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Abstract—Model Predictive Control (MPC) is among the most
widely adopted and reliable methods for robot control, relying
critically on an accurate dynamics model. However, existing
dynamics models used in the gradient-based MPC are limited by
computational complexity and state representation. To address
this limitation, we propose the Hyper Prediction Model (Hy-
perPM) - a novel approach in which we encode the unmodeled
dynamics onto a time-dependent dynamics model. This time-
dependency is captured through time-varying model parameters,
whose evolution over the MPC prediction horizon is learned using
a neural network. Such formulation preserves the computational
efficiency and robustness of the base model while equipping it
with the capacity to anticipate previously unmodeled phenomena.
We evaluated the proposed approach on several challenging
systems, including real-world FITENTH autonomous racing, and
demonstrated that it significantly reduces long-horizon prediction
errors. Moreover, when integrated within the MPC framework
(HyperMPC), our method consistently outperforms existing state-
of-the-art techniques.

Full Paper, Videos, and code are available at hyper-mpc.github.io

Index Terms—Dynamics Model Learning, Model Predictive
Control, MPC

I. INTRODUCTION

One of the fundamental challenges in robotics is deter-
mining optimal actions to achieve specific objectives, a task
generally referred to as control. This challenge is particularly
pronounced for systems that are underactuated or operate at
the limits of their physical capabilities. Many of these com-
plexities have been recently resolved with learning-based con-
trollers [L]], [2]], [3], [4]. However, if the model of the system is
available, Model Predictive Control (MPC) has demonstrated
outstanding performance across demanding tasks, such as agile
drone flight [5], [6], [7], autonomous racing [8], [9], and
legged locomotion [10], [L1].

MPC methods can be broadly categorized into sampling-
based approaches, such as MPPI [12], [13], [14], [L15], which
offer flexibility at the expense of computational demand,
and optimization-based approaches [[16], which often leverage
physics-derived models [[11]], [[17] or small function approx-
imators [8]], [7], [18]. Nevertheless, the effectiveness of all
these approaches depends fundamentally on the quality of the
underlying dynamics model.

Dynamics models in MPC span a spectrum: reduced-order
analytical models derived from first principles [19], [20I],
purely data-driven neural networks [21]], [22], [23]], and hybrid
approaches combining physics-based models with Gaussian
Processes [24], [25], [26], polynomial expansions [7]], [27]], or
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neural networks [28]], [29], [30]. However, all approximators
are limited by partial observability i.e. state representation. In-
cluding history can mitigate this issue [28]], [23]], but recurrent
models [31], [32]] expand the system state, resulting in cubic
growth in MPC complexity. Hyper-networks [33]], [34], [35]]
and parameter-predicting neural networks [9] offer intriguing
alternatives, though they assume static parameters over the
MPC horizon.

To address these limitations, we propose the Hyper Predic-
tion Model (HyperPM), which encodes the unmodeled com-
ponents of the system dynamics as time-dependent variations
in the parameters of the existing model. This way, we can
enhance the accuracy of the dynamics model without affect-
ing its computational complexity. We implement HyperPM
as a neural network that predicts the trajectories of model
parameters conditioned on past states, controls, and future
planned inputs (see Fig. EI) Unlike prior works [35]], [9l], which
assume time-invariant parameters, HyperPM anticipates their
evolution, yielding lightweight yet accurate long-horizon dy-
namics models. Furthermore, we propose HyperMPC, which
integrates HyperPM with MPC, exploiting the synergy be-
tween superb long-horizon prediction accuracy of HyperPM
and planned control trajectories obtained with MPC.

We evaluate HyperPM on two challenging tasks: (i) rope-
suspended payload tracking with a drone, and (ii) real-world
FITENTH racing [36]. HyperPM improves prediction accu-
racy by over 12%, and 62% in these tasks compared to models
with constant parameters, while HyperMPC improves control
performance by up to 9%, and 19%, respectively.

The contributions of this paper are the following:

1) Hyper Prediction Model, a novel framework that predicts
future trajectories of dynamics model parameters based on
history and planned actions,

2) HyperMPC, which integrates HyperPM with MPC to im-
prove control performance without increasing the computa-
tional complexity of the dynamics model.

II. PROPOSED METHOD
A. Hyper Prediction Model

To motivate our approach, consider using MPC to control a
drone carrying a rope-suspended payload, where the observ-
able state includes only the drone state variables - position,
orientation, and linear and angular velocities. Therefore, a
system’s model relying solely on (z:,u¢) will inevitably
incur errors, because the influence of the swinging payload
cannot be accurately captured without access to its unobserved
state. Moreover, MPC requires knowledge about the payload’s
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Fig. 1: HyperPM leverages the recent state x[(. — {,, (.| and control u[t. — ty, t.] history, together with the planned controls
Ufte,te +t,], to predict a trajectory of time-varying model parameters 6[t., t. + t,]. Injecting these predicted parameters into
the nominal dynamics yields more accurate long-horizon state forecasts, allowing HyperMPC to proactively anticipate and

compensate for previously unmodeled effects.

influence not just at the current time step, but throughout the
entire prediction horizon.

To provide the dynamics model with the ability to com-
pensate for unmodeled phenomena along the entire prediction
horizon, we propose to encode these effects into the variations
of the dynamics model parameters. We challenge the common
assumption of time-invariant model parameters and propose
to infer the trajectory of unmodeled states over the prediction
horizon. The impact of these unmodeled states is then captured
as a trajectory of time-varying model parameters 0[t., t. + t,],
yielding the Hyper-Prediction Model (HyperPM):

[te — tn,

Ote, te+tp] = HyperPM@( jl’l'[f\

yUlte, te + /,1)}),

ey
which ingests the recent state history x[t. — (,, (.|, the corre-
sponding control history u[t. — t,, (], and the planned control
sequence l[t.,t.+ t,], to predict the expected trajectory of
time-varying model parameters 0[t., t. + ¢,]. The scheme of
HyperPM is presented in Figure [} The HyperPM model (i)
extracts a latent representation of the unobserved unmodeled
state from history of observed states and actions, (ii) propa-
gates that representation forward under the planned actuation,
and (iii) expresses the resulting influence of unmodeled states
as a trajectory of time-varying parameters 0[t., t.+1t,] across
the prediction horizon. Additional implementation details may
be found in the full paper referenced in the abstract.

Note that our approach goes beyond adapting the dynamics
model’s parameters, as approaches of this type assume that
adapted parameters are constant over the prediction horizon.
Interestingly, even an ideal adaptation can be outperformed
by HyperPM due to its capabilities to capture expected future
effects of unmodeled dynamics, as shown in the experimental
analysis (see Section [[II-B).

In summary, our method addresses scenarios where obtain-
ing a fully Markovian representation of the system state is
infeasible or computationally prohibitive. By approximating
certain missing aspects of the dynamics within the model’s
parameter space, HyperPM improves the accuracy of long-
horizon predictions by encoding unmodeled dynamics into
trajectories of time-varying parameters.

B. Training procedure

Training HyperPM requires a tailored procedure, as its goal
of predicting a trajectory of model parameters 0[t.,t. + t,]
makes conventional single-step prediction losses unsuitable.
Instead, we predict the parameter’s trajectory and use it to
roll out the time-varying dynamics fy,, generating a predicted
state trajectory Z[t. + dt,t. + t,]. Then, we compute loss as
mean squared error between this predicted state trajectory and
the ground-truth data. We optimize the HyperPM weights ©
by back-propagating the gradients of this trajectory-wise loss
through time [37]]. This end-to-end approach directly optimizes
for the long-horizon prediction accuracy, which is crucial for
MPC.

C. HyperMPC

The downstream application of HyperPM, which we focus
on in this paper, is optimization-based Model Predictive Con-
trol [16], [38]]. In this framework, an optimization algorithm
computes trajectories of states and control actions that min-
imize the objective function, while satisfying the constraints
stemming from the robot’s dynamics and imposed on its states
and control signals. In order to close the feedback loop, only
the first control action is applied to the plant, and the whole
optimization process is repeated at the next control interval.

The key aspect of the MPC paradigm is the use of a model
capable of accurately predicting the evolution of the system
over the optimization horizon. Typically, MPC uses a single
constant model of the system [16]. However, as shown in [35],
it is possible to infer a new model at each control interval,
so that it can capture local variations in the dynamics of the
system. In our approach, called HyperMPC, we propose to go
further and exploit HyperPM to predict the trajectory of model
parameters over the MPC horizon and increase predictive
accuracy not only locally but also in the expected near future.

We obtain a horizon-long trajectory of dynamics-model
parameters using HyperPM that is fed with both the recent
history of observations and the planned control sequence
generated by the previous MPC iteration. These predicted
parameters are then injected into the nominal dynamics model
and supplied to the MPC solver, which resolves the optimal-
control problem for the current horizon. Only the first action



Fig. 2: Experimental platforms used to validate the proposed
method: (i) drone with rope attached payload trajectory track-
ing, (ii) real-world autonomous FITENTH [36]] racing.

of the refreshed solution is applied to the plant; the state
and planned-action buffers slide forward, and the entire cycle
repeats at the next control interval.

Crucially, the scheme maintains the same computational
complexity as the primary dynamics model within the op-
timization loop, adding only a single forward pass through
a lightweight neural network performed before solving the
optimal control problem.

III. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of the proposed HyperPM and
HyperMPC, we performed experiments on two challenging
control tasks using systems presented in Fig. 2] We show that
forecasting the trajectories of dynamic model parameters using
HyperPM enhances the prediction accuracy and improves the
control performance in MPC. In each experiment, control
performance is evaluated via the accumulating MPC stage
cost across episodes, highlighting differences between the
modeling approaches.

A. Baselines

To establish baselines for our method, we selected a group
of approaches to model the dynamics of the considered
systems: const, — a dynamics model with constant parame-
ters, obtained using single-step prediction error minimization.
const; — a dynamics model with constant parameters, opti-
mized using long sequences to minimize the error between
simulated system states and ground-truth states across entire
trajectories. HD, — referred to as HyperDynamics, inspired by
[9], [33]. This is a dynamics model in which parameters are
predicted by a neural network and held constant for the entire
prediction horizon of the roll-out. It is trained using single-step
prediction error minimization according to [9], [35]]. HD; — the
same architecture as HDy, but trained using long sequences.

In addition, we tested extending the nominal dynamics of
the system with a residual neural network [29], [30], = =
f(x,u) + NN(x, u), trained using long sequences, which we
refer to as res. For drone experiments, the residual network
predicts the residual forces acting on the drone frame.

To ensure a fair comparison with baselines, the training and
architectural hyperparameters (e.g., neural network architec-
ture, batch size, and learning rate) were optimized for each
method by grid search, using the accuracy of the validation
subset as the evaluation criterion. Full details of the training
setup, including hyperparameters, exact MPC formulation, and
dataset descriptions, are provided in the full paper.

TABLE I: Long-horizon prediction error for drone with
payload. Improvement is calculated w.r.t. const; model with
adequate dynamics model.

Nominal Model  Error (mean+std) () Improvement [%] (1)

const; 0.0655 4 0.132 —
HD; 0.0252 + 0.083 61.52
HyperPM (ours) 0.0176 £ 0.076 73.12

Residual Model ~ Error (mean+std) () Improvement [%] (1)

const; 0.0186 4 0.058 —
HD; 0.0184 4+ 0.057 1.08
HyperPM (ours) 0.0164 £ 0.060 11.82

13 Nominal model: Cost ({)

13 Residual model: Cost ({)

Cost / nominal const;

Fig. 3: Comparison of drone modeling approaches for an MPC
trajectory tracking task. Values are relative to the nominal
const; model.

B. Simulated drone with rope suspended payload

Drone trajectory tracking is a fundamental component of
an aerial vehicle’s autonomy stack and presents a particularly
challenging modeling problem, especially when the drone is
tasked with transporting a rope-suspended payload. In our
setup, the rope was attached to the center of mass of the drone
frame, allowing us to model the behavior using only forces.
It is important to note that the state of the system does not
include the position or velocity of the payload. This partial
observability introduces complex, time-varying disturbances
not evident from the drone’s state alone, making accurate long-
horizon prediction and control challenging.

In our experiments, we used two dynamics models, nom-
inal [39]], and a residual model in which a neural network
predicts drone frame residual forces. Dynamics model pa-
rameters that can be changed by HD; or HyperPM are the
additional forces acting on a drone’s frame. Additionally,
we include an oracle-adaptation baseline that retrieves the
exact payload-induced forces from the simulator and assumes
that these forces remain constant throughout the prediction
horizon. This represents an idealized scenario with access
to perfect information, albeit with the limitations of time-
invariant parameterization. We omitted the models trained
using single-step prediction as they proved unstable inside the
MPC loop and failed to deliver reliable control performance.

The reported results are based on a setup that employs a
0.5 kg payload suspended from a 1 m rope attached to a
quadrotor of mass 1.325 kg. In the long-horizon prediction task
(1s horizon, 100Hz), both HD; and HyperPM substantially im-



TABLE II: Long-horizon prediction error for FITENTH car

Model Error (mean+std) () Improvement [%] (1)
constg 0.0240 + 0.0581 0.00

const; 0.0177 £ 0.0290 26.25

HDg 0.0501 + 0.1880 -108.75

HD; 0.0137 + 0.0239 42.92

res 0.0091 + 0.0138 62.08
HyperPM (ours) 0.0123 + 0.0192 48.75

TABLE III: Comparison of MPC solve time, and parameter
inference time on mobile AMD Ryzen 5 4600HS CPU.

Model

Solve time [ms] () Inference time [ms] ({)

(mean =+ std) (mean = std)
const, 10.76 + 2.24 -
const; 10.53 + 1.97 -
HD, 13.42 + 3.53 1.56 £ 0.13
HD; 10.65 + 2.05 148 £ 0.14
res 23.73 £ 4.76 -
HyperPM (ours) 10.61 £+ 1.76 1.85 £ 0.12

prove upon the nominal model, yet HyperPM’s performance is
notably better. However, for residual dynamic modeling, only
HyperPM delivers a clear gain, exceeding all other methods by
more than 10%, underscoring its ability to anticipate complex,
time-varying unmodeled effects. To evaluate the practical
utility of our approach, we tested how the learned dynam-
ics models perform in a trajectory-tracking task using MPC
following the formulation in [39]]. For referenced trajectory
we used the test split of the generated dataset. As presented
in Figure [3] our approach surpasses both the oracle-adaptation
baseline and HD; in both the nominal and residual dynamics
model settings. These results further confirm the advantage
of modeling time-varying parameter trajectories in capturing
complex, unobserved dynamics and translating that capability
into superior control performance.

C. FITENTH racing

Autonomous racing represents a unique and highly demand-
ing testbed for evaluating and advancing control algorithms.
Unlike conventional autonomous driving scenarios, racing
pushes vehicles to operate at the edge of their dynamic limits,
requiring algorithms to manage highly nonlinear dynamics and
unrecoverable consequences of actions. The subsequent exper-
iments use models trained on a 36-minute dataset collected
using a real FITENTH vehicle, with expert drivers manually
navigating a variety of racetracks to span the entire operational
envelope of the vehicle. Our model-based controller objective
is to maximize track progress while keeping the vehicle within
track boundaries.

In our experimental analysis, we first evaluate the prediction
performance of the models on long-horizon sequences drawn
from the manual driving test set. In Table [l we present
the prediction errors for all evaluated modeling approaches
and refer them to the most classical one — const,. The best-
performing model is the residual model, which utilizes the
ability to model residual errors of the analytical model with a
neural network. However, this approach takes advantage of
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Fig. 4: Comparison of modeling approaches in MPC applied
to the real-world FITENTH racing task.

significantly more parameters than the remaining methods.
Among models of the same size, the proposed HyperPM
achieves the lowest error, showing a 48.75% improvement over
the model with constant parameters.

Finally, we evaluated these modeling approaches in real-
world FITENTH racing. We compared them in 30-second
runs using two criteria: (i) total cost ¢(z,u) and (ii) safety
penalty ¢,(x, 1), which mainly include track bounds violation
soft constraint, both accumulated over the whole run. In
Figure ] we report these metrics averaged over five runs for
each method. HyperPM outperforms all methods, including the
residual network, which previously had the lowest prediction
errors. We attribute this performance gap to the lack of
generalization ability of a residual neural network to a different
distribution of inputs w.r.t. the manual driving dataset.

Regarding computational cost, Table [[T]] shows that feeding
a parameter trajectory to the MPC leaves the solver’s runtime
unchanged.

IV. CONCLUSION

In this paper, we introduced the Hyper Prediction Model
(HyperPM) and its integration into the HyperMPC framework
to enhance the predictive accuracy and control performance of
systems with complex dynamics. Our method goes beyond the
reactive paradigm of existing approaches [9], [35]], adaptation
schemes, as well as online learning in which model parameters
are frozen across the prediction horizon. The proposed frame-
work, by forecasting time-varying parameters of a dynamics
model, addresses the limitations of dynamics models, where
state representation is often insufficient to describe all impor-
tant phenomena. The experimental evaluations demonstrated
that HyperPM significantly improves the accuracy of the long-
term prediction. Moreover, the HyperMPC delivered superior
performance in downstream control tasks, outperforming state-
of-the-art methods while maintaining the same optimization
loop complexity. Our results highlight the importance of
incorporating anticipated actions into the prediction of model
parameter trajectories, allowing MPC to proactively anticipate
and compensate for previously unmodeled effects.



[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238-1274, 2013.

Z.-P. Jiang, T. Bian, and W. Gao, “Learning-based control: A tutorial
and some recent results,” Found. Trends® Syst. Control, vol. 8, no. 3,
pp. 176-284, 2020.

L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig, “Safe learning in robotics: From learning-based control
to safe reinforcement learning,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 5, no. Volume 5, 2022, pp. 411-444, 2022.
G. Czechmanowski, J. Wegrzynowski, P. Kicki, and K. Walas, “On
learning racing policies with reinforcement learning,” 2025.

Y. Song and D. Scaramuzza, “Policy Search for Model Predictive
Control With Application to Agile Drone Flight,” IEEE Transactions
on Robotics, vol. 38, no. 4, pp. 2114-2130, Aug. 2022.

Y. Song, A. Romero, M. Mueller, V. Koltun, and D. Scaramuzza,
“Reaching the Limit in Autonomous Racing: Optimal Control versus
Reinforcement Learning,” Science Robotics, vol. 8, no. 82, p. eadg1462,
Sep. 2023, arXiv:2310.10943 [cs].

M. Krinner, A. Romero, L. Bauersfeld, M. Zeilinger, A. Carron,
and D. Scaramuzza, “MPCC++: Model Predictive Contouring Control
for Time-Optimal Flight with Safety Constraints,” in Proceedings of
Robotics: Science and Systems, Delft, Netherlands, July 2024.

J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-Based
Model Predictive Control for Autonomous Racing,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3363-3370, Oct. 2019.

J. Chrosniak, J. Ning, and M. Behl, “Deep dynamics: Vehicle dynamics
modeling with a physics-constrained neural network for autonomous
racing,” IEEE Robotics and Automation Letters, vol. 9, no. 6, pp. 5292—
5297, 2024.

M. Neunert, M. Stduble, M. Giftthaler, C. D. Bellicoso, J. Carius,
C. Gehring, M. Hutter, and J. Buchli, “Whole-Body Nonlinear Model
Predictive Control Through Contacts for Quadrupeds,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1458-1465, Jul. 2018,
conference Name: IEEE Robotics and Automation Letters.

R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc
for torque-controlled legged robots,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 4730—
4737.

G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in 2016
IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 1433-1440.

G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 1714-1721.

C. Pinneri, S. Sawant, S. Blaes, J. Achterhold, J. Stueckler, M. Rolinek,
and G. Martius, “Sample-efficient cross-entropy method for real-time
planning,” in Conference on Robot Learning 2020, 2020.

P. Kicki, “Low-pass sampling in model predictive path integral control,”
2025. [Online]. Available: https://arxiv.org/abs/2503.11717

M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predic-
tive control: an engineering perspective,” The International Journal of
Advanced Manufacturing Technology, vol. 117, no. 5, pp. 1327-1349,
Nov 2021.

D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza,
“Performance, precision, and payloads: Adaptive nonlinear mpc for
quadrotors,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
690-697, 2022.

T. Salzmann, J. Arrizabalaga, J. Andersson, M. Pavone, and M. Ryll,
“Learning for CasADi: Data-driven models in numerical optimization,”
in Learning for Dynamics and Control Conference (L4DC), 2024.

R. Verschueren, M. Zanon, R. Quirynen, and M. Diehl, “Time-optimal
race car driving using an online exact hessian based nonlinear mpc
algorithm,” in 2016 European Control Conference (ECC), 2016, pp.
141-147.

A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628-647, 2015.

N. Hansen, H. Su, and X. Wang, “TD-MPC2: Scalable, robust world
models for continuous control,” in International Conference on Learning
Representations (ICLR), 2024.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

(36]

[37]

[38]

(39]

M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine,
“Solar: Deep structured representations for model-based reinforcement
learning,” in International conference on machine learning. PMLR,
2019, pp. 7444-7453.

W. Xiao, H. Xue, T. Tao, D. Kalaria, J. M. Dolan, and G. Shi, “AnyCar
to anywhere: Learning universal dynamics model for agile and adaptive
mobility,” arXiv preprint arXiv:2409.15783, 2024.

L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious NMPC with
Gaussian Process Dynamics for Autonomous Miniature Race Cars,” in
2018 European Control Conference (ECC). Limassol: IEEE, Jun. 2018,
pp. 1341-1348.

J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-Based
Model Predictive Control for Autonomous Racing,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3363-3370, Oct. 2019.

G. Torrente, E. Kaufmann, P. Foehn, and D. Scaramuzza, ‘“Data-Driven
MPC for Quadrotors,” Mar. 2021, arXiv:2102.05773 [cs].

E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Miiller, V. Koltun, and
D. Scaramuzza, “Champion-level drone racing using deep reinforcement
learning,” Nature, vol. 620, no. 7976, pp. 982-987, Aug. 2023.

N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and
J. C. Gerdes, “Neural network vehicle models for high-performance
automated driving,” Science Robotics, vol. 4, no. 28, p. eaaw1975, Mar.
2019.

K. Y. Chee, T. Z. Jiahao, and M. A. Hsieh, “KNODE-MPC: A
Knowledge-based Data-driven Predictive Control Framework for Aerial
Robots,” Jan. 2022, arXiv:2109.04821 [cs, eess].

T. Salzmann, E. Kaufmann, J. Arrizabalaga, M. Pavone, D. Scaramuzza,
and M. Ryll, “Real-time Neural-MPC: Deep Learning Model Predictive
Control for Quadrotors and Agile Robotic Platforms,” IEEE Robotics
and Automation Letters, vol. 8, no. 4, pp. 2397-2404, Apr. 2023,
arXiv:2203.07747 [cs, eess].

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

J. Chung, C. Giilgehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014. [Online]. Available: http://arxiv.org/abs/1412.3555
C. Zhang, M. Ren, and R. Urtasun, “Graph hypernetworks for neural
architecture search,” in 7th International Conference on Learning Rep-
resentations (ICLR), 2019.

S. Hegde, Z. Huang, and G. S. Sukhatme, “Hyperppo: A scalable
method for finding small policies for robotic control,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA), 2024,
pp. 10821-10828.

Z. Xian, S. Lal, H.-Y. Tung, E. A. Platanios, and K. Fragkiadaki,
“HyperDynamics: Meta-learning object and agent dynamics with hyper-
networks,” in 9th International Conference on Learning Representations
(ICLR), 2021.

M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant,
R. Mangharam, D. Agarwal, M. Behl, P. Burgio, and M. Bertogna,
“F1/10: an open-source autonomous cyber-physical platform,” CoRR,
vol. abs/1901.08567, 2019.

P. Werbos, “Backpropagation through time: what it does and how to do
it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550-1560, Oct. 1990,
conference Name: Proceedings of the IEEE.

R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “acados
— a modular open-source framework for fast embedded optimal control,”
Mathematical Programming Computation, 2021.

B. B. Carlos, T. Sartor, A. Zanelli, G. Frison, W. Burgard, M. Diehl,
and G. Oriolo, “An efficient real-time nmpc for quadrotor position
control under communication time-delay,” in 2020 16th International
Conference on Control, Automation, Robotics and Vision (ICARCV),
2020, pp. 982-989.


https://arxiv.org/abs/2503.11717
http://arxiv.org/abs/1412.3555

	Introduction
	Proposed Method
	Hyper Prediction Model
	Training procedure
	HyperMPC

	Experiments and results
	Baselines
	Simulated drone with rope suspended payload
	F1TENTH racing

	Conclusion
	References

