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Abstract

Instruction-Tuning (IT) was recently found the impressive data efficiency in post-
training large language models (LLMs). While the pursuit of efficiency predomi-
nantly focuses on sequence-level curation, often overlooking the nuanced impact of
critical tokens and the inherent risks of token noise and biases. Drawing inspiration
from bi-level coreset selection, our work provides the principled view of the moti-
vation behind selecting instructions’ responses. It leads to our approach Quadratic
Coreset Selection (QCS) that reconciles sequence-level and token-level influence
contributions, deriving more expressive LLMs with established theoretical result.
Despite the original QCS framework challenged by prohibitive computation from
inverted LLM-scale Hessian matrices, we overcome this barrier by proposing a
novel QCS probabilistic variant, which relaxes the original formulation through
re-parameterized densities. This innovative solver is efficiently learned using hier-
archical policy gradients without requiring back-propagation, achieving provable
convergence and certified asymptotic equivalence to the original objective. Our
experiments demonstrate QCS’s superior sequence-level data efficiency and reveal
how strategically leveraging token-level influence elevates the performance ceiling
of data-efficient IT. Furthermore, QCS’s adaptability is showcased through its suc-
cesses in regular IT and challenging targeted IT scenarios, particularly in the cases
of free-form complex instruction-following and CoT reasoning. They underscore
QCS’s potential for a wide array of versatile post-training applications.

1 Introduction

Scaling up the sizes of architecture and datasets behind large language models (LLMs) consistently
yields the improvement of next-token prediction, elevating the achievement of compressing the broad
world knowledge into their parameters [33, 8, 3]. After unsupervised pre-training, task-instruction
tuning (IT) [57], or preference modeling approaches such as reinforcement learning from human
feedback (RLHF) [4] and direct preference optimization (DPO) [47], can follow to capture the human
preference with supervision. Nevertheless, distinct from RLHF and DPO that demand considerable
human-preference data to approximate a trustful Bradley-Terry model [7], IT shows otherwise in
existing research [68, 18], where curated instruction-response dyads extracted from instruction tuning
datasets facilitate comparable instruction following capabilities in LLMs. Such trained model even
capably surpasses the performance of LLMs fine-tuned on the complete set of instances. With this
regards, efficiently curating diverse and high-quality instruction-response data for post-training LLMs
gradually becomes a trend in the community.
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Leading approaches to curate high-quality data mostly select the influential instance as a sequence
composed of instruction and response. The conventional next-token prediction loss fairly treats each
token in the response, overshadowing the potential profits of critical tokens [32] in the sequence, and
the risks in token noises [36, 53] and biases [31] in Zipf’s law. In contrast, token-level information
recently grasps more attention to enhance the LLM-based fine-tuning performances [65, 66, 67].
Despite so, the existing algorithms are rarely investigated to curate tokens along with sequence subset
selection due to the prohibitive computational burden.

To rescue IT from the data-efficient dilemma, we dived into the principled analysis between sequence
and token selection derived from the spirit of bi-level coreset selection [6]. The methodology inspired
from bi-level optimization, yields the objective with small subset to train a model consistent with
that one trained with the entire set. It is observed that the common goals of most existing sequence
selection and token selection methods can be formally interpreted by the bi-level coreset selection
problem with sequences or tokens as their selected instances. With such regards, we propose quadratic
coreset selection (QCS) to optimize the subset weights jointly determined by the sequence-level and
the token-level influence contributions. It can be proved that the solution set of QCS incorporates
all LLMs elicited by the sequence-level and token-level selection, verifying the technical benefit to
reconcile sequence and token mining for IT.

Despite achieving the best of both worlds, QCS is hampered by the costly token-level computation
from the traditional solver using the inverses of Hessian matrix with the dimensions in the parameter
size of LLMs. To this end, our work circumvents the unaffordable computation by a newly proposed
QCS probabilistic solver, relaxing the original QCS formulation through a re-parameterized density to
assign the quadratic coreset weights across tokens and sequences with the sampling policies on their
own. We certify the asymptotic equivalence between the next-token prediction empirical risk trained
with the subsets drawn from QCS and its probabilistic parameterized variant and more importantly,
the solver can be learned by hierarchical policy gradients without back-propagation, served by the
provable convergence under mild conditions.

Our experimental results demonstrate the efficacy of our QCS algorithm from two perspectives: (1).
we evaluate its instruction-following ability with the sequence-level data efficiency, showcasing the
generalization with limited data; (2) we analyze the token-level benefits and inner-loop adjustments
within QCS, revealing the cause of its success. QCS is further evidenced through its reconfiguration
for targeted IT ([60]), a challenging transfer learning setup for data-efficient training for LLMs; and its
replay-based variant to overcome the catastrophic-forgetting challenges in continual IT (Appendix.D).
They jointly justify its potential to suit more versatile scenarios of post-training in practice.

2 Related Work

Data efficiency in instruction tuning (IT). Using high-calibrated IT data has been demonstrated to
significantly enhance the performance of LLM. IT datasets can be mostly categorized into two threads,
i.e., task-oriented datasets derived from established NLP tasks [56, 48, 58] and open-ended instruction
following datasets that encompass a broad spectrum of subject matter [50, 16, 35, 62, 43, 17]. Among
recent research, the priority of data quality and diversity instead of quantity, enables more efficacious
cultivation of instruction-following ability [13, 12, 9, 19, 38, 10, 11, 30, 37, 69]. More recently,
[60, 20] proposed using efficient estimation [44, 25] of influence functions [46] to select the instruction
sequences with key effects in IT. They are technically connected with our methodology.

Curating tokens to learn LLMs.Diverse trends of LLM-based training involve exploration in token-
level knowledge, including pre-training [29, 39] and fine-tuning [65, 66, 67]. Different types of
tokens, as investigated in previous studies [39, 24, 36, 53, 32, 34, 1, 2], may hold diverse influences
to LLMs. Their evidences imply the potential improvement of IT if sequence-level IT data selection
can be merged with token-level knowledge.

Coreset-based data subset selection. The process of curating high-quality data can be reframed as a
coreset selection problem [51, 26, 61]. The methodology endeavors to identify a weighted subset of
instances whose objective function, when utilized, yields the consistent performance to that trained
through the usage of the entire datasets. Early efforts investigate the solver of specific learning
algorithms, e.g., k-means [22] and GMMs [42], etc, hardly combined with arbitrary models. Recently,
[6] unifies black-box parameter learning with coreset selection into a discrete bi-level optimization
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paradigm:

min
v∈C

1

n

n∑
i=1

Li(θ∗(v)), s.t. θ∗(v)∈argmin
θ∈Θ

1

K

n∑
i=1

viLi(θ(v)) (1)

where Li denotes a training error of the i-th sample, v ∈ C indicates the binary weights of training
set valued in a feasible region C={v :vi=0/1, ||v||0≤K}, with a integer K>0 to control the coreset
size. The coreset v searched by (1) enables the integration with many applications. However, its
greedy algorithm based on cone constrained optimization [40] needs to compute a Hessian inverse
with the parameter dimension, poorly scaling to big models. Two threads of alternatives refer to
matrix approximation [45] or probabilistic derivation [70], respectively. The first is closely relevant
with influential functions [46] employed by LESS and the second resorts to a Bernoulli density to
re-parameterize (1), laying the background of our algorithm.

3 Sequence or Token Mining for Instruction Tuning: A Coreset Viewpoint

Let first review the IT procedure as the next-token prediction with cross-entropy losses as follows:

LIT(θ) := −
1

M

M∑
i=1

( 1

Ni

Ni∑
j=1

logP (xi,j |xi,<j , zi; θ)
)
=

1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ)
)

(2)

where we represent Li,j = − logP (xi,j |xi,<j , zi; θ), then (2) holds the equivalent form LIT(θ)

= 1
M

∑M
i=1

(
1
Ni
Li,j(θ)

)
; M indicates the number of instruction-response pairs, then given the

instance i, LLMs with the pre-trained parameter θ receives the instruction zi along with the observed
response content xi,<j , to predict the j-th token xi,j . (2) is a simple yet powerful paradigm for the
first step of most existing post-training, while more evidences in leading research demonstrated that
we (2) does not require the whole dataset: post-training with high-quality instruction responses or the
emphasis of critical tokens might elicit the consistent, even more powerful models than the original.

As discussed previously, suppose that some data-efficient IT algorithm aims to select K instruction-
response pairs (K<M ) to chase for the optima with regards to (2). Hence given the selected instances
denoted by the indicator set v lies in Cseq={v : vi=0/1, ||v||0≤K}, the motivation behind refers to
the bi-level objective

min
v∈Cseq

1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ∗(v))
)
, (sequence level coreset)

s.t., θ∗(v) ∈ argmin
θ∈Θ

1

K

M∑
i=1

vi
( 1

Ni

Ni∑
j=1

Li,j(θ(v))
)
,

(3)

where θ∗(v) represents the LLM trained with instances identified by v, seeking to achieve the original
goal of LIT(θ). So obviously, (2) exactly refers to the bi-level coreset selection in (1) with regards to
instruction-response sequences as selected instances.

Resembling the similar analysis, token-selection algorithms that attempt to maintain the consistent
performance with the original IT goal, also elicits the token-level corset selection

min
v∈Ctkn

1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ∗(v))
)
, (token level coreset)

s.t., θ∗(v) ∈ argmin
θ∈Θ

1

M

M∑
i=1

( 1

Ki

Ni∑
j=1

vi,jLi,j(θ(v))
) (4)

with Ctkn=∩Ci and ∀i∈[M ], Ci={vi:vi,j=0/1, ||vi||0≤Ki} (Ki indicates the cap of tokens selected
in the sequence i).

Motivation: the dilemma between sequence-level and token-level coreset selection. The pursuit
of data efficiency in instruction tuning through coreset selection, whether at the sequence level ( 3) or
token level ( 4), reveals an inherent tension in methodology. Specifically,
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• Sequence-level coreset overlooks token information. (3) encourages LLMs to follow task
instructions with the instruction-response coreset selected in IT datasets. It is consistent with
other data-curating methods, treats tokens equally per sequence. Yet it easily suffers from
token noises and bias since critical tokens with factuality and others are fair in a sequence.

• Token-level coreset is computationally expensive and memory-hungry. The optimal
token-level coreset in (4) serves a lower bound of (3) in the same feasible regions. Despite
this superiority, (4) is hardly achieved in practice due to its prohibitive computation with the
token amount quadratically larger than sequential instances. Moreover, the data efficiency
by token selection is a mirage: suppose the j-th token xi,j is pruned by (4). The token
xi,j remains required as a part of the conditioned response context xi,<j+k in P (xi,j+k|
xi,<j+k, zi; θ) (k ∈ N+). The retention for contexts negates practical memory saving.

4 Proposed Approach: Quadratic Coreset Selection

In the previous section, we note that common goals of massive sequence or token selection algorithms
typically refer to (3,4) that remain the conflict. While their disadvantages are precisely the advantages
of each other, suggesting that the limitations can be effectively mitigated by their synergistic integra-
tion. To this end, we unify them to derive the novel quadratic coreset selection (QCS) paradigm to
obtain the best of both worlds:

min
w∈Cseq,v∈Ctkn

L(θ∗(w,v))=
1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ
∗(w,v))

)
,

s.t., θ∗(v) ∈ argmin
θ∈Θ

L̂(θ(w,v)), L̂(θ(w,v))=
1

K

K∑
i=1

wi

( 1

Ki

Ni∑
j=1

vi,jLi,j(θ(w,v))
)
.

(5)

θ∗(w,v) indicates the parameter optimized with regards to w to select the instruction-response
sequences and v to select the tokens in each sequence. It leads to the optimization objective with w
and v before using them in IT.
Theorem 1. (Expressiveness of QCS) Suppose that Ω(θseq), Ω(θtok) denotes the solution sets of θseq,
θtok in the sequence-level coreset selection (3) and token-level coreset selection (4), respectively; and
Ω(θqcs) denotes the solution sets of θqcs in (5). It holds Ω(θqcs) ⊂ Ω(θseq) ∩ Ω(θtok).

The aforementioned theory demonstrates that, fine-tuning LLMs θ with instructions with either the
response sequences selected by (3) or the next-token prediction losses screened by (4), potentially
under-perform due to resulting LLMs with the lower expressiveness. Observed that most existing
sequence or token selection nails down to the common goal in (3)(4), the theoretical result verifies the
technical merit of the marriage between sequence and token mining for IT. In our Appendix.A, using
the typical algorithm for original bi-level coreset selection, we further unveils that the next-token
prediction losses in QCS are simultaneously associated with sequence-level empirical influence and
token-level empirical influence. It demonstrates the deep connection between QCS and LESS [60].

Despite reflecting the compound influence effect, traditional algorithms for bi-level coreset are hardly

transferred into QCS due to their need of the inverse of Hessian matrix
(
∂f(θ(w∗,v∗))

∂θ⊤θ

)−1

, which in
reality is in a colossal size that grow with the number of LLM’s parameters. As an inner-loop stage
of bi-level optimization objective, computing the inverse is too compromising to suit the regime.
Some alternative refers to find its approximation, which have been employed by influential-based
approaches, e.g., LESS [60]. In contrast, we propose a new variant objective relaxed by continual
value with probability.

5 Probabilistic Re-parameterized Solver for Quadratic Coreset

5.1 Probabilistic Re-parameterized Solver with Asymptotic Equivalence

More specifically, we re-conceptualize (5) by the probabilistic reparameterization, where the original
discrete coreset weights v and w were turned into binary random variables that underlie a Bernoulli
distribution family, i.e.,

∀i ∈ [K] , wi ∼ Bern(wi); ∀j ∈ [Ki], vi,j ∼ Bern(wivi,j), (6)
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where ∀i ∈ [K], wi ∈ [0, 1] and ∀j ∈ [Ki], wivi,j ∈ [0, 1] indicate the hyper-parameters to develop
the Bernoulli distribution family. Assume that the sequence variables underlying Bern(wi) (∀i ∈ K)
are independent, then the distribution function of sequence-level coreset w could be achieved by
p(w|w) =

∏K
i=1 (wi)

wi(1 − wi)(1−wi). Similarly, suppose that ∀i ∈ [K], we got their discrete
weights w drawn from p(w|w), then the distribution of the token-level coreset v, i.e., p(v|w ⊙ v)
can be formulated as

p(v|w ⊙ v) =
K∏
i=1

( Ki∏
j=1

(vi,j)
wivi,j (1− vi,j)(1−wivi,j)

)
. (7)

Note that p(v|w ⊙ v) depends on the coreset w drawn from p(w|w). It is aligned with the fact that
the token-level coreset selection with regards to v is only available in the chosen sequences with
regards to w.

With the coreset densities p(w|w) and p(v|w ⊙ v), the coreset sizes defined by Cseq and Ctkn can
be controlled via their probability masses 1⊤w and 1⊤

Ci
v because of Ew∼p(w|w)||w||0=

∑K
i=1 wi

and Ev∼p(v|w⊙v) ||v||0=
∑K
i=1 Ev∼p(v|w⊙v)||v⊙1Ci

||0=
∑K
i=1

∑Ki

j=1 ||vi,j ||0. It turns the feasible
regions Cseq, Ctkn into their continuous counterparts

Cseq = {w : 0 ⪯ w ⪯ 1, ||w||1 ≤ K}; Ctkn = ∩k∈[K]Ck,∀i ∈ [K],

Ci = {v : 0 ⪯ v ⊙ 1Ci ⪯ 1,1⊤
Ci
v ≤ Ki},

(8)

Hence the original QCS objective (5) can be eventually transformed into

min
w∈Cseq,v∈Ctkn

Φ(w, v) = Ep(w|w)p(v|w⊙v)L(θ∗(w,v)), s.t. θ∗(v) ∈ argmin
θ∈Θ
L̂(θ(w,v)) (9)

The probabilistic reparameterization for QCS offers many technical benefits: first, (9) encourages the
coreset optimized based on the learnable parameters of the Bernoulli distribution family efficiently
by gradients (as demonstrated in the next section); second, the stochastic sampling provides the lower
bound of the original, leading to a better optimization objective; third, the sparsity constraints on
w and v make their optimal value in either 0 or 1, i.e., approach the solution of (5). Our following
theorem essentially supports the feasibility to replace (5) by (9) given training data sufficiently large.

Theorem 2. (Asymptotic equivalence between QCS and its probabilistic re-parameterized solver)
Under the assumptions in Appendix.A, as n→∞ the difference between the deterministic objective
and the probabilistic (expected) objective converges at the standard Monte Carlo rate. More precisely,

√
n (L(θ∗(w,v))− Φ(w, v))

d−→ N (0, σ2), (10)

for some σ2 > 0. Equivalently,

|L(θ∗(w,v))− Φ(w, v)| = Op

(
1√
n

)
,

where Op(·) denotes convergence in probability.

5.2 Solver Learning by Hierarchical Policy Gradients

Distinct from (5) directly chasing for the optimal coresets w∗ and v∗, the probabilistic QCS solver
achieves IT with the coresets obtained by drawing the sequences w and tokens v from the Bernoulli
distribution family (6) with the optimal hyper-parameter w∗ and v∗. The deterministic coreset
optimization with w and v is non-trivial because their gradient estimators contain their implicit dif-
ferentiation. Instead, its probabilistic solver transfer the problems into learning the hyper-parameters
w and v. If we consider the samplers p(w|w) and p(v|w ⊙ v) through a lens of sampling policy,
their optimization can be achieved by our hierarchical policy gradient estimators (HPGEs), i.e.,

∇wΦ(w, v) ≈ ∇w

(∫
L(θ∗(w,v))p(w|w)p(v|w ⊙ v)dwdv

)
=

∫
L(θ∗(w,v))

∇wp(w|w)

p(w|w)
p(w|w)p(v|w ⊙ v)dwdv

= Ep(w|w)p(v|w⊙v)

[
L(θ∗(w,v))∇w ln p(w|w)

]
,

(11)
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and
∇vΦ(w, v) ≈ ∇v

(∫
L(θ∗(w,v))p(w|w)p(v|w ⊙ v)dwdv

)
=

∫
L(θ∗(w,v))p(w|w)

∇vp(v|w ⊙ v)

p(v|w ⊙ v)
p(v|w ⊙ v)dwdv

= Ep(w|w)p(v|w⊙v)

[
L(θ∗(w,v))∇v ln p(v|w ⊙ v)

]
.

(12)

Note that L(θ∗(w,v))∇w ln p(w|w) and L(θ∗(w,v))∇v ln p(v|w ⊙ v) are unbiased stochastic
estimators of∇wΦ(w, v) and∇vΦ(w, v). It encourages the forward gradient calculation to estimate
∇wΦ(w, v),∇vΦ(w, v) without the extra backward operation. Moreover,∇wΦ(w, v) and∇vΦ(w, v)
can be independently estimated despite the dependency from sequence-level policy to token-level
policy. They sufficiently ease the calculation of the coreset selection process.

Projected hierarchical policy gradients. In terms of the constraints refined to QCS probabilistic
solver in (8), we may simply apply them in HPGE by projected stochastic gradient decent, in order to
constrain the hyper-parameters optimized in the proper range:

w← PCseq

(
w − η1L(θ∗(w,v))

)
∇w ln p(w|w)

v← PCtkn

(
v − η2L(θ∗(w,v))

)
∇v ln p(v|w ⊙ v).

(13)

With this observation, we can directly obtain the close-form solution to the projection, which yields
a very efficient process to update w and v for our coreset sampler (see our Appendix.A). More
importantly, we further prove that if the inner-loop optimization L̂(θ(w,v)) with the sampled
coresets w,v converges, the outer-loop algorithm for our hierarchical coreset selection policy also
converge as the projected stochastic gradient decent [23]:
Proposition 3. [Convergence of hierarchical-policy coreset sampler (Informal)] Under the mild
conditions of Φ(w, v) and the step sizes η1, η2, the average of the expectation of the norms for
sequence-level and token level projected gradients, i.e.∣∣∣∣∣∣ 1

η1

(
wt − PCseq

(
wt − η1∇wΦ(wt, vt)

))∣∣∣∣∣∣
2
;
∣∣∣∣∣∣ 1
η2

(
vt − PCseq

(
vt − η2∇vΦ(wt, vt)

))∣∣∣∣∣∣
2
, (14)

both converge to 0 as T →∞.

6 Algorithms

6.1 Practical Implementation of Inner-Loop Update

Whatever variants of QCS require the optimization process in the inner-outer loop alternation, where
the inner loop achieves IT with coreset samples. In contrast with the efficiency in the outer loop,
learning θ in the inner-loop conveys the heavy computation because θ denotes the parameter of LLMs.
To this end, we further discuss the possible improvement to the inner loop.

Elastic token coreset. In the QCS inner loop, L̂(θ(w,v)) is optimized via the sampled binary
weights of w,v. Distinct from sequences, the token selection does not earn any memory efficiency
as we previously discussed, on the contrary, the sparsity of v may cause unpredictable variance to
minimize the token losses. In this regards, after the optimized hyper-parameters select the coresets
w,v, we re-weight each value of token-level coreset v from {0, 1} into {ϵ, 1− ϵ}, where ϵ ∈ (0, 1)
denotes the elastic parameter close to 0.

Parameter-efficient fine-tuning (PEFT). During the alternative optimization, the IT process in the
inner loop actually serves for learning the solver parameters v, w. With this finding, it is unnecessary
to fine-tune the full parameters in the LLM until v, w converge. In lieu of full-parameter IT, we
employ low-rank adaptation (LoRA) [28] to facilitate the IT process in the inner loop. The LoRA
adapter is trained with the full set of IT data. The process is executed along with the update of v, w.

6.2 Transfer instruction-tuning with quadratic coresets

QCS implemented by the gradient update just provide the pre-selection probability of Dtrain, while
does not incorporate any information fromDval. To enable the task transfer of training sequence-token
selection from Dtrain to Dval, we encourage the instance-level Bernoulli hyper-parameters wi in w
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and vi,j in v generated by language model itself. Specifically, we augment the pre-trained LLM
with frozen parameter θ with different LoRA modules with regards to w and v, then produce binary
classifier heads to generate wi and vi,j , respectively, as follows:

wi = LLMθ,ϕ(xi, zi); vi,j = LLMθ,ψ(xi,<j , zi), s.t.∀(xi, zi) ∈ Dtrain. (15)

These uncoupled sub-nets ϕ and ψ are trained with Dtrain using the selection labels indicated by the
optimal w∗

i and v∗i,j obtained by the gradients (11, 12), then simple entropy-based test-time adaptation
[54] would be employed to fast update their selection probability in Dval.

The vanilla pipeline of QCS and its transfer learning variant have been shown in Appendix.A.

7 Experiments

In this section, we evaluate QCS based on targeted IT and regular IT. Appendix.D also illustrate the
empirical study on continual IT. They verify the versatility of QCS.

7.1 Targeted Instruction Following

7.1.1 Experimental Setup

Targeted IT denotes the problem that based on a handful samples Dt for each target IT task t, we
accordingly select a small proportion of source IT data to adapt the task. The experimental setup is
coordinated with the setup of LESS, where 5% training sequences are selected to update the LLMs
for each task. QCS follows its transfer learning setup. More details found in Appendix.C.

Training Datasets. Our fine-tuning resembles the setup in LESS [60]. Specifically, we adopt the
IT datasets outlined by [55] that includes two branches. (1) the datasets derived from existing
collections, such as FLAN V2 [41] and COT [59], and (2) open-ended generation datasets featuring
human-authored responses, including DOLLY [16] and OPEN ASSISTANT [35]. The diverse
corpus includes 270K sequences in a wide range of formats and reasoning tasks.

Evaluation Datasets. Our evaluation leverages four comprehensive benchmarks: MMLU, TY-
DIQA, BBH [49], and GSM8K [15]. Each evaluation set has multiple tasks while samples in each
task are split into Dval and Dtest, where Dval only contains few-shot demonstration sequences while
we need to use Dval to select the influential samples in the training datasets, specifically available to
this task, then use them to training LLM in order to well perform in Dtest.

Base LLMs for Data Selection and Training. Before introducing baselines, we specify the LLM
used to evaluate the baselines for a comparison. Concretely, we employ the popular LLAMA-2
series [52] to evaluate the main results across evaluated baselines for MMLU, TYDIQA, BBH; yet
select LLAMA-2-7B and LLAMA-3-8B as the base LLMs for GSM8K. Finally, we employ PYTHIA
[5], a small LLM series to evaluate the adaptability of algorithm under scaling law.

Baselines. The motivation of QCS rises from the data efficiency of IT. To this, beyond the original IT
baseline FULL using full IT data, we also employ another two data selection approaches invented
to choose key sequences for IT. Specifically, we adopt RAND as the simplest baseline to randomly
choose some proportion of sequences for IT, and LESS [60], to the best of our knowledge, the most
competitive baseline in targeted IT problem.

7.1.2 Main Results.

We present main results of different baselines via diverse LLAMA’s family models in Figure.1; and a
thorough evaluation between LESS and QCS across Pythia series in Table.1,2.

QCS v.s. LESS: the response size matters. The results of four baselines across four benchmarks
using different foundation models are observed in Fig.1. Though targeted data selection only exceeds
FULL in 1 of 4 benchmarks, they significantly outperform Rand in all cases. In MMLU and TYDIQA,
QCS is very competitive yet remains slightly inferior to LESS. It is possibly due to the short response
size of evaluation set: LLM only need to select the options in the context. In BBH and GSM-
8K, with their answers in a free-form long responses, QCS outperform LESS significantly. In the
modern LLAMA-3-8B, it even outperforms the LESS baseline by over 12 points (56.7) , proving its
sophisticated ability to prioritize the most impactful training instances.
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Figure 1: Results of LESS (selected with target model’s gradient store) and QCS (pre-trained to
obtain , then fined-tuned with ) on LLAMA-2-7B and LLAMA-2-13B. Full denote full dataset, and
otherwise we select 5% of the data with random selection (Rand), LESS and QCS. Bold numbers
denotes the best performing selected subset. Underlined numbers denote that the selected subset
outperforms the full dataset. Numbers in the parentheses are standard deviations.

Table 1: Performance comparison of using
different variants of Pythia models for data-
efficient targeted IT.

Baselines Warmup training Feature gradient/ Data selectionAdaptive policy

Time cost LESS ∼6 ∼48 <1 min
QCS ∼30 <1 <1 min

Memory cost LESS 0 17.7G 0
QCS 176.9M 0 176.9M

Table 2: Performance comparison of using differ-
ent variants of Pythia models for data-efficient
targeted IT.

w/o FT RAND LESS QCS QCS FULL
Sequence level Token level

FT data 0% 5% 5% 5% 5% 100%

PYTHIA-14m 0.0 0.0 0.0 0.0 0.1 0.0
PYTHIA-410m 3.8 7.8 9.4 8.0 9.4 8.6
PYTHIA-1b 9.2 12.3 17.2 14.6 17.4 13.7
PYTHIA-6.9b 17.1 27.2 30.9* 27.2 31.6 35.5
PYTHIA-12b 17.4 14.9 32.6* 29.8 32.3 33.2

Average 9.5 12.4 18.0 15.6 18.2 18.2

LLAMA-2-7B 46.4 52.7 56.2 54.4 56.6 54.0

Rivaling LESS with less computation. The empirical results presented in Table 1 demonstrate
the computation-economical superiority as a sequence subset selection methodology compared with
LESS. As we know, instead of LESS using feature gradient to select sequences, QCS only uses
Bernoulli distribution to sample the coreset weights. It saves the computation and memory cost to
achieve sequence-token joint selection, while reserve the more impressive performance than LESS.

Exceeding LESS under token-level computation burden. The data percentages in Table 1 are
calculated at the sequence level, because other baselines are sequence-based data selection approaches.
As QCS set α=0.5, it just softly select a half of tokens in the selected sequences. In this regards,
we turn to set αK

|Dtrain|=5% rather than K
|Dtrain|=5% as another QCS baseline (token-level) with ϵ=0

to achieve full-parameter IT, thus, with the consistent burden of token computation. The empirical
study is presented in Table.1, where Pythia model series and LLAMA-2-7B are evaluated with
TYDIQA. As observed, using small LLMs potentially expands the performance gap between LESS
and QCS and more importantly, most of the cases in Pythia models fail to recover the full-data-IT
performance. In particular, the performance of QCS exhibits a more pronounced underperformance
relative to LESS. This observed degradation can be elucidated through the lens of Eq.(15). It implies
that IT by sequence-level data selection heavily depends on the capability of base models. While
interesting, under the consistent token computation, QCS baselines with αK

|Dtrain|=5% significantly
improve the original performances: not only exceed the performance of LESS but also recover the
LLM performance trained with full IT datasets.

7.2 Analysis of Token-level Selection

Here we further verify QCS ability to capture token-level information through some verification,
where K

|Dtrain|=5% is promised the token selection happen after the sequence selection.

Elastic ratio ϵ of tokens. We first consider how the variation of ϵ causes the vibration of target IT.
In particular, given α = 0.5, we change the value of ϵ in the range of {0, 0.1, 0.5, 1}, then testify
the corresponding LLM performance trained by QCS. As observed in Fig.(2.(a)), QCS results with
ϵ=0.1 and ϵ=0.5 are trivially distinct, whereas the performances significantly drop with a larger ϵ
value. As ϵ=0, the performance are inferior than ϵ=0.1,0.5.

Selection percentage α of tokens.We then turn to evaluate the change of proportion α about tokens
selected in a single sequence completion from {0.2, 0.5, 1} when ϵ = 0.1. As illustrated in Fig.(2.(b)),
the performance of QCS exhibits notable sensitivity to the value of α. Results obtained with α values
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Figure 2: Parameter analysis of token-level selection.

of 0.5 and 1 demonstrate comparable efficacy, while settings where α = 0.2 yield substantially
inferior outcomes relative to other configurations.

Token-level robustness. We inject the random noises into the tokens [39], then further observe the
performance change given the previous ϵ and α value. As shown in Fig.(2), we found that sufficiently
large ϵ and α could lead to more fragile IT models, with significant performance drop with 10% token
noises injection. While a small value ϵ may produce the better performance than the noiseless cases.
However, as the noise ratio increases, critical tokens are more possibly contaminated, thus, all the
performances drop in this scenario.

Critical Tokens. Critical tokens in sequences play a crucial role of efficiently following instructions
with few demonstrations. In order to verify QCS’s ability to select critical tokens, we consider the
identification approach of critical tokens in [32], since there are no annotation of critical tokens in our
evaluation benchmarks. To this, we evaluate how many tokens selected by QCS are categorized into
the critical tokens identified by [32]. The results are shown in Fig.(2.(c)). As we see in Fig.(2.(c)).left,
the percentage of critical tokens selected by QCS is significantly more than random selection, which
demonstrates the remarkablity of QCS of sensing critical tokens while the sequence-token selection.
In Fig.(2.d), we observe the variation of ϵ with tiny effect to the number of critical tokens selected.

7.3 Regular Efficient Instruction-Following

Experimental Setup. We turn to justify the QCS’s feasibility in the regular data-efficient IT tasks
using LLAMA-2-7B and LLAMA-2-13B. We consider the vanilla QCS algorithm to obtain the
optimal v and w with regards to the training dataset Dtrain defined by the self-instruct paradigm.
It is derived from two setups: (1) we consider the regular instruction following setup in [38] then
evaluate the baselines on 3 common instruction-following benchmarks ARC,TruthfulQA, MMLU
in Hugging-face Open LLM Leaderboard-v12(The evaluation results are presented in Table. in
Appendix.D); (2) we consider AlpaEval3 to evaluate LLMs trained by selecting data on FLAN V2,
COT, DOLLY, and OPEN ASSISTANT 1, justifying the free-form response generation capability.
In the first setup, we compared QCS with FULL, Rand, and two data-efficient IT methods, i.e., e
Instruction-Following Difficulty (IFD) [38] and Dataset Quantization (DQ) [69]. In the second setup,
QCS is compared with those except for DQ, since it almost fails to other methods.

Figure 3: The AlpaEval comparison on the win rates for QCS against different other baselines.

Results on AlpaEval. QCS achieves a dominant win rate over Random and IDS across open-
ended, instruction-following prompts. The plot shows QCS winning the large majority of pairwise

2huggingface.co/docs/leaderboards/open_llm_leaderboard
3github.com/tatsu-lab/alpaca_eval
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Table 3: The LLAMA-2 family trained by Data-efficient IT with (10%) instruction-response se-
quences, then evaluated in Huggingface Open LLM Leaderboard (ARC, TruthfulQA, MMLU)

5% LLAMA-2-7B LLAMA-2-13B
Average ARC MMLU TruthfulQA Average ARC MMLU TruthfulQA

wo sequence selection 47.45 54.35 47.02 40.98 51.04 57.59 54.05 41.49
DQ 42.32 47.01 42.34 40.12 48.72 50.22 51.91 40.81
IFD 48.28 57.94 44.19 40.62 53.40 62.37 55.65 42.82
QCS (token-selected 20%) 48.86 58.45 45.54 41.67 52.43 61.04 54.46 42.54
QCS (token-selected 50%) 49.46 58.51 47.13 42.36 53.33 62.67 54.56 43.17

10% LLAMA-2-7B LLAMA-2-13B
Average ARC MMLU TruthfulQA Average ARC MMLU TruthfulQA

wo sequence selection 47.45 54.35 47.02 40.98 51.04 57.59 54.05 41.49
DQ 44.38 48.17 44.55 40.42 48.72 52.07 52.89 41.22
IFD 48.28 58,02 46.64 40.18 53.40 62.97 55.29 41.93
QCS (token-selected 20%) 48.86 58.78 46.34 41.47 53.34 62.57 55.20 42.24
QCS (token-selected 50%) 49.46 59.60 46.53 42.26 54.03 63.16 55.86 43.07

15% LLAMA-2-7B LLAMA-2-13B
Average ARC MMLU TruthfulQA Average ARC MMLU TruthfulQA

wo sequence selection 47.45 54.35 47.02 40.98 51.04 57.59 54.05 41.49
DQ 43.88 48.27 44.79 40.01 48.22 51.12 52.29 41.30
IFD 48.28 57.42 46.40 40.95 53.40 62.37 55.56 43.42
QCS (token-selected 20%) 48.90 58.58 46.61 41.87 53.04 62.23 55.25 41.81
QCS (token-selected 50%) 49.16 59.51 46.93 42.56 54.33 61.62 55.68 43.19

comparisons (e.g., 511 wins vs. 168 losses against Random), indicating that its bi-level selection
reliably surfaces higher-value examples for general instruction following. While it does not surpass
the model trained on the full dataset, this is expected; the key finding is that with only a small selected
subset, QCS matches or approaches the full-data model and clearly beats other selection heuristics.
The advantage is most evident in long-form responses, where token-level prioritization highlights
factual terms and connective logic, yielding more informative updates than sequence-only curation.
Consistency across both modern (LLAMA-3) and established (LLAMA-2) bases suggests QCS is
robust to the backbone’s capability and provides a principled, data-efficient alternative for regular IT.

Results on ARC,TruthfulQA, MMLU. Distinct from ApacEval, the experimental evaluation also
includes two QCS baselines by ranging sequence-selection ratio is ranged from 5%, 10%, 15%,
respectively; and our QCS is implemented with 20%, 50% token ratios to derive two variants. The
results are observed in Table.3. Under the regular efficient IT setup, QCS with token selection
(especially 50%) delivers the best or near-best averages on LLAMA-2-7B/13B, outperforming IFD
and DQ and often exceeding “no selection” at the same budget. Gains come from emphasizing salient
tokens within selected sequences, not just choosing sequences. However, improvements are smaller
than on AlpacaEval: these benchmarks mostly require short outputs (single-token or brief spans),
limiting token-level leverage; hence QCS’s benefit over strong sequence-only methods is modest
but consistent. Overall, QCS remains competitive across all three leaderboards and confirms that its
largest margin emerges on tasks with longer, content-rich responses.

8 Conclusion

We introduced Quadratic Coreset Selection (QCS), a principled framework that reconciles sequence-
level and token-level mining for data-efficient instruction tuning. By casting both selections into a
unified bi-level coreset objective and relaxing it via a probabilistic re-parameterization, QCS avoids
Hessian inverses, learns with hierarchical policy gradients, and enjoys provable convergence with
asymptotic equivalence to the original objective. Empirically, QCS delivers superior or competitive
performance under stringent data budgets, particularly on long-form, reasoning-heavy tasks, and
adapts well to targeted and continual IT. Analyses reveal token-level benefits—robustness to noise,
emphasis on critical tokens, and sensitivity to elastic weighting—clarifying when and why QCS
outperforms sequence-only selection. QCS thus offers a scalable, theoretically grounded path to
efficient post-training.
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Appendix.A: Technical Discussions

In this section, we unveil the connection between QCS and empirical influence functions, and provide
the back-propagation free solution of w and v.

The Interpretability of QCS via Empirical Influence

To be selected by the original QCS objective (5), the token in the position (i, j), i.e.. at the j-th
order of the i-th sequence, have to satisfy the following two condition: (1). provided the optimal
w∗ ∈ Cseq, wi∗ = 1; (2). provided the optimal v∗ ∈ Ctkn, vi,j∗ = 1. The solutions are derived from
the formulations

min
w∈Cseq

L(θ∗(w,v))= 1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ∗(w,v))
)
, s.t., θ∗(v) ∈ argmin

θ∈Θ
L̂(θ(w,v)),

L̂(θ(w,v))= 1

K

K∑
i=1

( 1

Ki

Ni∑
j=1

vi,jLi,j(θ(w,v))
) (16)

and

min
v∈Ctkn

L(θ∗(w,v))= 1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ∗(w,v))
)
, s.t., θ∗(v) ∈ argmin

θ∈Θ
L̂(θ(w,v)),

L̂(θ(w,v))= 1

K

K∑
i=1

( 1

Ki

Ni∑
j=1

vi,jLi,j(θ(w,v))
)
.

(17)

According to the approximation results derived from cone constrained optimization [6], we got the
greedy search algorithm with the selection rule

token (i∗, j∗) ∈
{
j∗ : j∗ ∈ argmax

j∈[Ni∗ ]

∇θwi∗L⊤
i∗,j

(∂f(θ(w
S

t1
seq
,v
S

t2
tkn
))

∂θ⊤θ

)−1(
∇θ(L(θ))

)}
,

s.t. wi∗ ∈ w
S

t1
seq
,

← token (i∗, j∗) ∈
{
j∗ : j∗ ∈ argmax

j∈[Ni]

∇θL⊤
i,j

(∂f(θ(w
S

t1
seq
,v
S

t2
tkn
))

∂θ⊤θ

)−1(
∇θ(L(θ))

)}
,

s.t. i ∈
{
i∗ : i∗ ∈ argmax

i∈[N ]

( 1
Ni

∑
k∈[Ni]

∇θvi,kLi,k
)⊤(∂f(θ(wS

t1
seq
,v
S

t2
tkn
))

∂θ⊤θ

)−1(
∇θ(L(θ))

)}
,

w.r.t. vi,k ∈ v
S

t1
tkn
,

(18)

where St1seq, St2tkn denote a set of sequence atoms of size t1 (t1 ≤ K) and a set of token atoms of size
t2(t2 ≤ Ki) have been selected, respectively. Note that, A.(18) is closely related with the token-level

empirical influence ∂θ∗

∂εtkn

∣∣∣
εtkn=0

= −
(
∂f(θ(w∗,v∗))

∂θ⊤θ

)−1

∇θLi,j(θ∗) and the sequence-level empirical

influence ∂θ∗

∂εseq

∣∣∣
εseq=0

= −
(
∂f(θ(w∗,v∗))

∂θ⊤θ

)−1(
1
Ni

∑Ni

k=1∇θLi,k(θ∗)
)

. In particular, if the greedy search

results w
S

t1
seq
=w∗ and v

S
t2
tkn
=v∗, A.(18) holds

token (i∗, j∗) ∈
{
j∗ : j∗ ∈ argmax

j∈[Ni]

−
( ∂θ∗

∂εtkn

∣∣∣∣
εtkn=0

)⊤(
∇θ(L(θ∗))

)}
,

s.t. i ∈
{
i∗ : i∗ ∈ argmax

i∈[N ]

−
( ∂θ∗

∂εseq

∣∣∣∣
εseq=0

Σ(v∗)
)⊤(
∇θ(L(θ∗))

)}
,

w.r.t. Σm,n(v) = 0 (m ̸= n); Σm,n(v) =

(
1
Ni

∑
k∈[Ni]

∇θmvi,kLi,k
)⊤(

1
Ni

∑
k∈[Ni]

∇θmLi,k
)⊤ (m = n)

(19)
where ∇θmL indicates the m-th element of vector∇θL.
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The Coreset Sampler Update without Back-propagation

We consider the projection w ← PCseq

(
w − η1L(θ∗(w,v))

)
∇w ln p(w|w), then v ← PCtkn

(
v −

η2L(θ∗(w,v))
)
∇v ln p(v|w ⊙ v) can be solved accordingly. Specifically, we assume the projected

result is w, then the origin denotes as zw, to solve w ← PCseq

(
w − η1L(θ∗(w,v))

)
∇w ln p(w|w)

refers to
min
w∈RN

||w − zw||2, s.t. 1⊤w ≤ K, 0 ≤ wi ≤ 1. (20)

It refers to solving the problem with Lagrangian multipliers

min
w∈RN

||w − zw||2 + λ1(1
⊤w −K)

= min
w∈RN

||w − (zw − λ1)||2 + λ1(1
⊤w −K)− N

2
λ2, s.t. λ > 0, 0 ≤ wi ≤ 1.

(21)

To minimize the formulation with respect to w, we have

w = 1zw−λ1≥1 + (zw − λ1)1>zw−λ1>0. (22)

So given λ ≥ 0, we have

g(λ) =
1

2
||[zw − λ1]−||2 +

1

2
||[zw − (λ+ 1)1]+||2 + λ(1⊤zw −w)− N

2
λ2

→g′(λ) = 1⊤ min(1,max(0, zw − λ1))−K
(23)

Since g′(λ) is monotone decreasing with respect to λ so that we can solve g′(λ) = 0 with solution
λ∗1 where the maximum of g(λ) is achieved at 0 if λ∗1 ≤ 0 and λ∗1 if λ∗1 > 0. Set λ∗ = max{0, λ∗1},
it holds

w∗ = 1zw−max{0,λ∗
1}1≥1 + (zw −max{0, λ∗1}1)1>zw−max{0,λ∗

1}1>0

= 1⊤ min(1,max(0, zw −max{0, λ∗1}1))
(24)

Similarly, ∀w ∼ p(w|w) we have

v∗ = 1w⊙zv−max{0,λ∗
2}1≥1 + (w ⊙ zv −max{0, λ∗2}1)1>w⊙zv−max{0,λ∗

2}1>0

= 1⊤ min(1,max(0,w ⊙ zv −max{0, λ∗2}1))
(25)

where λ∗2 ≥ 0 indicates the maximum of h(λ):

h(λ) =
1

2
||[w ⊙ zv − λ1]−||2 +

1

2
||[w ⊙ zv − (λ+ 1)1]+||2 + λ(1⊤w ⊙ zv − v)− N

2
λ2

→h′(λ) = 1⊤ min(1,max(0,w ⊙ zv − λ1))−
K∑
i=1

Ki

(26)

Appendix.B: Theoretical Justification

In this section, we provide the proofs of our theoretical results in the paper.

Proof of Theorem.1

Proof. Let S(ϕ,K)
seq (w) :=

{
θ|θ(w) ∈ argminθ′∈Θ

1
K

∑M
i=1 wi

(
1
Ni

∑Ni

j=1 Li,j(θ′)
)
, s.t., w ∈

{0, 1}M , |w| ≤ K
}

and S(ϕ,{Ki}M
i=1)

tkn (v) :=
{
θ|θ(v) ∈ argminθ′∈Θ

1
M

∑M
i=1

(
1
Ki

∑Ni

j=1 vi,jLi,j(

θ′
)
, s.t.,vi ∈ {0, 1}Ni , |vi| ≤ Ki,∀i ∈ [M ]

}
. Given this, The solution sets of (3) and (4) can be

rewritten as

Sseq =
{
(w, θ)|(w, θ) ∈ argmin

w∈Cseq,θ∈S(ϕ,K)
seq (w)

1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ)
)}

;

Stkn =
{
(v, θ)|(v, θ) ∈ argmin

v∈Ctkn,θ∈S
(ϕ,{Ki}Mi=1

)

tkn (v)

1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ)
)}
.

(27)
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Let S(ϕ)
qcs (v,w) :=

{
θ|θ(w,v) ∈ argminθ′∈Θ

1
K

∑M
i=1 wi

(
1
Ni

∑Ni

j=1 vi,jLi,j(θ′)
)
, s.t. w ∈

{0, 1}M , |w| ≤ K;vi ∈ {0, 1}Ni , |vi| ≤ Ki,∀i ∈ [M ]
}

. The solution set of QCS can be
rewritten into

Sqcs =
{
(w,v, θ)|(w,v, θ) ∈ argmin

w∈Cseq,v∈Ctkn,θ∈S(ϕ)
qcs (w,v)

1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ)
)}
. (28)

Observe that if we set K =M and w = 1M , the equivalence holds

S(ϕ)
qcs (1

M ,v)

=
{
θ|θ(1M ,v) ∈ arg min

θ′∈Θ

1

K

M∑
i=1

( 1

Ni

Ni∑
j=1

vi,jLi,j(θ′)
)
, s.t. vi ∈ {0, 1}Ni , |vi| ≤ Ki,∀i ∈ [M ]

}
=S

(ϕ,{Ki}M
i=1)

tkn (v).
(29)

Similarly, if ∀i ∈ [M ] w.r.t. wi = 1, vi,j = 1, j ∈ [Ni]. We set v̂ = {v|vi = 1M iff wi = 1}, then

S(ϕ)
qcs (w, v̂)

=
{
θ|θ(w, v̂) ∈ arg min

θ′∈Θ

1

K

M∑
i=1

wi
( 1

Ni

Ni∑
j=1

Li,j(θ′)
)
, s.t.,w ∈ {0, 1}M , |w| ≤ K

}
=S(ϕ,K)

seq (w).

(30)

Therefore, we have

Sseq =
{
(w, θ)|(w, θ) ∈ argmin

w∈Cseq,θ∈S(ϕ,K)
seq (w)

1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ)
)}

=
{
(w,v, θ)|(w,v, θ) ∈ argmin

w∈Cseq,v=v̂,θ∈S(ϕ)
seq (w,v̂)

1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ)
)} (31)

and

Stkn =
{
(v, θ)|(v, θ) ∈ argmin

v∈Ctkn,θ∈S
(ϕ,{Ki}Mi=1

)

tkn (v)

1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ)
)}

=
{
(1M ,v, θ)|(1M ,v, θ) ∈ argmin

w=1M ,v∈Ctkn,θ∈S(ϕ)
qcs (1M ,v)

1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ)
)}
.

(32)
Observe that v̂ ⊂ Ctkn and S(ϕ)

seq (w, v̂) ⊂ S
(ϕ)
seq (w,v). ∀θ∗qcs ∈ Ω(θqcs) = {θ|(w,v, θ) ∈ Sqcs} and

∀θ∗tkn ∈ Ω(θtkn) = {θ|(w, θ) ∈ Stkn}, it holds

1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ∗qcs)
)
≤ 1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ∗tkn)
)
. (33)

It implies ∀θ∗qcs ∈ Ω(θqcs), θ∗qcs ∈ Ω(θtkn). Since {1M} ⊂ Cseq and S(ϕ)
seq (1M ,v) ⊂ S

(ϕ)
seq (w,v),

∀θ∗qcs ∈ Ω(θqcs) = {θ|(w,v, θ) ∈ Sqcs} and ∀θ∗seq ∈ Ω(θseq) = {θ|(w, θ) ∈ Sseq} also result in

1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ∗qcs)
)
≤ 1

M

M∑
i=1

( 1

Ni

Ni∑
i=1

Li,j(θ∗seq)
)
. (34)

It implies ∀θ∗qcs ∈ Ω(θqcs), θ∗qcs ∈ Ω(θseq). Summarize (33,34) and we have Ω(θqcs) ⊂ Ω(θseq) ∩
Ω(θtkn).
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Proofs of Theorem.2

There are some assumptions required to justify the asymptotic approximation between the original
QCS and its probabilistic variant (Theorem.2).
Assumption 4. ((Lipschitz Continuity)) The next-token prediction loss Li,j is L-Lipschitz
with respect to the selection weights, thus, ∀v, v′ ∈ Ctkn and w,w′ ∈ Cseq, ||Li,j(θ(w, v)) −
Li,j(θ(w′, v′))|| ≤ L

(
||w −w′||+ ||v − v′||

)
Assumption 5. (Tokenwise Boundedness) The per-token loss Li,j(·) are uniformly bounded (or,
more generally, sub-Gaussian).
Assumption 6. (Large Sample Size) We assume that the effective number of independent selections,
denoted by n (which could be the total number of tokens or sequences), tends to infinity.

The validity of assumptions. In general, the boundedness and Lipschitz continuity conditions for
the next-token prediction loss with respect to the selection weights serves for two conditions, thus,
the loss serves Lipschitz continuity to the model parameter; and the model parameter satisfies the
Lipschitz continuity to the selection weights. The first case is practical. Specifically, the tokenwise
prediction loss Li,j = − logP (xi,j |xi,<j , zi; θ) is often defined as the cross-entropy loss or negative
log-likelihood so that Li,j ∈ [0,+∞). though in practical implementations, Li,j is commonly capped
due to numerical stability (e.g., Li,j ≤ − log ϵ where ϵ > 0 is the smallest representable probability),
in order to avoid issues with extremely small probabilities. In the second condition, thus, the model
parameter θ satisfies the Lipschitz continuity to the selection weights v and w. Observe that the
gradients of Φ with respect to v and w is bounded with respect to the policy gradients in (11,12),
and the model parameter holds the Lipschitz continuity to Φ in terms of its the composite of Li, j in
probability. So the second condition also holds.

Li,j is also tokenwise bounded due to the smoothness of the softmax function (the token-prediction
head) and bounded gradients with respect to the model parameters. Assumption.3 implies the
deviations induced by the Bernoulli sampling can be controlled via concentration inequalities. Note
that it actually holds since given the optimized v, the selection of vi,j in each token position is totally
random, so do w.

Proof. Consider w and v obtained by optimization. Let (ws,vs) be one realization of the binary
selections so that

ws ∼ p(w|w),vs ∼ p(v|w ⊙ v) (35)
Since the probabilistic objective is the expectation of L(θ(w,v)) with w,v drawn from the optimal
w and v, thus

Φ(w, v) = Ep(w|w)p(v|w⊙v)L(θ∗(ws,vs)). (36)
By construction, w and v hold wi = Ep(w|w)p(v|w⊙v)[w

s
i ] and vi,j = Ep(w|w)p(v|w⊙v)[v

s
i,j ] due to

the definition of Bernoulli distributions. It is observed that the objective with respect to w and v
satisfy the Lipschitz continuity, thus, we have for any realization

||L(θ∗(ws,vs))− L(θ∗(w, v))||
= lim

w′→ws,v′→vs
||L(θ∗(w′, v′))− L(θ∗(w, v))||

≤ lim
w′→ws,v′→vs

L(||v − v′||+ ||w′ −w||)

=L(||v − vs||+ ||ws −w||)

(37)

Since the deviations ||w −ws|| and ||v − vs|| are sums of independent bounded (or sub-Gaussian)
random variables, the central limit theorem applies. More specifically, ws

i and vsi,j are binary and
lie in {0, 1}, their differences from the continuous weights are bounded. By applying Hoeffding’s
inequality to these independent binary variables, we can assert that with probability at least 1− δ

||v − v||+ ||w −w|| ≤ C
√

log(1/δ)

n
(38)

for some constant C > 0 and effective number of independent samples n. It allows that

||L(θ∗(ws,vs))− L(θ∗(w, v))|| ≤ LC
√

log(1/δ)

n
(39)
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Taking the expectation over the binary selections yields

||L(θ∗(ws,vs))− Φ(w, v)|| ≤ O(L

√
log(1/δ)

n
) (40)

Proof of Proposition.3

Let first provide the formal convergence result derived from

Proposition 7. Suppose that Φ(w, v) is L-smooth with respect to w,v, respectively; and
the policy gradient variance E

(
L(θ∗(w,v))∇w ln p(w|wt) − ∇wΦ(wt, vt)

)
≤ σ2, and

E
(
L(θ∗(w,v))∇v ln p(v|w ⊙ vt)−∇vΦ(wt, vt)

)
≤ σ2. Let η1, η2 ≤ 1

L then it holds

1

T

T∑
t=1

E
(
||Gtw||2 + ||Gtw||2

)
≤ 2σ2

(
2 +

1

minη∈{η1,η2}(1− Lη/2)
)

(41)

where Gtw, Gtv denote the gradient mappings with respect to w, v at the t-th iteration, i.e.

Gtw =
1

η1
(wt − PCseq

(
wt − η1∇wΦ(w

t, vt)
)
), Gtv =

1

η2
(vt − PCtkn

(
vt − η2∇vΦ(w

t, vt)
)
).

(42)

Note that Proposition.3 can be proved when the proposition above is satisfied. To prove the proposition
above, we first present the lemmas derived from [23]:

Lemma 8. Given a compact convex set C ⊂ Rd and let PC be the projection operator on C, then for
any u, v ∈ Rd, we have

||PC(v)− PC(u)|| ≤ (v − u)⊤
(
PC(v)− PC(u)

)
(43)

Lemma 9. Given a compact convex set C ⊂ Rd and let PC be the projection operator on C, then for
u, v ∈ Rd and any, c ∈ C we have

||PC(v + c)− PC(u+ c)|| ≤ ||u− v|| (44)

Given this, we have the following proof of Proposition.3

Proof. Consider the update

wt+1 = PCseq

(
wt − η1gt1

)
, gt1 = L(θ∗(w,v))∇w ln p(w|wt)

vt+1 = PCtkn

(
vt − η2gt2

)
, gt2 = L(θ∗(w,v))∇v ln p(v|w ⊙ vt).

(45)

Since the stochastic gradient mappings Ĝtw, Ĝtv and deterministic gradient mappings denote as

Ĝtw =
1

η1
(wt −wt+1), Ĝtv =

1

η1
(vt − vt+1);

Gtw =
1

η1
(wt − PCseq

(
wt − η1∇wΦ(w

t, vt)
)
), Gtv =

1

η2
(vt − PCtkn

(
vt − η2∇vΦ(w

t, vt)
)
).

(46)
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Therefore

Φ(wt+1, vt+1) ≤ Φ(wt, vt) + ⟨∇wΦ(w
t, vt),wt+1 −wt⟩

+ ⟨∇vΦ(w
t, vt), vt+1 − vt⟩+

L

2
||wt+1 −wt||2 +

L

2
||vt+1 − vt||2

≤ Φ(wt, vt)− η1||Ĝtw||2 − η2||Ĝtv||2 +
Lη21
2
||Ĝtw||2 +

Lη22
2
||Ĝtv||2

+ η1⟨δt1, Ĝtw⟩+ η2⟨δt2, Ĝtv⟩
(
Lemma8

)
,

≤ Φ(wt, vt)− (η1 −
Lη21
2

)||Ĝtw||2 − (η2 −
Lη22
2

)||Ĝtv||2 + η1⟨δt1,Gtw⟩+ η2⟨δt2,Gtv⟩

+ η1||δ21 ||||Gtw − Ĝtw||+ η2||δ22 ||||Gtv − Ĝtv||

≤ Φ(wt, vt)− (η1 −
Lη21
2

)||Ĝtw||2 − (η2 −
Lη22
2

)||Ĝtv||2

+ η1⟨δt1,Gtw⟩+ η2⟨δt2,Gtv⟩+ η1||δt1||+ η2||δt2||
(
Lemma9

)
(47)

So we obtain

(η1 −
Lη21
2

)||Ĝtw||2 + (η2 −
Lη22
2

)||Ĝtv||2 ≤ Φ(wt, vt)− Φ(wt+1, vt+1)

≤η1⟨δt1,Gtw⟩+ η2⟨δt2,Gtv⟩+ η1||δ21 ||+ η2||δ22 ||,
T∑
t=1

(η1 −
Lη21
2

)||Ĝtw||2 + (η2 −
Lη22
2

)||Ĝtv||2 ≤ Φ(w1, v1)− Φ(wT+1, vT+1)

≤
T∑
t=1

η1⟨δt1,Gtw⟩+ η2⟨δt2,Gtv⟩+ η1||δt1||+ η2||δt2||.

(48)

Since E⟨δt2,Gtv⟩ = 0 and E⟨δt2,Gtw⟩ = 0. Beyond this, we also have E||δt1|| = E||gt1 −
∇wΦ(wt, vt)|| ≤ σ2 and E||δt2|| = E||gt2 −∇vΦ(wt, vt)|| ≤ σ2. Combine them and we obtain

1

T

T∑
t=1

E
(
||Ĝtw||2 + ||Ĝtw||2

)
≤ Φ(w1, v1)− Φ∗

minη∈{η1,η2}(1− Lη/2)T
+

σ2

minη∈{η1,η2}(1− Lη/2)
(49)

Then finally, we can bound the expectation of the deterministic gradient norms:

E||Gtw||2 ≤ 2E||Ĝtw||2 + 2E||gtw −∇wΦ(w
t, vt)|| ≤ 2E||Ĝtw||2 + 2σ2;

E||Gtv||2 ≤ 2E||Ĝtv||2 + 2E||gtv −∇vΦ(w
t, vt)|| ≤ 2E||Ĝtv||2 + 2σ2

(50)

So
1

T

T∑
t=1

E
(
||Gtw||2 + ||Gtw||2

)
≤ 2

T

T∑
t=1

E
(
||Ĝtw||2 + ||Ĝtw||2 + 2σ2

)
≤2

( Φ(w1, v1)− Φ∗

minη∈{η1,η2}(1− Lη/2)T
+

σ2

minη∈{η1,η2}(1− Lη/2)
+ 2σ2

)
≤2σ2

(
2 +

1

minη∈{η1,η2}(1− Lη/2)
)

(51)

Appendix.C: Implementation

The pipelines of our QCS and its transfer learning variant for targeted IT, are illustrated in Algorithm.1
and 2 . The code would be released.
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Algorithm 1 Quadratic Coreset Selection (QCS)
Input: A pre-trained LLM with parameter θ, IT datasets D.
Parameter: η1, η2, ϵ, α, K
Output: QCS solver with w∗,v∗, LLM with parameter θ∗.

1: Initialize QCS by wi=
K
|D| , ∀i∈[K]; vi,j=α, ∀j∈[Ki].

2: Initialize LoRA parameter θ′ with respect to θ.
3: while w,v not converge do
4: Draw a stochastic batch Ds ⊂ D.
5: Sample sequence-level and token-level coresets of Ds via w∼p(w|w), v∼p(v|w ⊙ v).
6: ∀i ∈ [K], j ∈ [Ki], vi,j ← vi,j + (−1)vi,j ϵ.
7: Perform LoRA tuning to update θ′ via w,v.
8: Update w, v via (33,34) with Ds.
9: end while

10: Obtain w∗←w, v∗←v
11: Sample K sequences by w∗ as w∗ to construct stochastic training batches;
12: while each training batch not converge do
13: Sample tokens by v∗ with respect to the sequences in the training batch, update vi,j ←

vi,j + (−1)vi,j ϵ;
14: Update θ
15: end while
16: return w∗,v∗, θ∗←θ.

Algorithm 2 QCS transfer learning variant
Input: A pre-trained LLM with parameter θ, IT source datasets Dtrain, IT target datasets Dval.
Parameter: η1, η2, ϵ, α, K
Output: QCS solver with w∗,v∗, LLM with parameter θ∗.

Use Algorithm.1 to obtain w∗,v∗ by Dtrain;
Initialize two separate LoRA module ϕ,ψ;
For Dtrain, generate the stochastic label w∗

i for each sequence, generate the stochastic label v∗
i,j

for each token;
For Dtrain, update ϕ to predict w∗

i for each sentence, update ψ to predict v∗
i,j for each token;

For Dval, apply test-time training to update update ϕ and update ψ;
Sample K sequences by ϕ as w∗ to construct stochastic training batches;
while each training batch not converge do

Sample tokens by ψ with respect to the sequences in the training batch, update vi,j ← vi,j +
(−1)vi,j ϵ;
Update θ

end while
return θ∗←θ.

The experimental setup of regular IT refers to [38]. The experimental setup of targeted IT is followed.

Training and evaluation setups In the first experiment, we follow the training and evaluation settings
in [60] and for the second experiment, we adopt the continual IT setup derived from [56] the task
orders (1): QA→ QG→ SA→ Sum. → Trans.; (2): Trans. → SA→ QA→ Sum. → QG; (3): Sum.
→ QG→ Trans. → QA→ SA. The continual learning order is as follows: (Warmup: Alpaca52k→
task order. The experiment is conducted with 1% / 0.1% of the training data from SuperNI tasks and
Alpaca-52k as demonstrations, respectively.

Dataset # Shot # Tasks |Dval| |Dtest| Answer Type

MMLU 5 57 285 18,721 Letter options
TYDIQA 1 9 9 1,713 Span
BBH 3 23 69 920 COT and answer
GSM-8K 8 - 10 1319 COT and answer

Table 4: The statistic of evaluation set.
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Training. We implemented our QCS optimization strategy with LoRA incorporated a learning rate
scheduler featuring linear warm-up and cosine decay, with the learning rate peaking at 2 × 10−5.
We standardized the training process across all selected datasets, utilizing a batch size of 128 and
conducting 4 epochs to obtain the QCS parameters and the optimal coreset distribution parameters v,
w. In the adaptation phase, we fix the LoRA parameters then fine-tune v, w with one epoch. The
setup has been applied in targeted IT and continual IT experiments.

Training setup of targeted IT. The sizes revealed that extending the epoch count for smaller datasets
did not yield significant performance enhancements. Consequently, we adopted a uniform epoch
count across all experimental conditions. The LoRA module was configured with a rank of 128, an
α parameter of 512, and a dropout rate of 0.1. We applied LoRA matrices to all attention matrices
within the model architecture. This configuration resulted in trainable parameter counts of 135 million
(1.95% of total parameters) for LLAMA-2-7B and 209 million (1.59%) for LLAMA-2-13B. To
ensure robustness, each experimental condition was replicated thrice using distinct random seeds.
For random selection methodologies, this entailed generating three unique subsets from the training
corpus.

Training setup of regular IT. In TruthfulQA,TruthfulQA, MMLU, following [38], we use the
instruction prompts in Vicuna [14] construction, then obtain the self-generated responses from the pre-
trained LLAMA-2 family models. We evaluate the base models trained with the instruction-response
pairs through the three common instruction-following benchmarks. In AlpaEval experiment, LLM is
trained with data selected by the mixture of FLAN V2, COT, DOLLY, and OPEN ASSISTANT 1
(More refers to the setup in targeted IT).

Appendix.D: Complementary Experiments

QCS v.s. LESS: more analysis on computation and memory cost

With regards to Table.1, the training time for LoRA in Algo.1 is almost consistent with the warmup
stage in LESS, yet we need a labeling process (IO process) to prepare Algo.2 (it leads to over a half
of computation cost in the warm-up stage in our implementation) and another LoRA in Algo.2. Note
that the labeling procedure can be replaced by a teacher network that dynamically offers the soft label
in Algo.2. This memory-time trade-off may further cuts off a significant amout of computation in
GPU hours.

As for the convergence behavior, The charts demonstrate a clear and consistent convergence pattern
for Algo2, where the validation loss in BBH exhibits a distinct U-shaped curve, reaching its minimum
around epoch 1-2 before starting to increase due to overfitting. This convergence behavior reveals a
crucial practical efficiency gain: optimal validation performance is achieved very early in training.
This allows for early stopping, saving significant training time and computational resources beyond
the per-step metrics in Table 2, thereby confirming the methods’ practical efficiency.

Efficient instruction-tuning for mathematical reasoning

Note that QCS is particularly impressive when the response is long in the selection data. It is supposed
to be superior in mathematical reasoning tasks, so we provide a more challenging evaluation that
focus on this problem.

Setup. We adopt a large reasoning model (LRM) as the backbone, specifically
Qwen-2.5-Math-7B-Instruct [63]. Fine-tuning is performed with 10% long CoT reasoning
responses selected from OpenR1-Math-220k [21] using our QCS sampler (ϵ = 0.1, α = 0.2).
For comparisons under the regular instruction-tuning (IT) setup, we include: (i) the original
Qwen-2.5-Math-7B (Base LRM), (ii) the model fine-tuned on 100% of OpenR1-Math-220k (Full),
(iii) the model fine-tuned with 10% data randomly sampled from OpenR1-Math-220k (Random),
and (iv) the model fine-tuned with 10% IDS-selected data (IDS).

Training Details. We use the system prompt “Please reason step by step, and put your final answer
within \boxed{}.” Decoding is greedy with temperature set to 0 and top_p=1, producing a single
output. Evaluation follows the rule-based criteria of [64] , checking both numbers and formulas. We
report Pass@1 (P@1), following [63]. All runs are conducted on a server with 4×A100-SXM4-80GB
GPUs. We set the sequence length to 16,384 via RoPE scaling, batch size 1, gradient accumulation
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4, and learning rate 5e−5 with warmup ratio 0.1 and cosine decay. Training lasts 3 epochs. For the
judge model, we apply LoRA with rank 16, α = 32, and dropout 0.1 for 1 epoch. After training, we
evaluate on MATH [27] and GaoKao-MATH [63].

Table 5: Pass@1 (P@1) on MATH and GaoKao-MATH. Backbone:
Qwen-2.5-Math-7B-Instruct.

Benchmarks / Baselines Base LRM Full Random IDS QCS

MATH 0.842 0.894 0.878 0.889 0.901
GaoKao-MATH 0.781 0.783 0.789 0.863 0.878

Results. Table 5 reports P@1. Using only 10% of OpenR1-Math-220k, QCS surpasses Full on
MATH (0.901 vs. 0.894) and shows clear improvements over Random and IDS. On GaoKao-MATH,
QCS achieves 0.878, outperforming Full (0.783), Random (0.789), and IDS (0.863), demonstrating
strong sample efficiency for complex, long-response reasoning.

Case Analysis of Selected Instances

We illustrate some instances selected by our algorithm along with the tokens that were identified as
“critical” during post-training.

Case Study 1: Mathematical Reasoning (GSM8K)

Instance A: A High-Value, Complex Problem (Selected and Prioritized by QCS)
Problem: “A garden has 10 yellow flowers. There are 80% more purple flowers than yellow

ones, and the number of green flowers is 25% of the yellow and purple flowers
combined. How many flowers are in the garden?”

Sequence-
Level
Analysis:

QCS flags this as high-value because it requires multiple dependent steps and
understanding percentages, a complex reasoning skill.

Token-
Level
Analysis
(QCS Ad-
vantage):

Within the solution, QCS identifies and up-weights critical tokens that form the
logical backbone of the reasoning process.

Solution
with Criti-
cal Tokens
Empha-
sized:

“First, calculate 80% of the 10 yellow flowers: 0.80 × 10 = 8. The number of
purple flowers is 10 + 8 = 18. Next, the total of yellow and purple is 10 + 18 =
28. Then, calculate 25% of that total: 0.25 × 28 = 7. Finally, the total number of
flowers is 10 + 18 + 7 = 35.”

Comparison: A sequence-level method would treat all tokens equally. QCS focuses training on
crucial numbers (10, 18, 28, 35), operators (×, +), and percentages (0.80, 0.25),
helping the model learn the mathematical procedure, not just the narrative.

Case Study 2: Mathematical Reasoning (GSM8K)

Instance B: A Simpler, Less Influential Problem (Down-weighted by QCS)
Problem: “A bakery sold 15 cakes on Monday. On Tuesday, it sold 12 more cakes than on

Monday. How many cakes were sold in total?”
Sequence-
Level
Analysis:

A standard method might select this for its basic arithmetic. QCS ranks it lower
because the reasoning path is simpler and less informative for an already capable
LLM.

Token-
Level
Analysis:

The critical tokens are basic (15, +, 12, =, 27). While correct, they do not introduce
the same level of complexity as Instance A; QCS recognizes lower informational
density.
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Case Study 3: Complex Instruction Following (AlpacaEval / OpenAssistant)

Instance C: A High-Value, Complex Problem (Selected and Prioritized by QCS)
Instruction: “Explain the main differences between nuclear fission and nuclear fusion, and list

one practical application for each.”
Sequence-
Level
Analysis:

QCS identifies this as a high-quality instruction because it requires factual accuracy,
comparison, and structured knowledge.

Token-
Level
Analysis
(QCS Ad-
vantage):

QCS prioritizes key concepts, relationships, and entities that must appear in a
correct response.

Solution
with Criti-
cal Tokens
Empha-
sized:

“Nuclear fission is the splitting of a heavy, unstable nucleus into two lighter
nuclei. A practical application is in nuclear power plants. In contrast, nuclear
fusion is the process where two light atomic nuclei combine to form a heavier
nucleus, releasing energy. A practical application is the energy source of stars like
our Sun.”

Comparison: A sequence-level method may not differentiate between key terms and connecting
language. QCS focuses the model on core vocabulary (fission, fusion, splitting,
combine, heavy, light) and crucial entities (nuclear power plants, stars), ensuring
factual and relational knowledge is learned correctly..

Limitation and Future Work

QCS is sensitive to hyperparameters and stochasticity. Its performance hinges on budgets, token ratio,
elastic weight, and policy learning rates; coupled with Bernoulli sampling, this can introduce high
variance and unstable convergence—especially on smaller or less-stable backbones. The token-level
selection offers limited practical memory or speed gains because pruned tokens often remain in
context for next-token prediction; without architectural support (e.g., chunked attention or selective
forwarding), compute savings are modest. Also, theoretical guarantees depend on smoothness,
boundedness, and large-sample assumptions that can be violated in real LLM training (optimizer
momentum, mixed precision), reducing the tightness of the bounds.

Beyond these, the transfer selectors (sequence/token heads) can be brittle under domain shift, mis-
calibrating selection probabilities across styles, lengths, or reasoning types; additional adaptation is
often necessary. Engineering overhead remains nontrivial: although QCS avoids Hessian inverses,
the hierarchical optimization, projections, selector training, and repeated sampling introduce IO and
scheduling costs at scale. Together, these constraints highlight the need for automated hyperparameter
tuning, variance reduction, architectural co-design for token pruning, stronger domain-adaptive
selectors, and streamlined pipelines.

Overall, QCS pave the principled way to understand and investigate token-level information while
selecting long-response instance for instruction-following. However, the hyper-parameter tuning
and the complex training pipeline make it difficult to extend and further improvement. Some
simple-yet-effective approaches inspired from Eq.5 can be more promising and expected.
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