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Abstract

We introduce Invertible Dense Networks (i-DenseNets), a more parameter efficient
extension of Residual Flows. The method relies on an analysis of the Lipschitz
continuity of the concatenation in DenseNets, where we enforce invertibility of the
network by satisfying the Lipschitz constant. Furthermore, we propose a learnable
weighted concatenation, which not only improves the model performance but also
indicates the importance of the concatenated weighted representation. Additionally,
we introduce the Concatenated LipSwish as activation function, for which we
show how to enforce the Lipschitz condition and which boosts performance. The
new architecture, i-DenseNet, out-performs Residual Flow and other flow-based
models on density estimation evaluated in bits per dimension, where we utilize
an equal parameter budget. Moreover, we show that the proposed model out-
performs Residual Flows when trained as a hybrid model where the model is both
a generative and a discriminative model.

1 Introduction

Neural networks are widely used to parameterize non-linear models in supervised learning tasks such
as classification. In addition, they are also utilized to build flexible density estimators of the true
distribution of the observed data [25, 33]. The resulting deep density estimators, also called deep
generative models, can be further used to generate realistic-looking images that are hard to separate
from real ones, detection of adversarial attacks [9, 17], and for hybrid modeling [27] which have the
property to both predict a label (classify) and generate.

Many deep generative models are trained by maximizing the (log-)likelihood function and their
architectures come in different designs. For instance, causal convolutional neural networks are used to
parameterize autoregressive models [28, 29] or various neural networks can be utilized in Variational
Auto-Encoders [19, 32]. The other group of likelihood-based deep density estimators, flow-based

models (or flows), consist of invertible neural networks since they are used to compute the likelihood
through the change of variable formula [31, 37, 36]. The main difference that determines an exact
computation or approximation of the likelihood function for a flow-based model lies in the design
of the transformation layer and tractability of the Jacobian-determinant. Many flow-based models
formulate the transformation that is invertible and its Jacobian is tractable [3, 6–8, 21, 30, 31, 38].

Recently, Behrmann et al. [2] proposed a different approach, namely, deep-residual blocks as a
transformation layer. The deep-residual networks (ResNets) of [12] are known for their successes in
supervised learning approaches. In a ResNet block, each input of the block is added to the output,
which forms the input for the next block. Since ResNets are not necessarily invertible, Behrmann
et al. [2] enforce the Lipschitz constant of the transformation to be smaller than 1 (i.e., it becomes a
contraction) that allows applying an iterative procedure to invert the network. Furthermore, Chen
et al. [4] proposed Residual Flows, an improvement of i-ResNets, that uses an unbiased estimator for
the logarithm of the Jacobian-determinant.
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(a) Residual block (b) Dense block

Figure 1: A schematic representation for: (a) a residual block, (b) a dense block. The pink part in
(b) expresses a 1 ⇥ 1 convolution to reduce the dimension of the last dense layer. Wi denotes the
(convolutional) layer at step i that satisfy ||Wi||2 < 1.

In supervised learning, an architecture that uses fewer parameters and is even more powerful than
the deep-residual network is the Densely Connected Convolution Network (DenseNet), which was
first presented in [15]. Contrary to a ResNet block, a DenseNet layer consists of a concatenation
of the input with the output. The network showed to improve significantly in recognition tasks on
benchmark datasets such as CIFAR10, SVHN, and ImageNet, by using fewer computations and
having fewer parameters than ResNets while performing at a similar level.

In this work, we extend Residual Flows [2, 4], and use densely connected blocks (DenseBlocks)
as a residual layer. First, we introduce invertible Dense Networks (i-DenseNets), and we show
that we can derive a bound on the Lipschitz constant to create an invertible flow-based model.
Furthermore, we propose the Concatenated LipSwish (CLipSwish) as an activation function, and
derive a stronger Lipschitz bound. The CLipSwish function preserves more signal than LipSwish
activation functions. Finally, we demonstrate how i-DenseNets can be efficiently trained as a
generative model, outperforming Residual Flows and other flow-based models under an equal
parameter budget.

2 Background

Flow-based models Let us consider a vector of observable variables x 2 Rd and a vector of latent
variables z 2 Rd. We define a bijective function f : Rd ! Rd that maps a latent variable to a
datapoint x = f(z). Since f is invertible, we define its inverse as F = f�1. We use the change of

variables formula to compute the likelihood of a datapoint x after taking the logarithm, that is:
ln pX(x) = ln pZ(z) + ln | det JF (x)|, (1)

where pZ(z) is a base distribution (e.g., the standard Gaussian) and JF (x) is the Jacobian of F at x.
The bijective transformation is typically constructed as a sequence of K invertible transformations,
x = fK � · · · � f1(z), and a single transformation fk is referred to as a flow [31]. The change of
variables formula allows evaluating the data in a tractable manner. Moreover, the flows are trained
using the log-likelihood objective where the Jacobian-determinant compensates the change of volume
of the invertible transformations.

Residual flows Behrmann et al. [2] construct an invertible ResNet layer which is only constrained
in Lipschitz continuity. A ResNet is defined as: F (x) = x + g(x), where g is modeled by a
(convolutional) neural network and F represents a ResNet layer (see Figure 1(a)) which is in general
not invertible. However, g is constructed in such a way that it satisfies the Lipschitz constant being
strictly lower than 1, Lip(g) < 1, by using spectral normalization of [10, 26]:

Lip(g) < 1, if ||Wi||2 < 1, (2)
where || · ||2 is the `2 matrix norm. Then Lip(g) = K < 1 and Lip(F ) < 1+K. Only in this specific
case the Banach fixed-point theorem holds and ResNet layer F has a unique inverse. As a result, the
inverse can be approximated by fixed-point iterations.

To estimate the log-determinant is, especially for high-dimensional spaces, computationally in-
tractable due to expensive computations. Since ResNet blocks have a constrained Lipschitz constant,

2



the log-likelihood estimation of Equation (1) can be transformed to a version where the logarithm
of the Jacobian-determinant is cheaper to compute, tractable, and approximated with guaranteed
convergence [2]:

ln p(x) = ln p(f(x)) + tr

 1X

k=1

(�1)k+1

k
[Jg(x)]

k

!
, (3)

where Jg(x) is the Jacobian of g at x that satisfies ||Jg||2 < 1. The Skilling-Hutchinson trace
estimator [35, 16] is used to compute the trace at a lower cost than to fully compute the trace of the
Jacobian. Residual Flows [4] use an improved method to estimate the power series at an even lower
cost with an unbiased estimator based on "Russian roulette" of [18]. Intuitively, the method estimates
the infinite sum of the power series by evaluating a finite amount of terms. In return, this leads to less
computation of terms compared to invertible residual networks. To avoid derivative saturation, which
occurs when the second derivative is zero in large regions, the LipSwish activation is proposed.

3 Invertible Dense Networks

In this section, we propose Invertible Dense Networks by using a DenseBlock as a residual layer.
We show how the network can be parameterized as a flow-based model and refer to the resulting
model as i-DenseNets. The code can be retrieved from: https://github.com/yperugachidiaz/
invertible_densenets.

3.1 Dense blocks

The main component of the proposed flow-based model is a DenseBlock that is defined as a function
F : Rd ! Rd with F (x) = x + g(x), where g consists of dense layers {hi}ni=1. Note that an
important modification to make the model invertible is to output x + g(x) whereas a standard
DenseBlock would only output g(x). The function g is expressed as follows:

g(x) = Wn+1 � hn � · · · � h1(x), (4)

where Wn+1 represents a 1⇥ 1 convolution to match the output size of Rd. A layer hi consists of
two parts concatenated to each other. The upper part is a copy of the input signal. The lower part
consists of the transformed input, where the transformation is a multiplication of (convolutional)
weights Wi with the input signal, followed by a non-linearity � having Lip(�)  1, such as ReLU,
ELU, LipSwish, or tanh. As an example, a dense layer h2 can be composed as follows:

h1(x) =


x

�(W1x)

�
, h2(h1(x)) =


h1(x)

�(W2h1(x))

�
. (5)

In Figure 1, we schematically outline a residual block (Figure 1(a)) and a dense block (Figure 1(b)).
We refer to concatenation depth as the number of dense layers in a DenseBlock and growth as the
channel growth size of the transformation in the lower part.

3.2 Constraining the Lipschitz constant

If we enforce function g to satisfy Lip(g) < 1, then DenseBlock F is invertible since the Banach
fixed point theorem holds. As a result, the inverse can be approximated in the same manner as
in [2]. To satisfy Lip(g) < 1, we need to enforce Lip(hi) < 1 for all n layers, since Lip(g) 
Lip(hn+1) · . . . · Lip(h1). Therefore, we first need to determine the Lipschitz constant for a dense
layer hi. For the full derivation, see Appendix A. We know that a function f is K-Lipschitz if for all
points v and w the following holds :

dY (f(v), f(w))  KdX(v, w), (6)

where we assume that the distance metrics dX = dY = d are chosen to be the `2-norm. Further, let
two functions f1 and f2 be concatenated in h:

hv =


f1(v)
f2(v)

�
, hw =


f1(w)
f2(w)

�
, (7)
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where function f1 is the upper part and f2 is the lower part. We can now find an analytical form to
express a limit on K for the dense layer in the form of Equation (6):

d(hv, hw)
2 = d(f1(v), f1(w))

2 + d(f2(v), f2(w))
2,

d(hv, hw)
2  (K2

1 +K2
2)d(v, w)

2,
(8)

where we know that the Lipschitz constant of h consist of two parts, namely, Lip(f1) = K1 and
Lip(f2) = K2. Therefore, the Lipschitz constant of layer h can be expressed as:

Lip(h) =
q
(K2

1 +K2
2). (9)

With spectral normalization of Equation (2), we know that we can enforce (convolutional) weights
Wi to be at most 1-Lipschitz. Hence, for all n dense layers we apply the spectral normalization on
the lower part which locally enforces Lip(f2) = K2 < 1. Further, since we enforce each layer hi to
be at most 1-Lipschitz and we start with h1, where f1(x) = x, we know that Lip(f1) = 1. Therefore,
the Lipschitz constant of an entire layer can be at most Lip(h) <

p
12 + 12 =

p
2, thus dividing by

this limit enforces each layer to be at most 1-Lipschitz.

3.3 Learnable weighted concatenation

Figure 2: Range of the
possible normalized
parameters ⌘̂1 and ⌘̂2.

We have shown that we can enforce an entire dense layer to have Lip(hi) < 1
by applying a spectral norm on the (convolutional) weights Wi and then
divide the layer hi by

p
2. Although learning a weighting between the

upper and lower part would barely affect a standard dense layer, it matters
in this case because the layers are regularized to be 1-Lipschitz. To optimize
and learn the importance of the concatenated representations, we introduce
learnable parameters ⌘1 and ⌘2 for, respectively, the upper and lower part
of each layer hi.

Since the upper and lower part of the layer can be at most 1-Lipschitz, mul-
tiplication by these factors results in functions that are at most ⌘1-Lipschitz
and ⌘2-Lipschitz. As indicated by Equation (9), the layer is then at mostp
⌘21 + ⌘22�Lipschitz. Dividing by this factor results in a bound that is at

most 1-Lipschitz.

In practice, we initialize ⌘1 and ⌘2 at value 1 and during training use a softplus function to avoid
them being negative. The range of the normalized parameters is between ⌘̂1, ⌘̂2 2 [0, 1] and can be
expressed on the unit circle as shown in Figure 2. In the special case where ⌘1 = ⌘2, the normalized
parameters are ⌘̂1 = ⌘̂2 = 1

2

p
2. This case corresponds to the situation in Section 3.2 where the

concatenation is not learned. An additional advantage is that the normalized ⌘̂1 and ⌘̂2 express the
importance of the upper and lower signal. For example, when ⌘̂1 > ⌘̂2, the input signal is of more
importance than the transformed signal.

3.4 CLipSwish

When a deep neural network is bounded to be 1-Lipschitz, in practice each consecutive layer reduces
the Jacobian-norm. As a result, the Jacobian-norm of the entire network is becoming much smaller
than 1 and the expressive power is getting lost. This is known as gradient norm attenuation [1, 24].
This problem arises in activation functions in regions where the derivative is small, such as the left
tail of the ReLU and the LipSwish. Non-linearities � modeled in i-DenseNets are required to be at
most 1-Lipschitz and, thus, face gradient-norm attenuation issues. For this reason we introduce a new
activation function, which mitigates these issues.

Recall that Residual Flows use the LipSwish activation function [4]:

LipSwish(x) = x�(�x)/1.1, (10)

where �(�x) = 1/(1 + exp(�x�)) is the sigmoid , � is a learnable constant, initialized at 0.5 and is
passed through a softplus to be strictly positive. This activation function is not only Lip(LipSwish) =
1 but also resolves the derivative saturation problem [4]. However, the LipSwish function has large
ranges on the negative axis where its derivative is close to zero.
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Therefore, we propose the Concatenated LipSwish (CLipSwish) which concatenates two LipSwish
functions with inputs x and �x. This is a concatenated activation function as in [34] but using a
LipSwish instead of a ReLU. Intuitively, even if an input lies in the tail of the upper part, it will
have a larger derivative in the bottom part and thus suffer less from gradient norm attenuation.
Since using CLipSwish increases the channel growth and to stay inline with the channel growth that
non-concatenated activation functions use, we use a lower channel growth when using CLipSwish.
To utilize the CLipSwish, we need to derive Lipschitz continuity of the activation function � defined
below and enforce it to be 1-Lipschitz. We could use the result obtained in Equation (9) to obtain ap
2-bound, however, by using knowledge about the activation function �, we can derive a tighter

1.004 <
p
2 bound. In general, a tighter bound is preferred since more expressive power will be

preserved in the network. To start with, we define function � : R ! R2 for a point x as:

�(x) =


�1(x)
�2(x)

�
=


LipSwish(x)
LipSwish(�x)

�
, CLipSwish(x) = �(x)/Lip(�), (11)

where the LipSwish is given by Equation (10) and the derivative of �(x) exists. To find Lip(�) we
use that for a differentiable `2-Lipschitz bounded function �, the following identity holds:

Lip(�) = sup
x

||J�(x)||2, (12)

where J�(x) is the Jacobian of � at x and || · ||2 represents the induced matrix norm which is equal to
the spectral norm of the matrix. Rewriting the spectral norm results in solving: det(J�(x)TJ�(x)�
�In) = 0, which gives us the final result (see Appendix A.3.1 for the full derivation):

sup
x

||J�(x)||2 = sup
x

�max(J�(x)) = sup
x

s✓
@�1(x)

@x

◆2

+

✓
@�2(x)

@x

◆2

, (13)

where �max(·) is the largest singular value. Now Lip(�) is the upper bound of the CLipSwish and
is equal to the supremum of: Lip(�) = supx ||J�(x)||2 ⇡ 1.004, for all values of �. This can be
numerically computed by any solver, by determining the extreme values of Equation (13). Therefore,
dividing �(x) by its upper bound 1.004 results in Lip(CLipSwish) = 1. The generalization to higher
dimensions can be found in Appendix A.3.2. The analysis of preservation of signals for (CLip)Swish
activation by simulations can be found in Section 5.1.

4 Experiments

Figure 3: Density estimation for smaller ar-
chitectures of Residual Flows and i-DenseNets,
trained on 2-dimensional toy data.

To make a clear comparison between the perfor-
mance of Residual Flows and i-DenseNets, we
train both models on 2-dimensional toy data and
high-dimensional image data: CIFAR10 [22] and
ImageNet32 [5]. Since we have a constrained com-
putational budget, we use smaller architectures for
the exploration of the network architectures. An in-
depth analysis of different settings and experiments
can be found in Section 5. For density estimation,
we run the full model with the best settings for
1,000 epochs on CIFAR10 and 20 epochs on Ima-
geNet32 where we use single-seed results following
[2, 4, 20], due to little fluctuations in performance.
In all cases, we use the density estimation results
of the Residual Flow and other flow-based models
using uniform dequantization to create a fair com-
parison and benchmark these with i-DenseNets. We
train i-DenseNets with learnable weighted concate-
nation (LC) and CLipSwish as the activation function, and utilize a similar number of parameters
for i-DenseNets as Residual Flows; this can be found in Table 2. i-DenseNets uses slightly fewer
parameters than the Residual Flow. A detailed description of the architectures can be found in
Appendix B. To speed up training, we use 4 GPUs.
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4.1 Toy data

Table 1: Negative log-likelihood results on test
data in nats (toy data). i-DenseNets w/ and w/o LC
are compared with the Residual Flow.

Model 2 circles checkerboard 2 moons

Residual Flows 3.44 3.81 2.60
i-DenseNets 3.32 3.68 2.39

i-DenseNets+LC 3.30 3.66 2.39

We start with testing i-DenseNets and Resid-
ual Flows on toy data, where we use smaller
architectures. Instead of 100 flow blocks, we
use 10 flow blocks. We train both models for
50,000 iterations and, at the end of the training,
we visualize the learned distributions.

The results of the learned density distributions
are presented in Figure 3. We observe that
Residual Flows are capable to capture high-
probability areas. However, they have trouble with learning low probability regions for two circles
and moons. i-DenseNets are capable of capturing all regions of the datasets. The good performance
of i-DenseNets is also reflected in better performance in terms of the negative-log-likelihood (see
Table 1).

4.2 Density Estimation

Table 2: The number of parameters of Resid-
ual Flows and i-DenseNets for the full models
as trained in Chen et al. [4]. In brackets, the
number of parameters of the smaller models.

Model/Data CIFAR10 ImageNet32

Residual Flows 25.2M (8.7M) 47.1M

i-DenseNets 24.9M (8.7M) 47.0M

We test the full i-DenseNet models with LC and
CLipSwish activation. To utilize a similar number
of parameters as the Residual Flow with 3 scale
levels and flow blocks set to 16 per scale trained on
CIFAR10, we set for the same number of blocks,
DenseNets growth to 172 with a depth of 3. Resid-
ual Flow trained on ImageNet32 uses 3 scale levels
with 32 flow blocks per scale, therefore, we set for
the same number of blocks DenseNets growth to
172 and depth of 3 to utilize a similar number of
parameters. DenseNets depth set to 3 proved to be the best settings for smaller architectures; see the
analysis in Section 5.

Table 3: Density estimation results in bits per
dimension for models using uniform dequanti-

zation. In brackets results for the smaller Resid-
ual Flow and i-DenseNet run for 200 epochs.

Model CIFAR10 ImageNet32

Real NVP [8] 3.49 4.28
Glow [20] 3.35 4.09
FFJORD [11] 3.40 -
Flow++ [13] 3.29 -
ConvSNF [14] 3.29 -
i-ResNet [2] 3.45 -
Residual Flow [4] 3.28 (3.42) 4.01
i-DenseNet 3.25 (3.37) 3.98

The density estimation on CIFAR10 and Ima-
geNet32 are benchmarked against the results of
Residual Flows and other comparable flow-based
models, where the results are retrieved from Chen
et al. [4]. We measure performances in bits per
dimension (bpd). The results can be found in Ta-
ble 3. We find that i-DenseNets out-perform Resid-
ual Flows and other comparable flow-based models
on all considered datasets in terms of bpd. On
CIFAR10, i-DenseNet achieves 3.25bpd, against
3.28bpd of the Residual Flow. On ImageNet32 i-
DenseNet achieves 3.98bpd against 4.01bpd of the
Residual Flow. Samples of the i-DenseNet models
can be found in Figure 4. Samples of the model
trained on CIFAR10 are presented in Figure 4(b)
and samples of the model trained on ImageNet32
in Figure 4(d). For more unconditional samples, see Appendix C.1. Note that this work does not
compare against flow-based models using variational dequantization. Instead we focus on extend-
ing and making a fair comparison with Residual Flows which, similar to other flow-based models,
use uniform dequantization. For reference note that Flow++ [13] with variational dequantization
obtains 3.08bpd on CIFAR10 and 3.86bpd on ImageNet32 that is better than the model with uniform
dequantization which achieves 3.29bpd on CIFAR10.

4.3 Hybrid Modeling

Besides density estimation, we also experiment with hybrid modeling [27]. We train the joint
distribution p(x, y) = p(x) p(y|x), where p(x) is modeled with a generative model and p(y|x) is
modeled with a classifier, which uses the features of the transformed image onto the latent space.
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(a) Real CIFAR10 images. (b) Samples of i-DenseNets trained on CIFAR10.

(c) Real ImageNet32 images. (d) Samples of i-DenseNets trained on ImageNet32.

Figure 4: Real and samples of CIFAR10 and ImageNet32 data

Due to the different dimensionalities of y and x, the emphasis of the likelihood objective is more
likely to be focused on p(x) and a scaling factor for a weighted maximum likelihood objective is
suggested, Ex,y⇠D [log p(y|x) + � log p(x)], where � is the scaling factor expressing the trade-off
between the generative and discriminative parts. Unlike [27] where a linear layer is integrated on top
of the latent representation, we use the architecture of [4] where the set of features are obtained after
every scale level. Then, they are concatenated and are followed by a linear softmax classifier. We
compare our experiments with the results of [4] where Residual Flow, coupling blocks [7] and 1⇥ 1
convolutions [20] are evaluated.

Table 4: Results of hybrid modeling on CIFAR10. Arrows
indicate if low or high values are of importance. Results are
average over the last 5 epochs.

� = 0 � = 1
D � = 1

Model \Evaluation Acc " Acc " bpd # Acc " bpd #
Coupling 89.77% 87.58% 4.30 67.62% 3.54
+ 1⇥ 1 conv 90.82% 87.96% 4.09 67.38% 3.47
Residual Blocks (full) 91.78% 90.47% 3.62 70.32% 3.39
Dense Blocks (full) 92.40% 90.79% 3.49 75.67% 3.31

Table 4 presents the hybrid modeling
results on CIFAR10 where we used
� = {0, 1

D , 1}. We run the three mod-
els for 400 epochs and note that the
model with � = 1 was not fully con-
verged in both accuracy and bits per
dimension after training. The classi-
fier model obtains a converged accu-
racy after around 250 epochs. This
is in line with the accuracy for the
model with � = 1

D , yet based on bits
per dimension the model was not fully
converged after 400 epochs. This indicates that even though the accuracy is not further improved,
the model keeps optimizing the bits per dimension which gives room for future research. Results
in Table 4 show the average result over the last 5 epochs. We find that Dense Blocks out-perform
Residual Blocks for all possible � settings. Interestingly, Dense Blocks have the biggest impact
using no penalty (� = 1) compared to the other models. We obtain an accuracy of 75.67% with
3.31bpd, compared to 70.32% accuracy and 3.39bpd of Residual Blocks, indicating that Dense
Blocks significantly improves classification performance with more than 5%. In general, the Dense
Block hybrid model is out-performing Real NVP, Glow, FFJORD, and i-ResNet in bits per dimension
(see Appendix C.2 for samples of the hybrid models).

5 Analysis and future work

To get a better understanding of i-DenseNets, we perform additional experiments, explore different
settings, analyze the results of the model and discuss future work. We use smaller architectures for
these experiments due to a limited computational budget. For Residual Flows and i-DenseNets we
use 3 scale levels set to 4 Flow blocks instead of 16 per scale level and train models on CIFAR10
for 200 epochs. We will start with a short explanation of the limitations of 1-Lipschitz deep neural
networks.

5.1 Analysis of activations and preservation of signals

Since gradient-norm attenuation can arise in 1-Lipschitz bounded deep neural nets, we analyze
how much signal of activation functions is preserved by examining the maximum and average
distance ratios of sigmoid, LipSwish, and CLipSwish. Note that the maximum distance ratio
approaches the Lipschitz constant and it is desired that the average distance ratio remains high.
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Table 5: The mean and maximum ratio for different dimen-
sions with sample size set to 100,000.

Activation\
Measure

D = 1 D = 128 D = 1024

Mean Max Mean Max Mean Max

Sigmoid 0.22 0.25 0.21 0.22 0.21 0.21
LipSwish 0.46 1.0 0.51 0.64 0.51 0.55
CLipSwish 0.72 1.0 0.71 0.77 0.71 0.73

Identity 1.0 1.0 1.0 1.0 1.0 1.0

We sample 100,000 datapoints v, w ⇠
N (0, 1) with dimension set to D =
{1, 128, 1024}. We compute the
mean and maximum of the sampled
ratios with: `2(�(v),�(w))/`2(v, w)
and analyze the expressive power of
each function. Table 5 shows the re-
sults. We find that CLipSwish for all
dimensions preserves most of the sig-
nal on average compared to the other
non-linearities. This may explain why
i-DenseNets with CLipSwish activation achieves better results than using, e.g., LipSwish. This
experiment indicates that on randomly sampled points, CLipswish functions suffer from considerably
less gradient norm attenuation. Note that sampling from a distribution with larger parameter values is
even more pronounced in preference of CLipSwish, see Appendix D.1.

5.2 Activation Functions

We start with exploring different activation functions for both networks and test these with the smaller
architectures. We compare our CLipSwish to the LipSwish and the LeakyLSwish as an additional
baseline, which allows freedom of movement in the left tail as opposed to a standard LipSwish:

LeakyLSwish(x) = ↵x+ (1� ↵)LipSwish(x), (14)

with ↵ 2 (0, 1) by passing it through a sigmoid function �. Here ↵ is a learnable parameter which
is initialized at ↵ = �(�3) to mimic the LipSwish at initialization. Note that the dimension for
Residual Flows with CLipSwish activation function is set to 652 instead of 512 to maintain a similar
number of parameters (8.7M) as with LipSwish activation.

Table 6: Results in bits per dimensions for small architec-
tures, testing different activation functions.

Model LipSwish LeakyLSwish CLipSwish

Residual Flow 3.42 3.42 3.38

i-DenseNet 3.39 3.39 3.37

Table 6 shows the results of each
model using different activation func-
tions. With 3.37bpd we conclude that
i-DenseNet with our CLipSwish as the
activation function obtains the best
performance compared to the other
activation functions, LipSwish and
LeakyLSwish. Furthermore, all i-
DenseNets out-perform Residual Flows with the same activation function. We want to point out
that CLipSwish as the activation function not only boosts performance of i-DenseNets but it also
significantly improves the performance of Residual Flows with 3.38bpd. The running time for the
forward pass, train time and sampling time, expressed in percentage faster or slower than Residual
Flow with the same activation functions, can be found in Appendix D.2.

5.3 DenseNets concatenation depth

Figure 5: Effect of different concatenation
depths with CLipSwish activation function for i-
DenseNets in bits per dimension.

Next, we examine the effect of different concate-
nation depth settings for i-DenseNets. We run
experiments with concatenation depth set to 2,
3, 4, and 5 with CLipSwish. Furthermore, to uti-
lize 8.7M parameters of the Residual Flow, we
choose a fixed depth and appropriate DenseNet
growth size to have a similar number of param-
eters. This results in a DenseNet depth 2 with
growth size 318 (8.8M), depth 3 with growth
178 (8.7M), depth 4 with growth 122 (8.7M),
and depth 5 with growth 92 (8.8M). The effect
of each architecture can be found in Figure 5.
We observe that the model with a depth of 3
obtains the best scores and after 200 epochs
it achieves the lowest bits per dimension with
3.37bpd. A concatenation depth of 5 results in
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3.42bpd after 200 epochs, which is the least preferred. This could indicate that the corresponding
DenseNet growth of 92 is too little to capture the density structure sufficiently and due to the deeper
depth the network might lose important signals. Further, the figure clearly shows how learnable
weighted concatenation after 25 epochs boosts training for all i-DenseNets. See Appendix D.3 for an
in-depth analysis of results of the learnable weighted concatenation. Furthermore, we performed an
additional experiment (see Appendix D.4) where we extended the width and depth of the ResNet
connections in g(x) of Residual Flows in such a way that it matches the size of the i-DenseNet. As a
result on CIFAR10 this puts the extended Residual Flow at a considerable advantage as it utilizes
19.1M parameters instead of 8.7M. However, when looking at performance the model performs
worse (7.02bpd) than i-Densenets (3.39bpd) and even worse than its original version (3.42bpd) in
terms of bpd. A possible explanation of this phenomenon is that by forcing more convolutional
layers to be 1-Lipschitz, the gradient norm attenuation problems increase and in practice they become
considerably less expressive. This indicates that modeling a DenseNet in g(x) is indeed an important
difference that gives better performance.

5.4 Future Work

We introduced a new framework, i-DenseNet, that is inspired by Residual Flows and i-ResNets. We
demonstrated how i-DenseNets out-performs Residual Flows and alternative flow-based models for
density estimation and hybrid modeling, constraint by using uniform dequantization. For future work,
we want to address several interesting aspects we came across and where i-DenseNets may be further
deployed and explored.

First of all, we find that smaller architectures have more impact on performance than full models
compared to Residual Flows. Especially for exploration of the network, we recommend experimenting
with smaller architectures or when a limited computational budget is available. This brings us to the
second point. Due to a limited budget, we trained and tested i-DenseNets on 32⇥ 32 CIFAR10 and
ImageNet32 data. It will be interesting to test higher resolution and other types of datasets.

Further exploration of DenseNets depth and growth for other or higher resolution datasets may be
worthwhile. In our studies, deeper DenseNets did not result in better performance. However, it would
also be beneficial to further examine the optimization of DenseNets architectures. Similarly, we
showed how to constrain DenseBlocks for the `2-norm. For future work, it may be interesting to
generalize the method to different norm types, as well as the norm for CLipSwish activation function.
Note that CLipSwish as activation function not only boosts performance of i-DenseNets but also for
Residual Flows. We recommend this activation function for future work.

We want to stress that we focused on extending Residual Flows, which uses uniform dequantization.
However, we believe that the performance of our network may be improved using variational
dequantization or augmentation. Finally, we found that especially hybrid model with � = 1, achieve
better performance than its predecessors. This may be worthwhile to further investigate in the future.

Societal Impact We discussed methods to improve normalizing flow, a method that learns high-
dimensional distributions. We generated realistic-looking images and also used hybrid models that
both predict the label of an image and generate new ones. Besides generating images, these models
can be deployed to, e.g., detect adversarial attacks. Additionally, this method is applicable to all
different kind of fields such as chemistry or physics. An increasing concern is that generative models
in general, have an impact on society. They can not only be used to aid society but can also be used
to generate misleading information by those who use these models. Examples of these cases could be
generating real-looking documents, Deepfakes or even detection of fraud with the wrong intentions.
Even though current flow-based models are not there yet to generate flawless reproductions, this
concern should be kept in mind. It even raises the question if these models should be used in practice
when detection of misleading information becomes difficult or even impossible to track.
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6 Conclusion

In this paper, we proposed i-DenseNets, a parameter-efficient alternative to Residual Flows. Our
method enforces invertibility by satisfying the Lipschitz continuity in dense layers. In addition, we
introduced a version where the concatenation of features is learned during training that indicates
which representations are of importance for the model. Furthermore, we showed how to deploy the
CLipSwish activation function. For both i-DenseNets and Residual Flows this significantly improves
performance. Smaller architectures under an equal parameter budget were used for the exploration of
different settings.

The full model for density estimation was trained on 32⇥ 32 CIFAR10 and ImageNet32 data. We
demonstrated the performance of i-DenseNets and compared the models to Residual Flows and
other comparable Flow-based models on density estimation in bits per dimension. Yet, it also
demonstrated how the model could be deployed for hybrid modeling that includes classification
in terms of accuracy and density estimation in bits per dimension. Furthermore, we showed that
modeling ResNet connections matching the size of an i-DenseNet obtained worse performance than
the i-DenseNet and the original Residual Flow. In conclusion, i-DenseNets out-perform Residual
Flows and other competitive flow-based models for density estimation on all considered datasets
in bits per dimension and hybrid modeling that includes classification. The obtained results clearly
indicate the high potential of i-DenseNets as powerful flow-based models.
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