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Abstract— Terrain preference learning from trajectory
queries allows complex reward structures to be obtained for
robot navigation without the need for manual specification.
However, traditional offline preference learning approaches suf-
fer from ambiguous trajectory pairs stemming from inadequacy
in the initial dataset, which causes longer learning times and
may lead to less accurate results. Several approaches have been
introduced to tackle this common problem including creating
preference learning models robust to volatility in weights from
ambiguous choices, enhancing the query selection process to-
wards mitigating dubious trajectory choices, and modifying the
original dataset with highly variant samples. Inspired by recent
work in the application of deep learning towards improving
query selection, this paper introduces a joint dataset and query
optimization procedure utilizing variational autoencoders. Our
efforts leverage both the encoder and decoder models to identify
underrepresented terrain types and supplement the trajectory
set with targeted samples created using the decoder. We jointly
optimize a clustered latent space towards creating balanced
clusters that can be used to obtain diverse trajectory pairs.

I. INTRODUCTION

Robot navigation in nuanced environments with di-
verse features and terrain types necessitates well-structured
costmaps that incorporate context-driven preferences. Tradi-
tionally weights were manually constructed for each unique
terrain type by a human expert, but this quickly becomes
intractable as the complexity of the environment and the
task increases. Learning from Demonstration (LfD) [1],
[2] is a technique that attempts to reduce the cognitive
burden stemming from manual cost formation by inferring
weights through expert provided demonstrations of expected
behaviors. However, demonstrations can be costly and even
dangerous to obtain, particularly in robotics scenarios.

Preference learning is an interactive method that learns
rewards through user feedback over pairwise trajectory
queries. Preference elicitation is an influential technique in
the human-robot interaction (HRI) field [3] as it promotes in-
formation inference over simple choices rather than complex
demonstrations, although each choice may elicit less knowl-
edge than a demonstration [4]. There are many variations on
the standard preference learning problem, including offline
and online learning. Offline learning allows data collection
to be done prior to user querying, which reduces latency
and allows multiple sessions to be run on the same data
for various contexts. However, offline preference learning
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Fig. 1. System diagram outlining our approach: 1) trajectories T are
collected from the environment, 2) Use trained encoder E to encode T
into latent vectors, 4) Cluster these vectors into κ clusters representing κ
terrain types, 5) Evaluate imbalance in cluster sizes and use the decoder D
to generate new samples as needed that prioritize underrepresented terrain
type γk corresponding to cluster Ck , 6) Pull trajectory pairs (τi, τj) from
distinct latent clusters Ci, Cj , (7) display trajectories to user for preference
elicitation.

is highly tied to the quality of the initial trajectory set.
When data variance is very low, preference elicitation may
yield inaccurate information and repeated queries, potentially
causing significant shifts in the learned weights that do not
align with user intents.

In this work, we implement an interactive offline pref-
erence learning system for terrain weight assignment that
leverages a generative model to enhance both the initial
trajectory set and the query selection strategy, thereby in-
creasing the overall diversity of the presented trajectories.
Fig. 1 provides an overview of our proposed system. We
validate our work with initial results via an integration with
APReL [5], an extensive preference learning library directed
at offline learning with a fixed trajectory set.

II. BACKGROUND

Recent literature presents a substantial body of research
focused on enhancing query distinction within low variance
datasets. APReL [5] includes numerous query acquisition
approaches, including mutual information, first introduced
in [6]. This approach sought to strengthen query disparity
through a focus on greedily selecting the trajectories with
the highest expected information gain based on a cognitive
model of the user. To further reduce the effects of indis-
tinguishable queries, APReL [5] recently introduced batch
querying [7], where a larger number of queries are presented
to the user before updating the weights, making them more
robust to feedback from unanswerable queries.

[8] proposed to use a dynamics model that learned transi-



tions in trajectory elements towards generating diverse expe-
riences without the need for environmental interaction. This
dataset was combined with a query determination process
which created query batches, similar to [7], containing sam-
ples from past iterations to maintain variability. Rather than
batches, [9] elicited preferences over queries from collected
actions. This allowed unrepresentative policy changes to be
discouraged with incoming feedback provided on a subset of
collected data. [10] proposed to mitigate the effects of class
imbalance in active learning by blending thee query selection
methods leveraging two datasets, one unlabeled and the other
labeled with preference information.

Other work in this area prioritizes the trajectory set itself,
often employing a preliminary data manipulation stage to
optimize variation for potential query selections. [11] used
pre-training to obtain disparate experiences prior to prefer-
ence querying. Those experiences were labeled with reward
updates to continually provide diversified and information
aligned data during preference elicitation. [12] employed
advances in generative models for data augmentation by
creating new trajectories stemming from initially unpre-
ferred samples. This approach demonstrated improvements in
query variance and introduced a more streamlined preference
elicitation process by initially utilizing higher preference
samples. Data modification prior to preference querying
promotes a higher degree of information gain as trajectory
pairs are more variegated, making queries easier to answer.

The application of generative models in preference learn-
ing can be utilized not only for data generation but also for
enhancing query acquisition. [13] implemented a variational
autoencoder (VAE) targeted towards minimizing repeated
and uninformative queries in preference elicitation. The
model was trained on trajectories, state-action pairs, formed
from a reinforcement learning policy. The encoder of the
VAE was used to form latent vectors from the initial tra-
jectory set, which were then clustered. Trajectory pairs with
high variability were obtained by sampling segments from
distinct clusters. These queries were then ranked based on
estimated information gains and presented to the user to elicit
preferences.

III. APPROACH

We present a novel framework leveraging both the encoder
and decoder of a variational autoencoder [12], [13] for im-
proved query selection and data augmentation, respectively.
Further, we employ our work towards terrain weight speci-
fication for context-driven robotic navigation scenarios. We
demonstrate the efficacy of our combined approach through
a comparison with the Mutual Information [6] acquisition
function implemented in APReL [5]. Our overall approach
can be seen in Fig. 1.

Consider a trajectory τ to be a sequence of L terrain types
γk ∈ Γ encoded using integer labels, and a trajectory set
to contain N trajectories, T = τ1, τ2, ..., τN . We utilized
three distinct trajectory sets: 1) a training set Tt, 2) an
initial trajectory set To for preference elicitation, and 3) an
adjusted trajectory set TD formed using the decoder D. Both

components of a VAE, namely the decoder D and encoder
E, are trained in unison using trajectory set Tt with standard
reconstruction and KL-Divergence losses. We constructed the
encoder and decoder models with Long Short Term Memory
(LSTM) modules, along with linear layers to represent the
outputs. This design allows for pattern recognition over long
terrain sequences, important in generating realistic trajecto-
ries for preference learning. Training is completed prior to
preference elicitation, so it doesn’t impact user wait times
and can be performed with a larger dataset Tt.

Once trained, the encoder E is used to transform trajecto-
ries τi ∈ To from the initial dataset into lower dimensional
latent vectors. Specifically, the latent space of the VAE is
represented with dimensions proportional to the number of
distinct terrain types γk ∈ Γ. The encoded representations
are then clustered using κ-means with κ = |Γ|, similar to the
method presented in [13]. Different to this approach, how-
ever, our cluster assignment reflects a semantic correlation
between terrain types γk ∈ Γ and clusters Ck.

Rather than directly pulling from these clusters, as in [13],
for preference queries, we propose a joint data augmentation
and query set optimization stage. Specifically, we evaluate
the balance between clusters to determine if any terrain types
are not well represented. In that case, we use the decoder D
to form a new trajectory set TD by introducing new generated
samples stemming from lacking clusters, thereby balancing
the overall distribution of latent space clusters. Then queries
are formed from distinct clusters Ci and Cj such that the
trajectories contain a large amount of terrain types, γi and γj ,
respectively. This encourages diversity in the query suitable
for preference elicitation.

We use APReL’s [5] implementation of mutual informa-
tion [6] for selecting suitable trajectory pairs to query the
user with. This method is updated generally by constraining
the sample space to consist only of trajectory pairs formed
from distinct clusters, rather than all possible combinations.

IV. PRELIMINARY RESULTS

We validate the application of our method, joint VAE-
assisted data enhancement and query selection, towards robot
navigation via learnt cost assignment through a preliminary
demonstration. We compare against the implementation of
mutual information acquisition [6] provided by APReL [5].
We utilize a real-world 2D terrain map, see Fig. 1, consisting
of five terrain types γ1, γ2, ..., γ5 ∈ Γ, namely water, sand,
rock, trees, and sidewalk.

Because preference learning is inherently biased, we opted
to create a simulated user that mimics human preference
feedback. Decisions are made simply based on which tra-
jectory is most aligned with the ground truth rewards. In
support of this, we introduce a preferential alignment metric
that ranks the terrains in order of their coverage for a given
trajectory and compares that with the ground truth reward
(represented as a ranking of terrains as well). Alignment is
then calculated as the number of terrains γk in the feature
distribution of a trajectory τ that are out of order when
compared to the ground truth representation.



The VAE was trained with |Tt| = 320 trajectory samples
stemming from the same start and end positions. Each
trajectory was formed by randomly selecting a direction to
move (returning to the previous cell was excluded from the
options at each stage) until either the goal position was
reached or the trajectory had maximum length. We selected
a maximum length of L = |τi| = 50 cells, or 10 meters
based on the map resolution, so each trajectory τ1, τ2, ..., τ320
had a length up to L = 50 cells. To maintain consistent
terrain distribution for shorter trajectories, we padded the
sequence by repeating earlier terrain types prior to training.
This enhanced the realism of trajectories by allowing for
variable lengths while maintaining consistent start and end
points. The VAE was trained on the input set Tt for 5000
iterations.

Fig. 2. (a) 3D T-SNE visualization of encoded trajectories from To. (b)
3D T-SNE visualization of 5D latent vectors, including additional decoded
vectors from cluster balancing stage.

We compare our approach, as discussed previously, with
a mutual information technique [6]. Fig. 3 shows our initial
results with the training configuration discussed above and
with an initial trajectory set with size |To| = 50. The data
augmentation step added 37 trajectories to TD, see Fig. 2.
Preference learning with both query acquisition methods was
conducted over 25 iterations. We consider a moving average

over the five weights for each query as well as the reward
alignment metric used in the simulated user. Consider the
preferential ordering of the weights for each method on the
last query. While neither approach obtained the exact ground
truth ordering in the time allotted, our method was overall
closer to an acceptable arrangement. Water was ranked close
to the bottom in our results, as expected with its ground
truth weight of −1, but near the higher end in the mutual
information strategy. Similarly, sidewalk, the most positive
reward in the ground truth configuration, was ranked second
in our approach and last from mutual information. Fig. 3-c
supports these semantic assessments as our approach showed
significantly greater alignment at certain points during prefer-
ence elicitation, indicating that queries with higher variance
contributed to more information gain. Further, our proposed
joint data enhancement and query selection optimization
pipeline actuated in this experiment was able to reach ground
truth terrain alignment, emphasizing a more detailed explo-
ration of the user’s mental model through more informative
queries.

Fig. 3. (a) Moving average of terrain weights over VAE-enhanced querying.
(b) Moving average of terrain weights over mutual information querying.
(c) reward alignment over both querying strategies.



V. CONCLUSIONS & FUTURE WORK

In this paper we introduced a combined data enhancement
and improved query acquisition approach utilizing both the
encoder and decoder of a variational autoencoder model.
We integrated our approach with existing state of the art
preference learning approaches through an implementation
of mutual information [6] in the APReL [5] library. Further,
we applied both approaches towards learning terrain costs
for robot navigation in a real environment, providing a
useful alternative to manual specification and learning from
demonstration [1], [2]. Our approach showed improvements
over mutual information in few queries, even showing ground
truth order alignment during the querying process. We hope
to continue this direction of research by exploring different
model configurations, including more advanced recurrent
networks, to expand capabilities in generating realistic trajec-
tories as well as to encode more complex structures. We also
hope to integrate our approach with ROS (Robot Operating
System) in order to use true path planning in more nuanced
robotics environments with many terrain types.
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