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ABSTRACT

Using generated data to improve the performance of downstream discriminative
models has recently gained popularity due to the great development of pre-trained
language models. In most previous studies, generative models and discriminative
models are trained separately and thus could not adapt to any changes in each
other. As a result, the generated samples can easily deviate from the real data
distribution, while the improvement of the discriminative model quickly reaches
saturation. Generative adversarial networks (GANs) train generative models via
an adversarial process with discriminative models to achieve joint training. How-
ever, the training of standard GANs is notoriously unstable and often falls short of
convergence. In this paper, to address these issues, we propose a self-consistent
learning framework, in which a discriminator and a generator are cooperatively
trained in a closed-loop form. The discriminator and the generator enhance each
other during multiple rounds of alternating training until a scoring consensus is
reached. This framework proves to be easy to train and free from instabilities
such as mode collapse and non-convergence. Extensive experiments on sentence
semantic matching demonstrate the effectiveness of the proposed framework: the
discriminator achieves 10+ AP of improvement on the zero-shot setting and new
state-of-the-art performance on the full-data setting.

1 INTRODUCTION

The advance of Pre-trained Language Models (PLMs) (Brown et al., 2020; Chowdhery et al., 2022)
has substantially improved the performance of deep neural networks across a variety of Natural
Language Processing (NLP) tasks. Various language models, based on the Transformer (Vaswani
et al., 2017) architecture, have been proposed, leading to state-of-the-art (SOTA) performance on
the fundamental discrimination tasks. These models are first trained with self-supervised training
objectives (e.g., predicting masked tokens according to surrounding tokens) on massive unlabeled
text data, then fine-tuned on annotated data to adapt to downstream tasks of interest. However,
annotated data is usually limited to a wide range of downstream tasks, which results in overfitting
and a lack of generalization to unseen data.

One straightforward way to deal with this data scarcity problem is data augmentation (Xie et al.,
2020), and incorporating generative models to perform data augmentation has been widely adopted
recently (Carlini et al., 2021; Gangal et al., 2022). Despite its popularity, the generated text can
easily deviate from the real data distribution without exploiting any of the signals passed back from
the discrimination task. In previous studies, generative data augmentation and discrimination have
been well studied as separate problems, but it is less clear how these two can be leveraged in one
framework and how their performances can be improved simultaneously.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Gulrajani et al., 2017) are good
attempts to couple generative and discriminative models in an adversarial manner, where a two-
player minimax game between learners is carefully crafted. GANs have achieved tremendous suc-
cess in domains such as image generation (Denton et al., 2015), and related studies have also shown
their effectiveness in semi-supervised learning (Salimans et al., 2016; Kumar et al., 2017). However,
GANs are notoriously difficult to train, most training objectives work well for only one model, either
the discriminator or the generator, so rarely both learners can be optimal at the same time (Arjovsky
& Bottou, 2017; Wiatrak et al., 2019). This essentially arises from the adversarial nature of GANs,
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that during the process, optimizing one learner can easily destroy the learning ability of the other,
making GANs fail to converge.

Another limitation of simultaneously optimizing the generator and the discriminator comes from the
discrete nature of text in NLP, as no gradient propagation can be done from discriminators to gener-
ators. One theoretically sound attempt is to use reinforcement learning (RL), but the sparsity and the
high variance of the rewards in NLP make the training particularly unstable (Caccia et al., 2020).

To address these shortcomings, we novelly introduce a self-consistent learning framework based
on one generator and one discriminator: the generator and the discriminator are alternately trained
by way of cooperation instead of competition, and the samples are used as the medium to pass the
feedback signal from the discriminator. Specifically, in each round of training, the samples generated
by the generator are synthetically labeled by the discriminator, and then only part of them would be
selected based on dynamic thresholds and used for the training of the discriminator and the generator
in the next round. Several benefits can be discovered from this cooperative training process. First,
a closed-loop form of cooperation can be established so that we can get the optimal generator and
discriminator at the same time. Second, this framework helps improve the generation quality while
ensuring the domain specificity of generator, which in turn contributes to training. Third, a steady
stream of diverse synthetic samples can be added to the training in each round and lead to continuous
improvement of the performance of all learners. Finally, we can start the training with only domain-
related corpus and obtain strong results, while these data can be easily sampled with little cost or
supervision. Also, the performance on labeled datasets can be further boosted based on the SOTA
level. As an example to demonstrate the effectiveness of our framework, we examine it on the task
of sentence semantic matching. The experiments show that our method significantly improves over
standalone state-of-the-art discriminative models on zero-shot and full-data settings.

Our contributions are summarized as follows,

•We propose a self-consistent learning framework that incorporates the generator and the discrimi-
nator, in which both achieve remarkable performance gains simultaneously.

•We propose a dynamic selection mechanism such that cooperation between the generator and the
discriminator drives the convergence to reach their scoring consensus.

• Experimental results show that our proposed framework significantly outperforms the state-of-the-
art methods for the task of sentence semantic matching.

2 RELATED WORKS

To alleviate the lack of annotated data in supervised learning in NLP, semi-supervised learning (SSL)
has been a popular line of research (Van Engelen & Hoos, 2020). The sources of the unlabeled
data required by SSL are either collected from the domains or generated by generative language
models. Then NLU models can learn from the unlabeled data by pseudo-labeling (Arazo et al., 2020;
Banitalebi-Dehkordi & Zhang, 2021) and consistent regularization (Jeong et al., 2019; Sohn et al.,
2020). However, collecting unlabeled data comes at a cost(though smaller than labeling data), and
the total amount is limited. Even with generative models, there is no guarantee of the quality of the
generated samples, because the model cannot tune the generating results based on the performance
of the downstream tasks. In contrast, our method usually includes a continuously updated generative
model, which dynamically adjusts its generation according to the performance of downstream tasks.

In GANs, the generator is adversarially trained with the discriminator. Unlike conventional GANs in
continuous domains, language GANs usually employ Gumbel-Softmax differentiation (Jang et al.,
2017; Yin et al., 2020), Reinforcement Learning (RL) (Yu et al., 2017; Wu et al., 2021), or modi-
fied training objectives (Montahaei et al., 2021) to update the generator, to use the non-differential
signals from the discriminator. However, language GANs are often criticized for underperforming
Maximum likelihood estimation (MLE) and are very difficult to train, even the single optimality
of either the generator or the discriminator cannot be guaranteed (Alvarez-Melis et al., 2022). In
comparison, our proposed framework allows us to cooperatively couple the generator and the dis-
criminator, leading to continuous improvement for both learners.
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3 METHODOLOGY

3.1 COOPERATIVE OR ADVERSARIAL

Following the principle of self-consistency outlined in Ma et al. (2022), a closed-loop training needs
to be built between the generator and the discriminator, either cooperatively or adversarially. GANs
are typical examples of adversarial learning, but training GANs remains quite unstable. Let us
consider an extreme case to show the possible instability: the discriminator can perfectly distinguish
real data and fake data generated by the generator, and the generator can fully reproduce the real
data distribution. Then the discriminator has only a 50% probability of selecting all samples that
are generated by the generator. Therefore, any further updates to the generator parameters based on
the feedback from the discriminator deviate the generator from the optimum. Neither the generator
nor the discriminator can likely be optimal (Arjovsky & Bottou, 2017; Lamprier et al., 2022). In
practice, a very delicate balance needs to be maintained between the discriminator and the generator
to keep the training stable. In terms of cooperatively closed-loop learning, as discussed below, it
does not suffer from instability: the generator and the discriminator usually enhance each other.

3.2 SELF-CONSISTENT LEARNING FRAMEWORK

In this section, we introduce our self-consistent learning (SCL) framework.

Figure 1: Overview of the flow chart for the SCL framework.

As shown in Figure 1, our framework, similar to the GANs, consists of a generator and a discrimina-
tor model. However, contrasting to the GANs, these two parts in our framework work cooperatively
to enhance each other. Specifically, for any given class k, the generator G now become a conditional
generator that takes in an input sentence sak and generate an output sentence sbk. The discriminatorD
is then responsible for discriminating the sentence using a dynamic threshold ϵD. The discriminated
sentence is used as positive or negative data for that specific class to continue the training process.
Once the new discriminator is trained, the sentence is discriminated again by the new discriminator
with a different dynamic threshold ϵG . This time only the positive data is passed to the generator as
the training data for the new round. In this way, a closed loop of cooperation is formed.

In the above closed-loop training, we propose a selection mechanism that uses dynamic thresholds
to filter samples. This mechanism is empirically shown to play a critical role in closing the gap
between the generator and the discriminator, and thus makes this cooperation loop a virtuous circle.
Specifically, as shown in Equation 1, the output probability pD(y = k|sbk) that the sentence {sbk}
belongs to class k is calculated from the embedding representation H1 of {sbk},

pD(y = k|sbk) = softmax(MLP(H)) (1)

1We follow Reimers & Gurevych (2019) and use the embedding representation of CLS-token as the sen-
tence representation H .
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where y represents the class label. Then, through the filtering function filter(t)
k (·) in round t for

the k-th class in Equation 2, we keep samples whose output probability is not less than threshold
ϵt,k, while other generated samples whose confidence is lower than threshold ϵt,k are discarded.

filter(t)
k (sbk) ≜ pD(k|sbk) ≥ ϵt,k (2)

where ϵt,k represents the dynamic threshold for accepting {sbk} as negative or positive samples in
the t-th round. The generalized threshold function for ϵt,k is defined as,

ϵt,k = f(t,Lt−1,k, ϵt−1,k) (3)

where Lt−1,k and ϵt−1,k represent the discriminator loss and threshold for round t− 1, respectively.
L0,k is set as 0 and ϵ0,k = λ, where λ represents a hyperparameter.

Theorem 1 At round t, given the previous round discriminator Dt−1
ϕ , the aim of optimizing the

generator Gtθ boils down to:

min
θ

DKL(p
k
Dt−1

ϕ

(·), pkGt
θ
(·))

where DKL is the standard KL divergence, pkGt
θ
(·) refers to the degree of confidence that the

sentences generated by the generator belongs to a given class k (we can either train the generator
to express its confidence in the generated sentences(Lin et al., 2022) or use a fixed third-party model
to score them(Gao et al., 2021)), and pkDt−1

ϕ

(·) the probability of being classified into class k given

by the discriminator.

Theorem 1 shows that the generator at round t is encouraged to approximate the probability distri-
bution given by the previous round discriminator. The proof is given in Appendix A. In particular,
on the basis of a well-pretrained discriminator, the generated distribution of the generator can be
guaranteed to be faithful to the real data distribution.

Why Cooperative, Not Adversarial? (1) the generator is no longer a challenger to the discriminator
that only provides negative data points to fool it, but now serves as a data augmenter to provide both
positive and negative data points to enhance the discriminator; (2) the generator no longer updates
its parameters through the policy gradients guided by the signals from the discriminator, but rather
by utilizing the filtered data points to further improve its conditional generation quality. Note that by
deliberately choosing the conditional generation paradigm along with the selection mechanism, we
not only make the training more stable due to the different training goals, but also bypass the mode
collapse problem of GANs (see Section 4.6 for further discussion). Besides, by iterating through the
loops, our framework achieves self-consistency by honing the domain specificity of the generator
and increasing the domain data exposure of the discriminator.

3.3 SENTENCE SEMANTIC MATCHING

We leverage the sentence semantic matching task (i.e. k = 2) as an example to demonstrate the
effectiveness of our method. At this time, corresponding to Equation 2, k = 1/0 represents the posi-
tive/negative class, and filter(t)

1/0 represents the filter function in round t for the positive/negative
class respectively. First, let us introduce the formal definition of this task. Given two sentences
sa = {wa

1 , w
a
2 , ..., w

a
ℓa
} and sb = {wb

1, w
b
2, ..., w

b
ℓb
}, where wa

i and wb
j represent the i-th and j-th

tokens in the sentences, and ℓa and ℓb indicate the length of sa and sb. The goal of this task is to
learn a discriminatorD to precisely predict the label y = D(sa, sb), where y ∈ Y = {0, 1} indicates
whether the two sentences are similar.

In our task, G is trained to generate a similar sentence sb from any given sentence sa and D is
trained to predict label y from any given sentence pair {sa, sb}. As demonstrated in Figure 1, there
are mainly two training processes in the entire framework: fix G to train D and fix D to train G. We
introduce the two training procedures in detail with the t-th round training.
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Training D: We first randomly sample sat from domain-related corpus C, and then input sat to Gt
to generate sbt . Next, we feed sentence pair {sat , sbt} into Dt−1 to predict the label yt−1, and filter
{sat , sbt , yt−1} using threshold ϵt−1

D . Finally, we trainDt−1 on the selected data and pre-training data
P to get an improved discriminator Dt. Note that the filtered data have both positive and negative
samples. The update process of D seeks to minimize the cross-entropy loss over all instances:

LD(s,y) =
1

|s|

|s|∑
i=1

−[yi · log pD(yi = 1|sai , sbi ) + (1− yi) · log(1− pD(yi = 1|sai , sbi ))] (4)

Training G: We feed the generated sentence pairs {sat , sbt} into Dt to predict new labels yt, and
then filter {sat , sbt , yt} using threshold ϵtG and additional rules 2. Note that the filtered data has only
positive samples. For the filtered data, we supplement it with the pre-training data P to update Gt
to Gt+1 3 We also take out sbt from the filtered data and add them to the domain-related corpus. The
expanded domain corpus are used to sample conditional sentences in the next round of generation.
The update procedure of G employs the negative log-likelihood function over all instances:

LG(s
a, sb) = − 1

|sb|

|sb|∑
t=1

log pG(s
b
t |sb<t, s

a)

For the selection mechanism, we adopt the form ϵt = m ∗ t + λ after comparing the effects of
different functions through experiments according to Equation 3. where m is the increment of the
threshold for each round, λ is the initial threshold, and ϵt is the threshold for rounds t.

In the process of training G, since the sentences generated in each round are added to the domain-
related corpus, the source of domain-specific data is thus monotonically expanding by iterating the
self-consistent learning loop. The formalized process is shown in Algorithm 1.

Algorithm 1 Self-consistent Learning (SCL)

Require: Generator G; Discriminator D; Domain-Related Corpus C; Pre-training Data P .
1: Initialize G0 and D0 with pre-trained language models;
2: Warm-up G0 and D0 with pre-training data P to get G1 and D1;
3: for each round i ∈ [1, n] do
4: if Two consecutive rounds of discriminator still improve then
5: Generate similar sentences sb ∼ pGi(·|sa) from sampled sentences sa from C;
6: Predict pseudo-labels yi ∼ pDi(·|sa, sb);
7: Use threshold ϵiD to select data on {sa, sb, yi} to train Di+1;
8: Predict pseudo-labels yi+1 ∼ pDi+1(·|sa, sb);
9: Use threshold ϵiG and additional rules to select data on {sa, sb, yi+1} to train Gi+1;

10: end if
11: end for

4 EXPERIMENTS

4.1 TASKS DESIGN

In our experiments, the pre-training datasets are used to warm up the discriminator and generator,
and the domain-related corpus is a set of independent sentences. To avoid label leakage, none of the

2The additional rules are used to exclude sentences which are too long, too short, or too similar according
to the longest common substring algorithm.

3Note that the pre-training data P is used to warm up G and D. Although pre-training data is not mandatory
in subsequent training, we empirically found that including it when training G can prevent language degenera-
tion and improve downstream performances.
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training datasets participate in the pre-training of the generator and discriminator. In other words,
the datasets in pre-training and self-consistent training are two non-overlapped datasets.

Zero-Shot Baseline: We utilize the best-performing Chinese model RoBERTa-wwm-ext-large (Cui
et al., 2020; 2021) and English model ALBERT-xxlarge-v2 (Lan et al., 2020) as the base discrimi-
nators in our self-consistent learning framework.

Fine-Tune Baseline: We compare our model with several state-of-the-art semantic matching mod-
els, including the following. Chinese models MacBERT (Cui et al., 2020), StructBERT (Wang
et al., 2020), RoFormer (Su et al., 2021; Su et al., 2022), XLNet (Xu et al., 2020), ELECTRA (Cui
et al., 2020), ALBERT (Lan et al., 2020), RoBERTa (Cui et al., 2020; 2021) and English models
BERT (Devlin et al., 2019b), XLM-RoBERTa (XLM-R) (Conneau et al., 2020), XLNet (Yang et al.,
2019b), ELECTRA (Clark et al., 2020), ALBERT (Lan et al., 2020), RoBERTa (Liu et al., 2019).
For a fair comparison, we use models that are as close in size as possible.

4.2 EXPERIMENTS SETUP

4.2.1 DATASETS

We conduct experiments on three Chinese semantic matching datasets AFQMC (Xu et al., 2020),
CHIP-STS (Zhang et al., 2022a), Chinese-QQP (Wang et al., 2019) and an English semantic match-
ing dataset MRPC (Wang et al., 2019). More details about the datasets are given in Appendix E.

4.2.2 MODEL PRE-TRAINING

We adopt the well-established Transformer-XL (Dai et al., 2019)/OPT (Zhang et al., 2022b) archi-
tectures as the Chinese/English generator. To enable the generator to generate similar sentences
with better linguistic quality, we pre-train a Transformer-XL model with 5.0 billion parameters and
incrementally pre-train an OPT model with 2.7 billion parameters on the corpus consisting of plain
texts and similar sentence pairs. Cleaned large-scale Chinese corpus WuDaoCorpora (Yuan et al.,
2021) and English corpus WikiText (Merity et al., 2017) are used as plain texts. Similar sentence
pairs that do not overlap with downstream datasets are used in the pre-training, and the designed
prompts are employed to guide the generation of similar sentences. More details regarding model
pre-training can be found in Appendix D.

4.3 ZERO-SHOT RESULTS

Table 1 shows how the F1 score of the discriminator varies with the number of self-consistent learn-
ing rounds on different datasets in the zero-shot task. According to Algorithm 1, the training is
stopped when the discriminator no longer improves for two consecutive rounds. In addition, these
four datasets are collected from different domains to further reflect the generality of our method in
different domains. Specific training settings are recorded in Appendix F.

Table 1: Zero-Shot Performance of the Discriminator. (F1 score (%))

Round Num AFQMC
(Financial)

CHIP-STS
(Medical)

Chinese-QQP
(Common)

MRPC
(News)

baseline 38.25 58.82 57.88 68.54
1 39.61 62.89 60.08 75.47
2 44.98 67.24 58.57 76.63
3 45.99 71.38 60.30 83.00
4 45.71 71.45 61.31 83.90
5 48.01 74.06 64.47 84.24
6 50.41 74.08 66.44 84.50
7 50.68 76.66 63.88 84.32
8 51.36 76.30 65.46 84.61
9 - 76.67 68.08 -
10 - 77.42 70.51 -

+13.11 +18.60 +12.63 +16.07
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The scores in the last line of Table 1 give the improvement of our discriminator in the last round
relative to the first round. We can see that the F1 score gradually increases after each training
round, eventually reaching a 10+ absolute percentage (AP) improvement. We believe what drives
the improvement of the discriminator is the self-consistency, which it acquires with the generator
step by step during the loop.

To verify that the generator also improves after self-consistent training, we adopt Perplexity and
Bertscore (Zhang et al., 2020) to measure the language fluency and the semantic similarity (i.e.
domain specificity) respectively. For different generators in different rounds, we first select sa in
similar sentence pairs from the same test set as the original sentences input, and generate similar
sentences sb with greedy search. The reason for not using other sampling methods is to ensure re-
producibility. Given the generated sentences, we introduce an additional GPT2 4 model to calculate
the perplexity of generated similar sentences, and use a third-party library 5 to calculate the bertscore
between the original and generated similar sentences. The results are shown in Table 2.

Table 2: Zero-Shot Performance of the Generator.

AFQMC CHIP-STS Chinese-QQP MRPC

Perplexity
-first round 10.13 6.86 12.94 28.71

Perplexity
-last round 8.43 5.97 12.27 17.56

Bertscore
-first round 0.79 0.84 0.87 0.94

Bertscore
-last round 0.80 0.85 0.89 0.97

We can see that the perplexity/bertscore of the last round in Table 2 has decreased/improved com-
pared to the first round. Note that a lower perplexity indicates a more fluent sentence, while a higher
bertscore indicates a more similar sentence. It suggests that after self-consistent training, the gener-
ator is gradually improved in language fluency and semantic similarity (i.e. domain specificity). The
reason why the improvement of the generator is not as obvious as that of the discriminator is that
the size of the generator is several times that of the discriminator, and the total number of training
samples is limited. In Appendix G, the generated samples of the generator in different rounds are
given to show the changes in the generation.

4.4 FINE-TUNE RESULTS

Our method not only works well in the zero-shot case, but also achieves good results in the full-data
case. For the sake of a fair comparison, we reproduce several state-of-the-art semantic matching
models on the four training sets, and their performances on the test sets are shown in Table 3.

Our approach uses the best-performing model on a single test set as the base discriminator for self-
consistent learning. The bold scores in the last line of Table 3 show that our method outperforms
the SOTA results (shaded in gray) by 1 to 2 AP on all four test datasets, indicating the potential of
self-consistent learning to further improve the model performance and establish new SOTA.

4.5 EVALUATING SELF-CONSISTENCY

In this section, we evaluate the consistency between the generator and the discriminator as the learn-
ing loop unfolds. We follow the same method used in Section 4.3 and use greedy search to generate
similar sentences on the same test set. Then we take the confidence of the discriminator RD as the
score of the discriminator, which is calculated for the original sentences sa and the generated similar
sentences sb according to Equation 5.

4Wenzhong-GPT2-110M (Wang et al., 2022) for Chinese data, and GPT2-base (Radford et al., 2019) for
English data.

5https://pypi.org/project/bert-score/
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Table 3: F1 Score(%) of Different Discriminators on the Test Datasets.

#Param(zh/en) AFQMC CHIP-STS Chinese-QQP MRPC AVG

BERTlarge -/335M - - - 82.51 -
XLM-Rbase -/278M - - - 84.27 -

MacBERTlarge 326M/- 61.11 85.94 72.94 - 73.33
StructBERTlarge 326M/- 60.56 85.17 76.33 - 74.02
RoFormerlarge 316M/- 64.19 84.16 76.56 - 74.97

XLNetlarge 360M/360M 50.31 82.97 64.96 79.51 69.44
ELECTRAlarge 324M/334M 54.59 84.97 71.81 89.64 75.25
ALBERTlarge 221M/223M 56.87 86.32 70.52 91.21 76.23
RoBERTalarge 326M/355M 57.29 86.93 74.58 90.24 77.26

Our Method - 66.59 88.39 78.43 92.78 81.55

RD = pD(y
+|sa, sb) (5)

where y+ represents a positive label.

However, for the generator, to the best of our knowledge, there is no reliable way to measure how
similar sa and sb are by using the generator itself. Therefore, to quantify this similarity, we intro-
duce a third-party static model SimCSE 6 to get the embedding representation A,B of sentences
sa, sb. The cosine similarity RG between A and B is then calculated according to Equation 6 to
approximate the score of the generator.

A,B = Encoder(sa),Encoder(sb)

RG =
A ·B

∥A∥2 ∗ ∥B∥2
(6)

where A and B both represent the embedding representation at the [CLS] position. Note that the
original sentence sa remains unchanged in each round, while the generated sentence sb changes.

Finally, for the trained discriminator and generator in each round t, we can obtain two score
distributions Rt

D and Rt
G correspondingly. According to Theorem 1, we draw the curves of

KL divergence between Rt
D and Rt

G in each round for the four datasets: AFQMC, CHIP-STS,
Chinese-QQP, and MRPC. As illustrated in Figure 2, all the curves show a clear downward trend,
indicating that the distance between the two score distributions decreases with the increase in
the number of training rounds until a score consensus is reached. Table 4 shows the values of
KL divergence in the first and last rounds. Numerically, it is more evident that the distances are
significantly reduced on the four datasets.

4.6 EFFECT OF PRE-TRAINING DATA AND SELECTION MECHANISM

We perform ablation experiments on the pre-training data and the selection mechanism in the zero-
shot case. As described in Section 4.1, the pre-training data is used to pre-train the generator and
discriminator, completely independent of the experimental datasets in self-consistent training.

To explore the influence of pre-training data on self-consistent training, we no longer add it in each
round when training the discriminator, and only the generated data is used. But when the generator
is trained, pre-training data is still retained to prevent language degeneration and lack of expressive
diversity of the generation. The result of removing pre-training data is shown as the green curves
in Figure 3. With all other training parameters being the same, after the same number of training
rounds, the discriminator is slightly worse compared to the original method (red curves in Figure 3).

6We use SimCSE-BERT-base to calculate scores on Chinese datasets and sup-SimCSE-BERT-base-uncased
on English datasets. (Gao et al., 2021)
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Figure 2: The KL Divergence be-
tween the score distributions of the
Discriminator and the Generator.

KL Divergence
-first round

KL Divergence
-last round

AFQMC 0.29 0.26
CHIP-STS 0.16 0.08

Chinese-QQP 0.18 0.06
MRPC 0.22 0.02

Table 4: The KL divergence in the
first and last rounds.

However, the green curves maintain an upward trend and are very close to the red curves in all
datasets except CHIP-STS. This shows that the generated data plays a key role in continuously
improving the discriminator, while the pre-training data has a limited role.

Figure 3: Results of ablation experiments on pre-training data and selection mechanism. Results of
the proposed method, results without pre-training data, and results without the selection mechanism
are given in red, green, and blue, respectively.

In order to explore the effect of the selection mechanism on training the discriminator, we remove
the selection mechanism when training the discriminator, while the training of the generator remains
unchanged. The blue curves in Figure 3 depict the performance of the discriminator in each round
after removing the selection mechanism. Compared to the original method (red curves), the discrim-
inator only improves in the first round after removing the selection mechanism, which demonstrates
the importance of the selection mechanism on the discriminator for the convergence of the self-
consistent learning framework.

5 CONCLUSION

In this paper, we propose a self-consistent learning framework to enable cooperative training of
the generator and the discriminator. During the training process, the generator and the discrimina-
tor continuously enhance each other until reaching a score consensus. This framework can utilize
both limited labeled data and large-scale unlabeled domain-related corpus. Experimental results on
four Chinese/English sentence semantic matching datasets demonstrate that as a form of closed-
loop training, our proposed framework can achieve new state-of-the-art results with continuously
improved generators and discriminators.

For future work, we will explore the effectiveness of our self-consistent learning framework on more
NLP tasks, since the framework is straightforward and has no additional requirements on generators
and discriminators.
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6 REPRODUCIBILITY STATEMENT

We now discuss the efforts that have been made to ensure the reproducibility of our work. We have
packaged the executable code and data into supplementary materials, which can be downloaded
and run directly. In addition, we also provide detailed experimental parameters in the appendix to
reproduce the experimental results. All datasets and code platforms (Pytorch) we use are public.
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A PROOFS

A.1 PROOF OF THEOREM 1

Theorem 1 At round t,given the previous round discriminator Dt−1
ϕ , the aim of the optimization of

the generator Gtθ, boils down to,

min
θ

DKL(p
k
Dt−1

ϕ

(·), pkGt
θ
(·))

where DKL is the standard KL divergence, pkGt
θ
(·) refers to the degree of confidence that the sen-

tences generated by the generator belong to a given class k (we can either train the generator to
express its confidence in the generated sentences(Lin et al., 2022) or use a fixed third-party model
to score them(Gao et al., 2021)), and pkDt−1

ϕ

(·) the probability of being classified into class k given

by the discriminator.

Proof. We use the previous round generator Gt−1
θ to generate samples, and filter them using the

previous round discriminator Dt−1
ϕ with a threshold ϵt−1, then these samples are used for training

of the current round generator Gtθ. Therefore, the optimization of Gtθ will tend to maximize the
probability that the generated samples pass the discrimination for the fixed Dt−1

ϕ . For a given class
k, we have

max
θ

Ex∼pk

Gt−1
θ

pkGt
θ
(x) s.t. filter(t−1)

k (x) = 1

where the definition of function filter(t−1)
k (·) has been given in Equation 2.

The above objective is equivalent to sampling from the generator being optimized in round t and
making these samples pass the discrimination in round t− 1 as much as possible, which gives

max
θ

Ex∼pk
Gt
θ

pkDt−1
ϕ

(x)

where pkDt−1
ϕ

(x) is fixed.

A further transformation of the formula shows that

max
θ

Ex∼pk
Gt
θ

pkDt−1
ϕ

(x)

(i)⇒max
θ

∫
dθθθ∇θθθEx∼pk

Gt
θ

pkDt−1
ϕ

(x)

(ii)⇒ max
θ

∫
dθθθEx∼pk

Gt
θ

∇θθθ log p
k
Gt
θ
(x)pkDt−1

ϕ

(x)

(iii)⇒ max
θ

∫
dθθθ∇θθθ

1

N

N∑
i=1

{log pkGt
θ
(xi)p

k
Dt−1

ϕ

(xi)− log pkDt−1
ϕ

(xi)p
k
Dt−1

ϕ

(xi)}

(iv)⇒ min
θ

DKL(p
k
Dt−1

ϕ

(·), pkGt
θ
(·))

where (i) uses the integral property that integrating the derivative of a function gives the original
function along with a constant, (ii) takes advantage of the derivative property of the logarithmic
function, (iii) approximates the expectation of the probability distribution pkGt

θ
(·) by using averag-

ing on N samples sampling from pkGt
θ
(·), and adding a constant term with respect to θ under the

summation would not change its derivative, and (iv) cancels out the integral and the derivative and
uses the definition of KL divergence. The above concludes our proof.

B EXPERIMENTS ON DIFFERENT FILTER FUNCTIONS

To compare the effect of different filter functions on the final result, we use four type of functions,
including oscillatory function (cosine), constant function and monotonically increasing functions
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(quadratic and linear). For the fairness of comparison, we keep the maxima and minima the same for
all functions(except for the constant threshold), and the values are given in Appendix F. In addition,
the number of training rounds for different functions on the same dataset remains the same.

In the results below, the best results and the second-best results are bold and underlined, respectively.

Table 5: Performance of Different Filter Functions in Zero-Shot Setting. (F1 Score(%))

AFQMC CHIP-STS Chinese-QQP MRPC AVG

Baseline 38.25 58.82 57.88 68.54 55.87
Cosine 47.38 74.26 64.39 83.48 67.38

Constant 47.06 74.15 68.67 84.11 68.50
Quadratic 51.75 73.09 70.85 83.48 69.79

Linear 51.36 77.42 70.51 84.61 70.98

As can be seen from the Table 5, in the zero-shot setting, the chosen linear function outperforms
the other functions, and all the filter functions show an averaging 10+ AP improvement relative
to the baseline. Therefore, the self-consistent learning framework makes it easy to choose a certain
threshold function and perform well, and the results are not so sensitive to the choice of the functions.

Figure 4: Results of contrast experiments on Cosine(green), Constant(orange), Quadratic(blue) and
Linear(red) function.

Figure 4 dipicts the comparison results in each round. The linear function (red line) is significantly
better than the other functions on both CHIP-STS and MRPC datasets. In the AFQMC and Chinese-
QQP datasets, the quadratic function (blue line) is slightly more effective than the linear function.
In general, we can intuitively see that all functions show a significant increase relative to the starting
point.

Table 6: Performance of Different Filter Functions in Fine-Tune Setting. (F1 Score(%))

AFQMC CHIP-STS Chinese-QQP MRPC AVG

Baseline 64.19 86.93 76.56 91.21 79.72
Cosine 66.43 88.01 77.33 92.63 81.10

Constant 66.57 88.15 78.45 92.51 81.42
Quadratic 66.37 87.76 79.26 92.75 81.54

Linear 66.59 88.39 78.43 92.78 81.55

Table 6 shows the effects of different filter functions in the fine-tune experiment. It can be seen
that all functions have a 1 ∼ 2 AP increase relative to the baseline, and the chosen linear function
achieves the best performance on all datasets except Chinese-QQP.
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C CONTRASTIVE EXPERIMENTS WITH ADVERSARIAL TRAINING

In this section, We further demonstrate the superiority of the cooperative approach by comparing the
results with adversarial experiments. All experimental settings independent of the training method
remain the same in the adversarial training.

During the experiments, the generator is no longer trained using the samples filtered by the discrim-
inator, but the rewards passed by the discriminator assist the training. All generated samples are
treated as negative samples when training the discriminator.

Specifically, G takes the prompt ’ ”sa” is similar to ” ’ and the first M tokens of sb as input to get M
sentence pairs < sa, sbm >, where m is from 1 to M . Note that we repeat the process of generating
sentences N times to reduce the negative impact caused by the large variance of the rewards.7 The
sentence pair gnm of the m-th token at the n-th time is formalized as

gnm ←< sa, sbm >= Gθ(sbm|sb<m, sa;N)

Once the M ∗ N sentence pairs gnm are generated, they are passed as input to the D to obtain the
probability score Qn

m for each of them. We take the average of Qn
m over N as the reward Q̄m

corresponding to the m-th token. If the sentence length of sb is greater than M , the rewards of the
remaining tokens are all the same as those of the M -th token. Taking the m-th token as an example,
the rewards Q̄m can be formalized as

Q̄Gθ

Dϕ
(m) =

{
1
N

∑N
n=1Dϕ(g

n
m) m ≤M

Q̄(M) m > M

Therefore, the objective function for training the generator G is,

LG(s
a, sb) = − 1

|sb|

|sb|∑
t=1

log(pG(s
b
t |sb<t, s

a) ∗ Q̄t)

The loss function of training the discriminator remains the same as Equation 4, but differing from
cooperative training, the generated samples are regarded as negative samples to the discriminator,
and the training target for the discriminator can be given by

min
ϕ
−EX∼pdata [logDϕ(X)]− EX∼pGθ

[log (1−Dϕ(X))]

The results of zero-shot and fine-tune on the four datasets are shown in Tables 7 and 8.

As can be seen from Table 7, in the zero-shot setting, training in an adversarial manner does not
give any improvement over the baseline. Because the initial discriminator in the zero-shot setting
is very weak in distinguishing positive and negative samples, it is reasonable to believe that if all
generated samples are considered negative samples from the very beginning, it is difficult for the
discriminator to know how to distinguish positive samples. As a result, the F1 scores on both
AFQMC and CHIP-STS datasets end up being 0, while the scores on the Chinese-QQP and MRPC
datasets fluctuate intensively with the number of rounds, which further validates the instability of
the adversarial training in the zero-shot setting.

For the fine-tune experiments, Table 8 shows that training in an adversarial manner can slightly
improve the performance on the Chinese-QQP and MRPC datasets, but is still worse than the coop-
erative training. On the AFQMC and CHIP-STS dataset, adversarial training makes it even worse
relative to the baseline. It is worth noting that the whole process of adversarial training is so unstable
and it is easy to collapse after a few training rounds.

7In practice, we take M = 5, N = 5 for ease of calculation.
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Table 7: Zero-Shot Performance of Adversarial Trained Discriminator. (F1 score (%))

Round Num AFQMC
(Financial)

CHIP-STS
(Medical)

Chinese-QQP
(Common)

MRPC
(News)

baseline 38.25 58.82 57.88 68.54
1 0.0 8.73 21.71 4.19
2 0.02 7.13 49.30 7.06
3 0.0 0.29 42.94 5.32
4 0.0 1.09 41.13 0.0
5 0.0 0.10 43.10 1.72
6 0.0 0.39 34.30 67.38
7 0.0 0.20 42.62 48.31
8 0.0 0.20 34.95 37.97
9 - 0.20 41.81 -
10 - 0.20 40.00 -

Table 8: Fine-Tune Performance of the Discriminator. (F1 score (%))

AFQMC CHIP-STS Chinese-QQP MRPC AVG

Baseline 64.19 86.93 76.56 91.21 79.72
Adversarial 58.37 80.46 77.93 92.18 77.24
Cooperative

(Our Method)
66.59 88.39 78.43 92.78 81.55

D MODEL DETAILS

The 5.0B Transformer-XL is pre-trained on 32 A100s with 40G memory for 45 days, the batch size
is set to 32*8=256. After running 445k steps, the final validation loss reduces to about 2.4. The
2.7B OPT is incrementally trained on the basis of the open-source model.

During the pre-training of the generator model, we utilize the memory-cache mechanism of
Transformer-XL and design a special attention mask to concatenate the multiple input sentences
into one sample, to reduce the number of the padding token in a batch and therefore increase the
number of effective tokens. To make the generation more robust, we add noise to the original sen-
tences by randomly replacing or discarding tokens with a 5% probability. In addition, the prompts
that we use for Chinese generation and English generation are as follows,

• Chinese prompt: “sa”的相似句是“sb” (en: A similar sentence to “sa” is “sb”.)

• English prompt: “sa” is similar to “sb”

When training the discriminator, following the usage of special tokens in BERT (Devlin et al.,
2019a), we use [SEP ] to concatenate two sentences and take the embedding at the [CLS] posi-
tion to represent the whole sentence to predict the label. Moreover, we utilize the mask method in
BERT to randomly mask 15% of the input tokens.

E DATASET DETAILS

The statistics of the experimental datasets are reported in Table 9.

Other Chinese datasets (LCQMC (Liu et al., 2018), OPPO, PAWS-X-zh (Yang et al., 2019a), BQ
(Chen et al., 2018), CCKS, Chinese-STS-B (Wang et al., 2019)) and English datasets (QQP (Wang
et al., 2019), STS-B (Wang et al., 2019), PAWS-X-en (Yang et al., 2019a)) are collected and used as
the corpus of similar sentence pairs for pre-training the generator.

The Chinese-QQP dataset contains 9000 pieces of data randomly selected and translated from the
English QQP dataset, which is then divided into training set and test set in a ratio of 3:2.
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Table 9: Statistics of Experimental Datasets

AFQMC CHIP-STS Chinese-QQP MRPC(en)

Zero-Shot
domain-related

corpus 68668 32000 10800 8,152

test dataset 4316 4000 3600 1725

Fine-Tune training dataset 34334 16000 5400 4076
test dataset 4316 4000 3600 1725

F PARAMETER SETTINGS

The training parameters of zero-shot are shown in Table 10. The three thresholds are used to select
positive and negative examples for training the discriminator and positive examples for training the
generator, respectively. We adopt cosine annealing learning rate decay strategy during training.

Table 10: Parameter Settings of Zero-Shot.

AFQMC CHIP-STS Chinese-QQP MRPC
Maximum Threshold

-negative 0.8 0.9 0.95 0.95

Minimum Threshold
-negative 0.6 0.7 0.8 0.8

Maximum Threshold
-positive 0.8 0.9 0.95 0.95

Minimum Threshold
-positive 0.6 0.7 0.8 0.8

Maximum Threshold
-generator 0.6 0.9 0.95 0.95

Minimum Threshold
-generator 0.6 0.7 0.8 0.8

Threshold Increase 0.07 0.1 0.05 0.05
Sentence Num 6000 6000 3000 4000
Learning Rate 2e-5

Warm Up Steps 40
Early Stopping Patience 1

Generator Batch Size
-training 2(concatenate 30 samples) 24

Generator Batch Size
-predicting 512 100

Discriminator Batch Size
-training 64 32

Discriminator Batch Size
-predicting 384 96

The training parameters of fine-tuning are shown in Table 11.

G GENERATE SAMPLES

The generators use nucleus sampling (Holtzman et al., 2020) to generate similar sentences. Gener-
ated examples in English are shown in Table 12 and in Chinese in Table 13.
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Table 11: Parameter Settings of Fine-Tune.

AFQMC CHIP-STS Chinese-QQP MRPC
Maximum Threshold

-negative 0.98 0.98 0.84 0.8

Minimum Threshold
-negative 0.9 0.7 0.6 0.6

Maximum Threshold
-positive 0.98 0.98 0.98 0.8

Minimum Threshold
-positive 0.9 0.7 0.9 0.6

Maximum Threshold
-generator 0.98 0.98 0.98 0.8

Minimum Threshold
-generator 0.9 0.7 0.9 0.6

Threshold Increase 0.07 0.07 0.07 0.2
Sentence Num 6000 6000 3000 3000
Learning Rate 5e-6

Warm Up Steps 40
Early Stopping Patience 1

Generator Batch Size
-training 2(concatenate 30 samples) 24

Generator Batch Size
-predicting 512 100

Discriminator Batch Size
-training 32 64 32 32

Discriminator Batch Size
-predicting 256 384 256 96

Table 12: Generated Samples in English

MRPC(News)
origin: Hong Kong was flat, Australia, Singapore and South Korea lost 0.2-0.4 percent.

first round: the market is flat, the US is flat, Europe is flat, Japan is flat,
... Malaysia is flat, Philippines is flat, Vietnam is flat, Singapore is

last round: Hong Kong was unchanged, Australia, Singapore and South Korea
were down 0.2-0.4 percent.

origin: Ballmer has been vocal in the past warning that Linux is a threat to Microsoft.
first round: Microsoft is a threat to Linux.

last round: Ballmer has been vocal in the past about the threat Linux poses to Microsoft.
origin: Last year, Congress passed similar, though less expensive, buyout

legislation for peanut farmers, ending that Depression-era program.
first round: The government is going to buy out your farm and give you a check

for $1,000,000.00. You can’t refuse.
last round: Congress passed a similar bill last year to end a Depression-era

program for peanut farmers, ending that program.
origin: Licensing revenue slid 21 percent, however, to $107.6 million.

first round: The company’s net income fell to $1.1 million, or 2 cents per share,
in the quarter ended Sept. 30, from $1.3 million, or 3 cents per share, a year earlier.

last round: Licensing revenue fell 21 percent to $107.6 million
in the third quarter.

origin: SCO says the pricing terms for a license will not
be announced for weeks.

first round: we’re not going to tell you how much it costs to buy a car, but
we’re going to tell you how much it costs to rent one.

last round: The pricing terms for a license for the SCO software will not
be announced for several weeks.
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Table 13: Generated Samples in Chinese.

AFQMC
(Financial)

origin：可以用自己的支付宝为别人的花呗还款吗
(Can I use my Alipay to repay someone else’s Huabei)

first round：花呗的钱可以让其他人代还吗
(Can someone else pay for the money from Huabei)

last round：花呗能不能帮别人还
(Can my Huabei help others repay?)

origin：花呗怎么还欠费
(How does Huabei pay off the arrears)

first round：花呗怎么还有电费
(Why does Huabei still have electricity bills)

last round：花呗还款怎么还
(How to pay off Huabei)

origin：我的花呗收款二维码
(QR code for my Huabei payment)
first round：商家花呗的二维码

(Merchant Huabei’s QR code)
last round：花呗收款二维码在哪里

(Where is the QR code for Huabei payment)

CHIP-STS
(Medical)

origin：艾滋病的病因是什么
(What is the cause of AIDS)

first round：艾滋病毒是什么?
(What is HIV?)

last round：艾滋病是什么原因引起的?
(What causes AIDS?)

origin：高血压总是流口水是怎么回事
(High blood pressure is always drooling what is going on)

first round：高血压怎么回事
(What about high blood pressure)

last round：高血压为什么会流口水?
(Why does high blood pressure cause drooling?)
origin：得了糖尿病,现在越来越瘦了怎么回事

(Why am I getting thinner and thinner now that I have diabetes)
first round：糖尿病现在怎么回事?

(What’s going on with diabetes now?)
last round：糖尿病患者为什么会瘦?

(Why do people with diabetes lose weight?)

Chinese-QQP
(Common)

origin：如何从此网站删除我的帐户?
(How do I delete my account from this site?)

first round：怎么删除网站
(How to delete a website)

last round：如何才能删除我的帐户?
(How can I delete my account?)

origin：关于电子产品的一些好书是什么?
(What are some good books on electronics?)

first round：有什么好的电子产品推荐
(Any good electronics recommendations)

last round：有哪些关于电子产品的好书?
(What are some good books about electronics?)

origin：为什么没有人看到无尽和无限之间的区别?
(Why does no one see the difference between endless and infinite?)

first round：为什么宇宙中没有极限的存在
(Why is there no limit in the universe)

last round：为什么没有人知道无限和有限之间的区别?
(Why does no one know the difference between infinite and finite?)
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