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ABSTRACT

Recent works show that hybrid architectures combining sliding window softmax
attention layers with linear recurrent neural network (RNN) layers outperform
both of these architectures taken separately. However, the impact of the window
length and the interplay between softmax attention and linear RNN layers remain
under-studied. In this work, we introduce SWAX, a hybrid architecture consisting
of sliding-window attention and xLSTM linear RNN layers.
A counter-intuitive finding with SWAX is that larger sliding windows do not im-
prove the long-context performance. In fact, short window attention encourages
the model to better train the long-term memory of the xLSTM, by relying less on
the softmax attention mechanism for long context-retrieval.
The issue with small sliding windows is that they are detrimental for short-context
tasks, which could be solved with information from moderately larger sliding win-
dows otherwise. Therefore, we train SWAX by stochastically changing the sliding
window size, forcing the model to leverage both a longer context window and the
xLSTM memory. SWAX trained with stochastic window sizes significantly out-
performs regular window attention both on short and long-context problems.
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Figure 1: Short (average score across bench-
marks) vs long context performance for 1.4B
xLSTM, SWA (sliding window attention) and
SWAX with different sliding window sizes.
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Figure 2: RULER Needle-In-A-Haystack accu-
racy of a 1.4B SWAX model with a fixed slid-
ing window size of 2048 vs our method using a
stochastic window size of 128/2048.

1 INTRODUCTION

Memory is a core concept in Neural Network Architectures (Zhong et al., 2025). Modern LLMs
based on softmax attention have a working memory in the form of the key-value (KV) Cache and
yield state-of-the-art long-context performance. This working memory expands indefinitely as the
sequence length grows, incurring a linear growth in both compute and memory to generate each new
token. With such an unbounded compute cost, current models become prohibitively expensive for
in-context learning on long sequences such as codebases and long reasoning traces.
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On the other hand, recurrent neural networks (RNNs) like State Space Models (SSMs) (Gu & Dao,
2024) or variants of linear attention (LA) (Katharopoulos et al., 2020) maintain and iteratively update
a hidden state. Through input-dependent update rules, RNNs manage to decide whether to keep
previous or add new information (Hochreiter & Schmidhuber, 1997; Chung et al., 2014). In this
way, the compute and memory cost is constant and independent of the sequence length. This allows
models to learn at test time from large sequence lengths and reason without a specific token limit.
Recently, these linear RNNs have been generalized in the context of online learning (Liu et al.,
2024; Sun et al., 2025). However, the recall ability of linear RNNs remains inferior to that of
Transformers (Fu et al., 2023). This shortfall has hindered their adoption in favor of global attention-
based architectures, which remain the current state-of-the-art architecture for language and code
models (Jain et al., 2024).

Recent works like those of De et al. (2024), Ren et al. (2025), Dong et al. (2024) and Arora et al.
(2025) have aimed at combining the advantages of softmax attention and Linear Attention into
hybrid architectures (Wang et al., 2025). Following this line of research, in this paper, we study
hybrid architectures, which combine linear RNNs and sliding window attention – both components
with fixed maximum state size and thus fixed compute cost per token.

In this context, we make the following contributions:

1. We investigate the impact of the sliding window length on a wide range of tasks, encom-
passing validation perplexity, short-context reasoning, common sense benchmarks, and
long-context modeling tasks;

2. We show that, contrary to previous belief, for hybrids architecture interleaving sliding win-
dow attention and linear RNNs, longer sliding windows actually hurt performance in long-
context retrieval tasks compared to using shorter windows;

3. We present a training strategy based on a stochastic window size that provides the long-
context performance enabled by short windows and the short-context and reasoning perfor-
mance of longer windows.

2 BACKGROUND

The attention mechanism handles sequences of key vector kt ∈ Rdqk and value vectors vt ∈ Rdv .
A fundamental perspective proposed by Katharopoulos et al. (2020) is that all forms of attention
update a matrix memory by adding to it the outer product of key vector kt ∈ Rdqk and value vectors
vt ∈ Rdv . This holds, provided that we can apply a vector mapping to each of these vectors. Then,
to read from the memory, a query qt ∈ Rdqk is compared to the previous keys using a similarity
metric, usually the inner product ⟨q,k⟩. In order to improve the accuracy of subsequent retrieval
operations, a pre-processing feature mapping ϕ is applied to the keys and queries. Defining the
memory tensor as

Ht =

S∑
t=1

ϕ(kt)v
⊤
t ∈ Rdqk×dv , zt =

S∑
t=1

ϕ(kt) ∈ Rdqk , (1)

a normalized read is performed as

yt =
ϕ(qt)

⊤Ht

ϕ(qt)⊤zt
=

∑
i≤t⟨ϕ(qt), ϕ(ki)⟩vi∑
i≤t⟨ϕ(qt), ϕ(ki)⟩

. (2)

Linear Attention. Equation 1 shows that if the kernel if ϕ is a finite-dimensional mapping, then
the feature-mapped keys as well as the memory tensor are also finite-dimensional and can be mate-
rialized and cached for future retrievals (Ht, zt) in constant memory:

Ht ← Ht−1 + ϕ(kt)v
⊤
t , zt ← zt−1 + ϕ(kt). (3)

All the keys and values are thus stored in constant memory. The per-token read cost is O(dqk× dv).
Importantly, it does not depend on the sequence length S.
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Softmax Attention (SA). Katharopoulos et al. (2020) show that softmax attention can be seen
as performing the attention operation defined in Equations 1 and 2, i.e., as writing outer products
between keys and values in a memory. In such a case, the keys and queries undergo an infinite-
dimensional feature mapping induced by the exponential kernel in softmax attention. Compared to
linear attention, an infinite-dimensional exponential feature map reduces the interference between
the stored keys and yields an improved retrieval accuracy. Another consequence is that the memory
Ht cannot be materialized and cached. Instead, one needs to maintain all the previous keys and
queries in memory in order to compute the exponential of the dot products of the keys and queries,
also referred to as the “KV Cache”. A well known issue inherent to the self-attention mechanism, is
that the KV Cache size (and per token computation) increases linearly with the sequence length.

Gated Linear Attention. Another way to limit interference between keys in the sequence is to
learn when to “forget” information and remove it from the memory. This is the idea behind Gated
Linear Attention (Yang et al., 2024), which improves stability and long-context performance through
selective retention/forgetting of the information. Let αt,βt,λt ∈ Rdqk be write-, read-, and decay-
gates or, equivalently, broadcastable vectors. Gating is often implemented by learned affine maps
and element-wise sigmoids. The update and reading rule are as follows:

Ht = diag(λt)Ht−1 + diag(αt)ϕ(kt)v
⊤
t , (4)

yt =
(
diag(βt)ϕ(qt)

)⊤
Ht. (5)

Gated Linear Attention as well as other modern RNNs remove the normalizing constant and, instead,
rely on normalizing layers such as LayerNorm (Ba et al., 2016) and RMSNorm (Zhang & Sennrich,
2019) in the network to stabilize training (Beck et al., 2025a).

Sliding Window Attention (SWA). Softmax attention maintains all past (ki, vi) pairs, producing
linear growth in memory and compute with t due to the KV cache. Variants with a sliding window
of size w restrict the attention process to only the previous w tokens, changing the memory and
time complexity per-token from O(S) to O(w) complexity (Beltagy et al., 2020). This theoretically
allows SWA architectures to handle arbitrarily large input sequences. In practice the receptive field
of the model is limited to O(lw) where l is the number of SWA layers in the model. Moreover, it is
unlikely that the theoretical receptive field is fully utilized in practice (Xiao, 2025).

Hybrids between Local Attention and Global Softmax Attention. Through multi-turn inter-
actions (Gehring et al., 2025), tool-use or long Chain-Of-Thought reasoning (Wei et al., 2023;
DeepSeek-AI, 2025), the length which models have to process has grown from a few thousands
of tokens to tens or hundreds of thousands of tokens. This motivates several recent works (OpenAI,
2025; Dong et al., 2024; NVIDIA, 2025; Ren et al., 2025) to consider new architectures whose com-
putational cost grow less rapidly relative to sequence length than that of global softmax attention,
while still performing well on long-context tasks. One such type of architectures are hybrids, for
which most layers have a fixed state size like sliding-window or Linear Attention Layers, and the
rest of the layers are global softmax attention layers. However, because those architectures still keep
some global attention layers to remain competitive on long-context tasks, they also keep the O(S)
scaling in state size and FLOPs per token.

Hybrids between Linear Attention and Sliding Window Softmax Attention. Another kind of
hybridization involves only component with a fixed state size, as considered by De et al. (2024) and
Ren et al. (2025), who hybridize linear attention variants with sliding window attention. SWA paired
with linear attention provides a natural split: the linear path maintains a compressed working mem-
ory with an unlimited receptive field; the windowed softmax path offers high-fidelity local reasoning.
Moreover, they demonstrate that, despite having less layers LA layers which are the only ones with
an unlimited receptive field, the long-context performance of such hybrids is actually higher than
that of a purely Linear Attention architecture. In particular, (De et al., 2024) investigated the impact
of the size of the sliding window on validation perplexity. They found that longer windows yield
better performance, making the choice of window size a purely a trade-off between performance
and compute. However, they did not investigate the impact of the sliding window length on the
long-context performance of the models.
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Figure 3: We compare 4 different types of archi-
tectures, including 3 hybrid architectures:
(1) The transformer with regular self-attention
(SA). Its complexity that becomes prohibitive for
long contexts lengths.
(2) This is circumvented by replacing some SA
layers by sliding window attention (SWA) layers
(Gemma Team, 2025; OpenAI, 2025).
(3) xLSTM (Beck et al., 2024) offers a memory
with unbounded time horizon, albeit not as pre-
cise as SA for handling the recent context.
(4) SWAX is an hybrid architecture that includes
both SWA layers and long-term memories layers,
implemented with mLSTM memory cells.

3 HYBRID ARCHITECTURE DESIGN

In this work, we focus on hybrid architectures that alternate sliding window attention and linear
RNNs. As a candidate for the linear RNN component, we choose the xLSTM (Beck et al., 2024), as
this architecture has been scaled to models having up to 7B parameters and has shown strong per-
formance in a wide variety of tasks. Importantly, fast and efficient Triton kernels are available (Beck
et al., 2025b;a). xLSTM introduced two novel memory cells: the sLSTM with a scalar memory and
the mLSTM with matrix memory. However, on language tasks the mLSTM cell shows superior per-
formance over the sLSTM, which has been abandoned in the latest 7B xLSTM model. We follow
this choice and rely solely on the mLSTM cell in our hybrid architecture. Subsequently, we use
xLSTM and mLSTM interchangeably to refer to the same architecture.

There exist many ways to hybridize these two components (Wang et al., 2025). In our case, we adopt
the simple design of inter-layer hybridization, which alternates between SWA layers and layers of
linear attention. For the sake of simplicity, we adopt a 1:1 ratio meaning, that for every xLSTM
layer there is one Sliding Window Attention layer. Figure 3 illustrates how the layers are interleaved
in pure architectures and our SWA-xLSTM hybrid architecture. Most hybrids use window sizes
between 128 as in OpenAI (2025) and 2048 as in De et al. (2024). We evaluate at intermediate
lengths with sliding attention windows of lengths 128, 256, 512, 1024 and 2048. Finally, we evaluate
a stochastic training procedure that aims at improving length-extrapolation. This training procedure
stochastically chooses for each new batch either a short or a long window. In our experiments,
we sample a window size of either 128 or 2048 with probability 0.5 for each length. A similar
strategy was proposed by Zhang & Bottou (2025) in the context of the Memory Mosaic architecture.
However, in their case, the stochastic attention mask was applied to a long-term memory layer. In
constrast, we apply it to a Sliding Window Attention layer with the explicit goal of reducing over-
reliance on the SWA layers for long-context recall.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our experiments focus on language modeling, with an emphasis on understanding the compromise
between short-context and long-context recall performance. In particular, we investigate the impact
of the SWA window size on long-context retrieval. For this purpose, we mainly rely on the needle-
in-a-haystack tasks of the RULER benchmark (Hsieh et al., 2024). A common practice for models
using global attention is to pre-train them on shorter sequence lengths like 4k or 8k to reduce the cost
of the attention operation, and are then fine-tuned in a second training stage on longer sequences to
improve their long-context ability (Peng et al., 2023). In our case, we mainly focus on fixed-memory,
fixed-compute architectures. Therefore, training longer training sequences does not increase the
required compute to attain a total training tokens target. We choose to train our models on 16k
sequence length from the start. Since we are interested in the capabilities of the model after standard
pre-training, we do not perform any task-specific fine-tuning on long-context tasks. Except stated
otherwise, our experiments use a model with 1.4 billion parameters. From our observations, it is
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Figure 4: RULER needle in a Haystack average performance on varying sequence lengths for 1.4B models

at this size that models become able to perform recall on sequence lengths in the tens of thousands
of tokens. However, to validate our method of stochastic window size at larger scale, we also train
evaluate models at the 7B parameter scale. The models have 24 blocks and a model dimension of
2048 while the 7B models have 32 blocks and a model dimension of 4096. In each block, the FFN is
a gated MLP Liu et al. (2021) with Silu activation (Elfwing et al., 2017). For the SWA layers of the
hybrids, we use Rotary Positional Embedding (RoPE) (Su et al., 2023) with a frequency θ of 10000,
and 16 attention heads. All models are trained on 150 billion tokens following a warmup-cosine
learning rate schedule with a peak learning rate of 3 · 10−4 and a minimum learning rate of 3 · 10−6.
The batch size is 106 tokens. Our training data mix consists mostly of web-data and code. Since
we are most interested in the performance of models on long sequences, and our code data has, on
average, 10 times longer documents than our web data, we report the validation perplexity on the
code data subset of our data mix. For the MBPP (Austin et al., 2021) and HumanEvalPLus (Liu
et al., 2023) pass@10 results, we use a sampling temperature of 0.8.

4.2 HYBRID VS PURE ARCHITECTURES

We start our investigation by reproducing the finding from (De et al., 2024) that hybrids between
Local Attention and Linear Attention variants improve performance across the board on both short-
term reasoning and long-term recall tasks.

Long-context performance Figure 4 shows that the pure SWA architecture performs poorly on
long-context recall. This is expected because of its limited receptive field of 128 * 24 = 3072
tokens. More importantly, it confirms the counterintuitive finding from (De et al., 2024) that hybrids,
despite having fewer global receptive field layers, outperform the pure variants in long-context recall.
Intuitively, this is explained by the fact that, although the SWA layers have a limited receptive field,
the softmax feature mapping allows them to better model local dependencies than an equivalent
number of linear attention layers. Since most of the information necessary to predict the next token
comes from local dependencies (Ruiz & Gu, 2025), a fully linear attention model dedicates most of
its layers to modeling local dependencies and few layers to model long-term dependencies.

On the other hand, in SWA-LA hybrids, local dependencies are rather routed to the softmax local
attention layers, which are more precise because of their direct access to recent history. As a conse-
quence the linear attention layers specialize themselves in modeling long-term dependencies, which
the SWA layers cannot model due to the limited window size. This highlights the impact that the
window size can have on how much supervision the linear attention layers receive.

Short-context performance Table 1 shows that the performance of hybrid models on short-
context reasoning benchmarks is higher than that of a xLSTM and also slightly higher than that
of a pure SWA architecture. This further highlights the fact that for short contexts, hybrid models
leverage the high precision of the softmax sliding window attention layers. Hybrids models there-
fore take the strong short-context performance of softmax attention, and the improved long-context
recall ability of the Linear Attention layers.
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Model Transformer xLSTM SWA SWAX

window length n/a n/a 128 128 256 512 1024 2048
FLOPs/token (×109) 6.174 2.978 3.029 3.004 3.016 3.041 3.092 3.192

val PPL ↓ 2.431 2.602 3.036 2.551 2.540 2.546 2.538 2.523
HEplus/pass@10 ↑ 14.63 12.80 13.41 12.20 12.80 14.02 14.63 15.24
ARC-c ↑ 30.90 28.93 31.25 29.27 30.13 31.76 30.30 29.79
ARC-e ↑ 66.43 65.79 65.58 65.75 67.82 67.82 66.89 67.15
Hellaswag ↑ 46.18 44.68 44.45 45.37 45.37 45.47 45.47 45.91
MBPP/pass@10 ↑ 31.40 22.60 23.80 24.20 26.80 28.40 29.20 28.80
NaturalQuestions ↑ 13.45 12.49 12.37 13.51 13.45 13.40 12.31 13.19
PIQA ↑ 73.99 73.39 73.99 73.83 74.05 74.48 73.67 73.99
RACE.high ↑ 37.19 33.65 33.25 33.56 35.71 35.71 35.11 35.99
RACE.mid ↑ 50.63 46.59 45.54 46.52 49.09 48.89 48.40 49.30
SIQA ↑ 42.48 40.23 41.61 42.53 42.02 41.71 41.91 41.71
TriviaQA ↑ 30.11 27.96 28.15 28.95 29.59 28.26 28.98 29.95
Winogrande ↑ 61.41 58.01 62.12 62.04 59.91 58.33 59.27 59.51

average ↑ 41.57 38.93 39.63 39.81 40.56 40.69 40.51 40.88

Table 1: Validation perplexity and accuracy on short-context reasoning and commonsense tasks. All models
have 1.4B parameters. To compute the transformer FLOPs we use the training sequence length of 16384.

4.3 IN SEARCH OF AN OPTIMAL WINDOW SIZE FOR HYBRIDS

Hereafter, we establish that windows that are too long actually hinder the Linear Attention layers
from learning to model long-term dependencies during training. In other words, we hypothesize
that such long softmax attention windows actually degrade the long-context recall abilities of the
model when used on longer sequence length than seen during training, due to under-training of the
linear attention layers on the long-context recall task. To validate this hypothesis, we train hybrids
with a varying window size in 128, 256, 512, 1024, 2048 and test the models on both short context
reasoning tasks but, more importantly, also on long-context recall tasks like RULER NIAH.

Short-context performance De et al. (2024) experimented with different window sizes to find
the optimal sliding window size. However, they only evaluated the different window sizes using
the validation perplexity. Table 1 shows that, indeed, the hybrid with the largest softmax attention
window (SWAX:2048) has the best performance from the validation perplexity point of view.

However, raw perplexity is not sufficient to accurately predict performance in downstream tasks, and
especially not in long-context modeling tasks (Fang et al., 2024). Thus, we also evaluate the impact
of the window size on short-context reasoning and common sense benchmarks and on long-context
retrieval tasks from the RULER benchmark. Table 1 shows that on short-context reasoning bench-
marks all window sizes except the shortest one, 128, give similar results, with the best performing
hybrid being the one trained with the longest window size of 2048. The worse performance of the
shortest window of size 128 is understandable as most prompts, even from those relatively short
reasoning benchmarks, do not necessarily fit within a sliding window of 128 tokens.

Long context performance Figure 5 shows that once tested on longer sequences, the performance
of the hybrid trained with a window size of 2048 drops the most. On the other hand, the SWAX mod-
els trained with shorter window sizes like 128, 256, and 512, maintain better performance even up
to sequence lengths of 65k and 131k tokens. On the NIAH single task, SWAX models with a shorter
window have around 30% recall accuracy at 131k sequence length, while the SWAX with a window
of 2048 has near 0% recall. Even the shortest sliding window of size 128, which consistently under-
performed the longest ones in terms of PPL and short-context reasoning, significantly outperforms
the model with the 2048 window length on all RULER NIAH tasks.

As shown in Figure 6, averaging over all sequence lengths and NIAH tasks, the SWAX model with
a window size of 128 actually performs the best out of all the window sizes we tested. In particular,
it outperforms the 2048 window size by 16 accuracy points. In other words, the SWAX with the
shortest window has a recall 88.9% higher than the SWAX with the longest window. The most
likely cause for this phenomenon is that during training, most of the dependencies to model fall
inside the 2048 tokens window.
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Figure 5: RULER NIAH subtasks accuracy for 1.4B SWAX models with different window sizes

Therefore, during pretraining, it was advantageous for the model with a window of 2048 to use the
more precise softmax attention from the sliding window rather than having to rely on the less precise
Linear Attention layers to model most dependencies. However, once tested on longer sequence
length where the dependencies are outside of the window length, the model does not extrapolate
since it never learned to rely on the Linear Attention layers to do long-context modeling.

On the other hand, the models with shorter windows had to rely on the Linear Attention layers to
propagate information since many dependencies fell outside of the sliding window. We give further
evidence in Appendix A which further indicates that this is indeed the reason for the poor long-
context performance of hybrids with long sliding windows.

All these results show that, contrary to previous belief, longer sliding windows do not always provide
better performance and can even have a strong negative impact when extrapolating to tasks beyond
the sliding window size and training sequence length. On the contrary, shorter window size push the
global receptive field Linear Attention layers to receive more supervisory signal and specialize in
long-context dependencies. Overall, shorter sliding windows allow the model to better extrapolate
to tasks beyond the sliding window size and even far beyond the training sequence length. This also
means that shorter windows are not just a way of reducing computational cost or maximize hardware
utilization as was often thought to be the case, as in Arora et al. (2025) and De et al. (2024).

4.4 DIFFERENT WINDOW SIZES AT TRAIN AND TEST TIME

We now explore a training strategy allowing for a large window size at test time, to have the best
reasoning performance possible, while still being trained such that the Linear Attention layers for
long-term dependencies and extrapolate to longer sequences.

Length extrapolation As a preliminary analysis, we first evaluate the performance of models
when tested with a different window size than the one used at training time. Figure 6 shows that,
as expected, naively extending the window size beyond its training length results in catastrophic
collapse. This is a common phenomenon in softmax attention with RoPE which is used in the
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Table 2: Validation Perplexity and accuracy on downstream tasks. Stochastic
models use w = 2048 by default and switch to w = 128 with probability
p = 0.5 at 1.4B scale and with probability p = 0.75 at 7B scale.
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0.16 0.19 0.23 0.27 0.00

0.02 0.03 0.14 0.13 0.18

Figure 6: average NIAH accuracy
of 1.4B SWAX models depending on
their train and test time window sizes.

model – parameters SWAX 1.4B SWAX 7B

train window length 128 stochastic2048 128 stochastic2048
test window length 128 2048 2048 128 2048 2048

val PPL ↓ 2.551 2.502 2.523 2.291 2.272 2.283

HEplus/pass@10 ↑ 12.20 12.80 15.24 24.39 24.39 26.83
ARC-c ↑ 29.27 30.82 29.79 40.77 40.86 41.55
ARC-e ↑ 65.75 68.71 67.15 75.05 74.46 74.80
Hellaswag ↑ 45.37 45.51 45.91 53.34 53.59 53.69
MBPP/pass@10 ↑ 24.20 30.60 28.80 44.60 47.20 45.40
NaturalQuestions ↑ 13.51 12.47 13.19 22.21 23.45 23.04
PIQA ↑ 73.83 74.43 73.99 77.26 77.97 76.55
RACE.high ↑ 33.56 35.91 35.99 37.65 38.99 39.88
RACE.mid ↑ 46.52 48.33 49.30 52.65 54.32 54.80
SIQA ↑ 42.53 41.86 41.71 43.55 44.22 42.78
TriviaQA ↑ 28.95 28.99 29.95 46.20 47.15 46.80
Winogrande ↑ 62.04 59.27 59.51 67.88 67.64 65.75

average ↑ 39.81 40.81 40.88 48.80 49.52 49.32

SWA layers here (Peng et al., 2023). On the other hand, windows of size 1024 and less show little
degradation when reducing their train-time window size by half. Overall, models need to be trained
at large windows sizes during training to be able to use those large windows during testing. However,
we cannot allow the models to over-rely on the long softmax attention windows since those do not
perform well on very long-context recall.

Stochastic window size To solve this dilemma, we introduce a training procedure that, throughout
the training, stochastically alternates between a large window size and a small window size. Our
hypothesis is that this will prevent the model from over-relying on the SWA layers for recall, since
those do not perform well on very long-context tasks, while still making the model capable of using
the larger window size at test time for better short-context reasoning. Moreover, to validate our
experiments at a larger scale, we also train 7B parameter models using the same experimental setup
as for the 1.4B models. For the 1.4B experiments, at each new batch of data, we set the window
size to 128 with probability p = 0.5 or leave the default window size of 2048. At 7B scale, we
use a slightly higher probability p = 0.75 of sampling the short window. We provide an ablation
for the value of p in Appendix B. Finally, in order to make the model better use the larger test-
time window of size 2048, we anneal the stochastic training procedure by not sampling the smaller
window size anymore for the last 10% of training. We find that this short period of fixed window
at the end of the training significantly helps short-context performance while not degrading long-
context performance. We provide an ablation of the annealing in Appendix B.

Table 2 shows how training with a stochastic window size alternating between 128 and 2048 and
annealing gives a short-context performance comparable to or even better than training with a fixed
window size of 2048. In particular, at both the 1.4B scale and 7B scale, stochastic training gives
considerably better short-context performance than having a fixed-sized window of 128. From a
validation perplexity perspective, the stochastic window size actually outperforms all models trained
with fixed window sizes all parameter scales. Therefore, training with a stochastic window size
and testing with the longer window size at test time yields better results from a short-context task
perspective compared to training with a using a short window size at both train and test time.

Compared to training with a long, fixed sliding window of size 2048, stochastic training gives com-
parable performance at the 1.4B scale and even slightly superior performance at the 7B scale on
short-context reasoning tasks. This indicates that indeed, even if during training the model has seen
the longer window size only part of the time, it is still able to take advantage of the longer window
size for short-medium context reasoning tasks.

Long context performance of the stochastic training To ascertain whether or not this strategy
will give a performance on long-context tasks as good as short-window variants, or not extrapolate

8
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Figure 7: Average RULER NIAH accuracy of 1.4B
SWAX models with different window sizes.
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Figure 8: Average RULER NIAH accuracy of 7B
SWAX models with different window sizes.

to longer sequence lengths like the long-window variants, we evaluated the performance of the
stochastically trained SWAX models with annealing on the last 10% of the training.

Figures 7 and 8 show that on RULER’s long-context recall tasks, the models trained with a stochastic
window size and annealing perform on par or are better than the model trained with the short window
of 128, and drastically better than the hybrid model trained with a window of 2048 tokens. For
instance, at 1.4B parameter scale depicted in Figure 7, the stochastic training SWAX model performs
similarly to the short-window SWAX. Figure 8 shows that stochastic training also improves the long-
context performance of models at the 7B scale. At 7B scale, compared to using a fixed, long sliding
window of size 2048, the stochastic training gives much better retrieval accuracy at all sequence
lengths. Furthermore, just as at 1.4B scale, stochastic training gives similar or even superior long-
context performance compared to using a short window throughout training. Overall, these results
show that a stochastic window size at training time maintains all the benefits of having a short
window for long-context recall, and most if not all of the benefits of having a longer window for
short/medium-context reasoning tasks.

Moreover, this result further confirms that the poor performance of hybrids with a long sliding
window is not intrinsically due to using a long sliding window at test time. Instead, these results
show that the poor length-generalization of hybrids with long sliding windows is due to the training
procedure. Indeed, if the model is allowed to use the long sliding window at all times throughout
training, it will over-rely on the more precise softmax attention of the sliding window even for
recall tasks, which will not extrapolate to longer sequence lengths, and will under-utilize the Linear
Attention Layers for the long-term recall task. On the contrary, if during training the model is not
allowed to over-rely on the long sliding window, and is instead stochastically forced to use a shorter
window, then the linear attention will have to be trained on the medium/long-term recall task and
the model will generalize to longer sequence lengths at test time. Since, essentially, this amounts
to stochastically reducing the capacity of the model in order to make it more robust, this stochastic
training can be seen as a form of dropout (Srivastava et al., 2014) on the attention mechanism.

5 CONCLUSION

Through an empirical analysis of hybrid architectures, we evidence the counter-intuitive fact that
shorter sliding windows lead to better length-extrapolation on retrieval tasks. Moreover, we in-
troduce a training procedure which stochastically changes the window size throughout training to
prevent over-reliance on the long softmax attention windows. This training procedure allows the
model to profit from both the strong performance of longer sliding windows offer on short context
tasks, and the length-extrapolation ability of Linear Attention layers enabled by shorter windows.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
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SUPPLEMENTARY MATERIAL

A RESULTS OF PURE SWA MODELS

In section 4.3 we hypothesize that the worse performance of SWAX models with long windows
comes from the model utilizing the SWA layers instead of the xLSTM layers. To further confirm
this hypothesis, we train a 1.4B pure SWA model with a window size of 2048 and compare its
performance to the SWAX model with the same window size. If the hypothesis that the SWAX
model relies on the SWA layers for recall is valid, then we expect its performance to be similar to
that of a pure SWA architecture.
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Figure 9: Average accuracy of 1.4B parameter models over all RULER NIAH tasks.

Figure 9 shows that indeed, the SWAX model trained with a window of 2048 performs very similarly
to the pure SWA architecture. On the other hand, the accuracy the SWAX model trained with a
window of 128 is very dissimilar from that of the pure SWA model with a window of 128. This
further evidences the fact that low long-context performance of hybrid models with long windows
comes from the model over-relying on the SWA layers for long-context recall instead of using the
xLSTM layers.

B ABLATION ON STOCHASTIC SAMPLING PROBABILITY AND ANNEALING OF
STOCHASTICITY

In this experiment we perform an ablation on the stochastic sampling probability p its schedule
during training for the two model sizes 1.4B and 7B we consider in our study. Table 3 shows
that, at 7B scale, a higher probability of sampling the small window during training is necessary to
significantly improve short and long context performance compared to the probability of 0.5 which
worked at 1.4B scale. Looking at the impact of annealing, i.e. using a stochastic window size for
the first X% of training, at both 1.4B and 7B scale, annealing improves short-context performance
compared to keeping the stochasticity until the end of training. At 7B scale, the annealed SWAX
model even performs better on short-context than the SWAX model trained with a fixed window size
of 2048. In terms of long-context performance, compared to keeping the stochasticity until the end of
training, annealing slightly degrades the long-context performance at 1.4B scale but keeps or even
slightly improves long-context performance at 7B. We believe that exploring different annealing
procedures might provide even better short-context performance improvements while — at the same
time — keeping good long-context performance.
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model xLSTM SWAX SWAX
parameters 7B 7B 1.4B

train-time window NA 128 p=0.9 p=0.75 p90%=0.75 p=0.5 2048 p=0.5 p90%=0.5
test-time window NA 128 2048 2048 2048 2048 2048 2048 2048

niah single 61.20 62.43 58.99 63.36 63.20 55.27 53.46 62.61 61.59
niah multiquery 44.18 34.78 35.95 32.72 32.23 17.94 21.62 30.85 27.42
niah multikey 10.14 9.96 13.32 17.23 17.86 14.34 12.29 14.52 12.19
niah multivalue 39.28 26.11 23.55 27.32 27.56 19.48 17.30 30.63 27.63

niah average 37.19 34.76 34.55 37.73 37.87 30.78 29.52 36.61 34.55

HEplus/pass@10 25.00 24.39 25.61 23.17 24.39 21.95 26.83 13.41 12.80
arc-c 37.42 40.77 40.00 40.86 40.86 40.09 41.55 32.45 30.82
arc-e 73.32 75.05 74.76 74.50 74.46 74.63 74.80 67.23 28.71
hella 52.95 53.34 53.34 53.48 53.59 53.47 53.69 45.61 45.51
mbpp/pass@10 43.80 44.60 43.60 42.80 47.20 45.80 45.40 28.00 30.60
nq 22.12 22.21 23.12 23.16 23.45 22.58 23.04 12.95 12.47
piqa 76.93 77.26 76.71 78.07 77.97 77.31 76.55 74.32 74.43
race.high 37.02 37.65 37.71 38.74 38.99 38.74 39.88 34.82 35.91
race.mid 52.85 52.65 54.11 54.32 54.32 53.90 54.80 48.26 48.33
siqa 43.96 43.55 44.06 44.01 44.22 44.37 42.78 41.91 41.86
tqa 46.39 46.20 47.44 46.90 47.15 46.55 46.80 29.35 28.99
wino 66.06 67.88 68.51 67.32 67.64 66.77 65.75 59.20 59.27

short-average 48.15 48.80 49.08 48.95 49.52 48.85 49.32 40.62 40.81

Table 3: NIAH and downstream tasks accuracy for 7B models. p indicates the probability of using a window
of 128 for a batch, otherwise using a window of 2048. p90% indicates annealing, i.e., only doing the stochastic
window size for the first 90% of the training and then using a fixed window size of 2048 for the rest of training.
NIAH single and multikey results are the average overall all 3 sub-tasks for each.
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