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ABSTRACT

Self-supervised contrastive learning models, such as CLIP, have set new bench-
marks for vision-language models in many downstream tasks. However, their
dependency on rigid one-to-one mappings overlooks the complex and often mul-
tifaceted relationships between and within texts and images. To this end, we in-
troduce RANKCLIP, a novel pretraining method that extends beyond the rigid
one-to-one matching framework of CLIP and its variants. By extending the tra-
ditional pair-wise loss to list-wise, and leveraging both in-modal and cross-modal
ranking consistency, RANKCLIP improves the alignment process, enabling it to
capture the nuanced many-to-many relationships between and within each modal-
ity. Through comprehensive experiments, we demonstrate the effectiveness of
RANKCLIP in various downstream tasks, notably achieving significant gains in
zero-shot classifications over state-of-the-art methods, underscoring the impor-
tance of this enhanced learning process.

1 INTRODUCTION

In the realm of computer vision (CV) (Voulodimos et al., 2018), natural language processing
(NLP) (Chowdhary & Chowdhary, 2020), and multimodal deep learning (Jabeen et al., 2023; Zhao
et al., 2023; Chen et al., 2024a), the alignment between visual and textual modalities (Singh et al.,
2022; Chen et al., 2024b) has emerged as a cornerstone for downstream applications, ranging from
image captioning (Ghandi et al., 2023) to zero-shot classification (Pourpanah et al., 2022). Con-
trastive Language-Image Pretraining (CLIP) (Radford et al., 2021) marks a significant advancement
in this field, demonstrating incredible performance from training on large amounts of text-image
pairs to create self-supervised models that understand (Hendrycks et al., 2021a;b; Chen et al., 2024c)
and generate (Ramesh et al., 2021; Crowson et al., 2022) descriptions of visual contents. Following
the success of this contrastive learning paradigm, many recent works have been developed upon the
original CLIP. More specifically, these enhancements focus on optimizing data efficiency through in-
trinsic supervision (Li et al., 2021), as well as improving downstream performance via cross-modal
late interaction (Yao et al., 2021), hierarchical feature alignment (Gao et al., 2022), geometric con-
sistency regularization (Goel et al., 2022), additional learning (Mu et al., 2022), adaptive loss (Yang
et al., 2023), hierarchy-aware attentions (Geng et al., 2023), and softer cross-modal alignment (Gao
et al., 2024).

Despite the improvements, these methods often have reliance on strict pairwise, cross-modal, and
one-to-one mappings between images and texts, overlooking the actual many-to-many relationships
that exist both cross-modal and in-modal in real-world data (Chun, 2023). For example, as shown
in Fig. 1, while pretrained models like CLIP can correctly classify dog, cat and airplane, they
do not necessarily learn that dog and cat are more close to each other than dog and airplane,
in terms of both in-modal (dog text is more similar to cat text than to airplane text) and cross-
modal (dog text is more matched to cat image than to airplane image) similarities. Because
it is rooted from the current contrastive loss that only the correct pairs are optimized while the rest
of the unmatched pairs are treated the same, resulting in a large amount of information not used and
unknown to the model during and after the training process.

Recognizing the complex many-to-many relationships as well as the rich information con-
tained within both in-modal and cross-modal data, we introduce Ranking-Consistent Language-
Image Pretraining, (RANKCLIP), which employs ranking consistency to learn and opti-
mize similarity levels both between (cross-modal) and within (in-modal) the text-image pairs.
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A joyful, curly-furred
doodle dog with a white
and light brown coat
sitting on the grass

A relaxed tabby cat
with a gray coat lying
on its back on a cat
perch

A white commercial
airplane in flight
against a backdrop of
blue sky and fluffy
white clouds

(a) CLIP (b) RankCLIP

A joyful, curly-furred
doodle dog with a white
and light brown coat
sitting on the grass

A relaxed tabby cat
with a gray coat lying
on its back on a cat
perch

A white commercial
airplane in flight
against a backdrop of
blue sky and fluffy
white clouds

Figure 1: Comparison of learning outcomes
between (a) CLIP and (b) RANKCLIP using
three text-image pairs: dog (red), cat (blue),
and airplane (magenta), where matched pairs
share the same color boundaries. CLIP treats all
unmatched relationships equally, failing to distin-
guish similarities better between dog and cat ver-
sus airplane. RANKCLIP addresses this by train-
ing with ranking consistency, enhancing its under-
standing of complex relationships.

The concept of ranking consistency stems from
the simple observations that similar texts often
correlate with similar images, as seen with the
dog, cat and airplane example in Fig. 1.
It effectively captures secondary similarity re-
lationships among unmatched pairs, enabling
the model to learn more efficiently for free
compared to relying solely on matched pairs.
Ranking consistency is conveniently modeled
as an additional loss term to the traditional con-
trastive loss, requiring no extra external mod-
ules. It acts as a plug-and-play improvement for
many existing methods, including those focus-
ing on data-efficiency (Li et al., 2021), poten-
tially boosting performance in both efficiency
and effectiveness.

The main contributions of this paper are: 1)
RANKCLIP, a novel contrastive pretraining
method that uses ranking consistency to exploit the many-to-many relationships within data, thereby
enhancing performance in downstream tasks such as zero-shot classification and retrieval accuracy;
and 2) through comprehensive experiments conducted on multiple datasets, we demonstrate the su-
perior effectiveness of RANKCLIP in improving pretraining model performance without requiring
any additional data or computational resources.

2 RELATED WORK

Vision-language pretraining has witnessed significant advancements over the past years (Chen
et al., 2023; Du et al., 2022; Long et al., 2022). Models such as CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021) and FLAVA (Singh et al., 2022) have pioneered the contrastive learn-
ing paradigm applied with text-image pairs, showcasing remarkable performance and robustness in
downstream tasks. Many follow-up works, mostly built upon CLIP, have been proposed since then.
Li et al. (2021) introduced DeCLIP, improving zero-shot performance through intrinsic supervision.
FILIP (Yao et al., 2021) advances CLIP’s alignment between image patches and text with a cross-
modal interaction mechanism. Gao et al. (2022) developed PyramidCLIP, using hierarchical feature
alignment to boost model efficiency and performance. Additionally, SLIP (Mu et al., 2022) merges
self-supervised learning with CLIP pre-training for improved visual representation and accuracy.
Goel et al. (2022) introduced CyCLIP, augmenting CLIP with geometric consistency regularizers to
enhance robustness and performance under varied conditions.

Recently, Yang et al. (2023) introduced ALIP, an adaptive pre-training model that enhances
language-image alignment using raw text and synthetic captions with dynamic adjustments. Hi-
CLIP (Geng et al., 2023) refines CLIP by adding hierarchy-aware attentions to uncover semantic
hierarchies in images and texts. EqSim (Wang et al., 2023) incorporates equivariance loss into
vision-language models, significantly improving sensitivity to semantic changes in image-text pairs.
Additionally, SoftCLIP (Gao et al., 2024) softens CLIP’s one-to-one constraint, enabling more flex-
ible cross-modal alignment through fine-grained adjustments.

Compared with existing approaches, RANKCLIP sets itself apart by fully leveraging the many-to-
many relationships within each batch of text-image pairs, promoting learning from both matched and
unmatched pairs with varying similarities by integrating in-modal and cross-modal list-wise ranking
consistencies into the contrastive training objective. Crucially, RANKCLIP diverges from existing
models’ pair-wise training objective by adopting a global, list-wise optimization approach. In other
words, it considers the rankings of all images and texts collectively within each batch, rather than
focusing on pairwise similarities as seen in other methods.

3 CLIP PRELIMINARIES

CLIP (Radford et al., 2021) has been a prominent method for learning detailed multimodal represen-
tations through the alignment of images and texts. Given a set D = {(Vj , Tj)}Nj=1 of N image-text

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

pairs, where Vj denotes an image and Tj is the corresponding text, the goal is to learn representa-
tions that map semantically similar images and texts closer in the embedding space, while dissimilar
pairs are distanced apart. More specifically, the foundational CLIP model employs two encoders:
an image encoder fI : I → Rm that processes raw images into visual embeddings and a text en-
coder fT : T → Rn which encodes textual data into text embeddings. Then both the text and
visual features are projected to a latent space with identical dimension. Formally, the embeddings
for a text-image pair (Vj , Tj) are denoted as vk = fI(Vj) and tj = fT (Tj), respectively. The
embeddings are then normalized to lie on an unit hypersphere by enforcing l2-norm constraint:

v̂j =
vj

∥vj∥2
, t̂j =

tj
∥tj∥2

. (1)

so that the magnitude information is erased and only direction is preserved.

To align the image and text representations, a contrastive loss function, typically a variant of the
InfoNCE loss (Oord et al., 2018), which optimizes the similarity of the matched pair against un-
matched pairs, is utilized, i.e.:

LCLIP = − 1

2N

N∑
j=1

[
log

exp(v̂⊤j t̂j/τ)∑N
k=1 exp(v̂

⊤
j t̂k/τ)︸ ︷︷ ︸

1

+ log
exp(t̂⊤j v̂j/τ)∑N
k=1 exp(t̂

⊤
j v̂k/τ)︸ ︷︷ ︸

2

]
(2)

where the first term 1 contrasts images with the texts, the second term 2 contrasts texts with
the images, and τ denotes a temperature scaling parameter that adjusts the concentration of the
distribution. The optimization of Eqn. (2) results in embeddings where the cosine similarity between
matched image-text pairs is maximized in comparison to unmatched pairs, thus achieving the desired
alignment in the joint embedding space.

Despite the efficacy of CLIP in learning correlated multimodal embeddings, it inherently relies on
strict pairwise matched comparisons and fails to capture the more complex, fine-grained nature
of semantic similarity within and across modalities that are generally treated as unmatched. This
observation motivates the development of RANKCLIP, which innovates beyond binary pairwise
contrasts to consider holistic listwise consistency within and across modalities.

4 RANKCLIP

RANKCLIP efficiently leverages the many-to-many relationships in real-world data by focusing
on both matched and unmatched pairs. As shown in Fig. 2, it not only identifies if an image-
text pair matches but also assesses their relative semantic similarities to other images and texts of
both modalities in the dataset through self-supervised ranking consistency. Uniquely, RANKCLIP
employs a list-wise loss for training batches, distinguishing it from other methods that solely rely on
pair-wise relationships, as discussed in §2.

4.1 RANKING MODEL FORMULATION

RANKCLIP leverages the Plackett-Luce (PL) ranking model Plackett (1975); Luce (2005); Guiver
& Snelson (2009) to estimate the probability distribution over rankings for every image-text pair
(Vi, Tj), so that the consistency in their relative ordering with respect to a reference ranking can
be measured. Specifically, for a given data pair, whether it is in-modal (image-image, text-text), or
cross-modal (image-text), we calculate its in- or cross-modal cosine similarity Sij to serve as the
score when measuring the alignment of its ranking with respect to another reference ranking yref.

Following Plackett (1975), we first sort the reference ranking in a descending order to construct the
optimal ranking y∗, and assume that the ego ranking y is sampled from y∗. Thus the probability that
item d with score Sij is ranked kth in the ego ranking y from a set of items D is the score of eSij

divided by the sum of scores for the items that have not been placed yet:

π(d | y1:k−1, yref,D) =
eSij∑

d′∈D\y1:k−1
eS

′
ij

, (3)

where y1:k−1 = [y1, y2, ..., yk−1] denotes the set of items ranked before d. In addition, we propose
a decaying factor µ = 1/ log(k + 1) to scale the loss, so that the top-ranked items can obtain
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Figure 2: Illustrative overview of RANKCLIP. Unlike conventional contrastive loss, which includes
only the middle term, RANKCLIP introduces both cross-modal and in-modal consistency terms
by minimizing a self-supervised, list-wise ranking loss. Paired images and texts are indicated by
matching contour line colors. V , T , and S represent image embeddings, text embeddings, and
similarity scores, respectively.

higher weights: Consequently, the probability of the entire ranking y is the product of all individual
placement probabilities:

P(y, yref) =

K∏
k=1

µ · π(yk | y1:k−1,yref,D). (4)

RANKCLIP’s objective is to maximize the consistency log-likelihood of the list ranking in one
modality towards the reference ranking (from the same/in-modal and different/cross-modal data),
which conveniently aligns with minimizing the negative log-likelihood loss:

LPL = − logP(y, yref) (5)

4.2 CROSS-MODAL CONSISTENCY RANKING

As illustrated by the green box in Fig. 2, RANKCLIP utilizes secondary relationships between
unmatched visual and textual representations by constructing a list-wise rank loss. This approach
ensures that the semantic similarity rankings between one image and multiple texts align with those
between one corresponding text and multiple images. For example, as shown in Fig. 1, from the
dog perspective, the semantic distance between dog image and cat text is closer compared to the
plane text. This relationship should also apply between the dog text and the cat, plane images.
Mathematically, Eq. (5) can be specified as:

Lcross-modal = − logP(yimage-text,ytext-image) (6)

= − logP(v̂ · t̂T, t̂ · v̂T) (7)

By optimizing Eq. (6), RANKCLIP enhances its ability to bridge the semantic gap between modali-
ties by leveraging nuanced unmatched correlations. This can also be viewed as learning a symmetric
cosine-similarity matrix, further reinforcing semantic consistency across modalities.

4.3 IN-MODAL CONSISTENCY RANKING

The pink box in Fig. 2 highlights the in-modal consistency component of the proposed rank loss.
RANKCLIP ensures semantic consistency within each modality – image to image and text to text –
enhancing the use of secondary unmatched relationships as an optimization objective. The underly-
ing principle is that similar images should correspond to similar texts. For example, in Fig. 1, from
the dog image perspective, the cat image is the most similar, followed by the plane image. This

4
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relationship should hold true for their corresponding texts as well, where we utilize this to construct
our y and yref from Eq. (5). Mathematically, Eq. (5) can be specified as:

Lin-modal = − logP(ytext-text,yimage-image) (8)

= − logP (̂t · t̂T, v̂ · v̂T) (9)

where t̂ and v̂ are the text and image batch embedding matrix, respectively. Via Eq. (8), the model
can efficiently leverage the nuanced in-modal relationships to learn a richer and more structured
semantic representation.

4.4 RANKCLIP LOSS

Combining both cross-modal and in-modal consistency with the traditional contrastive loss (more
details in Appendix 3), the complete rank loss is thus formulated as:

LRANKCLIP = LCLIP + λ1Lin-modal + λ2Lcross-modal (10)

which is also depicted in Fig. 2. By supplementing the pairwise contrastive loss with cross-modal
and in-modality ranking consistency loss, RANKCLIP systematically organizes embeddings to fully
exploit both global and fine-grained secondary unmatched relationships, which enhances the learn-
ing of more informative and accurate representations, better supporting downstream multi-modal
tasks. The complete RANKCLIP is detailed in Algorithm 1.

Algorithm 1 Pseudo-code of RANKCLIP loss in a Python-like style.

# emb_pred: predictions from the model, shape [embs_length, embs_length]
# emb_true: ground truth labels, shape [embs_length, embs_length]

def rank_loss(emb_pred, emb_true):
# Shuffle for randomised tie resolution
emb_pred_shuff = emb_pred[:, random_indices]
emb_true_shuff = emb_true[:, random_indices]
# Record the rank label index
emb_true_sorted, indices = emb_true_shuff.sort(descending=True, dim

=-1)
# Ranking the pred embedding by the true indices
preds_sorted = gather(emb_pred_shuff, dim=1, index=indices)
# Implementation of the Eq.1, Eq.2 and Eq.3
max_pred_values, _ = preds_sorted.max(dim=1, keepdim=True)
preds_sorted_minus_max = preds_sorted - max_pred_values
cumsums = cumsum(preds_sorted_minus_max.exp().flip(dims=[1]), dim=1).

flip(dims=[1])
loss = (log(cumsums) - preds_sorted_minus_max) * scale_factor
return mean(sum(loss, dim=1))

# Cross-modal embeddings
logits_text_per_image=image_embeds @ text_embeds.T
logits_iamge_per_text=logits_text_per_image.T
# In-modal embeddings
logits_image_per_image=image_embeds @ image_embeds.T
logits_text_per_text=text_embeds @ text_embeds.T
# Compute the cross-modal rank loss
Cross_modal_loss=rank_loss(logits_text_per_image,logits_image_per_text)+

rank_loss(logits_image_per_text, logits_text_per_image)
# Compute the in-modal rank loss
In_modal_loss=rank_loss(logits_image_per_image,logits_text_per_text)+

rank_loss(logits_text_per_text, logits_image_per_image)
# Rank loss
Rank_loss=Contrastive_loss+Cross_modal_loss+In_modal_loss

5
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Table 1: Zero-shot top-1, top-3 and top-5 classification accuracy on CIFAR-10, CIFAR-100 and
ImageNet1K. Relative to CLIP, RANKCLIP achieves higher accuracy with average top-1, top-3, and
top-5 improvements of +2.46%, +2.25%, and +2.40%, respectively. RANKCLIP also outperforms
ALIP consistently across the datasets.

CIFAR-10 CIFAR-100 ImageNet1K
Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

CLIP 36.35% 70.28% 85.02% 12.22% 24.93% 33.56% 12.08% 21.86% 27.48%
ALIP 35.71% 72.39% 88.77% 13.67% 27.10% 34.76% 15.62% 26.90% 32.50%

RANKCLIP 37.03%
(+0.68%)

67.67%
(-2.61%)

83.09%
(-1.93%)

13.98%
(+1.76%)

27.70%
(+2.77%)

36.17%
(+2.61%)

17.02%
(+4.94%)

28.44%
(+6.58%)

33.99%
(+6.51%)

Table 2: Zero-shot top-1, top-3 and top-5 classification accuracy on variants of ImageNet1K that
have natural distribution shifts. Relative to CLIP, RANKCLIP achieves higher accuracy with av-
erage top-1, top-3, and top-5 improvements of +3.15%, +4.19%, and +4.66%, respectively. Notice
that the average improvements are more significant than when tested on ImageNet1K without dis-
tribution shift, indicating better robustness.

ImageNetV2 ImageNetSketch ImageNet-A ImageNet-R
Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

CLIP 12.11% 22.66% 28.57% 3.20% 7.00% 9.83% 3.16% 8.81% 13.04% 11.34% 21.38% 27.10%
ALIP 15.62% 27.34% 32.82% 5.10% 10.37% 14.01% 3.53% 9.14% 13.61% 14.25% 25.74% 32.43%

RANKCLIP 17.03%
(+4.92%)

28.60%
(+5.94%)

34.18%
(+5.61%)

5.82%
(+2.62%)

11.35%
(+4.35%)

14.87%
(+5.04%)

3.82%
(+0.66%)

9.16%
(+0.35%)

13.77%
(+0.73%)

15.74%
(+4.40%)

27.51%
(+6.13%)

34.36%
(+7.26%)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines. The most direct baseline to RANKCLIP is the original CLIP (Radford et al., 2021). In
addition, to further demonstrate the superior performance of RANKCLIP, we include ALIP (Yang
et al., 2023), which leverages synthetic captions to enhance vision-language representation learning.
More specifically, it employs a unique architecture that dynamically adjusts sample and pair weights
to mitigate the impact of noisy or irrelevant data, which is quite orthogonal to our approach. The
training procedures and parameters of all models are detailed in Appendix A.

Pretraining dataset. Both baseline models, CLIP (Radford et al., 2021), ALIP (Yang et al.,
2023) and the proposed RANKCLIP are pretrained on the Conceptual Captions 3M (CC3M)
dataset (Sharma et al., 2018), which contains around 3.3 million text-image pairs. Despite being
much smaller than CLIP’s initial dataset (Ilharco et al., 2021), CC3M effectively supports the de-
velopment of pretrained models with strong zero-shot capabilities and is widely used in existing
language-image pretraining research (Carlini & Terzis, 2021; Li et al., 2021; Tejankar et al., 2021;
Mu et al., 2022; Goel et al., 2022). Additionally, as discussed later in §6.2, we trained both CLIP
and RANKCLIP on 15 million text-image pairs, filtered from YFCC100M (Thomee et al., 2016),
referred to as YFCC15M, to conduct an ablation study on the impact of data size.

5.2 ZERO-SHOT CLASSIFICATION

Zero-shot capability is one of the most significant improvements that CLIP achieves. Thus in this
section, we first evaluate the zero-shot classification performance of CLIP, ALIP and the proposed
RANKCLIP. Following (Goel et al., 2022), we conduct our experiments on CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and ImageNet1K (Deng et al., 2009; Rus-
sakovsky et al., 2015) dataset.

As shown in Table 1, RANKCLIP consistently outperforms CLIP across CIFAR-10, CIFAR-100,
and ImageNet1K datasets. Relative to CLIP, RANKCLIP shows average improvements of +3.15%,
+4.19%, and +4.66% in top-1, top-3 and top-5 metrics, respectively. Particularly on the more
challenging ImageNet1K dataset, RANKCLIP improves relative top-1 accuracy by +4.94% over
CLIP, highlighting the effectiveness of the proposed ranking consistency in enhancing language-
image alignment and understanding with the same amount of training data. The two cases where
RANKCLIP does not excel are the top-3 and top-5 accuracy on CIFAR-10. However, this is likely

6
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Table 3: Linear probing top-1 accuracy on 11 downstream datasets. RANKCLIP achieves higher
accuracy than CLIP with an average improvement of +1.30%. RANKCLIP also outperforms ALIP,
although less significantly.
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Average
CLIP 72.40% 48.43% 49.89% 26.10% 48.59% 65.20% 77.49% 49.74% 53.71% 83.59% 44.80% 56.37%
ALIP 73.87% 51.00% 58.09% 27.72% 49.74% 60.34% 73.14% 59.36% 53.98% 87.94% 38.07% 57.56%

RANKCLIP 72.54%
(+0.14%)

49.16%
(+0.73%)

53.24%
(+3.35%)

24.99%
(-1.11%)

47.11%
(-1.48%)

63.37%
(-1.83%)

86.40%
(+8.91%)

54.10%
(+4.36%)

54.09%
(+0.38%)

86.10%
(+2.51%)

43.30%
(-1.50%)

57.67%
(+1.30%)

Table 4: Zero-shot image and text retrievals on Flickr30K and MSCOCO. RANKCLIP achieves
higher accuracy than both CLIP and ALIP on most cases.

Flickr30K MSCOCO
Text Retrieval Image Retrieval Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R5 R@10
CLIP 84.00% 88.70% 91.00% 8.70% 16.90% 21.20% 82.06% 85.24% 87.82% 5.04% 12.98% 18.32%
ALIP 84.40% 90.00% 92.50% 9.40% 17.60% 21.30% 82.56% 86.04% 88.26% 6.08% 13.96% 19.38%

RANKCLIP 84.10%
(+0.10%)

89.40%
(+0.70%)

91.90%
(+0.90%)

8.10%
(-0.60%)

16.40%
(-0.50%)

21.70%
(+0.50%)

82.90%
(+0.84%)

85.68%
(+0.44%)

88.00%
(+0.18%)

5.60%
(+0.56%)

13.20%
(+0.22%)

18.02%
(-0.30%)

because CIFAR-10 with top-3 and top-5 metrics is much simpler, reducing the demand for a deeper
model understanding.

Additionally, we observe that RANKCLIP consistently outperforms ALIP, suggesting that our rank-
ing consistency more effectively enhances text-image representations and alignments compared to
the synthetic captions proposed in ALIP. Another trend we observe is that RANKCLIP shows the
most significant improvement in top-1 accuracy compared to top-3 and top-5. Considering the real-
world emphasis on the topmost model output, RANKCLIP is likely to offer considerable advantages
in practical applications.

5.3 ROBUSTNESS TO DISTRIBUTION SHIFTS

To evaluate the robustness of RANKCLIP under distribution shifts, we test it alongside CLIP
and ALIP across four ImageNet variants, including ImageNetV2 (Recht et al., 2019), ImageNetS-
ketch (Wang et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and ImageNet-R (Hendrycks
et al., 2021a), which are designed to assess resilience to different distribution shifts.

As shown in Table 2, RANKCLIP outperforms both CLIP and ALIP consistently. Notably, relative
to CLIP, RANKCLIP’s accuracy improvements in shifted conditions are +3.15% (top-1), +4.19%
(top-3), and +4.66% (top-5), surpassing its performance in standard settings (Table 1) of +2.46%
(top-1), +2.25% (top-3), and +2.40% (top-5), indicating the even more superior performance in
robustness under distribution shifts.

5.4 LINEAR PROBING

We also evaluate whether the introduced ranking consistency retains its advantages when sup-
plemented with additional in-domain supervision. Specifically, we use linear probing, where the
pretrained encoders from CLIP, ALIP, and RANKCLIP remain unchanged while a logistic regres-
sion classifier is trained on domain-specific datasets. We evaluate on a suite of 11 standard image
classification datasets as our in-domain datasets, which include CIFAR-10, CIFAR-100, Describ-
able Textures Dataset (DTD) (Cimpoi et al., 2014), Fine-Grained Visual Classification of Aircraft
(FGVG-Aircraft) (Maji et al., 2013), Food101 (Bossard et al., 2014), German Traffic Sign Detection
Benchmark (GTSDB) (Stallkamp et al., 2012), ImageNet1K (Deng et al., 2009; Russakovsky et al.,
2015), OxfordPets (Parkhi et al., 2012), Stanford Sentiment Treebank v2 (SST2) (Socher et al.,
2013), STL-10 (Coates et al., 2011), and Street View House Numbers (SVHN) (Netzer et al., 2011)
dataset.

Table 3 indicates that RANKCLIP consistently outperforms CLIP, with relative improvements rang-
ing from +0.14% to +8.91% and an average accuracy increase of +1.30%. When compared to ALIP,
RANKCLIP also shows better performance on average, though the gains are relatively modest.
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Table 5: Ablation zero-shot classification accuracy of cross-modal-only model RANKCLIPC and
in-modal-only model RANKCLIPI on CIFAR-10, CIFAR-100 and ImageNet1K datasets. Bold
indicates the best performance, while blue indicates the second best.

CIFAR-10 CIFAR-100 ImageNet1K
Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

CLIP 36.35% 70.28% 85.02% 12.22% 24.93% 33.56% 12.08% 21.86% 27.48%
RANKCLIP 37.03% 67.67% 83.09% 13.98% 27.70% 36.17% 17.02% 28.44% 33.99%
RANKCLIPI 37.47% 69.89% 84.53% 13.89% 27.34% 35.90% 16.66% 27.63% 33.15%
RANKCLIPC 28.26% 59.65% 75.45% 13.29% 26.85% 34.71% 16.98% 28.25% 33.90%

Figure 3: Ablation studies of CLIP and RANKCLIP trained with different data sizes. Left: zero-shot
top-1 classification accuracy on ImageNet1K with various data sizes randomly sampled from CC3M.
RANKCLIP consistently outperforms CLIP with significant margins. Right: zero-shot top-1 classi-
fication accuracy on ImageNet1K (horizontal axis) and ImageNet1K-R (vertical axis). RANKCLIP
demonstrates better robustness as well as accuracy.

5.5 ZERO-SHOT IMAGE-TEXT RETRIEVAL

In the final part of our experiments, we assess RANKCLIP on zero-shot cross-modal retrieval tasks
(image-to-text and text-to-image) using the Flickr30k (Plummer et al., 2015) and MSCOCO (Lin
et al., 2014) datasets. As shown in Table 4, RANKCLIP generally outperforms the two baseline
methods, though improvements are less significant compared to earlier results in Table 1, Table 2 and
Table 3. The relatively modest gains in retrieval tasks may stem from the complex requirements of
discerning image-text similarities across varying resolutions and object details, a significant depar-
ture from the simpler demands of image classification tasks. Despite this, the overall improvement
highlights RANKCLIP’s advantage, thanks to the deeper insights provided by ranking consistency
in the language-image training process.

6 ABLATION STUDIES

6.1 ABLATION ON LOSS COMPONENTS

To further assess the effectiveness of the proposed ranking consistency, we developed two vari-
ants of RANKCLIP: RANKCLIPC , focusing solely on cross-modal consistency with λi = 0, and
RANKCLIPI , emphasizing in-modal consistency with λc = 0. Both models underwent the same
pretraining as outlined in Appendix A and were tested in a zero-shot classification experiment on
ImageNet1K as in §5.2. The results are shown in Table 5, with bold font indicating the best per-
formance, and blue color representing the second best results. We can see that, while RANKCLIP
achieves the best performance, both RANKCLIPC and RANKCLIPI demonstrate notable improve-
ments over CLIP. Interestingly, RANKCLIPI matches the performance of RANKCLIPC , highlight-
ing the often-underestimated value of in-modal consistency in enhancing model effectiveness.

6.2 ABLATION ON DATA SIZES

To evaluate the scalability of RANKCLIP, we trained both CLIP and RANKCLIP using 500K,
750K, 1M, and 3M text-image pairs from the CC3M dataset and 15M text-image pairs from the

8
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Table 6: Linear probing top-1 accuracy on 10 downstream datasets. RANKCLIP achieves higher
accuracy than CLIP with an average improvement of +5.03% after pretrained on YFCC15M dataset.
The results further demonstrate the potential of our approach for applications on large-scale datasets.
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CLIP-15M 78.72% 56.46% 61.70% 25.44% 61.65% 68.69% 60.78% 55.24% 89.95% 47.98% 60.66%

RANKCLIP-15M 83.21%
(+4.49%)

62.36%
(+5.90%)

66.06%
(+4.36%)

32.25%
(+6.81%)

68.09%
(+6.44%)

74.14%
(+5.45%)

67.40%
(+6.62%)

56.23%
(+0.99%)

94.15%
(+4.20%)

53.03%
(+5.05%)

65.69%
(+5.03%)

YFCC15M dataset following the same procedure detailed in Appendix A. Fig. 3 left presents the
zero-shot top-1 classification accuracy on ImageNet1K, where RANKCLIP consistently outper-
forms CLIP. Notably, it shows a greater performance increments as dataset size grows from 1M
to 15M pairs, suggesting RANKCLIP’s superior scalability, a critical attribute for language-image
pretraining. Furthermore, as shown in Table 6, we conducted linear probing on RANKCLIP and
CLIP, both pretrained on the 15M text-image pairs, to demonstrate the more promising potential of
our method on large-scale datasets.

Fig. 3 right illustrates RANKCLIP’s robustness across different dataset sizes. The horizontal axis
shows the top-1 accuracy on standard ImageNet1K, and the vertical axis on ImageNet1K-R, with a
black diagonal line (y = x) representing ideal robustness. Any deviation below this line indicates
reduced robustness. RANKCLIP consistently stays well above both the red baseline, which reflects
typical in-distribution to out-of-distribution generalization (Miller et al., 2021), and close to the ideal
line, demonstrating exceptional robustness to distribution shifts.

7 ANALYSIS

7.1 MODALITY GAP

In this section, we analyze the modality gaps of CLIP and our proposed RANKCLIP
by visualizing 250 text-image pair embeddings, reduced to two dimensions using
UMAP (McInnes et al., 2018), and complement this with a histogram of the gaps.

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

(a) CLIP

(b) RankCLIP
Figure 4: Scatter and histograms plots illustrating modality
gaps of (a) CLIP and (b) RANKCLIP.

Modality gap (Liang et al., 2022)
refers to a geometric phenomenon
observed in the representation spaces
of multimodal models, where dif-
ferent data modalities (like images
and texts) are embedded at a notice-
able distance from each other, rather
than being uniformly distributed as
ideally expected. This gap, inher-
ent from initialization and preserved
during the contrastive learning pro-
cess like in CLIP, poses a challenge
in language-image pretraining by im-
pacting joint data modeling and un-
derstanding. Recent studies (Sri-
vastava & Sharma, 2024; Kumar &
Marttinen, 2024; Oh et al., 2024)
suggest that reducing this gap could
enhance multimodal representations
and downstream task performance.
The results shown in Fig. 4 indi-
cate that RANKCLIP exhibits a sig-
nificantly smaller modality gap than
CLIP, demonstrating that our ranking
consistency approach effectively enhances understanding of text-image semantics.
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7.2 ALIGNMENT AND UNIFORMITY

Besides alleviating modality gap, it is also commonly believed that a successful contrastive learn-
ing method should as well ensure a broad and uniform distribution covering an hypersphere in
space (Wang & Isola, 2020). These two goals, characterized as similarity and uniformity, can be as-
sessed with alignment and uniformity scores, respectively. More specifically, following Goel et al.
(2022) and notations defined in §4, we calculate the alignment score SA, and uniformity score SU to
be:

SA =
1

N

N∑
j=1

ÎTj T̂j , (11)

SU = log

 1

N(N − 1)

N∑
j−1

N∑
k=1,j ̸=k

exp−ÎT
j T̂k

 (12)

where N is the total number of text-image pairs. Essentially, SA represents the averaged cosine
similarity between text and image embeddings, and SU averages the dissimilarity measures (expo-
nentiated negative dot products) between all unique pairs of text-image embeddings in the dataset,
quantifying how evenly these embeddings are distributed.

A high alignment score represents a strong correlation or similarity between pairs of text-image
embeddings, indicating that the images and their textual descriptions are closely aligned in the em-
bedding space. Conversely, a high uniformity score suggests that embeddings are not uniformly
distributed; they may be clustering together or not utilizing the embedding space efficiently, which
can indicate redundancy in the representations or a lack of diversity. A low uniformity score, on the
other hand, suggests that the embeddings are well spread out across the space, indicating a diverse
and efficient use of the embedding space, which is generally desirable for tasks like retrieval, where
a wide coverage of possible queries are preferred.

As shown in Table 7, we observe that, although CLIP learns representations that are better aligned,
as evidenced by its top-ranking alignment scores, these representations fail to achieve uniform distri-
bution across the hypersphere, as highlighted by its significantly higher absolute uniformity scores.

Table 7: Alignment and uniformity scores of CLIP, RANKCLIP, and
its two ablated variants.

CIFAR-10 CIFAR-100 ImageNet1K
SA SU ZS-Top1 SA SU ZS-Top1 SA SU ZS-Top1

CLIP 0.40 -0.35 36.35% 0.42 -0.35 12.22% 0.44 -0.29 12.08%
RANKCLIP 0.23 -0.17 37.03% 0.26 -0.16 13.98% 0.33 -0.11 17.02%
RANKCLIPI 0.24 -0.16 37.47% 0.26 -0.15 13.89% 0.32 -0.10 16.66%
RANKCLIPC 0.18 -0.12 28.26% 0.18 -0.10 13.29% 0.26 -0.09 16.98%

On the other hand,
RANKCLIP, along with
two of its ablated ver-
sion, RANKCLIPI and
RANKCLIPC , presents
much better balance
between alignment and
uniformity, which results in
improved downstream task
performance as illustrated
in previous experiments as
well as in the representative ZS-Top1 results in Table 7. We also find the results to be informative on
a higher level where it indicates that optimizing contrastive learning towards single objective such
as alignment or uniformity would not intuitively result in higher downstream task performance.

8 CONCLUSION

In this paper, we introduce RANKCLIP, a novel language-image pretraining method that integrates
ranking consistency into the contrastive learning paradigm. RANKCLIP aims to better understand
the complex many-to-many relationships in diverse text-image pairs by optimizing a self-supervised,
list-wise rank loss. Through extensive experiments, including zero-shot classification, robustness to
distribution shifts, linear probing, and zero-shot image-text retrieval, RANKCLIP not only enhances
performance but also improves model robustness and semantic comprehension, outperforming the
baseline CLIP and another state-of-the-art model ALIP. Our ablation studies and analyses further
demonstrate and interpret the significance of each component of RANKCLIP in boosting perfor-
mance and understanding across modalities. We believe that the methodologies and principles of
RANKCLIP will inspire further research and lead to the development of models with a deeper un-
derstanding of the intricate interactions between visual and textual data.
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APPENDIX

A TRAINING PROCEDURES

A.1 IMPLEMENTATION DETAILS

For CLIP (Radford et al., 2021), we use the official implementation released by OpenAI1. And for
ALIP (Yang et al., 2023), we also use the official implementation released by the paper authors2. As
the proposed RANKCLIP essentially shares the same model architecture (separate vision, text en-
coders, projection layer, and a classification head) as CLIP, we build upon the CLIP code repository
for our model construction3. We set the scaling parameters for cross-modal (λc) and in-modal (λi)
ranking consistency to 1/16 and 1/16 respectively throughout all the experiments unless otherwise
noted. All CLIP, ALIP and RANKCLIP models are initialized from scratch without loading any
existing weights. And the embedding sizes for both modalities all project to 1024 across the three
models.

A.2 TRAINING PARAMETERS

Following CLIP (Radford et al., 2021), we adopt the ResNet-50 (He et al., 2016) and transformer
architectures (Devlin et al., 2018) for image and text encoding, respectively. Training is conducted
from scratch over 64 epochs using a single NVIDIA A100 GPU, with a batch size of 512, an initial
learning rate of 0.0005 employing cosine scheduling, and 10,000 warm-up steps.

A.3 TRAINING TIME CONSUMPTION

we conducted the experiments using the same hardware specifications. The table below shows the
time consumption for training our RankCLIP and CLIP models with 50K samples from CC3M using
a single NVIDIA A100 GPU.

Table 8: Training Details

Time consumption Dataset size epochs batch size model name
CLIP 1d 2h 54m 48s 50K 64 512 RN50

RANKCLIP 1d 1h 4m 23s 50K 64 512 RN50

As shown in the table, the difference in time consumption is negligible. Interestingly, our method is
slightly faster than CLIP, but we think it may be attributed to hardware optimizations or variance.

1CLIP repository on GitHub: https://github.com/openai/CLIP.
2ALIP repository on GitHub: https://github.com/deepglint/ALIP.
3RANKCLIP repository will be released upon acceptance.
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