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Abstract

Irregular temporal data, characterized by varying recording frequencies, differ-
ing observation durations, and missing values, presents significant challenges
across fields like mobility, healthcare, and environmental science. Existing re-
search communities often overlook or address these challenges in isolation, leading
to fragmented tools and methods. To bridge this gap, we introduce a unified
framework, and the first standardized dataset repository for irregular time series
classification, built on a common array format to enhance interoperability. This
repository comprises 34 datasets on which we benchmark 12 classifier models from
diverse domains and communities. This work aims to centralize research efforts
and enable a more robust evaluation of irregular temporal data analysis methods.

1 Introduction

High-dimensional temporal data is increasingly accessible to decision-makers, domain experts, and
researchers [71]]. It is vital in fields like mobility, healthcare, and environmental science to capture
dynamic changes over time. Yet, variations in recording frequencies, durations across sensors, and
occasional failures lead to signals with unequal lengths, gaps, and missing values [33]]. These traits
make real-world temporal data irregular and difficult to manage [43].

Several research communities address the challenge of irregular temporal data from different per-
spectives, as its analysis depends heavily on the task, application setting, and modeling approach. As
a result, the problem spans multiple fields, including mobility analytics [16], irregular time series
classification [43]], forecasting [80], and imputation [54.49], to name a few. Due to this vast amount
of tasks, and despite some shared challenges, communities working on irregular temporal data tend
to be separated, whereas easier interaction could foster new ideas and accelerate advancements in the
field. Each community relies on its own set of techniques, such as traditional statistical or data mining
models [29], neural networks [[79]], or differential equations [[64], often resulting in domain-specific
tools and libraries. This is not inherently a drawback, but can lead to fragmented research efforts.
The challenges of irregular temporal data are amplified in supervised learning, where standardized
benchmarks are notably lacking. While repositories exist for regular time series classification [[17} 15]],
regression [74], and forecasting [26l], truly irregular datasets, capturing real-world missingness
and variability, remain scarce. Researchers often resort to artificially manipulated datasets [80],
introducing assumptions that overlook structural missingness tied to data collection [S8]. As a result,
and given that many studies rely on a narrow range of datasets, the generalizability of their methods
is reduced, and experimental findings have limited applicability.

We bridge the gap between research communities by introducing pyrregularﬂ a unified framework
that offers a comprehensive view of irregular time series. (I) We introduce a taxonomy for different
kinds of irregularities, and propose a dataset structure based on a common array format to enhance in-
teroperability across diverse tools and libraries. This structure is well-suited for handling, visualizing,

'The code is available at: https://github.com/fspinna/pyrregular,
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and modeling irregular time series data and makes it possible to use it with the vast array of tools
already available for time series analysis. (2) We introduce the first standardized dataset repository for
irregular time series classification, and (3) we leverage this repository to propose the first generalized
benchmark for leading state-of-the-art classifiers alongside several baseline models from different
research domains, in an effort to centralize research on this topic. Specifically, we curate 34 irregular
time series datasets and evaluate 12 time series classifiers. Our goal is to empower users to seamlessly
explore and evaluate a wide range of libraries to address the challenges of irregular temporal data.

2 Organizing Irregularity

To develop a unified framework for irregular time series, we must first clarify which types of
irregularities we intend to address. As our first contribution, we propose a systematic taxonomy that
clearly distinguishes among different forms of irregularity. We begin by defining a time series signal.

Definition 2.1 (Time Series Signal). A signal (or channel) is a sequence of 7 observations, each
associated to a timestamp, i.e., x = [(21,1),..., (Tr,t;)] = [Xt,,...,2¢ ] ER.

A single signal can be irregular for two reasons: uneven sampling, when at least one interval ¢54 1 —t,
differs from a constant At, and partially observed, when expected values are missing and marked as
NaN. The set of real numbers extended with the NaN symbol is here represented as R. We denote
with t = [t1,...,t,] € R7, the sorted collection of all timestamps where an observation of signal x
was, or should have been recorded, and with 7 = |’E| the number of observations.

Definition 2.2 (Time Series). A time series is a collection of d signals, X = {x,...,x4} € R¥*T,

t; € RT, with
T = |t|, as shown in Figure |1} In addition to these intrinsic irregularities, tensor representations
introduce a third, structural type: raggedness, that is the necessity of padding due to length, sampling,
or alignment mismatches between signals. Hence, there are three independent irregularity causes:
uneven sampling, partial observation, and raggedness, as depicted in Figure[2] While these categories
have appeared informally in prior literature, here we show that they are independent: none implies
the others. Unevenly sampled time series do not necessarily imply the presence of partially observed
data, as seen in Figure [2] (left). This commonly happens in trajectory data, where the timestamps are
usually highly uneven, but shared across the latitude and longitude signals. Vice versa, the presence
of unobserved data does not imply uneven timestamps, as an observation may be accidentally missing
from an overall constant sampling. Finally, neither unevenly sampled nor partially observed data
imply raggedness. In particular, the two leftmost time series shown in Figure [2|could be stored in
2 x 4 and 2 x 5 matrices, respectively, without requiring any padding.

Time series timestamps are the sorted union of all signal timestamps, i.e., t= U?Zl

Raggedness is a kind of irregularity that can naturally arise even when dealing with completely
observed data sampled at equal time intervals, because of different issues created when storing a
multivariate time series in an array-like structure. As so, a single, univariate signal cannot be ragged
by itself. In general, raggedness arises when at least two signals, a and b, do not share the same
timestamps, i.e., t, # t;. We identify three independent fundamental reasons for why this can happen.
The first is ragged length, when a and b have a different number of observations: 7, # 7. The second
is shift, where at least one signal starts and ends before another: (¢,1 < tp.1) A (ta,r, < tsr,). The
third is ragged sampling, when at least one element of the sampling intervals differs between two
signals, i.e., Aty # Aty for some k, where Aty i = to k41 — Lok and Aty = ty g1 — to k-



Again, none of these, by itself, implies the other, as shown in Figure @ and, in more detail, in
Appendix [B] Combinations of these issues yield highly irregular data, where NaN can indicate either
a missing value in a partially observed time series or padding due to raggedness in tensor storage.
Moreover, raggedness can exist also in a time series dataset, i.e., a collection of n time series, X =

{X1,...,X,,} € R"*9T a5 all instances share the same sorted timestamps, t = [J"_, t; e R,
with T = |t|. The timestamp index for the whole dataset is denoted ask = [1,...,T].

Associated with time series datasets are often static attributes, which refer to information linked to
individual instances that remain independent of the time dimension. For example, in a medical dataset,
static variables might include the patient’s demographic details. These attributes can also serve as
targets in supervised tasks. Specifically, we focus on classification, i.e., targets are categorical.

3 Related Work

Datasets and Benchmarks. There is a significant divide in the literature in the availability of datasets
and benchmarking efforts, between regular and irregular time series data. Supervised learning for
regular time series data is extensively addressed in the literature. From a survey perspective, numerous
“bake-offs” [[7, 166, 157]] have benchmarked state-of-the-art classifiers on hundreds of standard datasets
from the famous UEA and UCR repositories [17,15]. On the contrary, the benchmarking literature
on irregular time series remains limited. While secondary sources, such as [[80} [79], offer surveys
on specific tasks like irregular time series imputation, comprehensive benchmarks for downstream
tasks like classification are largely confined to primary studies [43| 70, 22| [13]]. Even within these
studies, evaluations are often performed on a small number of datasets. Moreover, benchmark
datasets are not always inherently irregular; instead, they are commonly derived from regular datasets
through simulation, i.e., dropping valid observations [80]. Although this strategy can, when executed
correctly, create irregular time series, introducing missingness is a non-trivial process requiring
careful decisions about the type of missingness to simulate [[65]]. Adding to these challenges, a recent
study [58] highlighted that most research neglects structural missingness, referring to non-random,
multivariate patterns of missingness within datasets. Such patterns can only be faithfully retained by
preserving the original data with minimal alterations.

Libraries. Regarding regular time series data, Python libraries such as sktime [52]], aeon [56]], and
tslearn [75] provide a wide range of classifier implementations, along with access to the UEA
and UCR repositories, enabling systematic and reproducible evaluations. Although some of these
datasets contain irregularities, the typical approach involves imputing missing values and discarding
timestamps during downstream tasks. The most prominent Python library for irregular time series
analysis is pypots [21]. pypots offers several classifiers, a few partially observed time series
datasets, and provides an interface for adding missingness in regular datasets. A limitation of pypots
is that it overlooks irregularity from uneven sampling, ignoring timestamps. It also operates within its
own ecosystem, lacking interfaces for cross-library comparisons. This makes benchmarking against
sktime models or using irregular datasets with libraries like aeon difficult, due to incompatible data
formats and requirements, hindering standardization efforts. The primary reason for these challenges
is the difficulty in managing irregular time series due to high dimensionality, missing values, and
timestamps. Most libraries for time series prediction require dense 3D tensors to represent time series,
signals, and identifiers (IDs), often demanding extensive padding and increased memory usage. To
mitigate this, special arrays to represent missing values or variable-length instances are often used.
For example, numpy masked arrays [31] indicate valid entries with masks but are memory-inefficient
since they store both data and masks. Alternatives include awkward arrays [61], jagged pytorch
arrays [60], ragged tensorflow arrays [[1], zarr, pyarrow, or sparse arrays [2]]. Although efficient
in managing varied-sized data, these structures cannot inherently handle timestamps. Forecasting
libraries like nixtla or gluonTs [3]] typically use a long format, representing data as tuples (4, j, ¢, x)
with instance and signal IDs, timestamps, and observed values. While efficient for forecasting, this
format requires pivoting for classification tasks, and static variables are either duplicated or stored
separately, causing inefficiencies. Lastly, xarray [34] supports timestamped multi-dimensional
arrays but lacks native support for sparse, irregular data.

In summary, to the best of our knowledge, no existing array format is capable of representing irregular
time series data in all their nuances. To address this limitation, we propose a framework that serves
as a compatibility layer based on a unified array format, facilitating comprehensive benchmarking
across a wide range of datasets and methods from diverse time series communities.
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Figure 3: A simplified schema of our framework. (left) Data from different sources is preprocessed
and represented in our proposed array container (center), which combines xarray with an underlying
sparse tensor via a custom accessor and backend. This container can be easily manipulated, plotted,
and stored. (right) Finally, it can also be converted into a more common dense representation, which
can be used for downstream tasks with any standard time series library.

4 A Unified Framework for Irregular Time Series

This work addresses the gap in the literature on irregular time series by introducing an efficient
container specifically designed for such data. This facilitates the integration of methods and datasets
from various research communities into a unified framework. We outline key aspects of this solution.
(i) Ease of Use: the framework supports several stages of the data science workflow, including
visualization, preprocessing with classical and temporal slicing, and seamless conversion to dense
arrays used in leading machine learning libraries. (ii) Robustness: the implementation leverages
established and well-maintained libraries, as there is no point in reinventing the wheel. (iii) Flexibility:
the container supports all kinds of time series irregularities. (iv) Replicability: to ensure comparable
results, preprocessing is standardized, addressing the variability in irregular datasets. A depiction of
the three steps of pyrregular is shown in Figure 3} preprocessing, where the original irregular data
is transformed into our proposed container; handling, where the data can be explored, manipulated,
and stored; and converting, where the data is prepared for downstream tasks. Comprehensive code
examples can be found in Appendix [F| and athttps://fspinna.github.io/pyrregular/.

Preprocessing. The first step in our framework involves preprocessing and transforming irregular
time series datasets into the proposed representation. Irregular time series data can be found in a
wide variety of sources and formats (Figure 3] left), presenting unique challenges in terms of parsing,
handling, and extracting the relevant temporal and feature information. Regardless of the original
data structure, our framework requires only a function capable of yielding the data in the standardized
long format. In this representation, each row captures the time series ID, signal ID, timestamp, and
observed value: (i, j,t,x). The core intuition behind our approach is that the long format closely
resembles the sparse coordinate (COO) representation [23]].

The coo format, as implemented by sparse [2], can efficiently encode sparse 3D tensors, by using
indices for the time series, signal, and timestamp, accompanied by an observed value entry, formally
(i,4,k,x). The key distinction between the long format and the COO representation lies in the
handling of the timestamps: while the COO format requires discrete timestamp indices, k, the long
format uses real-valued timestamps, ¢. An example is reported in Figure ] (left). This difference,
however, can be easily bridged by mapping the timestamps, t, to discrete positions within the COO
array, k. Formally, given the timestamps vector t = [t1, . .., t7], each timestamp can be mapped to its
corresponding position (index), in the COO format as k = [1, ..., 7] (and vice-versa), as depicted in
Figure [ (center). With this mapping, converting between the long format and the COO representation
can be easily accomplished, as the time series dataset is read once to construct the mapping and a
second time to incrementally build the COO matrix by yielding each row as it is generated (Figure [
right). Practitioners need only to define a custom function that, given their own data, incrementally
produces rows in the long format. Even when the initial dataset is not organized in this manner,
the conversion to the long format is typically straightforward. This process ensures uniformity
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across input formats and transparency, as the preprocessing steps are explicitly documented in this
function, and can be reproduced at any time. Though it may be runtime-intensive, this step needs
to be performed only once, after which the library streamlines all subsequent transformations and

processing. The output after preprocessing is a sparse tensor, denoted as X € R*dxT

Handling. The COO representation of-
fers advantages over the classical long for-
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with reasonable performance, including re- = - o

Long Format Mapping COO Tensor

-
~

shaping and slicing. Moreover, it allows tf T [ KT ﬁ

for rapid conversion to task-specific array 12/01/2025 | [ 06/01/2025 | 8
structures, such as other sparse formats like YRR | TS ||
GCXS [69]]. Compared to classical dense ar-

rays, its primary advantage lies in memory

efficiency, as only the recorded observa- Figure 4: Long format to COO tensor conversion process.
tions are stored. All padding is represented Each row of the long format is processed to retrieve the
by a fill value and remains implicit, mean- absolute position k of a given timestamp ¢. The triplet,
ing it is not directly stored but is generated instance ID (z = 1), signal ID (j = 2), and timestamp
only when the sparse array is transformed index (k = 7), is used to populate the sparse COO tensor.
into a dense form. Commonly, the fill value

is set to zero. However, we propose setting it to NaN to capture raggedness. Further, the COO format
naturally accommodates partially observed data by explicitly storing a fill value. This allows for
distinguishing between the two types of missing data previously discussed. Specifically, an explicitly
stored fill value, i.e., a row (i, j, k, NaN), can indicate a missing entry that should be present, while
implicit NaN's reflect missingness due to data raggedness. In this sense, the COO tensor by itself is
enough to represent both ragged and partially observed time series.
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However, to capture an unevenly sampled time series, it is also essential to store the timestamps. To
achieve this, we can leverage our timestamp to COO (t to k) mapping using xarray (Figure[3] center).
In particular, we use xarray [34] to store the timestamps and extend it to utilize an underlying
sparse COO tensor internally. These functionalities are possible through our custom backend and
accessor, which extend the xarray library, to support sparse arrays. Further, xarray naturally
facilitates the storage of static attributes linked to any dataset dimension, such as class labels in
classification tasks. In this way, the entire time series dataset, comprehensive of the timestamps and
any static attribute, is represented as a single object. Overall, this approach offers significant storage
efficiency, particularly given the typically high data sparsity, and ensures ease of use by supporting
all existing xarray functions like timestamp range queries. Further, our accessor enables plotting,
while our backend allows direct saving and loading to a hierarchical data format, locally or online,
via pooch [[77], eliminating the need to perform the preprocessing step again.

Converting. Despite its advantages, xarray is not directly supported by most libraries for supervised
learning tasks. Therefore, it is crucial to demonstrate how this array structure can be efficiently
prepared for such applications. Specifically, for classification tasks, X & R™*4%T should be
transformed into a dense tensor that minimizes raggedness while preserving the inherent missingness
from partially observed time series and maintaining the order of observations within the same time
series. This conversion is important because, in classification tasks, raggedness is typically irrelevant
to the target and would otherwise result in vast dense arrays filled predominantly with NaNs. For
instance, the specific starting dates of time series, such as a beginning on January 23rd and b on
January 30th, are typically uninformative with respect to the output class, so we generally want to
avoid introducing 7 leading NaN's in time series b to account for the shift. For a COO array, this
transformation corresponds to a dense ranking operation on the timestamp index, k, performed time
series-wise. Formally, for each COO entry (3, j, k, «), we produce (4, j, rank;(k), z), where:
rank;(k) =1+ |{k' € [1,T:] : k' < k}|.

This process shifts the timestamp indices within each time series, X, into a consecutive sequence
ranging from 1 to its length, 7;. As a result, the tensor X € R™*4%T can be densified into a more
compact, X’ € R"*4*T where T = max?(T}). This ensures minimal padding, with the timestamp
dimension set to the maximum number of timestamps in any time series. Further, for models that
support it, the timestamps can be concatenated as an additional channel [43]. X can be used by any
downstream library, in our case, time series classification libraries. Specifically, we currently support
sktime [S2], aeon [S6], tslearn [[/5], pypots [21] and diffrax [42].



Table 1: Datasets used for our benchmarks, divided by irregularity type: unevenly sampled (US),
partially observed (PO), unequal length (UL), shift (SH), ragged sampling (RS).
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Table 2: Summary of evaluated classifiers.
Library Model Type Domain
acon [73] BORF dictionary-based transform + LGBM classifier  regular, ragged
RIFC interval-based transform + LGBM classifier partially observed
diffrax [43] NCDE neural controlled differential equations unevenly sampled
[l BRITS bidirectional recurrent imputation network partially observed
[11] GRuU-D gated recurrent unit with decay partially observed
pypots [84] RAINDROP  graph neural network partially observed
[22]  sA1TS self-attention-based imputation transformer partially observed
[82] TIMESNET temporal 2d-variation transformer. partially observed
[41] LGBM gradient boosted tree tabular
sktime [20] ROCKET kernel-based transform + LGBM classifier regular
(41 SVM support vector machine with distance kernel regular, ragged
tslearn [68] KNN distance-based with dynamic time warping regular, ragged

5 C(lassification Benchmarks

We present a comprehensive benchmark enabled by pyrregular, in which we evaluate 12 classifiers
from a variety of time series libraries on a curated collection of 34 irregular time series datasets. We
assess model performance from multiple perspectives, including dataset characteristics, robustness
across irregularity types, and the potential for performance improvement through fine-tuning.

Datasets. We select diverse, naturally irregular datasets, without removing or altering any observation
to induce irregularity (Table([T). First, our collection contains widely used irregular time series classi-
fication datasets: PhysioNet 2012 (P12) [[72l], PhysioNet 2019 (P19) [63]], and the MIMIC-III (MI3)
clinical database [40] from the medical domain, as well as Pamap2 (PAM) [62]] for physical activity
monitoring. Additionally, we include the 11 variable-length univariate time series classification
problems [28, [10L [55 25]] from [6], the 4 partially observed datasets [35} [15] from [57]], and the 7
variable-length multivariate time series classification problems [[18, 181} 12} 46l 130] from [66]. We
also provide datasets that, to the best of our knowledge, were never used in these kinds of benchmarks.
These include data for trajectory classification of entities such as mammals (AN)[24], birds (SE)
[8], and vehicles like buses and trucks (VE), taxis [S9]] (TA) and combinations of the previous [87]]
(GS). Further, we include a small dataset about the productivity prediction for garment employees
[36] (PGE), and a human activity recognition dataset [78] (LPA). Finally, inspired by the classical
Cylinder-Bell-Funnel benchmark [67] for regular time series classification, we introduce an irregular
version called Alembics-Bowls-Flasks (ABF), in which the class depends on the skewness of the time
sampling. Where available, we use the default train/test split for training and inference, else we set
them based on each dataset description and original paper. More details are provided in Appendix [C]

Models. The objective of these experiments is to benchmark methods capable of naturally handling
irregular time series without introducing bias through imputation techniques. For this reason, and to
keep the benchmarks to a reasonable amount, we limit our evaluation to classifiers that inherently
support irregular inputs and are available in the aforementioned libraries (Table [2). As classical
baselines, we use K-Nearest Neighbors (KNN) with Dynamic Time Warping [68]], a time series
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Figure 5: CD plot for the benchmarked models in Figure 6: Mean F1 rank against training and in-
terms of F1. Best models to the right. Connected ference runtimes for the top 11 models across all
models are statistically tied. datasets. The best models are on the bottom left.

Support Vector Machine (SVM) with a Longest Common Subsequence (LCSS) kernel [4], and a
LightGBM classifier (LGBM) trained directly on raw time series, ignoring temporal dependencies.
For regular time series models, we include the Bag-Of-Receptive-Fields (BORF) [73] from aeon,
ROCKET [19, 20] via its MINIROCKET version in sktime, and a Random Interval Feature Classifier
(RIFC). These models transform the data and rely on downstream classifiers; we use LGBM to handle
possible NaNs. For partially observed data, we benchmark GRU-D [11], BRITS [9], RAINDROP [84],
two transformer models, SAITS [22] and TIMESNET [83]], from pypots, and a Neural Controlled
Differential Equation model (NCDE) [43] from diffrax. More details are provided in Appendix

Experimental Setup. Following standard practice in similar benchmarking studies [[7, 166} |57, all
models are trained using the default hyperparameters provided by their respective libraries or those
recommended in the original papers. The goal of this benchmark, consistent with prior bake-offs, is
to identify the model that best generalizes with a single, reasonable parameter configuration rather
than fine-tuning each model for individual datasets. For this reason, the results of these benchmarks
do not necessarily highlight the best possible model for a given task, but the model that generalizes
best in many. Each model is allocated two weeks (= 20000 minutes) for training and inference on
each dataset, with access to 32 cores and 512 GB of memory, and to a GPU when the model can use
iﬂ Experiments are repeated three times for highly stochastic models, and the average performance
is maintained. Although accuracy is the most commonly used metric for evaluating classification
performance, we have chosen the F1 score with macro averaging as our primary performance metric.
The F1 score is more robust in the presence of unbalanced datasets [38]], such as some of the ones
provided. Accuracy results, along with additional metrics, statistical tests, and plots, are reported in
Appendix |D|and are consistent with the findings presented below.

5.1 Results and Discussion.

We present a comparative analysis of the aggregate results of the benchmark outcomes. We report a
critical difference (CD) plot in Figure[5} which ranks models in terms of F1. Models are arranged from
right to left, with lower ranks indicating better performance. Models connected by a horizontal bar
are statistically tied under a one-sided Holm-corrected Wilcoxon signed-rank test with a significance
threshold of 0.05. ROCKET emerged as the clear top-performing model, demonstrating consistent
superiority across the datasets. Even if this result aligns with its established reputation as one of
the best models for regular time series classification [57]], its efficacy on irregular data is somewhat
surprising, as ROCKET does not exploit any information about said irregularity. Following ROCKET, a
cluster of methods, including BORF, LGBM, RIFC, TIMESNET, exhibits statistically tied performance.
Lower ranks are occupied by RAINDROP, KNN, BRITS, followed by GRU-D and NCDE, with SVM
distinctly identified as the worst-performing model.

Performance vs. Time. Besides predictive performance, runtime is also a significant factor. In
Figure 6] we compare the average F1 rank against training and inference runtimes, discarding SVM
for better readability. The better-performing, faster models appear in the bottom-left region of the
plot. In terms of training, LGBM is the fastest, followed by RIFC and ROCKET, with ROCKET also
being also very fast during inference. For this reason, ROCKET emerges as the best tradeoff between
F1 and runtime. Interestingly, despite being designed for tabular data, LGBM performs well. This

2System: IBM SYSTEM POWER AC922 Compute Nodes with 2 x 16-core 2.7GHz POWER9 CPUs,
512GB of RAM. NVIDIA Tesla V100 32GB GPU
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finding aligns with observations in [74], where gradient-boosting trees showed strong performance
in regular time series regression. LGBM is a compelling choice due to its decent performance and
exceptionally fast training time, making it attractive for practitioners needing quickly fine-tunable
baselines. Neural network-based methods, though designed for irregular data, underperform in these
bake-off-style benchmarks, except for their competitive inference runtime. Similar patterns appear in
regular time series classification [S7]. We hypothesize that simpler, generalist, models, like ROCKET,
excel in bake-off settings due to their low-variance, high-bias inductive bias, making them robust
across a wide range of tasks, contrary to specialized models, which exhibit strong performance on
specific types of irregularity or dataset characteristics, especially after fine-tuning.

Performance vs. Dimension. Figure[7] (top) shows the mean F1 ranks of all benchmarked models
(lower is better), stratified by dataset size: small (at most 500 instances) and large (more than 500
instances). KNN and RIFC exhibit a noticeable worsening in rank on larger datasets, indicating limited
scalability or reduced robustness as the number of training examples increases. In contrast, LGBM,
and especially TIMESNET, improve significantly in rank, suggesting that more complex models,
particularly transformer-based ones, benefit from greater data availability to better exploit their
capacity. Figure [/| (center) shows the mean F1 ranks for univariate and multivariate time series.
While the best-ranked model is again ROCKET, all neural network-based approaches benefit from
increased dimensionality, making them particularly suitable for multivariate time series. Figure[7]
(bottom) reports the mean F1 ranks stratified by time series length: short (at most 360 observations)
and long (more than 360 observations). Here, recurrent models such as GRU-D and BRITS, along with
several other neural architectures, tend to struggle on longer sequences. RAINDROP stands out as
an exception, likely owing to its graph-based design. Meanwhile, models that rely on localized or
interval-based features, such as ROCKET, RIFC, and especially BORF, show improved performance on
longer time series, indicating that in this case, simpler is better.

Performance vs. Irregularity. In Figure[8] we report the average F1 score of the top-5 performing
models within each irregularity group (higher is better). ROCKET, BORF, and LGBM consistently rank
among the top three across unevenly sampled, unequal length, shifted, and ragged sampling time
series. GRU-D, while generally ranking lower overall, appears among the top five models in three
out of the five groups, showing solid average performance. Partially observed time series exhibit
markedly different behavior: here, models designed to handle missing data, such as SAITS and BRITS,
outperform ROCKET, BORF, and LGBM. This suggests that explicitly modeling missingness can be
highly beneficial, particularly for datasets with structured patterns of missing values.

Performance after Fine-tuning. In Table[3| we present the average performance of the top three gen-
eralist models, ROCKET, BORF, and LGBM, evaluated in terms of area under the Receiver Operating
Characteristic curve (auc) and area under the Precision-Recall curve (aupr) following hyperparameter
tuning. These evaluations follow the same 5-fold cross-validation setup and are compared against
reference results from [84} 50, 51} [85]] on the two most commonly used irregular medical datasets:
P12 [72] and P19 [63]. This benchmark aims to assess whether generalist classifiers can also be
effectively fine-tuned for specific tasks, and to compare them with state-of-the-art specialist deep
learning models such as CONTIFORMER [13]], GRU-D [11], MTSFORMER [85]], MUSICNET [51]], and
RAINDROP [84]. Results indicate that, when optimally fine-tuned, deep learning-based algorithms
outperform simpler regular time series classifiers. However, except for ROCKET, which underper-
forms in this test, this advantage is not always substantial; for instance, LGBM achieves the fourth-best



Table 3: Comparison of best-performing models from the bake-off, against baseline reference results
(higher is better). Best values in bold, second best underlined.

CONTI MTS MUSIC RAIN
BORF FORMER GRU-D LGBM FORMER NET DROP ROCKET
N auc 749400 812+08 819421 784400 84.9+1.4 86.1+04 82.8+17 534400
B aupr 334400 43.9+30 46.1447 381400 511437 541422 440+30 158400
o auc 80.140.0 792+23 839417 852400 888+15 86.8+14 87.0+23 773400
B aupr 381400 358+23 469421 44.140.0 57.7+44 454427 51.8+55 352400

score on P19, outperforming models like CONTIFORMER and GRU-D. Another advantage of models
such as ROCKET, BORF, and LGBM is that the performance is very stable, with near-zero standard
deviation to a single decimal place. This underscores the value of being able to readily apply standard
approaches, as they can offer fast, stable, and non-trivial baselines. However, deep learning offers
more flexibility for optimizing on specific tasks, with reasonable inference times when aiming for
raw performance for deployment purposes.

Performance vs. Trustworthiness. Though not the main focus of this work, we briefly address model
trustworthiness, crucial in high-stakes fields like healthcare, where irregular data is common. The
most interpretable models in our benchmark are BORF, which relies on subsequence presence/absence,
and RIFC, which uses simple interval-based features, both explainable via SHAP [53]]. Neural models
can be interpreted with gradient-based methods, though the reliability of their explanations on
irregular data is unexplored. The top-performing model, ROCKET, offers little interpretability and
depends on expensive model-agnostic techniques [[76]. Robustness to random initialization also
matters: models with high variance across seeds hinder reproducibility. Stable methods like LGBM,
BORF, and KNN may be preferable in sensitive settings, even at some cost in performance.

6 Conclusion

In this work, we presented pyrregular, a unified framework for addressing the challenges of
irregular time series. By introducing a standardized repository for irregular time series classification
and structuring the datasets in a common array format, we provided a cohesive way to work with
varying forms of irregularity. Our extensive empirical evaluation of 12 state-of-the-art classifiers and
baseline methods on 34 datasets emphasizes both the complexity of this domain and the benefits of
a shared benchmarking resource. Results indicate that, with appropriate configuration and tuning,
specialist models such as neural networks still attain state-of-the-art performance. However, extending
their applicability across diverse tasks remains a significant challenge. Interestingly, simple generalist
classifiers originally designed for regular time series data, such as ROCKET, perform remarkably well
on irregular time series in bake-off-style benchmarks, even without leveraging the irregularity itself.
This observation reveals a crucial research gap: the need to develop generalist methods capable of
explicitly exploiting irregularities, such as timestamp information or the nature of missingness.

The construction of this extensive set of classification benchmarks was significantly facilitated
by our unified interface, designed to abstract away the complexities of working with irregular
time series data across diverse model libraries. By decoupling data handling from model-specific
implementations, pyrregular mitigates common sources of error and substantially improves the
reproducibility of preprocessing pipelines. Despite these benefits, a current limitation of our proposal
is its focus on classification tasks, even though irregular time series datasets are equally relevant for
regression, forecasting, anomaly detection, and imputation, to name a few. Notably, many of the
datasets we have curated contain additional target variables that could support such tasks, offering
promising opportunities for future exploration. Further, while we aimed to provide a diverse and
representative selection of baseline models, our choices were guided by practical considerations, such
as library availability and interface compatibility, rather than exhaustive coverage of the literature.
We acknowledge that several other relevant baselines could further enrich the comparison. Our goal
was not to be fully comprehensive, but to establish a robust and extensible starting point for future
benchmarking efforts within a unified framework. Future efforts will extend the framework to support
a wider range of tasks, integrate more datasets, and incorporate additional methods from a broader
selection of time series libraries, increasing its relevance across diverse research domains.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s main contributions:
a unified framework and standardized dataset repository for irregular time series, with
classification benchmarks. These claims are directly supported by the methods and results
presented in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Section[6]the paper explicitly discusses its focus on classification tasks as
a current limitation, acknowledging the broader relevance of irregular time series to other
tasks like regression and forecasting.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
Justification: There is no formal theoretical result provide.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: The framework is presented in full detail, with accompanying code publicly
available: https://github.com/fspinna/pyrregular. The experimental setup is thor-
oughly described in the main text, with additional details on datasets and classifiers provided
in Appendix [C} more experimental results in Appendix D] and code examples discussed in

Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data is publicly available (https://huggingface.co/datasets/
splandi/pyrregular), as well as the code repository (https://github.com/fspinna/
pyrregular)), comprising code and instructions to run the models. The newly proposed
dataset, ABF, is contained both in the aforementioned main data repository, and in a sepa-
rate one to generate the required croissant file: https://huggingface.co/datasets/
splandi/alembics-bowls-flasks,

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: All experimental details are provided in the main text in Section 5] in appen-
dices (Appendices [Cland D)), and code implementation: https://github.com/fspinna/
pyrregular,

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

18


https://huggingface.co/datasets/splandi/pyrregular
https://huggingface.co/datasets/splandi/pyrregular
https://github.com/fspinna/pyrregular
https://github.com/fspinna/pyrregular
https://huggingface.co/datasets/splandi/alembics-bowls-flasks
https://huggingface.co/datasets/splandi/alembics-bowls-flasks
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://github.com/fspinna/pyrregular
https://github.com/fspinna/pyrregular

Answer: [Yes] .

Justification: Statistical significance is provided through common statistical tests (CD plots,
MCM matrices) as well as with standard deviation over repeated runs. See Section [5|and

Appendix D]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: computer resources are disclosed in Section [5] as well as average running
times on the specified hardware, in Table

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes] .

Justification: The research conforms to the, in every respect, with the NeurIPS Code of
Ethics

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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10.

11.

12.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: The paper highlights potential positive societal impacts by fostering repro-
ducible and accessible research on irregular time series, while no foreseeable negative
societal impacts are identified.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: data and models do not have foreseeable risk of misuse
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

Answer: [Yes] .

Justification: creators of original datasets are properly cited. Licence and terms of use has
been made available as dataset metadata.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .

Justification: assets include code and datasets, both publicly available and properly linked.
As per the guidelines and FAQ, we provide the croissant only for our newly proposed
dataset, Alembics-Bowls-Flasks. The other datasets are publicly available in their raw
format and are hosted on https://huggingface.co/datasets/splandi/pyrregular
in our proposed array representation. They can also be downloaded directly from the code
repository at https://github.com/fspinna/pyrregular. Note that, in addition to the
datasets used in this work, others may be available, as the repository is continuously updated.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: the paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: the paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Summary of Notation

We have adopted a tensor-like notation inspired by [44]. The time series dataset is structured along
three dimensions: the instance dimension, which consists of n instances (e.g., X; denotes the i-th
time series in the dataset X'); the signal dimension, which includes d channels (e.g., X; ; represents
the j-th signal in time series X;); and the time dimension, spanning 7 points (e.g., x; ; +, represents
the ;, observation of j-th signal in time series X;). We use tildes to specify the index being referenced
(e.g., t, € t corresponds to the k-th timestamp at the dataset’s level, while ¢;, € t corresponds to the
k-th timestamp at the time series’s level). For improved readability, indices are omitted when they
are not relevant.

Table 4: Summary of notation.

Notation

X, X,x,xz time series dataset, instance, signal, entry
t,t,t,¢ timestamps for a time series dataset, instance, signal, entry

k timestamp index

n number of instances in a dataset

d number of signals in a time series

T,T,7 number timestamps in a time series dataset, instance, signal
1,7,k indexes for instances, signals, timestamps

B Taxonomy of Time Series Irregularities

We provide here formal definitions for each type of time series irregularity and use minimal coun-
terexamples to show that none of these irregularities implies the others.

Definition B.1 (Uneven Sampling). A signal x = [z;,, ..., 2] € R7 is said to be unevenly sampled
if there exists at least one index k € {1,...,7 — 1} such that the time interval between successive
observations is not constant, i.e., ty+1 — tr # At for some fixed At € R.

The same definition applies to time series instances and datasets, using their respective indices E, t.

Definition B.2 (Partial Observation). A signal x = [z;,,...,2,.] € R is said to be partially
observed if at least one value x;, is missing and represented by a special symbol NaN, indicating
the absence of an observation at a timestamp where one was expected, i.e., x;, = NaN for some
ke{l,....7}

Again, the same definition applies to time series instances and datasets.

Definition B.3 (Raggedness). Raggedness is a structural irregularity that arises in a multivariate time
series X = {x1,...,X4} € R*T when the component signals do not share a common timestamp
index. Formally, raggedness is present when there exist at least two signals x, and x; such that
t, # t,. It manifests in three independent forms:

* (a) Ragged Length: 7, £ 7.
« (b) Shift: (ta,1 < tb71) A (taﬂ—a < tb,n,)-

* (c) Ragged Sampling: At, ;. # Aty for some k, where At; i, = t; p+1 — t;x. The index
k ranges from 1 to min(7,,7) — 1, so only intervals that exist in both signals are compared.
The same definition applies to time series datasets.

We now show that the five forms of time series irregularity are mutually independent: none implies
any of the others. This is shown through minimal examples of time series that satisfy one irregularity
condition while exhibiting none of the others.

23



B.1 Uneven Sampling

Let X = {x,,x;} be a time series where both signals share the same timestamp index, t = t, =

t, = [t1, t2,t3], and assume that the sampling intervals are not constant, i.e., to — t1 # t3 — to. Then
X is unevenly sampled.

UNEVEN SAMPLING # PARTIAL OBSERVATION. Suppose that all values in both x, and x; are
observed (i.e., none are NaN). Then X is unevenly sampled, but not partially observed.

UNEVEN SAMPLING # RAGGEDNESS. Since t, = t;, both signals are aligned on the same
timestamps. Therefore, X is not ragged.

B.2 Partial Observation

Let X = {x,,x;} be a time series where both signals share the same timestamp index, t = t, =
ty, = [t1,t2,t3]. Suppose that one observation is missing, e.g., €4, = NaN. Then X is partially
observed.

PARTIAL OBSERVATION % UNEVEN SAMPLING. Let the timestamps be equally spaced, i.e., to —t1 =
t3 — to = At. Then X is partially observed but evenly sampled.

PARTIAL OBSERVATION % RAGGEDNESS. Since both signals are defined over the same set of
timestamps, t, = tp, X is not ragged.

B.3 Ragged Length
Let X = {x,,x;} be a time series exhibiting ragged length, with t, = [t1, 2] and t, = [t1, 1o, t3].
Then the unified timestamp index is t = [t1, 2, 3], and X satisfies 7, = 2 # 3 = 7.

RAGGED LENGTH #- UNEVEN SAMPLING. Let the timestamps be evenly spaced, i.e., to — t; =
t3 — to = At. Then X exhibits ragged length, but is evenly sampled.

RAGGED LENGTH #- PARTIAL OBSERVATION. Suppose that all values in both x, and x;, are observed
(i.e., no NaNs). Then X exhibits ragged length, but is not partially observed.

RAGGED LENGTH #- SHIFT. Although the signals have different lengths, they both start at the same
time, ¢1. Hence, X is not shifted.

RAGGED LENGTH #- RAGGED SAMPLING. The sampling intervals are identical across both signals,
ie., Aty 1 = Aty 1 = to — t1. Therefore, X is not raggedly sampled.

B.4 Shift
Let X = {x,,X;} be a time series exhibiting shift, with t, = [t;, 5] and t, = [t2,t3]. Then the
unified timestamp index is t = [t1,t2,t3], and X is shifted, as x,, starts and ends before xp.

SHIFT # UNEVEN SAMPLING. Let the timestamps be evenly spaced, i.e., t3 — t1 = t3 — to = At.
Then X exhibits shift, but is evenly sampled.

SHIFT #- PARTIAL OBSERVATION. Suppose that all values in both x, and x; are observed (i.e., no
NaNs). Then X exhibits shift, but is not partially observed.

SHIFT # RAGGED LENGTH. Both signals have the same number of observations, i.e., 7, = 7, = 2.
Hence, X exhibits shift but not ragged length.

SHIFT # RAGGED SAMPLING. The sampling intervals within each signal are equal, i.e., At, ; =
to —t1 = Afbyl = t3 — to. Therefore, X is not raggedly sampled.

B.5 Ragged Sampling

Let X = {x,,X;} be a time series exhibiting ragged sampling, with t, = [t;, ] and t;, = [t;, 3].
Then the unified timestamp index is t= [t1, t2, t3], and the sampling intervals differ across signals:
Aty =ty —t1 #t3 —t1 = Aty 1.
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RAGGED SAMPLING #- UNEVEN SAMPLING. Let the global timestamps satisfy to — ¢ = t3 —ty =
At. Then X is raggedly sampled but not unevenly sampled.

RAGGED SAMPLING #- PARTIAL OBSERVATION. Suppose that all values in both x, and x; are
observed (i.e., no NaNs). Then X exhibits ragged sampling, but is not partially observed.

RAGGED SAMPLING # RAGGED LENGTH. Both signals contain the same number of observations,
T = Tp = 2. Thus, X is not ragged in length.

RAGGED SAMPLING #- SHIFT. Both signals start at the same time, ¢1, and have the same length.
Therefore, X is not shifted.

These examples are minimal and can be easily extended to longer signals and time series. They
suffice to establish that all forms of irregularity discussed, both in the main and raggedness subtypes,
are pairwise independent. None of them implies any other, as illustrated also in Figure 2] To the best
of our knowledge, this taxonomy accounts for all known forms of structural time series irregularity
relevant to data modeling and representation.
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C Experimental Details.

In this section, we summarize experimental details regarding the models and datasets.

C.1 Models

The objective of these experiments is to benchmark methods capable of naturally handling irregular
time series without introducing bias through imputation techniques. To achieve this, we limit our
evaluation to classifiers that inherently support missing data in their input and are available in major
time series libraries. Below, we describe the implementation details and hyperparameters for each
method. Parameters that are not mentioned are left to their default in their library implementation.

Bag-of-Receptive-Fields (BORF) The Bag of Receptive Fields (BORF) algorithm [73] from the
aeon library extracts discretized subsequences and counts their appearance in the time series, allowing
the presence of missing data. A downstream LightGBM classifier with default parameters is used to
handle transformed features. For the fine-tuned benchmark, the hyperparameter was on performed on
the min_window_to_signal_std_ratio in the interval [0, 0.2] with 0.05 increments.

Bidirectional Recurrent Imputation for Time Series (BRITS) The BRITS algorithm [9]], also
from the pypots library, employs a bidirectional recurrent network for imputing and classifying
incomplete time series. It uses a hidden layer size of 256 and a batch size of 32. Training runs for up
to 1000 epochs, with early stopping after 50 epochs of no improvement.

Gated Recurrent Unit with Decay (GRU-D) The GRU-D model [11]], available in the pypots
library, extends the Gated Recurrent Unit architecture by introducing decay mechanisms that account
for missing data patterns. The recurrent hidden layer size is set to 256, with a batch size of 32.
Training uses a maximum of 1000 epochs, with early stopping triggered after 50 epochs of no
improvement.

K-Nearest Neighbors with DTW (KNN) This baseline model employs the tslearn K-Nearest
Neighbors algorithm, configured to use the Dynamic Time Warping (DTW) distance measure. DTW
incorporates temporal alignment to handle time series of varying lengths effectively. The distance
computation uses a Sakoe-Chiba band [[68] of 10 points, which limits the warping window to a fixed
radius.

LightGBM (LGBM) LightGBM [41] is a gradient-boosting framework optimized for speed and
efficiency, and can naturally handle missing values. In this baseline, it is trained directly with
default parameters on raw time series data transformed into a tabular format using the sktime
Tabularizer. For the fine-tuned benchmark, hyperparameter optimization was conducted over a
predefined search space that included the number of leaves (num_leaves) € {31, 63, 127}, maximum
tree depth (max_depth) € {—1, 7,10}, (learning_rate) € {0.05,0.1}, and the minimum number of
samples per leaf (min_data_in_leaf) € {20,100}.

Neural Controlled Differential Equation (NCDE) The Neural CDE model [43]], implemented
via the diffrax library, learns continuous-time representations of time series data using differential
equations. It employs an Euler solver with a maximum of 100 steps, with step size equal to the
minimum time difference between any two adjacent observations, a hidden layer size of 8, and a
width size of 32. Training uses a maximum of 1000 iterations, using Adam as optimizer, with a
starting learning rate of 0.01, patience of 200 for early stopping, and a learning rate reduction factor
of 0.5 after 50 stagnant iterations.

Raindrop (RAINDROP) The Raindrop model [84]], a graph-based neural network from pypots,
handles irregular time series by sending messages over graphs that are optimized for capturing
time-varying dependencies among sensors. This model uses 2 layers, a feed-forward network size
of 256, 2 attention heads, and a dropout rate of 0.3. Training employs a batch size of 32, with early
stopping after 50 epochs of no improvement.
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Figure 9: Three examples of instances from the (ABF) dataset, from left to right, Alembic, Bowl,
and Flask.

Random Interval Feature Classifier (RIFC) The Random Interval Feature Classifier (RIFC)
leverages the RandomIntervalFeatureExtractor from the sktime library to generate simple
statistical summaries (mean, standard deviation, minimum, maximum, median, skewness, and
kurtosis) from randomly selected intervals within the time series, with the number of intervals being
the logarithm of the time series length. These features are subsequently used by a downstream
LightGBM classifier to perform classification.

Minimally Random Convolutional Kernel Transform (ROCKET) Rocket, in its Minirocket
implementation [20] from the sktime library, employs 10000 fixed convolutional kernels to extract
features from time series data. This implementation includes MiniRocketMultivariateVariable,
which handles multivariate time series while tolerating missing data. The transformation could
include missing data; therefore, instead of the most common ridge classifier, LightGBM with default
parameters is used. For the fine-tuned benchmark, hyperparameter optimization was conducted over
the number of kernels, num_kernels € {100,500, 1000, 5000, 10000, 50000}.

Self-Attention Imputation for Time Series (SAITS) The SAITS model [22], implemented in
the pypots library, employs a transformer-based architecture specifically tailored for time series
imputation. It utilizes a dual self-attention mechanism across temporal dimensions, enabling it to
capture both global and local patterns despite missing values. In this configuration, SAITS is trained
with 2 attention layers, a model dimension of 256, 4 attention heads, and hidden dimensions dj = 64,
d, = 64, and dg, = 128. A dropout rate of 0.1 is used for both the transformer blocks and attention
layers. The model is optimized over a maximum of 1000 epochs, with early stopping triggered after
50 stagnant epochs. Training is performed with a batch size of 32.

Support Vector Machine with LCSS Kernel (SvM) This method uses the skt ime implementation
of a Support Vector Machine, enhanced with the Longest Common Subsequence (LCSS) distance
kernel [4]. LCSS is robust to missing values and temporal distortions, as it matches time series
subsequences with allowable gaps. The kernel uses a Sakoe-Chiba constraint with a radius of 10.
Each time series is standardized using z-score normalization. The model is trained for a maximum of
1000 iterations.

TimesNet (TIMESNET) TimesNet [83] is a modern transformer-based architecture designed for
multivariate time series modeling, emphasizing temporal receptive fields through learnable convolu-
tional kernels. Its implementation here leverages 2 layers and 3 convolutional kernels with dynamic
top-k temporal selection. The model dimension is set to 64, with a feed-forward network size of 128.
Training is conducted using a batch size of 32 over 1000 epochs, with early stopping after 50 epochs
without validation improvement.

C.2 Datasets

The repository includes 34 datasets, each briefly described below, along with the data preparation
steps applied}’| For datasets without a predefined train-test split, we created a stratified, instance-based
70-30% train-test split.

Alembics Bowls Flasks. (ABF) This dataset is inspired by the classical Cylinder-Bell-Funnel
(CBF) benchmark [67] for regular time series classification. Similarly to CBF, there are three classes,
which are Alembics, Bowls, and Flasks. The classes differ by how much the temporal axis is skewed,

3Data is hosted at https://huggingface.co/datasets/splandi/pyrregular,
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i.e., if it has positive (Alembic), negative (Flask), or no skewness (Bowl). For each time series, 128
values are sampled from a circumference and then standardized. There are 10 instances for each class
in the training set and 300 for each in the test set. An example is presented in Figure 0]

Animals (AN) This dataset, generated during the Starkey project [24]], consists of trajectories from
three animal species—elk, deer, and cattle. The classification task commonly used in the literature
[24, 148, 147]] involves inferring the species based on movement patterns. The target classes in the
dataset are balanced, with 38 trajectories for the elk, 30 for the deer, and 34 for the cattle.

Geolife (GS) This dataset was collected during the GeoLife Project (Microsoft Research Asia)
from April 2007 to August 2012 [88l 186, [87]]. It contains the trajectories of 182 users and has been
preprocessed as detailed in the User Guide-1 ﬂ One of the most common supervised machine-
learning tasks using this dataset is to identify (a subset) of the 11 means of transportation. We defined
three target variables with a decreasing number of classes. The first target variable includes all the
means of transportation in the dataset: airplane, bike, boat, bus, car, motorcycle, run, subway, taxi,
train, and walk. The second target variable, used in [24]], groups the transportation modes into six
classes: bike, bus/taxi, car, subway, train, and walk. The third target variable, used in [48]], simplifies
the classification into two categories: private (bike, boat, car, motorcycle, run, walk) and public (the
remaining modes of transportation). In Section[5] we benchmark the models against the first target
variable. In this setting, each class accounts for approximately 9.1% of the total instances, but the
standard deviation is 12.7%, i.e., the target variable is highly imbalanced.

GPS Data of Seabirds (SE) This dataset, introduced in [8]], consists of GPS data collected from
108 seabirds spanning three species: European shag (15), common guillemot (31), and razorbill
(62). Similar to the Animals dataset, the species has been used to evaluate model performance in
inferring species. The target variable is imbalanced, with the majority class (razorbill) comprising 62
individuals, while the minority class (European shag) includes only 15.

Localization Data for Person Activity (LPA) Introduced in [78], this dataset contains data from 5
individuals performing 11 different actions: falling, lying, lying down, on all fours, sitting, sitting
down, sitting on the ground, standing up from lying, standing up from sitting, standing up from sitting
on the ground, walking. Each action was recorded by tracking the positions of the body’s right and
left ankles, chest, and belt in a 3-dimensional space, resulting in 12 distinct signals per time series.

MIMIC-III Clinical Database Demo (MI3) Introduced by [40, 39]] on the Physionet platform
[27], the dataset contains health-related data associated with 40,000 patients in critical care at the
Beth Israel Deaconess Medical Center from 2001 to 2012. Since the full version is available to
credentialed users under strict requirements, we use the publicly available demo version in our
work. We preprocess the data in accordance with [32]. The classification target involves predicting
in-hospital mortality.

PAMARP2 Physical Activity Monitoring (PA2) This dataset, introduced in [62], contains data
from 9 subjects (1 female, 8 male) performing 19 different physical activities: ascending stairs,
car driving, computer work, cycling, descending stairs, folding laundry, house cleaning, ironing,
lying, nordic walking, playing soccer, rope jumping, running, sitting, standing, transient, vacuum
cleaning, walking, watching TV. The data includes measurements from 3 inertial measurement units
(IMUgs) positioned on the dominant arm, chest, and dominant side’s ankle. Specifically, from each
IMU sensor, the dataset contains information about the temperature, the 3-dimensional acceleration,
gyroscope and magnetometer data, and the sensor orientation. Additionally, heart rate observations
are included. The two types of sensors record data at different sampling rates: 100 Hz for the IMUs
and 9 Hz for the heart rate monitor. We preprocess the data according to the authors’ guidelines when
downloading the dataset. Data from the “transient” activity, i.e., movements between the end of one
activity and the start of another, was excluded. The remaining 18 activities serve as classification
target classes.

*The user guide is included in the zip folder containing the data, which is available for download directly
from Microsoft att.ly/blDnH.
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PhysioNet 2012 (P12) Published as data for the “Predicting Mortality of ICU Patients: The
PhysioNet/Computing in Cardiology” challenge in 2012 [[72], the data contains information about
the patient, like age, gender, height, and weight, and 37 different types of time series. Similar to the
MIMIC-III dataset, the classification target is about predicting in-hospital death.

PhysioNet 2019 (P19) Published as data for the “Early Prediction of Sepsis from Clinical Data:
The PhysioNet/Computing in Cardiology” challenge in 2019 [63]], the dataset contains demographic
information about the patients, such as age, gender, height, and weight, alongside 34 other time-series
variables for vital signs and laboratory test values. The classification task involves predicting whether
a patient has sepsis or not.

Productivity Prediction of Garment Employees (PGE) Introduced in [36]], this dataset contains
information about garment manufacturing processing on a per-team level. Additionally, this dataset
contains a team productivity performance index, which ranges between 0 and 1. As suggested by the
authors, we use this index as a classification target. Specifically, we defined a team efficient if the
productivity performance index is strictly greater than 0.75.

Taxi (TA) This dataset, introduced as part of the “ECML/PKDD 15: Taxi Trip Time Prediction (II)
Competition” [59] consists of 121,312 trajectories of Taxis in Porto (Portugal). The classification
task is to predict the type of call that generated the run. The types of calls could be: A if this trip was
dispatched from the central, B if this trip was demanded directly to a taxi driver on a specific stand C
otherwise. The classes are balanced.

Vehicles (VE) GPS trajectories about two different types of vehicles -buses and trucks- moving in
Athens. This dataset is available from download from the Chorochronos Archive?l

UEA and UCR Irregular Datatasets. The other 22 irregular time-series datasets were downloaded
from the UEA and UCR dataset repositoryﬁ] [[177L 1S)). In particular, we included the following datasets:

* 11 variable-length univariate time series classification problems from [6]: AllGestureWi-
imoteX, AllGestureWiimoteY and AllGestureWiimoteZ (GX, GY, GZ) from [28]]; Ges-
tureMidAirD1, GestureMidAirD2, and GestureMidAirD3 (GM1, GM2, GM3) from [10]]; Ges-
turePebbleZ1 and GesturePebbleZ2 (GP1, GP2) from [55]]; PickupGestureWiimoteZ and
ShakeGestureWiimoteZ (PGZ, SGZ) from [28]]; PLAID (PL) from [23]];

* 4 fixed length univariate time series with missing values from [57]: DodgerLoopDay,
DodgerLoopGame, and DodgerL.oopWeekend (DD, DG, DW) from [35]]; MelbournePedestrian
(MP) [I15] extracted from the City of Melbourne website;

* 7 variable-length multivariate time series from [66]]: AsphaltObstaclesCoordinates, Asphalt-
PavementTypeCoordinates, and AsphaltRegularityCoordinates (AOC, APT, ARC) from [[18];
CharacterTrajectories (CT) from [81]]; InsectWingbeat (IW) from [12]]; JapaneseVowels (JV)
from [46l]; SpokenArabicDigits (SAD) from [30];

Table 5| contains the full list of curated datasets at the moment of publication on our repository. The
list additionally contains some information about the datasets: the number of instances, #Inst, number
of signals, #Sign, and number of observations, #Obs (max? (7)), the number of target classes #TC
and the standard deviation between the number of instances per class (CU). Additionally, the dataset
contains information about the time series, like the percentage of missing values (MV)-computed
as the ratio between the NaN observations divided by the total number of observations- and the
sampling coefficient of variation (SCV), alongside information on the different kind of irregularity in
the dataset.

Given y,, as the labels vector containing only the h-th class, CU is defined as follows:

OU:”M 1

5chorochronos.org
Stimeseriesclassification.com
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Table 5: Summary of dataset characteristics: the number of instances (#Inst), signals (#Sign), and
observations (#0bs); target classes (#TC) and class imbalance (CU); as well as time-series-specific
metrics like missing values (MV) and sampling coefficient of variation (SCV), and each type of
irregularity, i.e., unevenly sampled (US), partially observed (PO), unequal length (UL), shift (SH),
ragged sampling (RS).

Cat Name Source #Inst #Sign #Obs #TC CU (o) MV (%) SVC US PO UL SH RS

< MI3 [40] 57 17 145 2 020 083 060 v v V V V
T P12 7990 37 203 2 0.36 094 059 v v v/
< P19 [63] 40334 34 334 2 043 098 018 v v V V V
CT (811 2858 3 182 20 0.01 034 000 X Xx v X x
< M1 [I0] 338 1 360 26 0.00 054 000 X X V X X
£ eM2  [I0] 338 1 360 26 0.00 054 000 X Xx v X X
s M3 [I0] 338 1 360 26 0.00 054 000 X X V X X
S Gp1 [33] 304 1 455 6 0.01 052 000 x Xx v x x
2 gp2 304 1 455 6 0.01 052 000 X Xx / X X
.§ GX 28] 1000 1 385 10 0.00 0.68 000 X x v X x
S ¢ 1000 1 385 10 0.00 068 000 X X v X X
S ez 28] 1000 1 385 10 0.00 0.68 000 X Xx v X x
S LPA 273 12 2870 11  0.00 095 904 v X V V V
5 e (62 124 52 110883 16 0.03 08 001 v Vv V V V
PGZ 100 1 361 10 0.00 0.60 000 X X Vv X X
sGz 28] 100 1 385 10 0.00 057 000 X Xx v x x
AN [24] 102 2 291 3 0.03 050 121 v X V X
Aoc  [18] 781 3 736 4 0.03 059 000 X X Vv X X
APT (18] 2111 3 2371 3 0.06 0.83 000 X Xx v X x
£ ARC [I8] 1502 3 4200 2 001 091 000 X X V X X
g s 5977 2 96282 11 0.13 099 1027 v X V / V/
S MP [13] 3633 1 2410 0.00 0.00 001 X X v Xx X
SE 18] 108 4 6048 3 0.18 0.60 000 v X v V V
TA 121312 2 119 3 013 061 000 v X v / V
VE [14] 381 21095 2 0.22 057 529 v X V X
5 DD 158 1 288 7 0.01 0.01 000 X v X X X
g Do 133] 158 1 288 2 0.02 0.01 000 X v Xx X x
= DW [33] 158 1 288 2 0.21 0.01 000 X v X X X
I 50000 200 22 10 0.00 070 000 X X v X X
5 IV (48] 640 12 29 9 0.03 046 000 X X v X X
< PGE [36] 24 9 59 2 013 019 068 v X v / V/
© PL 23] 1074 1 1344 11 0.05 076 000 X X V X X
SAD  [30] 8798 13 93 10 0.00 057 000 X X v X X
synth ABF  new! 930 1 128 3 0.00 0.00 195 v Xx x x x

where 1 is the average number of observations. Given At as the vector of differences between
consecutive timestamps of a signal, the SCV is computed as the coefficient of variation (the ratio of
the standard deviation to the mean) for each signal, averaged first across each time series and then
over the entire dataset.

We divided the dataset into 6 categories based on the type of phenomena captured: healthcare, human
activity recognition, mobility (or more generically, geo-temporal motion), sensors, synthetic data, and
others for datasets that don’t fall in any of the previous categories (like the UCR audio and speech
categories).
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D Detailed Results

The full result tables in terms of F1 and total runtime are available in Tables[6]and[7] Further, we also
provide several other statistical tests, using a diverse range of metrics, and with respect to different
dataset subgroups.

Figure|10[shows the CD-plots for common performance metrics and runtimes. F1, accuracy, roc-auc,
precision, and recall yield consistent rankings for the top four models, ROCKET, BORF, LGBM, and
RIFC, as well as for the three lowest-performing ones: GRU-D, NCDE, and SVM. In the mid-range,
rankings vary slightly across metrics: for instance, KNN performs notably worse in terms of F1
compared to accuracy, whereas TIMESNET shows the opposite trend. As for training time, KNN,
being a lazy learner, is the fastest, followed by RIFC and ROCKET. Although LGBM ranks fourth,
the previous results in median runtime (Figure[6)) suggest that it may be slightly slower on smaller
datasets but highly efficient on larger ones, which contributes to its overall strong performance.
Neural network-based models generally exhibit longer training times but benefit from faster inference;
nevertheless, ROCKET and LGBM maintain a performance edge across both phases.

F1 cp-plots computed for subsets of datasets with specific characteristics, are shown in Figure[TT]
These plots provide additional and complementary insights to those in Figures[7/and [§] Notably,
they reinforce the observation that models explicitly designed for partially observed data tend to
outperform more general-purpose approaches, even though the top rankings remain closely contested
among SAITS, RIFC, LGBM, BRITS, and ROCKET. BRITS and TIMESNET, in particular, show strong
performance on shorter datasets, ranking second and third, respectively, and closely trailing ROCKET.
The remaining plots are similar to those discussed in Section 5]

While the widely used CD-plot is effective, it has been criticized in [37] for its susceptibility to manip-
ulation, as the average rank of a model can be influenced by the performance of other comparators.
For this reason, we also propose MCM matrix for several metrics in Figures[T2]to[T4 However, in our
case, results are consistent with the CD-plots presented in the previous paragraph, and in the main
text, and are presented here in the appendix only due to space limitations. Again, the top four models
are always ROCKET, BORF, LGBM, and RIFC, and the lowest-performing are GRU-D, NCDE, and SVM,
with mid-range models rankings changing slightly from metric to metric.

Further, we report in Figures [I3]to [I9] the performance rankings across multiple metrics, dataset
subsets, and with respect to both training and inference times. In addition to the insights discussed in
the main text, these figures reveal that neural network-based models tend to cluster together in terms
of both runtime and performance, regardless of the dataset subset or evaluation metric. This suggests
that, although their relative rankings may vary, their overall behavior remains consistent.

Finally, we report in Figure [20]the F1 rank correlation among models. Models are hierarchically
clustered using average linkage applied to the rank correlation matrix. Positive correlations indicate
that models tend to perform similarly across datasets, reflecting comparable strengths or weaknesses,
while negative correlations suggest divergent performance, highlighting complementary behaviors or
differing inductive biases. Reinforcing the categorization proposed in the main text, the plot reveals
a strong cluster of generalist methods, LGBM, ROCKET, RIFC, and BORF, which group together at
the top hierarchical level. The second major cluster includes the remaining models, with specialist
approaches like BRITS and GRU-D showing high correlation, which is expected given their shared
RNN architecture. Similarly, TIMESNET and SAITS also form a coherent transformers subgroup.
Notable exceptions to the generalist/specialist categorization are SVM, likely due to its overall poor
performance across datasets, and KNN, which we hypothesize behaves differently due to its lazy
learning paradigm based on distances, which could be more prone to sensitivity to dataset-specific
characteristics.
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(c) Precision.
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(e) ROC-AUC.
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(g) Train Runtime.
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(b) Accuracy.
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(f) Total Runtime.
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(h) Inference Runtime.

Figure 10: Critical Difference plot for the benchmarked models in terms of different metrics, for all
datasets. Best models to the right. The performance of models connected by the bar is statistically
tied, using a one-sided Holm-corrected Wilcoxon sign rank test with a critical value of 0.05.
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(i) Short (< 360 observations).

(j) Long (> 360 observations).

Figure 11: Critical Difference plot for the benchmarked models in terms of F1, divided into different
groups. Best models to the right. The performance of models connected by the bar is statistically tied,
using a one-sided Holm-corrected Wilcoxon sign rank test with a critical value of 0.05.
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ROCKET BORF LGBM RIFC TIMESNET RAINDROP SAITS KNN BRITS GRU-D NCDE svM
0625 0.606 0571 0525 0520 0518 0507 0.482 0.435 0396 0245
Mean-f1 1 [ [ 1 1 1 1 [ 1 1 1
Mean-Difference _0.044 0.063 0.098 0.144 0.149 0.151 0.162 0.187 0.234 0.273
ROCKET _ r>c/r=c/r<c  24/3/7 24/3/7 26/4/4 24/0/10 26/0/8 25/0/9 28/0/6 25/0/9 25/0/9 27/0/7
0.669  wilcoxon p-value 0.001 0.003 = le-03 = 1e-03 = 1le-03 0.001 = 1le-03 0.001 = le-03 = le-03
-0.044 0019 0.054 0.100 0.105 0.107 0.118 0.143 0.190 0.229
BORF _ 7/3/24 - 19/4/11 22/3/9 20/0/14 25/0/9 23/0/11 20/0/14 21/0/13 23/0/11 28/0/6
0625 0.999 0.084 0.015 0.008 0.002 0.009 0.024. 0.006 0.001 = 1e-03
-0.063 -0.019 0,035 0.081 0.086 0.088 0.099 0.124 0.170 0.210
LGBM _ 7/3/24 11/4/19 - 18/3/13 20/0/14 23/0/11 23/0/11 21/0/13 23/0/11 25/0/9 29/0/5
0606 0.997 0916 0.114 0.007 0.002 0.008 0.054 0.003 = 1e-03 = le-03
-0.098 -0.054 -0.035 0.046 0.051 0.053 0.064 0.089 0.136 0.175
RIFC _ 4/4/26 9/3/22 13/3/18 - 20/0/14 21/0/13 22/0/12 21/0/13 23/0/11 25/0/9 26/0/8
0571 1.000 0.985 0.886 0.114 0.035 0.039 0.098 0.019 0.002 = le-03
0.1 -0.100 -0.081 -0.046 0.005 0.007 0,018 0.043 0.090 0.129 0.280
TIMESNET _ 10/0/24 14/0/20 14/0/20 14/0/20 - 16/2/16 19/2/13 15/2/17 20/3/11 23/2/9 23/1/10 27/2/5
0525 1.000 0.992 0.994 0.889 0.634 0316 0575 0.053 0.004 0.001 = le-03
-0.149 -0.105 -0.086 -0.051 -0.005 0.002 0,013 0.038 0.085 0.124 0.275
RAINDROP _~ 8/0/26 9/0/25 11/0/23 13/0/21 16/2/16 - 20/2/12 16/2/16 16/2/16 20/2/12 26/1/7 28/3/3
0520 1.000 0.998 0.998 0.967 0.366 0.269 0.595 0.152 0.014 = le-03 = le-03
-0.151 -0.107 -0.088 -0.053 -0.007 -0.002 0.011 0.036 0.082 0.122 0.273
SATS — 970725 11/0/23 11/0/23 12/0/22 13/2/19 12/2/20 - 12/2/20 17/2/15 20/2/12 27/17/6 29/2/3
0518 0.999 0.992 0.992 0.962 0.684 0.731 0.714 0.196 0.022 = le-03 = le-03
-0.162 -0.118 -0.099 -0.064 -0.018 -0.013 -0.011 0.025 0.071 0.111 0.262
KNN _ 6/0/28 14/0/20 13/0/21 13/0/21 17/2/15 16/2/16 20/2/12 - 14/3/17 18/3/13 23/2/9 25/5/4
0507 1.000 0.977 0.948 0.905 0.425 0.405 0.286 0.422 0.101 0.016 = le-03
-0.187 -0.143 0124 -0.089 -0.043 -0. -0.036 -0.025 0.047 0.086 0.237
BRITS — 9/0/25 13/0/21 11/0/23 11/0/23 11/3/20 16/2/16 15/2/17 17/3/14 - 19/4/11 22/1/11 27/3/4
0.482 0.999 0.994 0.997 0.982 0.947 0.848 0.804 0.578 0.032 0.004 = 1e-03
-0.234 -0.190 -0.170 -0.136 -0.090 -0.085 -0.082 -0.071 -0.047 0.039 0.190
GRUD _ 9/0/25 11/0/23 9/0/25 9/0/25 9/2/23 12/2/20 12/2/20 13/3/18 11/4/19 - 16/1/17 27/2/5
0435 1.000 1.000 1.000 0.998 0.996 0.986 0.978 0.899 0.968 0.182 = le-03
0.273 -0.229 -0.210 0175 -0.129 -0.124 -0. -0.111 -0.086 -0.039 0.151
NCDE _ 7/0/27 6/0/28 5/0/29 8/0/26 10/1/23 7/1/26 6/1/27 9/2/23 11/1/22 17/1/16 - 27/1/6
0396 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.984 0.996 0.818 = 1e-03
-0.280 -0.275 0273 -0.262 -0.237 -0.190 -0.151
S 512127 3/3/28 3/2/29 415725 VEVEY 5/2/27 CUEYE N 1 I bold, then
0245 1.000 1.000 1.000 1.000 1.000 1.000 1.000 & -
(a) F1 score.
ROCKET BORF LGBM RIFC RAINDROP TIMESNET SAITS BRITS KNN GRU-D NCDE svM
0.742 0.700 0.674 0.644 0.581 0.576 0.568 0.554 0.542 0.508 0.456 0.300
Mean-accuracy | 1 1 1 1 1 1 1 1 1 1
Mean-Difference 0042 0.068 0.098 0.161 0.166 0.174 0.188 0.200 0.234 0.286
ROCKET _ r~c/r=c/r<c  24/3/7 25/3/6 25/4/5 29/0/5 29/0/5 28/0/6 25/0/9 27/1/6 25/1/8 29/0/5
0742 wilcoxon p-value 0.001 0.001 = le-03 = le-03 = le-03 = le-03 = le-03 = 1e-03 = 1e-03 = le-03
-0.042 0.026 0.056 0.119 0.124 0.132 0.146 0.158 0.192 0.244
BORF . 7/3/24 - 18/7/9 21/3/10 25/0/9 26/0/8 25/0/9 21/0/13 20/1/13 25/0/9 31/0/3
0700 0.999 0.052 0.012 = 1e-03 0.001 0.001 0.008 0.014 = 1e-03 = le-03
-0.068 -0.026 0.030 0.094 0.098 0.106 0.120 0.132 0.166 0.218
LGBM _ 6/3/25 9/7/18 - 19/3/12 25/0/9 25/0/9 24/0/10 24/0/10 20/1/13 26/0/8 30/0/4
0674 0.999 0.948 0.098 = le-03 = le-03 0.001 0.001 0.041 = 1e-03 = le-03
-0.098 -0.056 -0.030 0.064 0.069 0.076 0.091 0.103 0.137 0.188
RIFC . 5/4/25 10/3/21 12/3/19 - 24/0/10 25/0/9 24/1/9 24/0/10 21/0/13 26/0/8 27/0/7
0644 1.000 0.988. 0.902 0.012 0.007 0.005 0.011 0.045 = 1e-03 = le-03
-0.161 -0.119 -0.094 -0.064 0.005 0.012 0.027 0.039 0.073 0.124 0.281
RAINDROP _— 5/0/29 9/0/25 9/0/25 10/0/24 - 18/2/14 21/2/11 18/2/14 15/3/16 20/2/12 28/1/5 27/2/5
0581 1.000 1.000 1.000 0.988 0.252 0.114 0.226 0.537 0.021 = le-03 = le-03
-0.166 -0.124 -0.098 -0.069 -0.005 0.007 0.022 0.034 0.068 0.120 0.276
TIMESNET _ 5/0/29 8/0/26 9/0/25 9/0/25 14/2/18 - 18/4/12 17/4/13 14/2/18 22/2/10 22/2/10 25/2/7
0.576 1.000 0.999 1.000 0.994 0.748 0.255 0.198 0.614 0.016 0.002 = le-03
-0. 0132 -0.106 -0.076 -0.012 0. 0,015 0.027 0,061 0.112 0.269
SAITS _ 6/0/28 9/0/25 10/0/24 9/1/24 1/2/21 12/4/18 - 14/3/17 12/2/20 18/2/14 25/1/8 28/2/4
0.568 1.000 0.999 0.999 0.995 0.886 0.745 0.591 0.684 0.071 0.001 = le-03
-0.188 -0.146 -0.120 -0.001 -0.027 -0.022 -0.015 0012 0.046 0.098 0.254
BRITS _ 9/0/25 13/0/21 10/0/24 10/0/24 14/2/18 13/4/17 17/3/14 - 16/3/15 19/4/11 22/2/10 28/3/3
0554 d 0.992 0.999 0.989 0.774 0.802 0.409 0510 0.023 0.004 = le-03
-0.200 -0.158 0132 -0.103 -0.039 -0.034 -0.027 -0.012 0.034 0.086 0.242
KNN _ 671727 13/1/20 13/1/20 13/0/21 16/3/15 18/2/14 20/2/12 15/3/16 - 17/4/13 23/2/9 26/5/3
0542 1.000 0.986 0.959 0.956 0.463 0.386 0316 0.490 0.158 0.028 = 1le-03
-0.234 -0.192 -0.166 -0.137 -0.073 -0.0 -0.061 -0.046 -0.034 0.052 0.208
GRU-D _f 8/1/25 9/0/25 8/0/26 8/0/26 12/2/20 10/2/22 14/2/18 11/4/19 13/4/17 - 19/1/14 27/3/4
0508 1.000 1.000 1.000 1.000 0.979 0.984 0.929 0.977 0.842 0.112 = le-03
-0.286 -0.244 -0.218 -0.188 0124 -0.120 -0.112 -0.098 -0.086 -0.052 0.157
NCDE _ 5/0/29 3/0/31 4/0/30 7/0/27 5/1/28 10/2/22 8/1/25 10/2/22 9/2/23 14/1/19 - 25/1/8
0456 1.000 1.000 1.000 1.000 1.000 0.998 0.999 0.996 0972 0.888 = le-03
-0.281 -0.276 -0.269 -0.254 -0.242 -0.208 -0.157 o
Sym 5/2/27 712125 4/2/28 3/3728 3/5/26 473727 EIEVEZSI 1 I bold, then
0300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 = -

(b) Accuracy.

Figure 12: Summary performance statistics for the 12 classifiers on 34 datasets, generated using the
multiple comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the
mean difference in performance, wins/draws/losses, and Wilcoxon p-value for two comparates. The
best models on the top left are sorted based on the average performance. The more intense the color,
the higher the mean accuracy difference w.r.t. the comparate, positive (red) or negative (blue).
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ROCKET BORF LGBM RIFC TIMESNET SAITS KNN RAINDROP BRITS GRU-D NCDE
677 0650 0.619 0.600 0.550 0548 0548 0543 507 )
Mean-precision | | | ' | | | | | | |

Mean-Difference _0.027 0.058 0.077 0.127 0.128 0.128 0.133 0.169 0.26:
ROCKET _ ‘r>cjr=c/r<c  24/3/7 24/3/7 26/4/4 24/0/10 26/0/8 27/1/6 26/0/8 25/0/9 26/0/8
0677 " wilcoxon p-value  0.002 0.006 0.001 0.002 0.005 0.001 0.001 0.002 = le-
-0.027 0.031 0.050 0.099 0.101 0.101 0.106 0.142 0.186 0.234
BORF _ 7/3/24 - 19/4/11 20/3/11 22/0/12 24/0/10  21/0/13 24/0/10  22/0/12 25/0/9 28/0/6
0650 0.998 0.074 0.024 0.016 0.014 0.047 0.005 0.008 0.001 = 1e-03
-0.058 -0.031 0.019 0.069 0.071 0.071 0.076 0.112 0.155 0.204
LGBM _ 7/3/24 11/4719 - 19/3/12 21/0/13 23/0/11 21/0/13 23/0/11 24/0/10 26/0/8 29/0/5
0619 0.994 0.926 0.104 0.005 0.014 0.081 0.005 0.005 0.001 = le-03
-0.077 -0.050 -0.019 0.050 0.051 0.051 0.056 0.092 0.136 0.184
RIFC _ 47426 11/3/20 12/3/19 - 19/0/15 22/0/12 21/0/13 23/0/11 22/0/12 25/0/9 27/0/7
0.600 0.999 0.976 0.896 0.107 0.045 0.176 0.032 0.024 0.002 0.001
-0.127 -0.099 -0.069 -0.050 0.002 0.002 0.007 0.043 0.087 0.135
TIMESNET _ 10/0/24 12/0/22 13/0/21 15/0/19 - 19/2/13 14/2/18 13/2/19 19/3/12 22/2/10 23/1/10
0.550 0.998 0.985 0.995 0.896 0316 0.684 0.684 0.095 0.015 0.001
-0.128 -0.101 -0.071 -0.051 -0.002 0.000 0.005 0.041 0.085 0.133
SAITS _ 8/0/26 10/0/24 11/0/23 12/0/22 13/2/19 - 12/2/20 13/2/19 16/2/16 19/2/13 28/1/5
0548 0995 0.986 0.987 0.956 0.684 0.748 0.608 0.201 0.029 = 1e-03
0128 -0.101 -0.071 -0.051 -0.002 -0.000 0.005 0.041 0.085 0.133
KNN _ - 6/1/27 13/0/21 13/0/21 13/0/21 18/2/14 20/2/12 - 18/2/14 16/3/15 20/4/10 23/2/9
0.548 0.999 0.955 0.921 0.829 0316 0.252 0.236 0.278 0.037 0.008
-0.133 -0.106 -0.076 -0.056 -0.007 -0.005 -0.005 0.036 0.080 0.128
RAINDROP _ 8/0/26 10/0/24 11/0/23 11/0/23 19/2/13 19/2/13 14/2/18 - 15/2/17 20/2/12 26/1/7
0.543 0.999 0.995 0.995 0.969 0316 0.392 0.764 0.211 0.018 = le-03
-0.169 -0.142 -0.112 -0.092 -0.043 -0.041 -0.041 -0.036 0.044 0.092 0.238
BRITS _ 9/0/25 12/0/22 10/0/24 12/0/22 12/3/19 16/2/16 15/3/16 17/2/15 - 20/4/10 23/1/10 25/3/6
0.507 0.998 0.992 0.995 0.977 0.905 0.799 0.722 0.789 0.059 0.004. = le-03
0213 -0.186 -0.155 -0.136 -0.087 -0.085 -0.085 -0.080 -0.044 0.048 0.195
GRUD _ 9/1/24 9/0/25 8/0/26 9/0/25 10/2/22 13/2/19 10/4/20 12/2/20 10/4/20 - 17/1/16 24/3/7
0.464 0.999 0.999 0.999 0.998 0.985 0.971 0.963 0.982 0.941 0.137 = 1e-03
-0.234 0204 -0.184 0135 0133 -0.133 -0.128 -0.092 -0.048 0.146
NCDE 6/0/28 5/0/29 7/0/27 10/1/23 5/1/28 9/2/23 7/1/26 10/1/23 16/1/17 - 2471/9
0415 1.000 1.000 0.999 0.999 1.000 0.992 1.000 0.996 0.863 0.001
-0.195 -0.146 0
svM 773724 9/1/3s Ifinbold, then
0269 s bl p-value < 0.05
(a) Precision.
ROCKET BORF LGBM RIFC TIMESNET RAINDROP KNN SAITS BRITS GRU-D NCDE svM
0.691 0,645 0625 0591 0.540 053 0535 0533 0.506 0.466 0423 0.283
Mean-recall 1 1 1 1 1 1 1 1 1 1
Mean-Difference _0.047 0.067 0.100 0.151 0.153 0.156 0.158 0.186 0.226
ROCKET _'r>c/r=c/r<c  22/4/8 24/4/6 26/4/4 25/1/8 27/1/6 27/1/6 26/0/8 26/0/8 24/1/9
0.691  wilcoxon p-value 0.001 0.001 < le-03 = 1le-03 < 1le-03 < 1le-03 = le-03 = le-03 = le-03
-0.047 0.020 0.053 0.104 0.106 0.110 0.111 0.139 0.179 0.221
BORF _ g/4/22 - 19/4/11 22/4/8 22/1/11 24/1/9 20/0/14 24/0/10  22/0/12 23/0/11 28/0/6
0.645 0.999 0.074 0.013 0.004 0.001 0.026 0.003 0.006 = le-03 = 1e-03
-0.067 -0.020 0,033 0.085 0.087 0.090 0.092 0.119 0.159 0.202
LGBM _ 6/4/24 11/4/19 - 19/4/11 21/1/12 23/1/10 19/1/14 22/0/12 24/0/10 24/0/10 29/0/5
0625 0.999 0.926 0.072 0.002 0.001 0.071 0.004 0.001 = 1e-03 = le-03
-0.100 -0.053 -0.033 0.051 0.053 0.056 0.058 0.086 0.125 0.168
RIFC_ 47426 8/4/22 11/4/19 - 22/1/11 22/1/11 21/0/13 23/1/10 24/0/10 25/0/9 26/0/8
0591 1.000 0.987 0.928 0.044 0.026 0.098 0.020 0.012 0.001 = le-03
-0.151 0.104 -0.085 -0.051 0.002 0.005 0.007 0.034 0.074. 0.117 0.257
TIMESNET _— g/1/25 11/1/22 12/1/21 11/1/22 - 15/3/16 14/2/18 19/2/13 21/3/10 22/2/10 23/1/10 26/3/5
0.540 1.000 0.996 0.998 0.956 0.585 0.678 0.252 0.065 0.012 0.001 = le-03
0153 -0.106 -0.087 -0.053 -0.002 0.003 0.005 0.032 0.072 0.115 0.255
RAINDROP _ 61727 9/1/24 10/1/23 11/1/22 16/3/15 - 16/2/16 21/2/11 19/2/13 20/2/12 26/1/7 28/3/3
0538 1.000 0.999 0.999 0.974 0.415 0.640 0231 0.148 0.016 = 1le-03 = 1e-03
0156 -0.110 -0.090 -0.056 -0.005 -0.003 0.002 0.029 0.069 0.112 0.252
KNN _ 671727 14/0/20 14/1/19 13/0/21 18/2/14 16/2/16 - 19/2/13 15/4/15 17/4/13 23/2/9 26/6/2
0535 1.000 0.975 0.929 0.905 0322 0.360 0.269 0.356 0.095 0.011 = le-03
-0.158 0.111 -0.092 -0.058 -0.007 -0.005 -0.002 0.027 0.067 .110 0.250
SAITS _ 8/0/26 10/0/24 12/0/22 10/1/23 13/2/19 11/2/21 13/2/19 - 16/2/16 19/2/13 27/1/6 29/2/3
0533 1.000 0.997 0.996 0.980 0.748 0.769 0.731 0.280 0.039 = le-03 = le-03
-0.186 -0.139 -0.119 -0.086 -0.034. -0.032 -0.029 -0.027 0.040 0.083 0.223
BRITS _ 8/0/26 12/0/22 10/0/24 10/0/24 10/3/21 13/2/19 15/4/15 16/2/16 - 17/4/13 23/1/10 27/3/4
0.506 1.000 0.994 0.999 0.988 0935 0.852 0.644 0.720 0.082 0.005. = le-03
-0.226 -0.179 -0.159 -0.125 -0.074 -0.072 -0.069 -0.067 -0.040 0.043 0.183
GRUD _ 9/1/24 11/0/23 10/0/24 9/0/25 10/2/22 12/2/20 13/4/17 13/2/19 13/4/17 - 18/1/15 27/3/4
0466 1.000 1.000 1.000 0.999 0.988 0.984 0.905 0.961 0.918 0137 = 1le-03
-0.221 -0.202 -0.168 0117 -0.115 0,112 -0.110 -0.083 -0.043 0.140
NCDE 6/0/28 5/0/29 8/0/26 10/1/23 7/1/26 9/2/23 6/1/27 10/1/23 15/1/18 - 27/1/6
0423 1.000 1.000 .000 0.999 1.000 0.989 1.000 0.995 0.863 = 1e-03
-0.255 -0.252 -0.250 -0.223 -0.183 -0.140
Sy 3/3/28 2/6/26 3/2129 43721 473121 EHEYioZ " ' ool then
0.283 1.000 1.000 1.000 1.000 1.000 1.000 o -

(b) Recall.

Figure 13: Summary performance statistics for the 12 classifiers on 34 datasets, generated using the
multiple comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the
mean difference in performance, wins/draws/losses, and Wilcoxon p-value for two comparates. The
best models on the top left are sorted based on the average performance. The more intense the color,
the higher the mean accuracy difference w.r.t. the comparate, positive (red) or negative (blue).
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LGBM ROCKET RIFC BORF NCDE GRU-D TIMESNET KNN RAINDROP SVM SAITS BRITS

472.791 1485.083 1656.918 5298.659 6877.340 9351.653 12925.685 16523.164 18921.227 21772.918 30426.722 60025.019
Mean-total_time | i i i 1 i 1 i 1 1 1
Mean-Difference  -1012.291 -1184.127 -4825.868 -6404.549 -8878.861 12452804 -16050373  -18448.436  -21300.127  -29953930
LGBM _'roc/r=c/r<c  29/0/5 22/0/12 14/0/20 13/0/21 3/0/31 0/0/34 8/0/26 12/0/22 10/0/24 0/0/34
472.791  \jiicoxon pvalue = 1le-03 0.058 0.845 0.902 1.000 1.000 1.000 0.988 0.999 1.000
1012.291 -171.836 -3813.576 -5392.258 -7866.570 -11440.602  -15038.081  -17436.145  -20287.836  -28941639
ROCKET _ 5/0/29 - 18/0/16 5/0/29 1/0/33 1/0/33 0/0/34 1/0/33 0/0/34 0/0/34 0/0/34
1485.083 1.000 0.407 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1184.127 171.836 -3641.741 -5220.422 -7694.734 -11268.767  -14866.246  -17264.309  -20116.000  -28769.803
RIFC _ 15/0/22 16/0/18 - 2/0/32 2/0/32 1/0/33 1/0/33 2/0/32 1/0/33 1/0/33 1/0/33
1656.918 0.944 0.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4825.868 3813.576 3641.741 -1578.682 -4052.994 -7627.026 11224505 -13622.568  -16474.260  -25128.063
BORF _ 20/0/14 29/0/5 32/0/2 - 13/0/21 3/0/31 2/0/32 8/0/26 5/0/29 7/0/27 2/0/32
5298.659 0.159 = 1e-03 = 1e-03 0.837 1.000 1.000 1.000 1.000 1.000 1.000
6404.549 5392.258 5220.422 1578.682 -2474.312 -6048.345 -9645.823 12043887  -14895.578  -23549.381
NCDE _ 2170713 33/0/1 32/0/2 21/0/13 - 10/1723 5/1/28 15/2/17 17/1/16 14/1/19 471/29
6877.340 0.101 = 1e-03 = 1e-03 0.167 0.998 1.000 0.984 0.822 0.993 1.000
8878.861 7866.570 7694.734 4052.994 2474.312 -3574.032 -7171.511 -9569.575 -12421.266 -21075.069
SRUD_ 31/0/3 33/0/1 33/0/1 31/0/3 23/1/10 - 47228 19/2713 21/2711 23/2/9 1/2/31
9351.653 = le-03 = 1e-03 = 1e-03 < 1e-03 0.002 1.000 0.672 0.335 0.196 1.000
12452.894  11440.602  11268.767  7627.026 6048.345 3574.032 -3597.479 -5995.542  -8847.233  -17501.037
TIMESNET _ "34/0/0 34/0/0 33/0/1 32/0/2 28/1/5 28/2/4 - 24/2/8 27/2/5 27/2/5 472/28
12925.685 = 1e-03 = 1e-03 = 1e-03 = 1e-03 = 1e-03 = 1e-03 0.097 0.001 0.002 1.000
16050.373  15038.081  14866.246  11224.505  9645.823 7171511 3597.479 -2398.063 -5249.755 -13903.558
KNN _ "26/0/8 33/0/1 32/0/2 26/0/8 17/2/15 13/27/19 8/2/24 - 16/2/16 13/3/18 3/2/29
16523.164 = le-03 = 1e-03 = 1e-03 = 1e-03 0.016 0.328 0.903 0.221 0.551 1.000
18448.436  17436.145 17264309  13622.568 12043887 9569.575 5995.542 2398.063 -2851.691 -11505.494
RAINDROP _ 22/0/12 34/0/0 33/0/1 29/0/5 16/1/17 11/2/21 5/2/27 16/2/16 - 16/2/16 2/2/30
18921.227 0.012 = 1e-03 = 1e-03 = 1e-03 0.178 0.665 0.999 0.779 0.684 1.000
21300.127  20287.836  20116.000  16474.260  14895.578  12421.266 8847.233 5249.755 2851.691 -8653.803
SVM _ 24/0/10 34/0/0 33/0/1 27/0/7 19/1/14 9/2/23 5/2/27 18/3/13 16/2/16 - 3/2/29
21772918 0.001 = 1e-03 < 1e-03 < 1e-03 0.007 0.804 0.998 0.449 0316 1.000
29953.930  28941.639  28769.803  25128.063  23549.381  21075.069  17501.037  13903.558  11505.494  8653.803 -29598.297
SATS — '34/0/0 34/0/0 33/0/1 32/0/2 29/1/4 31/2/1 28/2/4 29/2/3 30/2/2 29/2/3 - 4/2/28
30426.722 = le-03 = le-03 = le-03 = le-03 = le-03 = le-03 =< le-03 = le-03 = le-03 = le-03 1.000
oarts 38252100 29898297 110 ot then
60025.019 = 1e-03 = le-03 P-value <0.05

(a) Total Runtime.

ROCKET BORF LGBM RIFC SAITS RAINDROP TIMESNET BRITS GRU-D KNN NCDE SVM
0851 0.844 0832 0815 0.748 0744 0.741 0736 0.718 0701 0.693 0.493
Mean-roc_auc | 1 1 1 1 1 1 1 1 1 1
Mean-Difference _0.007 0.019 0.036 0.104 0.108 0.111 0.115 0.133 0.151 0.158
ROCKET _ ‘r>c/r=c/r<c  23/4/7 21/4/9 27/4/3 27/0/7 27/1/6 27/0/7 25/1/8 25/0/9 30/0/4 27/0/7
0851 wilcoxon p-value  0.007 0.021 = le-03 0.002 0.001 < le-03 0.002 0.002 = le-03 = 1e-03
-0.007 0.012 0.029 0.097 0.101 0.104 0.108 0.126 0.144. 0.151
BORF _ 74723 - 18/4/12 22/4/8 27/0/7 25/1/8 24/0/10 22/1/11 22/0/12 29/0/5
0.844 0.993 0128 0.007 0.001 0.001 = 1e-03 0.004 0.001 0.005 = le-03
-0.019 0.012 0,017 0.085 0.089 0.092 0.096 0.114 0.132 0.139
LGBM . 9/4/21 12/4/18 - 20/4/10 24/0/10 27/1/6 25/0/9 23/1/10 26/0/8 21/0/13 29/0/5
0832 0.979 0.872 0.057 0.004 = le-03 = le-03 0.002 0.001 0.025 = le-03
-0.036 -0.029 -0.017 0.068 0.072 0.075 0.080 0.098 0.115 0.122
RIFC 374727 8/4/22 10/4/20 - 24/0/10 21/1/12 21/0/13 21/1/12 24/0/10 22/0/12 26/0/8
0.815 1.000 0.993 0.943 0.026 0.045 0.030 0.016 0.003 0.023 0.002
-0.104. -0.097 -0.085 -0.068 0.004 0.007 0012 0.030 0.047 0.054
SAITS — 7/0/27 7/0/27 10/0/24 10/0/24 - 14/2/18 13/2/19 14/2/18 20/2/12 13/2/19 25/1/8
0748 0.998 0.999 0.996 0975 0678 0.702 0425 0.091 0541 0.010
-0.108 -0.101 -0.089 0.072 -0.004 0.003 0.008 0.026 0.043 0.050
RAINDROP _ 61 /27 8/1/25 6/1/27 12/1/21 18/2/14 - 17/2/15 16/3/15 19/2/13 13/2/19 23/1/10
0.744 0.999 0.999 1.000 0.955 0322 0.231 0.307 0.088 0527 0.010
-0.111 -0.104 -0.092 -0.075 -0.007 -0.003 0.005 0.023 0.040 0.047
TIMESNET _ 7/0/27 10/0/24 9/0/25 13/0/21 19/2/13 15/2/17 - 18/2/14 21/2/11 13/2/19 23/1/10
0.741 1.000 1.000 1.000 0.971 0.298 0.769 0.208 0.058 0.601 0.052
-0.115 -0.108 -0.096 -0.080 -0.012 -0.008 0.018 0.035 0.043
BRITS _ 8/1/25 11/1/22 10/1/23 12/1/21 18/2/14 15/3/16 - 20/2/12 15/2/17 23/1/10
0.736 0.998 0.996 0.998 0.984 0575 0.693 0.122 0527 0.014
-0.133 0.126 0114 -0.098 -0.030 -0.026 -0.018 0.017 0.025 0.225
GRUD _ 9/0/25 12/0/22 8/0/26 10/0/24 12/2/20 13/2/19 12/2/20 - 15/2/17 20/1/13 29/2/3
0718 0.998 0.999 0.999 0.997 0.909 0.912 0.878 0.708 0.161 = 1e-03
-0.151 -0.144 0132 -0.115 -0.047 -0.043 -0.035 -0.017 0.007 0.207
KNN _14/0/30 11/0/23 13/0/21 12/0/22 19/2/13 19/2/13 17/2/15 17/2/15 - 20/2/12 26/6/2
0.701 1.000 0.995 0.976 0.978 0.459 0.473 0.473 0.292 0.152 = le-03
-0.158 -0.151 -0.139 -0.122 -0.054. -0.050 -0.043 -0.025 -0.007 0.200
NCDE _ 7/0/27 5/0/29 5/0/29 8/0/26 8/1/25 10/1/23 10/1/23 13/1/20 12/2/20 - 29/1/4
0.693 1.000 1.000 1.000 0.998 0.990 0.990 0.986 0.839 0.848 = le-03
-0.225 -0.207 -0.200 .
SYM 3/2/29 2/6/26 ENENE I ' | bold: then
0493 1.000 1,000 1,000 p-value < 0.05

(b) ROC-AUC.

Figure 14: Summary performance statistics for the 12 classifiers on 34 datasets, generated using the
multiple comparison matrix (MCM). The MCM shows pairwise comparisons. Each cell shows the
mean difference in performance, wins/draws/losses, and Wilcoxon p-value for two comparates. The
best models on the top left are sorted based on the average performance. The more intense the color,
the higher the mean accuracy difference w.r.t. the comparate, positive (red) or negative (blue).
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Figure 15:

Average performance rank (lower is better) vs. training and inference runtimes (lower is
better). Best values are on the bottom-left of each plot.

39



11
SVM SVYM
104 1
94 1
NCDE NCDE
€ 89 GRU-D — GRU-D
c
o
o
g 7 SAITERITS 1 SATBRITS
e RAINDROP RAINDROP
S TIMESNET TIMESNET KNN
x :
RIFC RIFC
5 LGBM 4 LGBM
BORF BORF
44 1
ROCKET ROCKET
3 T T T T T T T
10? 103 10* 10° 106 10t 10? 103 104 10°
mean training runtime (s) mean inference runtime (s)
(a) Precision.
11
SVM SYM
104 1
94 1
NCDE NCDE
~ 81 1
c
o GRU-D GRU-D
T
g 71 sateRITS 1 SAIFEITS
c
s TIMESNET _, TIMESNET _, KNN
E 6 RAINDROP 4 RAINDROP
RIFC RIFC
5 LGBM | LGBM
BORF BORF
44 4
ROCKET ROCKET
3 T T T T T T T
102 103 104 10° 106 10t 102 103 104 10°
mean training runtime (s) mean inference runtime (s)
(b) Recall.

Figure 16: Average performance rank (lower is better) vs. training and inference runtimes (lower is
better). Best values are on the bottom-left of each plot.
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Figure 17: Average F1 rank (lower is better) vs. training and inference runtimes (lower is better) for

subsets of datasets. Best values are on the bottom-left of each plot.
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Figure 18: Average F1 rank (lower is better) vs. training and inference runtimes (lower is better) for
subsets of datasets. Best values are on the bottom-left of each plot.
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Figure 19: Average F1 rank (lower is better) vs. training and inference runtimes (lower is better) for
subsets of datasets. Best values are on the bottom-left of each plot.
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Figure 20: F1 rank correlation between models. Models are hierarchically clustered using average
linkage applied to the rank correlation matrix. Positive correlations indicate that models tend
to perform similarly across datasets, reflecting comparable strengths or weaknesses. Negative
correlations suggest that models excel on different datasets, revealing complementary behaviors or
distinct inductive biases.
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E Array Structures

We report a summary of the main formats used to represent regular and irregular time series data in

the literature in Table[8]

Table 8: Overview of the main formats used to represent regular and irregular time series data in the
literature, categorized by tensor type. The table details the underlying data structures (classes), the
software libraries that implement them, their usage across the time series libraries considered in this

study, and their support for timestamps and tensor operations.

Type | Format | Library | Class | Usage | Timestamps | Tensor Ops.
numpy Array aeon X v
numpy Array sktime X v
o numpy Array tslearn X v
5 3D Tensor numpy MaskedArray - X v
A jax Array diffrax vE v
tensorflow | Array - X v
torch Tensor pypots X v
awkward AwkwardArray - X v
B tensorflow | RaggedTensor - X v/
iuﬁ 3D Tensor torch NestedTensor - X v
=4 zarr RaggedArray - X v
pyarrow ListArray - X v
9 sparse GCXS - X v
i 3D Tensor sparse DOK - X v
n sparse COO - X v
5 Nested List | python List[Array] aeon X X
2 3D tensor** | xarray Dataset - v/ 4
o Long pandas DataFrame sktime v X
Multilndex | pandas DataFrame sktime 4 X

* only as a separate channel
** with additional tensors for static variables
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F Quick Guide

In the following, we report a quick start guide and some simple workflow notebooks. More examples
and tutorials are available at https://fspinna.github.io/pyrregular/.

You can install via pip with:

pip install pyrregular

For third-party models use:

pip install pyrregular [models]

F.1 List datasets

If you want to see all the datasets available, you can use the 1ist_datasets function:

from pyrregular import list_datasets

df = list_datasets()

F.2 Load a dataset

To load a dataset, you can use the 1load_dataset function. For example, to load the "Garment"
dataset, you can do:

from pyrregular import load_dataset

df = load_dataset("Garment.h5")

F.3 Classification

To use the dataset for classification, you can just "densify" it:

from pyrregular import load_dataset

df load_dataset ("Garment.h5")
X, _ = df.irr.to_dense()
y, split = df .irr.get_task_target_and_split()

X_train, X_test = X[split != "test"], X[split == "test"]
y_train, y_test = y[split != "test"], y[split == "test"]

# We have ready-to-go models from various libraries:
from pyrregular.models.rocket import rocket_pipeline

model = rocket_pipeline
model.fit(X_train, y_train)
model.score(X_test, y_test)
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Notebook: Basic Workflow

[1]: | import xarray as xr

List available datasets

To view available datasets, you can use the 1list_datasets function.

[2]: from pyrregular import list_datasets

[3]: print(list_datasets())

['Abf.h5', 'AllGestureWiimoteX.h5', 'AllGestureWiimoteY.h5',
'AllGestureWiimoteZ.h5', 'Animals.h5', 'AsphaltObstaclesCoordinates.h5',
'AsphaltPavementTypeCoordinates.h5', 'AsphaltRegularityCoordinates.h5',
'CharacterTrajectories.hb', 'DodgerLoopDay.h5',

'DodgerLoopGame.h5', 'DodgerLoopWeekend.hb5', 'Garment.h5',
'GeolifeSupervised.hb', 'GestureMidAirD1.h5', 'GestureMidAirD2.h5',
'GestureMidAirD3.h5', 'GesturePebbleZl.h5', 'GesturePebbleZ2.h5',
'JapaneseVowels.h5', 'Ldfpa.h5', 'MelbournePedestrian.hb', 'Mimic3.h5',
'PLAID.h5', 'Pamap2.h5', 'Physionet2012.h5', 'Physionet2019.h5',
'PickupGestureWiimoteZ.h5', 'Seabirds.hb', 'ShakeGestureWiimoteZ.h5',
'SpokenArabicDigits.h5', 'Taxi.hb', 'Vehicles.h5']

Loading the dataset from the online repository

Loading a dataset is as from the online repo (https://huggingface.co/datasets/splandi/pyrregular)
is as simple as calling the load_dataset function with the dataset name.

[4]: from pyrregular import load_dataset

[64]: ds = load_dataset("Garment.h5")

The dataset is loaded as an xarray dataset. The dataset is saved in the default os cache directory,
which can be found with:

import pooch
print(pooch.os_cache("pyrregular"))

You can also use xarray to directly load a local file. In this case, you have to specify our backend
as pyrregular in the engine argument.

import xarray as xr
ds = xr.load_dataset("path/to/file.h5", engine="pyrregular")

You can view the underlying DataArray by calling the data variable.

[65]: da = ds.data

[66]: da
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[66]: <xarray.DataArray 'data' (ts_id: 24, signal_id: 9, time_id: 59)> Size: 329kB
<C00: shape=(24, 9, 59), dtype=float64, nnz=10267, fill_value=nan>

[67]:

[67]:

[68]:

[68]:

[69]:

[69]:

[70]:

[70]:

Coordinates:
day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department (ts_id) <U9 864B 'finishing' ... 'sweing'
productivity_binary (ts_id) int32 96B 1 0111111 ...1100001
productivity_class (ts_id) <U4 384B 'high' 'low' ... 'low' 'high'
productivity_numerical (ts_id) float32 96B 0.8126 0.6283 ... 0.7005 0.7503
quarter (time_id) <U8 2kB 'Quarteril' ... 'Quarter2'
* signal_id (signal_id) <U21 756B 'idle_men' ... 'wip'
split (ts_id) <U5 480B 'train' 'train' ... 'train' 'train'
team (ts_id) int32 96B 1 10 11 1223 4 ... 34567 8 9
* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00. ..
* ts_id (ts_id) <U12 1kB 'finishing 1' ... 'sweing_ 9'
Attributes:

_fixed_at: 2024-12-04T21:50:44.408790-12:00
_is_fixed: True

author: [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed]

configs: {'default': {'task': 'classification', 'split': 'split', 'tar...
license: CC BY 4.0

source: https://archive.ics.uci.edu/dataset/597/productivity+predicti...
title: Productivity Prediction of Garment Employees

# the shape is (n_time_series, n_channels, n_timestamps)

da.shape

(24, 9, 59)

# the array is stored as a sparse array

da.data

<C00: shape=(24, 9, 59), dtype=float64, nnz=10267, fill_value=nan>

# dimensions contain the time series ids, signal tds and timestamps

da.dims

('ts_id', 'signal_id', 'time_id')

# e.g.,

these are the time series tds

da["ts_id"] .data

array(['finishing_1', 'finishing 10', 'finishing 11', 'finishing 12',

'finishing 2', 'finishing_ 3', 'finishing 4', 'finishing 5°',
'finishing 6', 'finishing 7', 'finishing 8', 'finishing 9',
'sweing_1', 'sweing_10', 'sweing_11', 'sweing_12', 'sweing_2',
'sweing_3', 'sweing_4', 'sweing_5', 'sweing_6', 'sweing 7',
'sweing_8', 'sweing_9'], dtype='<U12')
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[72]: # there are also static variables, such as the class
da["productivity_binary"].data

[72]: array([t, O, 1, 1,1, 1,1,1,0,0,0,0,1,1,1,1,1,1, 1,0, 0, 0,
0, 1], dtype=int32)

[74]: # the train/test split
da["split"].data

[74]: array(['train', 'train', 'test', 'train', 'train', 'test', 'train',
'train', 'train', 'test', 'train', 'train', 'test', 'train',
'train', 'test', 'train', 'train', 'train', 'train', 'test',

'train', 'train', 'train'], dtype='<U5')

[75]: # all the coordinates can be accessed via the “coords’ wariable
da.coords

[75]: Coordinates:

day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department (ts_id) <U9 864B 'finishing' ... 'sweing'
productivity_binary (ts_id) int32 96B 1 0111111 ...1100001
productivity_class (ts_id) <U4 384B 'high' 'low' ... 'low' 'high'
productivity_numerical (ts_id) float32 96B 0.8126 0.6283 ... 0.7005 0.7503
quarter (time_id) <U8 2kB 'Quarteril' ... 'Quarter?2'
* signal_id (signal_id) <U21 756B 'idle_men' ... 'wip'
split (ts_id) <U5 480B 'train' 'train' ... 'train' 'train'
team (ts_id) int32 96B 1 10 11 1223 4 ... 34567 89
* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00. ..
* ts_id (ts_id) <U12 1kB 'finishing 1' ... 'sweing_ 9'

[76]: # metadata contains informations about the datasets and tasks
da.attrs

[76]: {'_fixed_at': '2024-12-04T21:50:44.408790-12:00"',
'_is_fixed': True,
'author': [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed],
'configs': {'default': {'task': 'classification',
'split': 'split',
'target': 'productivity_binary'},

'regression': {'task': 'regression',
'split': 'split',
'target': 'productivity_numerical'}},
'license': 'CC BY 4.0',
'source': 'https://archive.ics.uci.edu/dataset/597/productivity+predictiont+of+g
arment+employees',
'title': 'Productivity Prediction of Garment Employees'}
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[771:

[78]:

[78]:

[79]:

[79]1:

Data Handling and Plotting

Data can be accessed with standard xarray methods.

import matplotlib.pyplot as plt
import numpy as np

# the first time series
da[0]

<xarray.DataArray 'data' (signal_id: 9, time_id: 59)> Size: 9kB
<C00: shape=(9, 59), dtype=float64, nnz=392, fill_value=nan>
Coordinates:

day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department <U9 36B 'finishing'
productivity_binary int32 4B 1
productivity_class <U4 16B 'high'
productivity_numerical float32 4B 0.8126
quarter (time_id) <U8 2kB 'Quarterl' ... 'Quarter2'

* signal_id (signal_id) <U21 756B 'idle_men' ... 'wip'
split <U5 20B 'train'
team int32 4B 1

* time_id (time_id) datetime64[ns] 472B 2015-01-01T01:00:00...
ts_id <U12 48B 'finishing_1'

Attributes:

_fixed_at: 2024-12-04T21:50:44.408790-12:00
_is_fixed: True

author: [Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed]

configs: {'default': {'task': 'classification', 'split': 'split', 'tar...
license: CC BY 4.0

source: https://archive.ics.uci.edu/dataset/597/productivity+predicti...
title: Productivity Prediction of Garment Employees

# the first channel of the first time series
dal0, 0]

<xarray.DataArray 'data' (time_id: 59)> Size: 784B
<C00: shape=(59,), dtype=float64, nnz=49, fill_value=nan>

Coordinates:
day (time_id) <U9 2kB 'Thursday' ... 'Wednesday'
department <U9 36B 'finishing'
productivity_binary int32 4B 1
productivity_class <U4 16B 'high'
productivity_numerical float32 4B 0.8126
quarter (time_id) <U8 2kB 'Quarteril' ... 'Quarter2'
signal_id <U21 84B 'idle_men'
split <U5 20B 'train'
team int32 4B 1
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[80]:

[80]:

[87]1:

[871:

[89]:

[89]:
[90]:

[90]:

* time_id
ts_id
Attributes:
_fixed_at:
_is_fixed:
author:
configs:
license:
source:
title:

# to access the
da[0, 0].data

<C00: shape=(59,

# to access the

(time_id) datetime64[ns] 472B 2015-01-01T01:00:00...
<U12 48B 'finishing_1'

2024-12-04T21:50:44.408790-12:00

True

[Abdullah Al Imran, Md Shamsur Rahim, Tanvir Ahmed]

{'default': {'task': 'classification', 'split': 'split', 'tar...
CC BY 4.0

https://archive.ics.uci.edu/dataset/597/productivity+predicti...
Productivity Prediction of Garment Employees

underlying sparse vector

), dtype=float64, nnz=49, fill_value=nan>

underlying dense vector

da[0, 4].data.todense()

array([ 8., 8.,

8., nan,
19., 19.,
nan, nan,

8., 8.,

8., 8., 8., 8., 8., 8., 8., 8., 2., 8., 8.,
nan, nan, 8., 25., 8., 8., 10., 10., 10., 10., 15.,
10., 10., 12., 10., 10., 10., 12., 12., 12., 12., 8.,
nan, nan, 12., nan, nan, nan, 8., 8., 8., 8., 8.,

8., 8., 8., 8., 8.1

# this wvector contains a lot of mans, which are the padding necessary to havey

—shared timestamps w.r.t. the whole dataset

np.isnan(da[0, 4].data.todense()).sum()

10

plt.plot(dal0, 4]["time_id"], dal[0, 4], marker="o")

[<matplotlib.lines.Line2D at 0x14eb06990>]
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[92]: # using the custom ".irr" accessor, we can filter out the nans to the minimum,
—amount possible due to raggedness
np.isnan(da.irr[0, 4].data.todense()).sum()

[92]: O
[93]: plt.plot(da.irr[0, 4]["time_id"], da.irr[0, 4], marker="o"

[93]: [<matplotlib.lines.Line2D at 0x14eb6b230>]
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[94]: # the fourth channel first 10 time series of the dataset, as a heatmap
da.irr[:10, 4].plot()

[94]: <matplotlib.collections.QuadMesh at 0x14dcf3680>
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signal_id = no_of workers

finishing_7

finishing_6 -
finishing_5 -
finishing_4

finishing_3 -

ts_id

finishing_2

finishing_12 -

finishing_11

finishing_10

finishing_1

08 15 22 Feb 08 15 22 Mar 08
time_id 2015-Mar

[103]: | # plotting some channels
da.irr[0, 2].plot(label=da.coords["signal_id"][2].item())
da.irr[0, 4].plot(label=da.coords["signal_id"][4].item())
da.irr[0, 5].plot(label=da.coords["signal_id"][5].item())
plt.legend()

[103]: <matplotlib.legend.Legend at 0x16ea32870>
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department = finishing, productivity binary = 1...

—— incentive
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o 8000
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6000 -
4000 A
2000 A
0 .
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time_id 2015-Mar

Downstream Tasks

The xarray is nice, but not supported by basically any downstream library. Thus, we can convert
it into a numpy array.

[104] : %Jtime
# time series data, timestamps
X, T = da.irr.to_dense(
normalize_time=True, # normalize the time index to [0, 1]

)

CPU times: user 2.23 s, sys: 79 ms, total: 2.31 s
Wall time: 2.34 s

[106]: # the shape is (n_time_series, n_channels, n_timestamps), timestamps are,
—returned as a separate channel, for downstream methods that are able to usey,
—them
X.shape, T.shape

[106]: ((24, 9, 59), (24, 1, 59))
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[107]: | # static variables
Z = da.coords.to_dataset () [["split", "productivity_binary"]].to_pandas()

Z.head ()
[107]: split productivity_binary department productivity_class \

ts_id

finishing 1  train 1 finishing high
finishing 10 train 0 finishing low
finishing 11  test 1 finishing high
finishing 12 train 1 finishing high
finishing 2  train 1 finishing high

productivity_numerical team

ts_id

finishing_1 0.812625 1
finishing_10 0.628333 10
finishing_11 0.874028 11
finishing_ 12 0.922840 12
finishing 2 0.819271 2

[108]: | # target and split
y, split = da.irr.get_task_target_and_split()
Train-test split

[111]: X_train, X_test = X[split != "test"], X[split == "test"]
y_train, y_test = y[split != "test"], y[split == "test"]
X_train.shape, y_train.shape, X_test.shape, y_test.shape

[111]: ((18, 9, 59), (18,), (6, 9, 59), (6,))

Classification

We have several ready-to-use classifiers in the pyrregular package. Be sure to install the required
dependencies.

[118]: from pyrregular.models.rocket import rocket_pipeline

[119]: | %%time
model = rocket_pipeline
model.fit(X_train, y_train)
model.score(X_test, y_test)

[119]: 0.6666666666666666

55



Notebook: Dataset Conversion

The “Long Format”

The basic format to convert any dataset to our representation is the long format. The long format
is simply a tuple:

(time_series_id, channel_id, timestamp, value, static_var_1, static_var_2, DR

If your dataset contains rows that are in this format, you are almost good to go. Else, there will be
a little bit of preprocessing to do.

Case 1. (easy) Your dataset is already in the long format

Let’s assume for now your dataset is already in this form. Here is a minimal working example.

[28]: import pandas as pd
import numpy as np

[29]: df = pd.DataFrame(

{
"time_series_id": np.random.choice(["A", "B", "C"], size=100),
"channel_id": np.random.choice(["X", "Y", "Z"], size=100),
"timestamp": pd.date_range("2023-01-01", periods=100, freq="H"),
"value": np.random.randn(100),

}

)

df ["labels"] = df["time_series_id"] .map(
{"A"Z O, "B"Z 1’ ncu: 1}

) # let's say we have labels

df .head()

/var/folders/kj/v66zvn217x31k61x631t02q40000gn/T/ipykernel_11325/3078918095.py:5
: FutureWarning: 'H' is deprecated and will be removed in a future version,
please use 'h' instead.

"timestamp": pd.date_range("2023-01-01", periods=100, freq="H"),

[29]: time_series_id channel_id timestamp value labels
0 B Y 2023-01-01 00:00:00 0.105162 1
1 B Z 2023-01-01 01:00:00 -0.573337 1
2 B X 2023-01-01 02:00:00 -1.973967 1
3 C Y 2023-01-01 03:00:00 0.656065 1
4 A Y 2023-01-01 04:00:00 -0.500246 0

[30]: # Let's save this dataframe to a CSV file
df .to_csv("your_original_dataset.csv", index=False)

[31]: # the csv file can be converted to our format using our interface

from pyrregular.io_utils import read_csv
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from pyrregular.reader_interface import ReaderInterface
from pyrregular.accessor import IrregularAccessor

class YourDataset(ReaderInterface):
O@staticmethod
def read_original_version(verbose=False):
return read_csv(
filenames="your_original_dataset.csv",
ts_id="time_series_id",
time_id="timestamp",
signal_id="channel_id",
value_id="value",
dims={
"ts_id": [
"labels"
], # static variable that depends on the time series id
"signal_id": [J,
"time_id": [],
I
time_index_as_datetime=False,
verbose=verbose,

[32]: da = YourDataset.read_original_version(True)
da

Getting dataset metadata: 0it [00:00, 7it/s]
Reading dataset:  0%] | 0/100 [00:00<?7, 7it/s]

[32]: <xarray.DataArray (ts_id: 3, signal_id: 3, time_id: 100)> Size: 3kB
<C00: shape=(3, 3, 100), dtype=float64, nnz=100, fill_value=nan>

Coordinates:
* time_id (time_id) <U19 8kB '2023-01-01 00:00:00' ... '2023-01-05 03:00...
labels (ts_id) int64 24B 0 1 1
* ts_id (ts_id) <U1 12B 'A' 'B' 'C'

* signal_id (signal_id) <U1 12B 'X' 'Y' 'Z'
If you don’t know if a variable is static, or to which dimension it depends from, you can check it.

[33]: from pyrregular.data_utils import infer_static_columns
infer_static_columns(df, "time_series_id")
[33]: ['labels']

The dataset can be saved with our custom accessor
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[34]:

[35]:

[36]:

[36]:

[371:

[37]1:

da.irr.to_hdf5("your_dataset.h5")

And then loaded directly with xarray

import xarray as xr

da2 = xr.load_dataset("your_dataset.h5", engine="pyrregular")
da2

/Users/francesco/github/irregular_ts/irregular_ts/accessor.py:9:
AccessorRegistrationWarning: registration of accessor <class
'irregular_ts.accessor.IrregularAccessor'> under name 'irr' for type <class
'xarray.core.dataarray.DataArray'> is overriding a preexisting attribute with
the same name.

Oxr.register_dataarray_accessor("irr")

<xarray.Dataset> Size: 11kB

Dimensions: (ts_id: 3, signal_id: 3, time_id: 100)
Coordinates:
labels (ts_id) int32 12B 0 1 1
* signal_id (signal_id) <U1 12B 'X' 'Y' 'Z'
* time_id (time_id) <U19 8kB '2023-01-01 00:00:00' ... '2023-01-05 03:00...
* ts_id (ts_id) <U1 12B 'A' 'B' 'C'
Data variables:
data (ts_id, signal_id, time_id) float64 3kB <C00: nnz=100,

£ill_value=nan>

Case 2. Your dataset is not in the long format

Let’s say you have a 3d numpy array, containing the time series, and a numpy array containing only
the labels.

import numpy as np

shape = (10, 2, 100) # 10 time series, 2 channels, 100 timestamps
data = np.full(shape, np.nan)

mask = np.random.rand(*shape) < 0.35

data[mask] = np.random.randn(mask.sum())

labels = np.random.randint(0, 2, shape[0])

np.save("your_more_complex_dataset.npy", data)
np.save("your_more_complex_dataset_labels.npy", labels)

data.shape, labels.shape

((10, 2, 100), (10,))

You need only a function that takes the data and the labels, and returns a dataframe in the long
format, yielding it row by row.
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[38]: def read_your_dataset(filenames):

[39]:

data = np.load(filenames["data"])

labels = np.load(filenames["labels"])

ts_ids, signal_ids, timestamps = np.indices(shape)

ts_ids, signal_ids, timestamps = ts_ids.ravel(), signal_ids.ravel(),,

—timestamps.ravel()

for ts_id, signal_id, timestamp in zip(ts_ids, signal_ids, timestamps):
value = data[ts_id, signal_id, timestamp]
if np.isnan(value):
continue
label = labels[ts_id]
yield dict(
time_series_id=ts_id,
channel_id=signal_id,
timestamp=timestamp,
value=value,
labels=label,

from pyrregular.io_utils import read_csv
from pyrregular.reader_interface import ReaderInterface
from pyrregular.accessor import IrregularAccessor

class YourDataset (ReaderInterface):

Ostaticmethod
def read_original_version(verbose=False):
return read_csv(
filenames={
"data": "your_more_complex_dataset.npy",
"labels": "your_more_complex_dataset_labels.npy",
g
ts_id="time_series_id",
time_id="timestamp",
signal_id="channel_id",
value_id="value",

dims={
"ts_id": [
"labels"
], # static vartable that depends on the time series id

"signal_id": [],
"time_id": [1,
o
reader_fun=read_your_dataset,
time_index_as_datetime=False,
verbose=verbose,
attrs={

59



"authors": "Bond, James Bond", # you can add any attribute you,
—want

[40]: da = YourDataset.read_original_version(True)
da

Getting dataset metadata: 0it [00:00, 7it/s]
Reading dataset: 0% | 0/720 [00:00<7, ?it/s]

[40]: <xarray.DataArray (ts_id: 10, signal_id: 2, time_id: 100)> Size: 23kB
<C00: shape=(10, 2, 100), dtype=float64, nnz=720, fill_value=nan>

Coordinates:
* time_id (time_id) int64 800B 0 1 2 3456 7 ... 92 93 94 95 96 97 98 99
labels (ts_id) int64 80B 0O 0O 01110110
* ts_id (ts_id) <U21 840B 'O' '1' '2' '3' '4' '5' '6' '7' 'g' '9!
* signal_id (signal_id) <U21 168B '0' '1!'
Attributes:

authors: Bond, James Bond
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