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ABSTRACT

The primal approach to physics-informed learning is a residual minimization. We
argue that residual is, at best, an indirect measure of the error of approximate so-
lution and propose to train with error majorant instead. Since error majorant pro-
vides a direct upper bound on error, one can reliably estimate how close PiNN is
to the exact solution and stop the optimization process when the desired accuracy
is reached. We call loss function associated with error majorant Astral: neurAl a
poSTerioRi functionAl Loss. To compare Astral and residual loss functions, we
illustrate how error majorants can be derived for various PDEs and conduct ex-
periments with diffusion equations (including anisotropic and in the L-shaped do-
main), convection-diffusion equation, temporal discretization of Maxwell’s equa-
tion, magnetostatics and nonlinear elastoplasticity problems. The results indicate
that Astral loss is competitive to the residual loss, typically leading to faster con-
vergence and lower error (e.g., for Maxwell’s equations, we observe an order of
magnitude better relative error and training time). The main benefit of using Astral
loss comes from its ability to estimate error, which is impossible with other loss
functions. Our experiments indicate that the error estimate obtained with Astral
loss is usually tight enough, e.g., for a highly anisotropic equation, on average,
Astral overestimates error by a factor of 1.5, and for convection-diffusion by a
factor of 1.7. We further demonstrate that Astral loss is better correlated with er-
ror than residual and is a more reliable predictor (in a statistical sense) of the error
value. Moreover, unlike residual, the error indicator obtained from Astral loss has
a superb spatial correlation with error. Backed with the empirical and theoreti-
cal results, we argue that one can productively use Astral loss to perform reliable
error analysis and approximate PDE solutions with accuracy similar to standard
residual-based techniques.

1 INTRODUCTION

Physics-informed neural networks (PiNNs) can be considered as a solution technique for differential
equations (most notably, PDEs) that approximate an unknown solution with a neural network, obtain
derivatives with automatic differentiation, and minimize PDE-related loss function with first-order
or quasi-Newton method Lagaris et al. (1998), Raissi et al. (2019). One of the principal questions is
how reliable PiNNs can be trained and how accurate is the final approximation.

For both of these questions, the appropriate choice of the loss function is crucial. The most widely
used option is PDE residual sampled at the set of random points Wang et al. (2023). Adaptively
selected points Wu et al. (2023), Zubov et al. (2021) are also used to promote additional error
control. For selected problems, variational loss is used E & Yu (2018), Barrett et al. (2022), and
weak form with fixed Kharazmi et al. (2019) or adaptive Chen et al. (2023a) test function. For
time-dependent problems, special reweighting schemes are also available Wang et al. (2022).

A good loss function is necessary for a highly accurate approximate solution, but not sufficient.
One way or another, error analysis needs to be introduced. Many works available that focus on a
priori error analysis for PiNNs, e.g., De Ryck et al. (2022), Mishra & Molinaro (2022), De Ryck
& Mishra (2022), Gonon et al. (2022), Jiao et al. (2021). In such contributions, authors show that
it is possible to reach a given approximation accuracy with a neural network of a particular size.
However, a priori error analysis is insufficient to obtain practical error estimation of trained neural
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Figure 1: Residual, Astral error indicator and density of energy norm for diffusion equation. Resid-
ual is completely uncorrelated with error in energy norm, whereas error indicator captures essential
details of error distribution. Statistical study shows that for 100 diffusion equations with randomly
selected diffusion coefficient residual correlation is 0.22 4= 0.09 and Astral error indicator gives cor-
relation 0.82 £ 0.04. More examples are available in Appendix C and Appendix D.

network. For that one should resort to a posteriori error analysis for PiNNs, which is also present in
literature but to a lesser extent, e.g., Guo & Haghighat (2022), Filici (2010), Hillebrecht & Unger
(2022), Berrone et al. (2022), Minakowski & Richter (2023), Roth et al. (2022), Cai et al. (2020).
In all these contributions, authors specialize in a particular classical error bound to deep learning
PDE/ODE solvers. Namely, Filici (2010) adopts a well-known error estimation for ODEs, based
on the construction of related problems with exactly known solution Zadunaisky (1976). Similarly,
Hillebrecht & Unger (2022) uses well-known exponential bound on error that involves residual
and Lipschitz constant Hairer et al. (1993) and applies a neural network to perform the residual
interpolation. Similarly, contributions Guo & Haghighat (2022), Berrone et al. (2022) and Cai et al.
(2020) are based on FEM posterior error estimates, and Minakowski & Richter (2023), Roth et al.
(2022) are on dual weighted residual estimator Becker & Rannacher (2001).

In the present contribution, we take a different root and propose to address efficient PINN training
and a posteriori error analysis simultaneously. The approach is based on functional a posteriori error
estimate Repin (2008), Muzalevsky & Repin (2021) that is approximation-agnostic and, because of
that, ideally suited for ansitze based on neural network. The main idea is to derive a tight upper
bound on error (error majorant) in a problem-dependent energy norm and use this upper bound as
a loss function. This way one can seamlessly combine learning high-quality approximate solutions
with a posteriori error control. To summarise, our main contributions are:

1. We introduce Astral — loss function based on error majorant derived with the help of a
posteriori functional error estimate.

2. We perform a series of tests of parametric families of diffusion equations (including highly
anisotropic cases and equations with large mixed derivatives), convection-diffusion equa-
tion, diffusion equation in the L-shaped domain, Maxwell’s equation, magnetostatics prob-
lem and nonlinear elastoplasticity equation. Our tests indicate that Astral loss is robust,
comparable, or more accurate than residual loss, computationally cheaper, and results in a
sufficiently tight upper bound.

2  MOTIVATION AND THE FIRST LOOK AT THE ASTRAL LOSS

The end goal of physics-informed training is to find an approximate solution for PDE, meaning
to obtain small errors. Unfortunately, the error is not computable since the exact solution is not
known so a prevailing strategy is to minimize /5 norm of residual sampled at a small set of points
Lagaris et al. (1998), Wang et al. (2023). However, it is well known that residuals can fail to provide
information about the error. In this section we will provide theoretical and numerical evidence that
residual is poorly correlated with error and show that one can define a better loss function.
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2.1 RESIDUAL AND ERROR FOR A TOY BOUNDARY-VALUE PROBLEM

We consider a simple boundary-value problem
d*¢(x)
dx?

with trivial exact solution ¢(x) = 0. It is easy to construct pathological approximate solutions to
this problem that lead to arbitrary relations between error and residual.

— 0,2 € (=1,1), ¢(~1) = 6(1) = 0, (1)

Two edge cases are given by the following functions

a(l+z), x <0;

a(l —z), 2 > 0. @

é1(x,€) = esin (%) , Go(z, ) = {

For small €, function qgl(:c, €) has a small amplitude and does not deviate substantially from the
exact solution, but simultaneously has a large second derivative, so residual can be made arbitrary
large for arbitrary small error.

As noted in Muzalevsky & Repin (2021) function qz~52(3:, «) is piecewise linear, so the residual is

zero for arbitrary « everywhere except x = 0, where ¢o(z, «) is not differentiable. On the other
hand for selecting large o one can make an error arbitrarily large for zero residual. Note, that x = 0
is easy to miss since residual is enforced in a finite set of collocation points.

2.2 RESIDUAL CORRELATION WITH ENERGY NORM

One can justly argue against the examples in the previous section based on the fact that such patho-
logical cases may not appear in realistic PINN training.

To evaluate the relation between error and residual in a realistic setting we will consider the diffusion
equation

—div (a(z, y) grad ¢(z,y)) = f(z,y), 2,y €T, dlyp =0, 3)
where a(z,y) is uniformly positive function and T' = (0,1)2. A natural way to measure error
between exact ¢ and approximate ¢ solutions is to use energy norm

~ ~ 2
Elp — ¢ = /dxdy a(x,y) ngad ¢(x,y) — grad ¢(x, y)H2 ) ())

Integration by parts shows that this error is a Lo scalar product between error ¢ — ¢ and the residual,
so one may hope that the residual is correlated with it to some extent. The result of training standard
physics-informed neural network described in Section 5 is given in the left panel of Figure 1. One
can see that the spatial correlation between the error in energy norm and the residual is poor. As
shown in Appendix C, where other examples alike are given, the residual is similarly poorly corre-
lated with the ordinary error ¢ — ¢. In Appendix E, one can also find that magnitudes are poorly
correlated similarly. More specifically, for the anisotropic diffusion equation, residual magnitude is
on the order of 10° while error is on the order of 1073,

2.3 ASTRAL LOSS FOR ELLIPTIC EQUATION

Error in energy norm (4) depends only on a derivative of the exact solution. Suppose in addition
to approximate solution ¢ we also introduce an independent variable that approximates the flux of

exact solution ﬁ(m, y) ~ a(z,y)grad ¢(z,y). If we have a reasonably good approximation to the
flux, we can rewrite the energy

2

Blo— 3= [ dndyate.) H(;y)ﬂa:y)  grad 3z, )

This expression known as an error indicator can be computed explicitly without an unknown exact
solution.

(&)

2
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The flux, however, is not known and needs to be approximated somehow. One idea, introduced in
Lyu et al. (2022) is to split the loss in two terms

/dxdy (f($,y) + div ]3(31c,y))2 + /dmdy Ha(m, y)grad 25(1, y) — ﬁ(x,y)”j (6)

Evidently, if both terms are small in the loss above (E approximate exact solution and F approximate
the flux, so error indicator (5) can be computed.

However, the loss above does not provide a good approximation to the magnitude of the energy
norm. In Appendix A it is shown (for D = 1 case) that this loss can be slightly changed in such
a way that it becomes a strict upper bound for error in energy norm that is saturated if and only if

F—a grad ¢ and d) — ¢. Modification is relatively mild and has the following form

2
U—a/dxdy (f(x y) + div F(z, ) +B/dxdy H il gfadj((ij)) F(%y)HQ, (7

where «(a) and 3(a) are some constants that may depend on diffusion coefficient, and some addi-
tional parameters (e.g., see (13) and Appendix A).

Functional U above is known as error majorant or a posteriori error estimate of functional type (see
Mali et al. (2013)) and is also called Astral loss in this paper. It has many favorable properties,
described in the next section.

Using neural networks as approximations for ¢ and F', one can consider U as loss in a physics-
informed training. The resulting error indicator is given on the right panel of Figure 1 and it is
evident that it provides excellent correlation with error in the energy norm. In Appendix E one can
also find that magnitudes have excellent correlation with error. For example, for the anisotropic
diffusion equation, error and Astral loss magnitudes are of order 1073,

3 GENERAL DEFINITION OF ERROR MAJORANTS AND ASTRAL LOSS

Having the discussion from the previous section in mind, we extend the definition of the upper bound
and the list of requirements to a more general situation.

Consider PDE in the abstract form

Ale, D] =0, (8)
where A is a nonlinear operator containing partial derivatives of the solution ¢, D stands for supple-
mentary data such as initial conditions, boundary conditions, and PDE parameters.

For a selected set of PDEs, it is possible to obtain a posteriori functional error estimate of the form

where (E is an approximate solution, w are arbitrary free functions from certain problem-dependent
functional space, D is problem data, U is problem-dependent nonlinear functionals called error
majorant Mali et al. (2013).

We require majorant to have the following properties: (i) For 5 = ¢ one can find w such that
E [;5 — qﬁ] =U [gg, D, w), that is, the upper bound is saturated; (ii) It is possible to evaluate U
efficiently given only problem data and approximate solution; (iii) The upper bound is defined in

a continuous sense for arbitrary ¢, w from certain functional spaces, that is, it does not contain
information on a particular solution method, grid quantities, convergence, or smoothness properties.

We already demonstrated that functionality with these properties exists for BVP (26). More exam-
ples appear in Section 5.

Given error majorant (9) we define Astral loss function and associated optimization problem.
Astral loss. For PDE with functional error majorant U[$, D, w), and neural network N'(D,0) =
((Z, w) with weights 0 that predicts solution 5 and auxiliary fields w optimize

nyU@aM&a@,) N(D,0). (10)
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Because Astral loss is based on the upper bound, we can be sure that the error is smaller than the
observed loss. Since bound saturates, we also can be sure that it is possible to reach an exact solution.

4 EXAMPLES OF ERROR MAJORANT

Functional error majorants can be derived for various practically relevant equations (see Repin
(2008), Neittaanméki & Repin (2004), Mali et al. (2013) for more details). Here we provide the
upper bound for four families of equations that we will later use in Section 5 for experimental com-
parison of different loss functions.

4.1 DIFFUSION EQUATION

Consider diffusion equation

—div (o(z,y) grad ¢(z,y)) = f(z,9), z,y €T, d|;r =0, (11)

where o (z,y) is 2 X 2 symmetric positive definite matrix, I" is a piecewise smooth domain and oT"
is the boundary.

Energy norm reads

2

Elo 3 = [ dody |2 (w, 1) g (6(,) - S )| (12

where ||- H2 is [ norm applied pointwise, and the upper bound is

UBL6. 7] = ooy [ 4o () + divute.)?

+ %/dﬂ?dy Ho_l/Q(x,y) (0(33,:1/) grad ¢(z,y) — w(m,y))Hz, (13)

The derivation is very similar to the one presented in Section 2 and can be found in (Mali et al.,
2013, Chapter 3). Note that the upper bound depends on scalar free parameter 8 and vector fields
with two components w(z, ).

4.2 MAXWELL’S EQUATION

Magnetostatics problem as well as temporal discretization of Maxwell’s equation can be presented
in the following form

curl u(z, y) curl B(z, y) + aB = f(z,y), x,y €T, ¢|5p =0, (14)

where p(z,y) is uniformly positive scalar function, « is non-negative real number, I is a piecewise
smooth domain, OT is the boundary; curl from a vector field reads curl B(z,y) = 0,B.(z,y) —
0. By (z,vy), and curl from a scalar field reads curl ¢(z,y) = e,0,¢(x, y) — ey 0-0(, y).

The natural energy norm for Maxwell’s equation is

E[B — §]2 = /dxdy (,u(x,y) chrl (B(x,y) — E(x,y)) H2 +a HB(x7y) — E(%y)’r) .
(15)

It is convenient to obtain the upper bound for two separate cases Repin (2007) when o > 0 and
when o = 0. For the former case, we have

U]%/Il [E, fp, o, w] = /dxdy (; Hf(x,y) — aé(ﬂﬂ,y) — cur]w(%y)H2
1
p(z, y)

(vte.0) - ey Ba) ) 16
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and for the later case
U (B £ 0] = e | [ dady | (2.9) — cont i)
2Py ] Uy, &, W = T xZ, — wlx,
M : 2 inf \/p(x, y) Y Y Y

1
" \// dxdyu(x, y)

Both error majorants (16) and (17) depend on a scalar auxiliary field w(x,y). Note that Uy, is a
straightforward modification of the result from Repin (2007) obtained with the use of Friedrichs’s
inequality for curl.

~ 2
w(x,y)—u(x,y)curlB(x,y)) - (17

4.3 CONVECTION-DIFFUSION EQUATION

We consider the initial value problem

2
8“;”; H_92 ggc”; b, aa“g;’ D _ fa)ulw,0) = 6(x), u(0,8) =u(l,t) =0, (18

where (z,t) € (0,1) x (0,7T) and a, T are positive real numbers. The natural energy norm is

Eu—1u] = /d dt (auzt) aaéz’t))Q—i-;/dx (u(z,T) —u(z,T))*, (19)

and the upper bound Repin & Tomar (2010) for approximation that exactly fulfills initial condition
reads

Uenli, f,a] = \// dudt (w(:z:,t) - aag;, “)2

+ i\/ [ dwi <f(m) Jduwt)  Guwi) aw(x’t))Q. 0)

ot ox or

For upper bound (20), we have one auxiliary scalar field w(zx, t).

4.4 ELASTOPLASTICITY

Let Kg, u, ks, 0 are positibe constants, u denotes deformation vector. Given that, elastoplastic
deformations are described by the following PDE

01011 () +02021 (u)+ f1 = 01012 (u) +02022(u)+f2 = 0, x1, 22 €', ut|yp = uzlyp =0, 21)
where T' = (0, 1)2, 9T is a boundary of T" and

o(u) = Ko (O1uy + Ogug) I+ (HeD(u)HF) eD(u), eD(u) =e(u) — 1Itre(u);

e(u) = ( O1uy % (Oruz + 52u1)) (1) = 2u, |t] <tg = 2\/>7
% (81U2 + 82’1,61) 82’1],2 ’ (2/1' 5) o + 5 |t| > to.

In Repin & Xanthis (1996) authors derived upper bound for natural energy norm

(22)

Blu=vf? = [ do (Ko (se(uw— o))" + [P~ 0)[}) < 2C0lly = o) € @0 € WS,

(23)
where
el = [ dogge 00+ 5 1
1 2 1 ||4D||2
20 21— 96 1w () +T‘|t HF
Ch =1 lacy — , * f 0 [ ,
7 B 417 24

QF=<(7: /dm ane(v)ij — Zfivi =0VoeWi,r' =1
ij i
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5 EXPERIMENTS

We use examples of PDEs described in Section 4 to study the following questions: (i) How is
the accuracy of solutions obtained with Astral loss compare with the ones obtained with residual
and variational losses? (ii) How cost-efficient is Astral loss in comparison with other losses? (iii)
Which loss is more robust to the irregularities of underlining PDE, e.g., anisotropy of coefficients or
geometric singularities? (iv) How tight in practice is the upper bound obtained with Astral loss?

This section describes the experiments we prepared to this end and the analysis of the obtained
results.

5.1 DATASETS
To benchmark Astral loss, we consider seven PDEs described below:

1. Isotropic diffusion: Isotropic diffusion refers to equation (11) in (0,1)? with o(z,y) =
Ia(z,y) with a = 5(z — min z) /(max z — min z) + 1, u(x, y) = sin(wx) sin(7y)r where

rz~N(0,(1— A)_l) with homogeneous Dirichlet conditions.

2. Anisotropic diffusion: Anisotropic diffusion is similarly based on equation (11) but
with an anisotropy parameter e introduced into the diffusion coefficient o(z,y;e) =

<(1) 602) a(x,y), and into the exact solution u(x,y) = sin(mz)sin(ry)r where r ~
2 _ 292\ 1
N0 (1-02—ea2)7).
3. Diffusion with large mixed derivative: This PDE is built based on the same random fields

as isotropic diffusion, but with different diffusion matrix o (z, y; §) = <}5 (15> a(z,y). The

case when ¢ is close to 1 is especially interesting since det o becomes close to 0.

4. Diffusion in the L-shaped domain: Here we consider equation (11) in domain
(0,1)2 \ (0.5,1)%, and for simplicity take o(z,y) = I, field f is sampled from

N (07 (1- 0.01A)72) so it is smoother that for other diffusion equations.

5. Maxwell’s equation: We consider equation (14) with « = 1, B = curl4, A ~

N (0,(1 = A)~') with homogeneous Neumann boundary conditions, p = 5(z —
min z)/(max z — min z) + 1, where z ~ N/ (0, (1- A)_l) with homogeneous Dirichlet
conditions.

6. Magnetostatics: This equation is precisely the same as Maxwell’s equation above but with
a=0.

7. Convection-diffusion equation: This dataset is based on equation (18) with 7' = 0.1, a
sampled uniformly from 0 to 10, f, ¢ ~ N (0, (1 +0.04 (—02 + aax)2>2> with homo-
geneous Dirichlet conditions.

8. Elastoplasticity: Dataset is based on equation (21) with Ko = ¢ = § = 1, k, = 20
and u; with us independently drawn from N (O, (1- A)_2> with homogeneous Dirichlet
conditions.

5.2 LOSS FUNCTIONS
For datasets based on diffusion equation, we use Astral loss function (13), standard residual loss

function which can be obtained by evaluating (11) at a set of points and taking [y norm from the
difference between left- and right-hand sides, and variational loss function reads

Viol = [ oy (5 o2 nndote || = ot fan). 25)
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Table 1: Results for isotropic and anisotropic diffusion equations: relative Ly is relative error in Loy

norm, E[¢— ¢] is error in natural energy norm, the large e the more anisotropic is diffusion equation.
Relative error is measured in % and energy norm and majorant are multiplied by 102.

Residual Astral Variational
€ relative Ly E[¢ — qNS] relative Lo El¢ — qNS] majorant relative Lo El¢ — gzNS]
1 0.13£+£0.07 0.03+£0.01 0.114+0.05 0.034+0.01 0.13£0.03 3.48+1.46 1.01 +£0.32
5 0.63+0.27 0.04+0.01 0.53+0.19 0.044+0.00 0.09+£0.02 6.89+ 3.88 0.62 +0.22
10 1.654+0.92 0.07+£0.03 0.974+0.57 0.054+0.03 0.11£0.03 10.55+5.88 0.48+0.21
15 3.16+1.74 0.09+£0.04 2.084+1.24 0.074+0.04 0.12+£0.04 11.924+6.04 0.49+0.19
20 5.644+3.18 0.12+0.05 3.6+ 2.18 0.094+0.05 0.134+0.06 14.07+7.69 0.444+0.22

For Maxwell’s problems, Astral losses are (16) and (17) when oo = 0. For the convection-diffusion
equation, Astral loss is (20). For elastoplastic problem Astral loss is (23) with @} softly enforced
with extra term. Residual losses for these problems are self-evident, and variational losses are
unavailable. For magnetostatics problem (14) with o« = 0 for both residual and Astral losses, we
enforce the predicted field to be solenoidal with an additional term.

5.3 METRICS

To evaluate training methods, we use several metrics: (i) Relative error. This metrics is the most

~ N2

often used \/Z” (gbm - d)i,j) /1 /Zi,j zj, where ¢; ; = ¢(z;,y;) is a field computed on the
uniform grid with different resolution from the training grid; (ii) Natural energy norm. For dif-
fusion equation is given by equation (12), for convection-diffusion — (19), for Maxwell’s equation
— (15). In all cases, integrals are computed with Gauss—Legendre quadrature; (iii) Error majo-
rant. The definition coincides with Astral loss, but the integral is evaluated with Gauss—Legendre
quadrature on a fine grid different from the training grid. This metric is only applicable to Astral
loss.

5.4 ARCHITECTURES AND TRAINING DETAILS

Following best practices Wang et al. (2023) we approximate all integrals with the Monte Carlo
method with a small number of randomly selected points restricted to the uniform grid 64 x 64.
Legendre grid and uniform grid used for evaluation have 200 points along each direction, for all
equations but diffusion in L-shaped domain where they have 100 points in each of three square
subdomains. In all cases, we enforce boundary and initial conditions exactly. For the L-shaped
domain this is done with the help of mean value coordinates Floater (2003) as explained in Sukumar
& Srivastava (2022). Architecture used is Siren network Sitzmann et al. (2020) with the same
number of hidden neurons Npiggen € [50,100] in each layer Niyers € [3,4,5]. Individual Siren
network is used for each field one needs to predict for a given problem. We use Lion optimizer Chen
et al. (2023b) with learning rate € [1073, 5-1073, 10*4} , exponential learning rate decay with
decay rate 0.5 and transition steps € [10000, 25000, 50000]. The batch size (number of randomly
selected points to compute loss function) used is 16 x 16 and the number of weights updates is 50000.
We report the average and standard deviation of all metrics of interest for 100 problems for each
PDE. The best results are reported among all hyperparameters. All experiments were performed
on a single Tesla V100-SXM2-16GB. Ensemble training was used, so 100 neural networks are
trained simultaneously. The same setup was used to report wall-clock training time. Depending on
the architecture and loss function training time is in-between 70 and 1200 seconds for 100 neural
networks.

5.5 REPRODUCIBILITY

Inhttps://anonymous.4open.science/r/astral-4ECB one can find datasets, scripts
used to generate datasets, and scripts used to obtain all training results. The dependencies are mini-
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Table 2: Results for convection-diffusion equation, Maxwell’s equation, magnetostatics problem,
diffusion with mixed derivative and elastoplasticity equation: relative Lo is a relative error in Lo

norm, E[¢ — ¢] is an error in natural energy norm, the large § the more role has a term with mixed
derivatives. Relative error is measured in % and energy norm and majorant are multiplied by 10

Residual Astral

equation relative Lo El¢ — ¢] relative Lo E[¢ — ¢] majorant
conv-diff 3.96 +£4.91 7.36+12.54 4.05 +4.97 8.84 +12.91 17.91 4+ 29.76
Maxwell, « = 1 5.49 £+ 2.35 1.93 + 0.66 0.45 +0.16 0.32+0.06 3.53 £ 1.08
Maxwell, o = 0 0.12 £0.06 0.15 £ 0.03 0.07 £ 0.03 0.29 +0.06 0.96 £0.26
L-shaped 0.26 £ 0.06 0.17+0.1 0.8+0.34 0.324+0.21 1.29+0.75
mixed-diff, § = 0.5 0.13 £ 0.07 0.02 £0.01 0.12 4+ 0.06 0.05+0.01 0.18 +0.04
mixed-diff, § = 0.7 0.15 £ 0.08 0.03 £0.01 0.12 4+ 0.06 0.05+0.01 0.23 £0.06
mixed-diff, § = 0.9 0.18 +0.09 0.04 £0.01 0.13 +£0.07 0.07 +£0.02 0.25 +0.05
mixed-diff, § = 0.99 0.25+0.14 0.15 £ 0.05 0.12 4+ 0.10 0.034+0.02 0.76 = 0.16
elastoplasticity 0.83 £0.65 0.003 £0.001 1.75+1.27 0.007 £0.001  0.019 £ 0.005

mal: we use JAX, Optax DeepMind et al. (2020) and Equinox Kidger & Garcia (2021). Scripts with
dataset collection also use NumPy Harris et al. (2020) and SciPy Virtanen et al. (2020).

5.6 RESULTS

Results are summarized in Table 1 and Table 2; training wall clock time is reported in Table 3;
error distribution and learning curves for selected equations are available in Appendix B. The main
observations are:

1. Accuracy. When ranked concerning the Lo norm we can see that residual and Astral losses
are much better than variational loss. On most of the problems, Astral loss leads to similar
or slightly better error than residual loss. There are two notable exceptions: for Maxwell’s
equations Astral leads to a much better error and for the L-shaped domain the error reached
by residual loss is better.

2. Robustness. When problems become less regular Astral loss leads to better results than
residual loss. This is the case for both highly anisotropic diffusion equations and diffusion
equations with large mixed derivatives. Also note that Astral upper bound does not deteri-
orate for diffusion equation in the L-shaped domain which is a standard test problem used
to benchmark methods for a posteriori error estimation.

3. Cost-efficiency. From Table 3 we can see that even though training with Astral requires
predicting more fields, the training time is typically smaller than for residual loss. The
reason for that is one does not need to compute second derivatives. It is often the case
that Astral loss also requires smaller networks for best error, e.g., for Maxwell’s equation
(Table 2, = 1) training time for Astral loss is 105 seconds and for residual loss is 1176
seconds, yet Astral loss leads to an order of magnitude better relative error.

4. Quality of the upper bound. Here we observe that the upper bound is typically reason-
ably tight. In the most favorable cases, one has mild overestimation by a factor of 0.5
(anisotropic equation € = 5). For some cases, overestimation is more severe, e.g., by a
factor of 2.0 for the convection-diffusion problem, and by a factor of 10 for Maxwell’s
equation. But overall upper bound remains a good estimate of the error in energy norm. It
is also possible to build a statistical model that predict error if a dataset with exact solutions
is available. This possibility is investigated in Appendix E where we show that the value of
Astral loss is much better predictor for error than the value of the residual loss.

6 CONCLUSION

We introduced a novel type of loss that allows for error estimation. The advantages of the loss
include: (i) When Astral is used, one can compute the upper bound on error (compute integral
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Table 3: Average training time in seconds required for 50000 updates of 100 neural network weights
on a single Tesla V100-SXM2-16GB. The small neural network has 50 hidden neurons per layer
and 3 hidden layers, large neural network has 100 hidden neurons per layer and 5 hidden layers.

Residual Astral Variational
equation small large small large small large
diff 128 535 92 437 37 164
conv-diff 77 326 62 276 - -

Maxwell, « =1 298 1176 105 481 - -
Maxwell,a =0 338 1312 142 598 - -
L-shaped 133 497 110 480 - -
mixed-diff 237 728 91 428 - -

alike (35)) and use it for quality control. This is not possible with other losses; (ii) For second-order
problems Astral loss requires only the first derivative, which speeds up training compared to residual
loss; (iii) For most equations, Astral loss leads to better final relative error.

Limitations are as follows: (i) One needs to derive the upper bound. Although upper bounds are
available for many relevant equations, it is challenging to derive them for arbitrary PDE. It is im-
portant to note that this is also the case for residual loss, defined only for PDEs when a strong form
makes sense; (ii) Integrals involved in the upper bound can be hard to evaluate reliably. The problem
is that the error term is not straightforward to control when a neural network is used as an ansatz, and
one can observe overfitting Rivera et al. (2022). This can result in cases when, because of numerical
errors, the upper bound is smaller than the error, although this is theoretically impossible.
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A ASTRAL LOSS FOR SIMPLE BOUNDARY VALUE PROBLEM

Consider a generalisation of boundary-value problem (1)’

i (am dﬁ?) = f(@), z€(-1,1), 6(-1) = 6(1) =0, a(x) > e > 0.  (26)

Following Mali et al. (2013), we will estimate deviation from the exact solution in a natural energy

norm
— 2
~ d d
Blo-d= [ dm(m)( o) fff) - @)
Note that since ) L
[ ara@ ™5 > n [ @) = Al @8)
—1 -1

where Ay 1s @ minimal eigenvalue of the differential operator (26), the error in energy norm is an
upper bound for the error in Ly norm

1 ~
Elp — ). 29
The first step is to subtract the approximate solution from both sides of the weak form of (26)

. ~ ~
/71 dx dlsz(f) a(x) <di)lf) - qu(;)) = /d:l: <w(x)f(:1:) —a(z) dl;;x) Zi) . (30)

o=, <

If we take w(z) = ¢(z) — ¢(x) in the expression above we will have E[¢ — ¢]2 on the left. Our
strategy is to bound the right-hand side from above with the expression proportional to E[¢ — ¢],
with the remaining factor free from unknown exact solution ¢. To do that we introduce two extra
terms using the following identity (w(£1) = 0)

' dw(z) dy(z)\ _
where y(x) is arbitrary function. With these two terms right-hand side of (30) reads
dy(z)\ , dw(z) d¢
/dx (w(x) (f(x) i ) + . (—a(x)dx —|—y(x)>> . (32)

Now, we take w(z) = ¢(z) — g(ac) and from Cauchy—Schwarz inequality obtain the bound on the
first term of (32)

! dy(x) ~ dy 1 ~ dy
[ s (w) (10 - %)) < o3, |- 2 < o=ro-4] H -4
3
where ||g||l, = \/ [ dzg?(z).
For the second term in (32) we similarly obtain
1 d 1 dé 1 1 d¢
lldm /() 12;:6) T (a(x) d;x) +y(x)> <E [gb - ¢>} ‘ 7 (y - adw> :
(

where we introduced a'/? in the numerator and denominator and made use of Cauchy—Schwarz
inequality.

"For simplicity we omit technical, see Mali et al. (2013). For this particular problem f belongs to L?,
approximate solution belongs to Sobolev space H' and is supposed to agree exactly with boundary conditions,
trial functions are from H* and zero on the boundary, auxiliarry function is also from H*.
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These two bounds combined give us an upper bound on the error in energy norm after we cancel

E[¢ — ¢] from both sides:

~ 1 dy 1 d%
Elp—¢] < == +l—=73 (ya) . (35)
VAmin dz ||, al/? dz ,

Since the upper bound contains no unknown parameters, one can parametrize 5 and y with a neural
network and use the right-hand side of (35) as a loss function in a physics-informed setting. In this
paper, we call Astral losses alike the right-hand side of (35) based on error majorants.

Is it a good loss function? We can look at the point of the requirements listed above: (i) The bond
is tight. Observe that if y = a‘;—i and ¢ = ¢ the bound is saturated; (ii) The bound does not

contain ¢, it can be computed by either optimization of y for fixed ¢ or by joint optimization of ¢
and y; (iii) The bound appears as a continuous functional that does not depend on a particular form
of approximation made, so it remains valid for finite-differences, finite-elements, physics-informed
neural networks and all other discretization methods; (iv) To compute the upper bound one needs to
find first derivatives of two fields ¢ and y, whereas for the residual loss one need to find second and
first derivative of ¢. One can expect that numerical costs are comparable, which we will verify in
Section 5.

The derivation of Astral loss for simple BVP relies on straightforward inequalities. More elaborate
techniques suitable for more complex equations can be found in Mali et al. (2013) and references
therein.
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B ERROR DISTRIBUTIONS AND LEARNING CURVES

Maxwell's equation
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C SPATIAL DISTIRBUTION OF ERROR, RESIDUAL, DENSITY OF ENERGY

NORM

Comparison of spatial distribution of residual, error and density of error energy norm for several
stationary diffusion equation with different diffusion coefficients. Red dot corresponds to the point
with maximal residual. Residual is poorly correlated with both energy and density of error energy
norm. Average spatial correlation coefficient over 100 randomly selected PDEs is 0.22 + 0.09.
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D SPATIAL DISTIRBUTION OF ERROR, ERROR INDICATOR, DENSITY OF
ENERGY NORM

Comparison of spatial distribution of error indicator, error and density of error energy norm for
several stationary diffusion equation with different diffusion coefficients. Error indicator is poorly
correlated with energy but well correlated with density of error energy norm. Average spatial corre-
lation coefficient over 100 randomly selected PDEs is 0.82 + 0.04.
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upper bound

STATISTICAL CORRELATION: ERROR VS RESIDUAL, ENERGY NORM VS
RESIDUAL AND ASTRAL LOSS
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(d) elastoplasticity equation

A posteriori error estimate allows to obtain error for each individual approximate solution without
knowing the exact solution. The other possibility is to use dataset with known solutions to build a
statistical model that predict error for a given method. Results of such experiment are available in
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the figure above. Evidently, value of Astral loss provide a much better feature for linear model than
the value of residual.
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