluate VLMs’ embodied reasoning
through precise visual grounding tasks across diverse real-world settings. P IO employs a hierarchical
evaluation protocol that decomposes embodied reasoning into three stages of increasing complex-
ity: (S1) referred object localization, (S2) task-driven pointing, and (S3) visual trace prediction
for spatiotemporal grounding. This structure mirrors the natural complexity of embodied tasks
progressively from simple object detection to more challenging tasks such as affordance prediction,
spatial reasoning, and task understanding. We further divide S1 and S2 into finer sub-categories, with
all labels annotated by humans, providing rich signals for assessing the ER capabilities of VLMs.

Our benchmark includes data from four key domains critical for embodied intelligence: household
rooms, kitchen environments, driving scenes, and robotic manipulation tasks. These scenarios require
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Table 1: Comparison of PI0 with Existing Embodied Reasoning Benchmarks: We compare
benchmarks across five dimensions: (i) the range of scenarios covered, where icons denote robot
manipulation €, household environments A, kitchens waw=, and driving scenes #8; (ii) the total
number of fasks or questions; (iii) whether the benchmark requires pixel-grounded outputs (e.g.,
bounding boxes or keypoints); (iv) the presence of multi-modal input (e.g., vision and language); and
(v) the question type or expected model output format. While prior work predominantly focuses on
language-based or multiple-choice evaluation formats, P IO provides fine-grained, human-annotated
pixel-level signal across diverse embodied domains and task types (S1, S2, S3; see Section 3).

Benchmark Scenarios # Tasks Pixel Grounded Multi-modality Question Type
Cosmos-Reason1 (4) & = 600 X v Mutiple-Choices or T/F
Gemini-ERQA (43) & 400 X v Mutiple-Choices
EmbodiedBench (48) & (sim) 1200 X v Mutiple-Choices
EmbAgentInterface (27) (sim) 438 X X Language Plan
EmbSpatial-Bench (12) a« 3640 X v Language Plan & Skill Choose
Where2Place (54) a« 231 points v Vacant Space Placement
RoboRefTt (32) A 10k bbox v Location
RefSpatial-Bench (58) A 200 points v Location / Placement
PIO (ours) & A - = 600 points,bbox,visual trace v $1,52,S3 (Section 3)

varying degrees of perceptual grounding, object understanding, spatial navigation, and physical
interaction, which are core capabilities for any vision-language agent operating in the real world.

We conduct extensive experiments across a wide range of state-of-the-art VLMs, including gen-
eral VLM e.g. GPT-4o (1), Claude-3.7 (3), Gemini 2.0-flash (22), Qwen2.5-VL (5), MoLMo-
7B (10);some strong reasoning models such as GPT-03 (37) and Gemini-2.5 (22). Also, we test
models that are specifically fine-tuned on grounding tasks e.g RoboRefer (58) and MolmoAct (26).
Models explicitly trained for grounding tasks, such as Roborefer, Qwen2.5-VL and Molmo, consis-
tently outperform more general-purpose VLMs, including GPT-03 and Claude-3.7. For all models,
our results reveal that there are still large performance gaps in precise visual grounding within
embodied reasoning settings, particularly in tasks requiring fine-grained localization and reasoning
about object affordances or physical contact.

In conclusion, our contributions are listed as follows:

1. We introduce precise visual grounding as a critical and scalable proxy for embodied reasoning,
addressing the limitations of existing benchmarks that primarily rely on multiple-choice evaluations
(Table 1).

2. We introduce PIO, a three-stage hierarchical benchmark (Section 3) spanning referred-object
localization, task-driven pointing, and visual trace prediction. The benchmark includes over 600+
human-annotated datapoints across diverse embodied scenarios (Section 4).

3. We evaluate over ten candidate vision-language models (VLMs) and uncovering key limitations
in their precise visual grounding capabilities for embodied reasoning. Our findings highlight the
need for targeted data to improve model grounding-aware capabilities (Section 5).

2 BACKGROUND AND RELATED WORKS

2.1 VISUAL GROUNDING OF VISION-LANGUAGE MODELS

Before large-scale Vision—Language Models (VLMs) emerged, visual grounding research is focused
on referring-expression comprehension (REC) (47; 52; 33). Pioneering datasets such as ReferltGame
(23) and RefCOCO (52) framed the task as localizing the image region that matches a unstructured
language description. Modern VLMs have pushed REC performance to new heights thanks to their
strong multi-modal understanding and instruction-follownig, making them much more generalized
in REC tasks. Many recent VLMs now build visual grounding directly as an important training

objectives: Kosmos-2 (39), Qwen-VL (5), and Gemini (15; 22) are trained with bounding boxes
annotations, whereas MoLMo (10) and RoboPoint (54) specialise in point-based localization. While
REC datasets (23; 52; 33; 44; 30; 40) serve as a useful reference for evaluatmg the localization

capabilities of VLMs, they primarily focus on basic object-level grounding in everyday scenes.



Under review as a conference paper at ICLR 2026

S1 : Localize Referred Object The middle pile of [paper cup]. Class Ans(Object):

Different constraints e.g. granularity, h Explanations: ...
location, color, material . The handle of the [left cup]. Ans: ...
g Calculate Scores
Z
& ! Task-Driven Grounding
= Rely on S1, task-driven reasoning e.g. o o™ .. 4,

g >§vR> Germini > Q5
¥ RS, (AT A ] St g >4v)> Gemini>
=
a

PR
36 > S > Geniini > 8%

N -
S3 Gemini >@> s', > 11_5

Open the second [drawer] from

(€] the bottom of the leftmost

storage cabinet.

S3: Trajectory Prediction
Combine 51 and $2 to predict a
trajectory to complete certain tasks

Figure 2: A Hierarchical Framework for Visual Grounding in Embodied Reasoning. We propose
a three-stage progression: S1 (object localization) localize objects explicited referred to in the text,
with some conditions like granularity and appearance; builds on S1 to
infer locations used in specific task, which may not be explicitly referred to in the text ; and

combines S1 and S2 to generate executable motion plans. Underlined text denotes

the referred object that needs to be localized (S1), while yellow highlights indicate task-contexts in
task-oriented reasoning (S2/S3).

Moreover, they lack coverage of embodied scenarios that require more nuanced forms of grounding
critical for task-related understanding: e.g., task-driven localization, affordance grounding, and visual
trace prediction.

2.2 BENCHMARKING VISION-LANGUAGE MODELS FOR EMBODIED REASONING

As Vision-Language Models (VLMs) are increasingly applied to embodied tasks, a growing number
of benchmark studies have been introduced to evaluate their reasoning capabilities. However, as
shown in Table |, most existing benchmarks either rely on indirect evaluation formats such as
multiple-choice questions (4; 12; 43), generate high-level language-based plans (48; 27), or reduce
actions to predefined skill sets (48). Localization in robotic scenarios has been explored by (32; 54),
but these efforts are limited to indoor environments and focus only on simple object localization
or vacant space detection, where we will show is not enough as visual grounding for embodied
tasks (Section 3). The most recent benchmark is RefSpatial (58), but it focuses only on spatial
relations, including localizing objects and placement. In our work, we aim to construct a hierarchical
benchmark to evaluate critical visual grounding abilities essential for embodied reasoning, which
provides rich and meaningful signal for the ability of current models.

3 HIERARCHICAL DEFINITION OF VISUAL GROUNDING FOR EMBODIED
REASONING

In this section, we present a three-stage hierarchical framework that captures essential visual ground-
ing capabilities for embodied reasoning. The stages are arranged in increasing complexity, with
each level building upon previous ones. For example, the hierarchy derived from a household-robot
task is shown in Figure 2, with additional examples from other domains illustrated in Figure 3. For
each stage, we (i) define the specific visual grounding abilities it encompasses, (ii) provide relevant
subclasses and scenario-specific examples, and (iii) highlight its importance by identifying existing
embodied policy approaches that depend on these capabilities, either directly or indirectly.

3.1 S1: REFERRED OBJECT LOCALIZATION

Stage S1 focuses on identifying and localizing the specific objects in a scene as referenced by the
language instruction. S1 aligns closely with referring expression comprehension (REC) (47) tasks
commonly studied in the literature (47; 23; 32). In practice, language often includes additional
constraints to disambiguate the target object, such as spatial cues, color, or material properties.
Moreover, references may vary in granularity, ranging from whole objects to object parts (44). For
example, in the household task shown in Figure 2, “the middle pile of paper cups” includes a location-
based constraint, while “the handle of the left cup” involves both part-level and spatial restrictions.
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We further divide S1 into three main categories: object without ambiguity (single object), object with
constraints, and object part (See Figure 4 for examples of different subclasses).

S1 represents the most fundamental visual grounding capability required for embodied tasks: mapping
language references to visual entities. It is an essential skill for nearly all open-vocabulary, language-
guided policies, e.g. RT-series (7; 6; 36), OpenVLA (25),VIMA (21) and SayCan (2). As these
models must first localize the referred object implicitly or explicitly before reasoning about or
interacting with it.

3.2 S2: TASKED-DRIVEN GROUNDING

S2 goes beyond the explicit reference grounding in S1 by moving to a task-driven visual grounding:
determining which object or part of an object is relevant for the task and pinpointing where to interact
with it. Unlike S1, the entity to be localized may not be explicitly mentioned in the instruction, so it
needs reasoning over target object and understanding of the action affordance.

S2 challenges the model to recognize action-relevant locations such as handles, buttons, or lids—based
on contextual cues, even when these are not directly referred to in the instruction. For example, the
command “open the top drawer” requires the model to (1) identify which drawer is being referred to
(asin S1), and (2) localize the appropriate part to interact with (e.g., the handle). In another example,
when given “I’m hungry, help me,” the model must infer that a visible food item should be retrieved
and localize where to grasp it. Thus, the essence of S2 lies in perceiving the affordances of objects
and leveraging the task context to ground where to act. We further divide S2 into three categories:
affordance, contact, and recommendation/safety grounding (See Figure 4).

Stage S2 highlights how embodied visual grounding differs from standard computer-vision grounding.
A model that excels here shows a basic sense of how to interact with the physical world, links its
perception to the task, and reasons simply about where to act. S2 itself captures visual affordance
understanding, a key ingredient for general-purpose manipulation (1 1; 34; 18). Beyond that, it
underpins many modern, versatile robot policies, e.g. VLAs (25; 36): even when the policy is not
asked to output an affordance map, the robot still must know the right spot to act on.

3.3 S3: TASK-DRIVEN VISUAL TRACE PREDICTION

Building on the capabilities developed in S1 and S2, stage S3 assesses if VLM can plan accordingly
to complete the instructed tasks. Given a task, the model must produce a coarse 2D visual trace
that outlines how the task should be completed. Extending beyond S2, S3 introduces a temporal
component: the agent must integrate object understanding, affordance reasoning, and prior decisions
into a good motion path. While models proficient in S2 may handle simple pick-and-place tasks, S3
demands a more complete understanding of how to act e.g. generating a visual trace to wipe a table
with a sponge or open and close a drawer requires movement beyond a fixed action spot.

Visual trace is an important intermediate policy disentangled from low-level motor actions. In
particular, 2D visual traces have emerged as an increasingly valuable form of high-level intermediate
representation. For example, RT-Trajectory (16) and Robotic Visual Instruction (29) use 2D trajec-
tories as human-interpretable instructions to guide robots in task execution. Similarly, works such
as ATM (46), Hamster (28), TraceVLA (57), Im2Flow2Act, Motion-before-Action (42), General-
Flow (53) and Molmo-Act (26) incorporate 2D visual trace prediction as a critical stage, enhancing
policy interpretability and enabling broader generalization compared to purely language-based or
implicit state representations. Robobrain (20) includes predicting visual traces as an important
fine-tuning stage to train planners in robotics tasks.

4 BENCHMARK CURATION, CANDIDATE MODELS AND EVALUATION
METRICS

Our benchmark is made up of datapoints like (S, subclass, (Img), (question), (mask)),
where S € {S1, Sa, S3}. subclass defines which specific subclass in the stage this datapoint
belongs to. The left three attributes represent the input image, the question (description of the task),
and the ground-truth polygon-based segmentation mask for the question.



Under review as a conference paper at ICLR 2026

;;vs license plate of the [car] In front The [utensli] to the left of the white plate.

S1: Localize Referred Object me

Different constraints e.q. granularity,
location, color, material

The [road sign] of my right fane. The [utensii] to the right of the white plafe.
e to hold some water to drink?
Which [lane] should I switch to to furn
right? Where should | act fo use the fork?

Which [car] will be in front of me if |
?

The trajectory to pick up th d put i
switch to the right lane? e trajectory fo plck up the cup and pui

on the plate.
52 Task-Driven Grounding
Rely on S1, task-driven reasoning e.q.

affordance, ion, prediction

The [carrot] on the table. The [soda can] on the fable.

What can | use to clean the sink? Where should  act to open the [top drawer]?
Whers’s my right hand holding the
vegetable?

The trajectory to pick up the knife and
put it on the cut board.

. o Which object Is about fo fall from the table?
S3: Trajectory Prediction
Combine 51 and 2 to predict a
trajectory to complete certain tasks

The tmjmorgom pick up Ihe object that is
e.

The trafectory o furn-off the [faucet]. about fo fall from the tabl
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in the each stage.

For S1 and S2, we collect 501 question—answer (QA) pairs across five diverse datasets (around 230
for S1 and 270 for S2): Where2Place (54) (Apache 2.0), Ego4D-EPIC-Kitchens (9) (CC BY-NC
4.0), BDDI0OK (51) (CC BY-NC), AgiBot (8) (CC BY-NC-SA 4.0), and RT-1 (7) (CC BY-NC-SA
4.0). Each dataset contributes around 50 images and corresponding QA pairs, covering domains such
as indoor scenes, kitchen manipulation, autonomous driving, and robotic control. This multi-domain
composition ensures diversity in both visual context and embodied reasoning challenges.

We construct our benchmark around four key embodied tasks, using data from the following datasets:
robot manipulation & from RT-1 (7), DROID (24), and AgiBot (8); household environments @&
from Where2Place (54); kitchen activities wa= from EPIC-Kitchens (9); and driving scenes & from
BDD-100K (51). From these datasets, we extract image frames and select high-quality sample (e.g.
filtering out those with motion blur or unclear visuals) o build our benchmark.

Annotation: For the first two stages, each datapoint is manually annotated using standard polygon-
based segmentation tools (14). Guided by example prompts and a predefined set of stages and
subclasses for each dataset, human annotators generate a natural language question, assign the
appropriate stage and subclass, and provide an accurate polygon-based mask as the ground-truth
answer. To reduce potential bias in language descriptions, we use GPT-40 (1) to rewrite prompts in a
clearer and more formal manner, helping to minimize ambiguity and errors.

For S1 and S2, we collect 501 question—answer (QA) pairs across five diverse datasets (around 230
for S1 and 270 for S2): Where2Place, Ego4D-EpicKitchen, BDD100K, AgiBot, and RT-1. For S3,
we extract frames on the AgiBot, DROID, and RT-1 datasets, collecting 100 questions targeting
visual trace prediction tasks for robotic arms in images. In addition to the question and the predicted
visual trace, we annotate the starting 2D position of the robot arm to guide the model with the initial
configuration. We put more details and more examples about the dataset in the appendix.

Candidates Models The candidate models can be categorized by their output format. While most
general instruction-following vision-language models are capable of both point and bounding box
predictions, they tend to perform significantly better on one format over the other according to (54).
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Figure 5: Performance on S1 and S2 for Different VLMs. (Left) Model scores on S1 and S2 tasks.
RoboRefer-SFT-8B, MoLMO-7B, Gemini-2.5-Pro, and Qwen-2.5-VL significantly outperform other
models. (Right) Average scores across S1 and S2 of different model in four distinct scenarios.
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Figure 6: Per-subclass performance: (Left) In S1, every model shows a clear drop in accuracy
when localizing object parts. (Right) In S2, the contact and affordance (afd) subclasses remain the
most challenging, whereas recommendation is relatively easier for most models because it relies on
simple language-level reasoning. MoLMO (10) and Qwen-VL (5) attains the highest score on most
subclasses.

For instance, MoLMO (10) and RoboPoint (54) excel at point prediction but struggle with bounding
box outputs, whereas GPT-40 (1) more easily produces bounding boxes than points.

(VLMs that Output BoundingBoxes) : We have strong black-box models: GPT-40/40-
mini (1), GPT-03/04-mini (37) (API version), Claude-3.7-Sonnet (3), Gemini-2.0-Flash (15), Gemini-
2.5-Flash/Pro (22); and also strong close sourced model like Qwen-2.5-VL-32B-Instruct (5). For
these models we prompt them to output only one bounding box that best match the location described
in the language descrption.

(VLMs that Output Points) : Recent models try to do fine-tuning based on point-based
grounding due to its scalability (10). We include Molmo-7B-D (10) as a general-purpose-pointing
model, and RoboPoint (54), which is carefully fine-tuned using robotic data. For these models, we
prompt them to output one or a few points that best correspond to the target described in the language
input. All prompt templates used for evaluation are provided in the Appendix C.

Evaluation Metrics To ensure fair comparison across different output formats (points vs. bounding
boxes), we propose a normalized IoU metric for S1 and S2 that accounts for the difficulty of covering
irregular masks with rectangular boxes. This improves upon the biased point-in-mask evaluation
used in prior work (54). For S3, we evaluate visual trace quality using two methods: human ratings
on a 1-5 scale and GPT-o04-mini based assessments guided by predefined criteria (e.g. the overall
direction of the trajectory, the keypoint coverage, and the task feasibility). Further implementation
details can be found in the Appendix D.

5 EXPERIMENTS

In this section, we present several key insights derived from quantitative evaluations and visualizations
based on testing different VLMs on the PTO benchmark. We organize this section into blocks of key
findings, each followed by supporting evidence and analysis.



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

[ Ground Truth
[ gpt-o3 .
[ gemini-2.5-flash
% robopoint

Where should the right gripper
grip to hand over the red chip?

=3 gemini-2.5-pro
[0 qwen2.5-vl
% molmo-7b
# roborefer

What can tell me whether it is
allowed to turn right here?

Where is the right hand
holding the pot?

The drawer on the

top layer. i
Y Where can I act on .
to pick up the 4 Where can | act on

rightmost mug? ! g to open the stove?

us

Figure 7: Example predictions from different models on S1 and S2 tasks: here we show some
visualization of predicted bounding boxes and points of different VLMs for S1 and S2. More
visualizations of more models are put in the Appendix 9 and 10 .

Print the button of the

Pick up the white cup Turn off the foucet to
and place it on the table stop the water flow and put it on table

21035 149
|eA3 uewny .

Figure 8: Visualizations and Scores on S3: We present visualizations of S3 visual trace predictions
from different models. The scores are shown on the right. Gemini-2.5-Pro, MolmoAct and GPT-03
outperform other models, while MoLMO and Qwen, despite their strong performance on S1 and S2,
struggle with temporal visual trace prediction compared to stronger general-purpose models.

Finding 1: For S1 and S2, models that incorporate explicit grounding supervision such as
RoboRefer, MoLMO-7B-D, Gemini-2.5-Pro, and Qwen-2.5-VL consistently achieve the highest,
outperforming more general-purpose VLMs such as GPT-40 and Claude-3.7. This underscores
the importance of grounding data when precise spatial reasoning is required .

Figure 5 illustrates the overall performance of all candidate models on S1 (Referred Object Localiza-
tion) and S2 (Task-Driven Localization). RoboRefer, MoLMO and Qwen consistently outperform
other models across both tasks. Within the GPT series, GPT-03 achieves the best results, likely due
to its enhanced reasoning capabilities, whereas smaller variants such as GPT-04 mini and GPT-40
mini perform noticeably worse. In the Gemini family, Gemini-2.5 Pro significantly outperforms both
Gemini-2.0 Flash and Gemini-2.5 Flash, and also slightly surpasses RoboPoint.

Although GPT-40 and Claude-3.7 have demonstrated strong performance in language-based embodied
reasoning on prior benchmarks (27; 48), they fall short on PIO where previse visual grounding is
needed.
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Finding 2: (i) Across all subclasses, every model exhibits a clear performance drop from S1 to
S2. (ii) Two critical embodied skills suffer most: in S1 they often miss the correct object part to
point to, and in S2 they struggle with affordance and contact prediction.

Looking at the performance of different subclasses in S1 and S2 (Figure 6), we find that most models
do not show much performance drop on tasks that only require simple language reasoning—such as
"object with restriction" in S1 and "recommendation” in S2. This is likely because the models can
handle basic reasoning before predicting the bounding box or point.

However, when it comes to more detailed tasks like localizing object parts, most models perform
significantly worse (left side of Figure 6). Even strong models like Qwen (5) and MoLMO (10) score
below 0.5. In S2, while most models handle recommendation well, they struggle with affordance and
contact prediction. Although MoLMO is the best in affordance, it still scores below 0.4.

These findings suggest that more attention should be paid to improving the grounding abilities of
models, especially for fine-grained tasks such as object part localization, affordance, and contact.
These are crucial skills if vision-language models are to truly act as grounded agents capable of
interacting with the real world.

Finding 3: S3 requires models to integrate single-target grounding into coherent visual trace
generation. While S1 and S2 are necessary prerequisites, they are not sufficient for a model to
succeed in S3. Gemini-2.5-pro shows promising results in S3 and also performs well in S1 and
S2. In contrast, MoLMO and Qwen, the top-performing models in S1 and S2, fail in S3.

To evaluate the performance in S3 (visual trace prediction), we visualize model outputs together
with human ratings and GPT-based assessments in Figure 8. Unlike S1 and S2, where fine-tuned
models such as MoLMO and Qwen show strong grounding capabilities, these models underperform
in visual trace generation. This suggests that although they can localize specific targets effectively,
they struggle to extend this capability into multi-step, temporally coherent planning.

In contrast, we find that Gemini-2.5-Pro (22) and GPT-03 (26) (slightly outperforming GPT-40)
generate more reasonable trajectories that (1) follow the correct overall direction and (2) successfully
reach the target objects. Gemini-2.5-Pro achieves almost 4 out of 5 in Figure & (right), it can be
attributed to the inclusion of embodied data and grounding data in the strong model (43). This
indicates that strongly pre-trained VLMs such as GPT-based models excel at handling complex
tasks that involve both grounding and planning, even without fine-tuning over 2D trajectory data.
In comparison, smaller models like MoLMO-7B and Qwen, while effective at isolated grounding
tasks, struggle to jointly perform grounding and visual trace planning, limiting their utility in more
integrated embodied scenarios (28; 16; 206).

Guideline for Model Users: For task does not require action generation (e.g. pick and place
based on points), prioritize models that perform well on S1 and S2. If the goal is to train a
robot policy using a VLM backbone, models that perform well on S3 - even if weaker on S1 /
S2, could be better candidates. Furthermore, users might consider adding grounding data and
fine-tuning to further improve performance for different stages.

6 CONCLUSIONS

In this work, we introduce PIO, a new benchmark designed to evaluate vision-language models
(VLMs) in precise visual grounding and embodied reasoning tasks. By decomposing the evaluation
into three stages, referred object localization (S1), task-driven localization (S2), and visual trace
prediction (S3), our benchmark reveals fine-grained insights into embodied reasoning ability of
different VLMs in regard of precise grounding. Through extensive quantitative and qualitative
evaluations of over ten state-of-the-art VLMs, we uncover several key findings: models fine-tuned
with grounding supervision excel at S1 and S2, but struggle with S3; in contrast, strong generalist
models perform better in multi-step reasoning and planning tasks, despite weaker spatial precision.
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A DETAILS OF BENCHMARK CURATION

We collect frames from the following datasets:

* Driving

— BDD-100k (51): front camera view of driving scenes,
* Household

— Where2Place (54): object placement in indoor scenes,
* Kitchen

— EPIC-Kitchens (9): egocentric kitchen interactions,
* Robot Manipulation

— RT-1 (7): real-world robot arm manipulation,
— DROID (24): real-world robot arm manipulation,

— AgiBot (8): real-world humanoid robot manipulation,

A.1 DATA COLLECTION FOR S1 AND S2

We use RoboFlow (14) to collect human-annotated masks in polygonal format, using images from
BDDI100K, Where2Place, EPIC-Kitchens, RT-1 and AgiBot. The initial prompts for S1 and S2 are
generated by human annotators following a structured hierarchy and guided by subclass examples.
Table 2 summarizes the number of annotated images and question-answer (QA) pairs across different
datasets. Also, Table 3 shows examples of questions of different stages and sub-classes.

Dataset #Images #QAs
Where2Place 50 157
Epic-Kitchen 50 108
BDD-10k 51 135
AgiBot 36 45
RT-1 54 56
Total 241 501

Table 2: Number of annotated images and QA pairs for each dataset used in S1 and S2.

A.2 DATA COLLECTION FOR S3

For S3, we concentrate on robot manipulation, as it is the most suitable domain for visual trace
generation. We collect roughly 50 tasks from three datasets: AgiBot (8), DROID (24), and RT-1 (7).
Each task is posed to the models evaluated as a question paired with an image; examples are given
in Table 4. We did not include ground-truth trajectories because robot-manipulation problems are
inherently multimodal: A single objective can be achieved through many valid trajectories. Providing
a canonical answer would be potentially misleading.

B TESTED MODELS

We show all candidate models used in this paper in Table 5. For open-sourced models we ran them
locally on one Nvidia-A6000 GPU, for close-sourced models we use the provided API.
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Table 5: Models evaluated in this study.

Model Name Model ID Size Link
GPT-40 gpt-4o Unknown  [link]
GPT-40-mini gpt—-4o-mini Unknown  [link]
OpenAl 03 03 Unknown  [link]
OpenAl 04-mini o4-mini Unknown  [link]
Claude-3.7-Sonnet claude-3-7-sonnet Unknown  [link]
Gemini 2.0 Flash gemini-2.0-flash Unknown  [link]
Gemini 2.5 Flash gemini-2.5-flash-preview—-05-20 Unknown [link]
Gemini 2.5 Pro gemini-2.5-pro-preview-05-06 Unknown [link]
Molmo-7B-D allenai/Molmo-7B-D-0924 7B [link]
RoboPoint wentao—-yuan/robopoint-vl-vicuna-vl1.5-13b 13B [link]
Qwen 2.5 VL-32B Instruct Qwen/Qwen?2.5-VL-32B-Instruct 32B [link]
Robobrain BAAI/RoboBrain 7B [link]
RoboRefer RoboRefer—-8B-SFT 8B [link]
MolmoAct allenai/MolmoAct 7B [link]

C PROMPTS

Here we provide all the prompts used in this paper including:

* S1, S2 prompts for different models

* S3 prompts for selected models

* S3 auto evaluation prompts

S1 S2 Prompt - GPT

{question}
> Answer:

— Coordinates follow OpenCV format:
— *xAll values must be normalized to [O,
— xxDo not include any additional text or explanation.xx

explanations: str
min_x: float
min_y: float
max_x: float
max_y: float

You are an agent skilled in spatial reasoning and object localization.
Given an image and a text description,
that best matches the description,
normalized integers:

formatted as a tuple of

‘(min_x, min_y, max_x, max_y) ‘.

‘x' = column index, ‘y‘ =

1] %x*.

The output should be in the format of:

class ReturnedCoordinate (BaseModel) :

> Image and description are provided below.
> Language description:

output **onlyxx the bounding box

row index.

- Do not output

"there are none",

S1 S2 Prompt - Qwen

Locate to the bounding box of the area / object described in the
following question in Jjson format:

{question}.

the object always exists!
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— Please only output one bounding box !

S1 S2 Prompt - MoLMO

Point to one or more points that best correspond to the following
question:

{question}

Note: The object referenced in the question always exists, so do not
respond with "I don’t know." / "There are none"

Please DO NOT output any other texts besides points!

S1 S2 Prompt - RoboPoint

Please locate several points better fit the following question: {
question},

Your answer should be formatted as a list of tuples, i.e. [(x1, yl), (x2
, v2), ...], where each tuple contains the x and y coordinates of a
point satisfying the conditions above.

The coordinates should be between 0 and 1, indicating the normalized
pixel locations of the points in the image.

S3 Prompt - GPT

You are an agent to help me generate rough 2D visual trace to guided the
robot to compelte the tasks. Given a observation image, you are
told the current 2D location of the end-effector (marked in red in

the image) .
You need to output a sequence of 2D points starting from the current
position as the rough trajectory to complete the task.

# Return Format
class ReturnedTrajectory() :
explanations: str # analyzing process, e.g. decompose the task
trajectory: [(float, float)] # normalized points starting from red
marker

# Some Tips:
(1) take care of the contact point when interacting with the object, e.g
handle of cup and bottle
(2) the trajectory should faithfully reflect the scale on the 2D pixel
space
(3) you can first detect the important point and put the reasoning
process in the explanations

# Task Description
{task}

# Current End-effector 2D position (marked in red in the image)
{eepose}

# You Answer as 2D Trajectory to Complete the Task

S3 Prompt - Qwen

Given the task description and the image observation, you need to output
a sequence of 2D points that can complete the task.
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You will also be offered the starting points of the current end-effector
(annotated in red marker in the given image) and its accurate 2D
position.
You need to return 5~10 points (x,y) as trajectory starting from the
current position. Do not return anything but points!

- Do not output "there are none", the trajectory always exists!

## Task Description:
{task}

## Current End-effector 2D position (marked in red in the image) :
{eepose}

Please return your answer here, the format should be:
{’explanation’:’...’, ’trajectory’:[(x1l, vyl), (x2, y2), ...1}

# Answer:

S3 Prompt - MoLMO

Based on the input image, points to a sequence of 2D points in format of
html points as a rough trajectory to complete the following task: {
task},
the starting point is annotated in red in the image, and the position is
{eepose}.
Your output trajectory should start from it.

Your answer is:

S3 AutoScore Prompt

### Role
You are the evaluator responsible for scoring a model-generated
trajectory.

### Input
- xxImagex**: Shows the current scene.
— The task description is displayed at the top of the image.
— The trajectory originates at the red point (robot gripper) and
gradually shifts to blue as it progresses.

### Output

Provide:

1. *xScorexx — an integer from **x1 to 5x%x.

2. *xRationalexx — a brief explanation (2-3 sentences) Jjustifying the
score.

| Score | Interpretation |

| —————— |- |

| 1 | Poor trajectory — nonsensical path that cannot accomplish the task

|

| 2 | Direction shows faint promise, but overall execution is
unsatisfactory. |

| 3 | General direction and keypoints are reasonable, yet important
flaws remain. |

| 4 | Largely correct; minor inaccuracies at some keypoints. |

| 5 | Excellent - visits all required keypoints and should successfully

complete the task. |




Under review as a conference paper at ICLR 2026

### Evaluation Criteria

— xxDirectional accuracyxx*
- xxKeypoint coveragex*x*

— xxTask feasibilityxx*

* (Keep explanations concise and focused on these criteria.)
### Return Format
class Ans (BaseModel) :

explanation: str # include your explanations

score: int # a score from 1 to 5

### Your Answer

D EVALUATION METRICS

S1 and S2: It is straight-forward to compare VLMs that output the same format (e.g. use IoU for
boundingboxes), it need more careful design to handle cases where models have different formats
of outputs. In (54), the authors evaluate performance using the percentage of predicted points that
fall within annotated masks. For bounding boxes, they uniformly sample points within the box to
enable comparison. Although it may not affect the final ranking in (54), the metric itself is flawed: it
introduces a bias toward point-based methods, the irregular shape of the mask makes it challenging
for bounding boxes to achieve high scores, as they cannot fully cover the masked area. In our
experiments for S1 and S2, we propose a normalized IoU metric to replace the evaluation method
used in (54). Specifically, we normalize the IoU score between the predicted bounding box and the
ground-truth mask using a reference term: the IoU between the tightest bounding box enclosing

the ground-truth mask and the mask itself. The final score is defined as: s = m’_ﬂ. This
Xiight ;Mask )
normalization accounts for the inherent difficulty of tightly covering irregular-shaped masks with

rectangular boxes, allowing for a fairer comparison.

S3: To evaluate the quality of the proposed trajectories generated in S3, we employ two evaluation
metrics. First, human annotators are asked to score the outputs of various VLMs on a scale from 1 to
5. Second, we leverage GPT-04-mini to assess and rate the trajectories based on prompts guided by
predefined evaluation criteria. The prompts we used are in Section

E MORE EXAMPLES OF S1 S2 PREDICTIONS

We show more examples in Figure 9 for underperformed models like GPT-40, GPT-40-mini, Claude-
3.7, Gemini-2.0-flash, GPT-40 and in Figure for top rated models e.g. Qwen, Molmo and
Gemini-2.5-pro.

F MORE EXAMPLES OF S3 RESULTS

In Figure 11, we show more model prediction visualizations of trajectory prediction in S3.
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Figure 9: Model prediction visualization for GPT-40, GPT-40-mini, Claude-3.7, Gemini-2.0-flash,
GPT-40, which underperform other models.
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Figure 10: Model prediction visualization for top rated models, e.g. Qwen, Molmo and Gemini-2.5-
pro.



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Gemini
2.5-pro
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Figure 11: More model prediction visualizations of S3
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Stage Subclass Datasource  Prompt
S1 object epickitchen  The hand holding the spatula
S1 object agibot The empty space in the center of the wooden tray.
Sl object bdd10k The stop sign in front of me
S1 object where2place  an empty pot
S1 object rtl The green bag of chips on the table.
S1 object where2place  the toothpaste
S1 object agibot The gripper holding the cup
S1 object bdd10k the lane to my right
S1 object epickitchen  the sink
S1 object where2place  a pair of scissors
S1 object bdd10k Car covered with multiple text inscriptions
Sl object bdd10k the black pickup truck to my right
S1 object epickitchen  The only utensil on the table
S1 object bdd10k the nearest black trash bag
S1 object part  bdd10k the left turn signal light of the car in front of me
S1 object part  rtl The handle of the second-level drawer
S1 object part  epickitchen  hand holding the spatula
S1 object part  epickitchen  sink strainer
S1 object part ~ where2place The tail of the pink balloon dog.
S1 object part ~ where2place The bottom left handle of the controller.
S1 restriction agibot The candies on the plate.
S1 restriction where2place  the first flight of the staircase
S1 restriction bdd10k the car straddling the lanes
S1 restriction where2place  the non-empty mug
S1 restriction bdd10k the black car turning left at the crossroads
S1 restriction where2place the pillow at the leftmost position on the sofa
afd agibot Where should I press to flush the toilet?
afd agibot Where can I place the fork after dinner?
afd where2place  Where should you act to open the second-highest
drawer?
afd bdd10k The vacant space between the two cars in the left lane
afd where2place  Where should I act to pick up the portafilter?
afd rtl Where should I push to close the drawer?
afd where2place  Where should I interact with the fork in order to pick
it up?
afd where2place  Where should I act to open the bottom drawer?
afd bdd10k Switch into the left-turn lane.
afd where2place  Where should I interact with the mug to open its cap?
predict bdd10k Where will the car ahead of me be if I switch one lane
to the left?
predict rtl What is the robot arm going to grasp?
predict bdd10k Which car will be in front of me if I switch to the left
lane?
predict rtl What is the robot arm going to grasp?
recommend agibot What is the best gripper to use for picking up a carrot?
recommend where2place 'What can I use to hold water for drinking?
recommend epickitchen =~ Where should I place my new pan for cooking?
recommend where2place My hand is wet. What can I use to dry it?
recommend where2place I’'m feeling sleepy but I need to keep working. What
can help me feel more energetic?
recommend bdd10k Which lane should I switch to if I follow the black car?
recommend where2place What can I use to hold some water?
contact agibot The point where the right gripper grasps the tray?
safety bdd10k What should I check before making a U-turn here?
safety bdd10k If something goes wrong with my car, where should I

park it to wait for help?

Table 3: Example 50 out of 500 prompts in S1 and S2
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Datasource

Image ID

Prompts

agibot

agibot

agibot

agibot

agibot
agibot

droid
droid

droid
droid

droid
rtl
rtl

rtl
rtl

rtl

rtl

rtl

rtl
rtl

0

TN

10

Pick up the kettle and pour water into the cup.

Pick up the kettle and put it to the right of the cup.

Pick up the cup.

Pick up the corn on the left and place it into the shopping cart.
Pick up the corn on the right and place it into the shopping
cart.

Move the trolley to the right.

Move the trolley to the left.

Wipe the surface of the toilet lid with a cloth.

Wipe the tank lid of the toilet with a cloth.

Pick up the coke bottle and place it to the left of the ice red
tea bottle.

Pick up the coke bottle and place it to the right space on the
table.

Lift the tray.

Reach to the key on the left gripper.

Open the door.

Press the button on the water dispenser to stop the water flow.
Pick up the white cup and place it on the table.

Turn off the faucet to stop the flow of water.

Pick up the right rubber glove and place it on the table.
Clean the table with the cloth.

Pick up the cup under the drinking machine and place it on
the table.

Take a piece of tissue from the green tissue box.

Pick up the red cup and place it on the table.

Pick up the bottle on the table.

Pick up the green chip bag on the table.

Pick up the white bowl on the table and put it in the bottom
drawer.

Close the top drawer by pushing the handle.

Pick up the green soda can on the table and put it to the left of
the silver can.

Pick up the apple and put it to the left of the water bottle.
Pick up the apple and put it to the right of the water bottle.
Pick up the water bottle and put it to the right of the apple.
Pick up the water bottle and put it to the left of the apple.
Pick up the soda can in the drawer and put it on the vacant
space on the top half of the table.

Pick up the blue chip bag and put it inside the drawer.

Open the top drawer by pulling the handle.

Close the bottom drawer by pushing the handle.

Pick one orange and put it on the table.

I am hungry, please put something on the table for me to eat.
Clean the table using existing object on the table.

Pick up the coke on the top layer.

Pick up the coke on the second layer.

Table 4: Examples of questions in S3: Visual trace prediction
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