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ABSTRACT

Temporal abstraction and efficient planning pose significant challenges in offline
reinforcement learning, mainly when dealing with domains that involve temporally
extended tasks and delayed sparse rewards. Existing methods typically plan in the
raw action space and can be inefficient and inflexible. Latent action spaces offer a
more flexible paradigm, capturing only possible actions within the behavior policy
support and decoupling the temporal structure between planning and modeling.
However, current latent-action-based methods are limited to discrete spaces and
require expensive planning steps. This paper presents a unified framework for
continuous latent action space representation learning and planning by leveraging
latent, score-based diffusion models. We establish the theoretical equivalence
between planning in the latent action space and energy-guided sampling with a
pretrained diffusion model and incorporate a novel sequence-level exact sampling
method. Our proposed method, LatentDiffuser, demonstrates competitive
performance on low-dimensional locomotion control tasks and surpasses existing
methods in higher-dimensional tasks.

1 INTRODUCTION

A considerable volume of samples gathered by operational systems gives rise to the issue of offline
reinforcement learning (RL), specifically, the recovery of high-performing policies without additional
environmental exploration (Wu et al., 2019; Kumar et al., 2020; Kostrikov et al., 2021; 2022; Ghosh
et al., 2022). However, domains that encompass temporally extended tasks and severely delayed
sparse rewards can present a formidable challenge for standard offline approaches (Li et al., 2015;
Ren et al., 2021; Li et al., 2023). Analogous to the online setting, an emergent objective in offline RL
involves the development of efficacious hierarchy methodologies that can obtain temporally extended
lower-level primitives, subsequently facilitating the construction of a higher-level policy operating
at a more abstract temporal scale (Ajay et al., 2021; Pertsch et al., 2021; Villecroze et al., 2022;
Rosete-Beas et al., 2022; Rao et al., 2022; Yang et al., 2023).

Within the hierarchical framework, current offline RL approaches can be broadly categorized into
model-free and model-based. The former conceptualizes the higher-level policy optimization as a
auxilary offline RL issue (Liu et al., 2020; Liu & Sun, 2022; Ma et al., 2022; Kipf et al., 2019; Ajay
et al., 2021; Rosete-Beas et al., 2022). In contrast, the latter encompasses planning in the higher-
level policy space by generating future trajectories through a dynamics model of the environment,
either predefined or learned (Li et al., 2022; Co-Reyes et al., 2018; Lynch et al., 2020; Lee et al.,
2022; Venkatraman, 2023). Concerning lower-level primitive learning, these two methods exhibit
similarities and are typically modeled as goal-conditioned or skill-based imitation learning or offline
RL problems. Conversely, the instabilities arising from offline hierarchical RL methodologies due to
the “deadly triad (Sutton & Barto, 2018; Van Hasselt et al., 2018),” restricted data access (Fujimoto
et al., 2019; Kumar et al., 2020), and sparse rewards (Andrychowicz et al., 2017; Ma et al., 2022)
remain unaddressed. This spawns another subset of model-based approaches along with more effective
hierarchical variants that endeavor to resolve problems from a sequence modeling viewpoint Chen
et al. (2021); Janner et al. (2021; 2022); Ajay et al. (2023).

Irrespective of whether a method is model-free or model-based, it adheres to the traditional settings,
wherein planning occurs in the raw action space of the Markov Decision Process (MDP). Although
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seemingly intuitive, planning in raw action space can be inefficient and inflexible (Wang et al., 2020;
Yang et al., 2021; Jiang et al., 2023). Challenges include ensuring model accuracy across the entire
space and the constraint of being tied to the environment’s temporal structure. Conversely, human
planning offers enhanced flexibility through temporal abstractions, high-level actions, backward
planning, and incremental refinement.

Drawing motivation from TAP (Jiang et al., 2023), we put forth the notion of the latent action.
Planning within the domain of latent actions delivers a twofold advantage compared to planning with
raw actions. Primarily, it encompasses only plausible actions under behavior policy support, yielding
a reduced space despite the raw action space’s dimensionality and preventing the exploitation of
model frailties. Secondarily, it permits the separation of the temporal structure between planning and
modeling, thus enabling a more adaptable and efficient planning process unconstrained by specific
transitions. These dual benefits render latent-action-based approaches naturally superior to extant
methodologies when handling temporally extended offline tasks.

Nevertheless, two shortcomings of TAP inhibit its ability to serve as a general and practical framework.
Initially, TAP is confined to discrete latent action spaces. In real-world contexts, agents are likely to
carry out a narrow, discrete assortment of tasks and a broader spectrum of behaviors (Co-Reyes et al.,
2018). This introduces a predicament — should a minor skill modification be necessary, such as
opening a drawer by seizing the handle from top to bottom instead of bottom to top, a completely novel
set of demonstrations or reward functions might be mandated for behavior acquisition. Subsequently,
once the latent action space has been ascertained, TAP necessitates a distinct, resource-intensive
planning phase for generating reward-maximizing policies. The price of planning consequently
restricts latent actions to discrete domains.

To tackle these limitations, this paper proposes a novel framework, LatentDiffuser, by concur-
rently modeling continuous latent action space representation learning and latent action-based plan-
ning as a conditional generative problem within the latent domain. Specifically, LatentDiffuser
employs unsupervised techniques to discern the latent action space by utilizing score-based diffusion
models (SDMs) (Song et al., 2021; Nichol & Dhariwal, 2021; Ho & Salimans, 2022) within the
latent sphere in conjunction with a variational autoencoder (VAE) framework (Kingma & Welling,
2014; Rezende et al., 2014; Vahdat et al., 2021). We first segment the input trajectories, map each
slice to latent action space (which needs to be learned), and apply the SDM to the latent sequence.
Subsequently, the SDM is entrusted with approximating the distribution over the offline trajectory
embeddings, conditioned on the related return values. Planning—or reward-maximizing trajectory
synthesis—is realized by initially producing latent actions through sampling from a simple base
distribution, followed by iterative, conditional denoising, and eventually translating latent actions
into the trajectory space using a decoder. In other words, LatentDiffuser can be regarded as a
VAE equipped with an SDM prior (Vahdat et al., 2021).

Theoretically, we demonstrate that planning in the domain of latent actions is tantamount to energy-
guided sampling using a pre-trained diffusion behavior model. Exact energy-guided sampling is
essential to carry out high-quality and efficient planning. To achieve this objective, we modify
QGPO (Lu et al., 2023) to realize exact sampling at the sequence level. Comprehensive numerical
results on low-dimensional locomotion control tasks reveal that LatentDiffuser exhibits com-
petitive performance against robust baselines and outperforms them on tasks of greater dimensionality.
Our main contributions encompass: 1) Developing a unified framework for continuous latent ac-
tion space representation learning and planning that delivers flexibility and efficiency in temporally
extended offline decision-making. 2) Our theoretical derivation confirms the equivalence between
planning in the latent action space and energy-guided sampling with a pretrained diffusion model. It
introduces an innovative sequence-level exact sampling technique. 3) Numerical experiments exhibit
the competitive performance of LatentDiffuser and its applicability across a range of low- and
high-dimensional continuous control tasks.

2 RELATED WORK

Owing to spatial constraints, this section will briefly present the most pertinent domain of
LatentDiffuser: offline RL or imitation learning (IL) based on a hierarchical structure. In
terms of algorithmic specificity, existing techniques can be broadly classified into goal-based and
skill-based methods (Pateria et al., 2021). For further related literature, including but not limited to
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model-based RL, action representation learning, offline RL, and RL as sequence modeling, kindly
refer to Appendix C and the appropriate citations within the papers.

Goal-based approaches primarily concentrate on attaining a designated state. The vital aspect of
such techniques concerns the selection or creation of subgoals, which reside in the raw state space.
Once the higher-level subgoal is ascertained, the lower-level policy is generally acquired through
standard IL methods or offline RL based on subgoal-augmented/conditioned policy, a universal
value function (Schaul et al., 2015), or their combination. In extant methods, the subgoal is either
predefined (Zhou et al., 2019; Xie et al., 2021; Ma et al., 2021), chosen based on heuristics (Ding et al.,
2014; Guo & Zhai, 2016; Pateria et al., 2020; Mandlekar et al., 2020), or generated via planning or an
additional offline RL technique (Liu et al., 2020; Liu & Sun, 2022; Li et al., 2022; Ma et al., 2022).
Moreover, some methods (Eysenbach et al., 2019; Paul et al., 2019; Lai et al., 2020; Kujanpää et al.,
2023) are solely offline during the subgoal selection or generation process. This paper also pertains
to the options framework (Sutton et al., 1999; Stolle & Precup, 2002; Bacon et al., 2017; Wulfmeier
et al., 2021; Salter et al., 2022; Villecroze et al., 2022)), as both the (continuous) latent actions of
LatentDiffuser and (discrete) options introduce a mechanism for temporal abstraction.

Skill-based methods embody higher-level skills as low-dimensional latent codes. In this context,
a skill signifies a subtask’s policy, semantically representing ”the capability to perform something
adeptly” (Pateria et al., 2021). Analogous to goal-based approaches, once the higher-level skill is
identified, the lower-level skill-conditioned policy is generally acquired through standard IL or offline
RL methods. More precisely, few works utilize predefined skills (Nasiriany et al., 2022; Fatemi et al.,
2022). The majority of studies employ a two- or multi-phase training framework: initially, state
sequences are projected into continuous latent variables (i.e., skills) via unsupervised learning; next,
optimal skills are generated based on offline RL (Kipf et al., 2019; Pertsch et al., 2021; Ajay et al.,
2021; Rosete-Beas et al., 2022; Lee et al., 2022; Venkatraman, 2023) or planning1 (Co-Reyes et al.,
2018; Lynch et al., 2020; Lee et al., 2022; Venkatraman, 2023) in the skill space.

Goal-conditioned
policy Skill

Latent action

Figure 1: The physical meaning of the goal-conditioned policy, skill and latent action (corresponding
to 2 timesteps in the raw MDP). The red diamond represents a particular (goal) state, the gray, dotted
diamond is a placeholder, and the red circle denotes any state.

In contrast with the aforementioned hierarchical methodologies, LatentDiffuser initially learns
a more compact latent action space and subsequently employs the latent actions to make decisions.
As demonstrated in Figure 1, latent action not only differs from the goal-conditioned policy, which
pertains to the trajectory of reaching a particular state, but also from the skill, which relates to the
trajectory of completing a specific (multi-step) state transition. The latent action also corresponds to
the agent’s received reward and the subsequent expected return. The unique physical implications
of latent action and the methodology utilized by LatentDiffuser render the proposed method
advantageous in several ways. 1) The future information in the latent action allows the algorithm to
execute more efficient planning. 2) Unlike existing works wherein multiple optimization objectives
and the fully coupling or seperating of representation learning and decision making (RL or planning)
lead to intricate training processes and reduced training efficiency, LatentDiffuser exhibits
end-to-end training and unifies representation learning, sampling, and planning.

3 PROBLEM FORMULATION

In this paper, we approach the offline RL problem as a sequence modeling task, in alignment with
previous work (Janner et al., 2022; Ajay et al., 2023; Li et al., 2023). The following subsection delin-
eates the specificities of sequence modeling, or more accurately, the conditional generative modeling
paradigm. We examine a trajectory, τ , of length T , which is sampled from a MDP that features a

1It is important to note that planning is only feasible when the environment model is known or can be sampled
from the environment model. Consequently, some of these works focus on online RL tasks, while others first
learn an additional environment model from the offline dataset and then plan in the skill space.

3



Published as a conference paper at ICLR 2024

fixed stochastic behavior policy. This trajectory comprises (refer to Appendix for more modeling
selections of τ ) a series of states, actions, rewards, and reward-to-go values, Gt :=

∑
i=t γ

i−tri,
as proxies for future cumulative rewards: τ := (s1, a1, r1, G1, s2, a2, r2, G2, . . . , sT , aT , rT , GT ).
It is crucial to note that the definition of τ diverges from that in prior studies (Janner et al., 2022;
Ajay et al., 2023; Li et al., 2023), as each timestep now contains both the reward and reward-to-go
values. This modification has been specifically engineered to facilitate the subsequent learning of
latent action spaces. Sequential decision-making is subsequently formulated as the standard problem
of conditional generative modeling:

max
θ

Eτ∼D [log pθ (τ0 | y(τ0))] , (1)

where τ0 := τ . The objective is to estimate the conditional trajectory distribution using pθ to enable
planning or generating the desired trajectory τ0 based on the information y(τk). Existing instances
of y may encompass the return (Janner et al., 2022; Li et al., 2023), the constraints met by the
trajectory (Ajay et al., 2023; Li et al., 2023), or the skill demonstrated in the trajectory (Ajay et al.,
2023). The generative model is constructed in accordance with the conditional diffusion process:

q (τk+1 | τk) , pθ (τk−1 | τk,y(τ0)) . (2)
As per standard convention, q signifies the forward noising process while pθ represents the reverse
denoising process (Ajay et al., 2023).

Latent Actions We introduce the concept of latent action (Figure 1) proposed in TAP (Jiang et al.,
2023). TAP specifically models the optimal conditional trajectory distribution p∗(τ | s1, z) using
a series of latent variables, z := (z1, . . . , zM ). Assuming that the state and latent variables (s1, z)
can be deterministically mapped to trajectory τ , p∗(τ | s1, z) := p(s1)1(τ = h(s1, z))π

∗(z | s1)
is obtained. The terms z and π∗(z | s1) are subsequently referred to as the latent actions and
the optimal latent policy, respectively. In a deterministic MDP, the trajectory corresponding to an
arbitrary function h(s1, z) with π∗(z | s1) > 0 will constitute an optimal executable plan, implying
that the optimal trajectory can be recovered by following the latent actions z, beginning from the
initial state s1. Consequently, planning within the latent action space Z facilitates the discovery of
an desired, optimal trajectory. TAP, however, remain restricted to discrete latent action spaces and
necessitate indepentdent, resource-intensive planning. Motivated by these limitations, we present a
unified framework that integrates representation learning and planning for continuous latent action
via latent, score-based diffusion models.

4 ALGORITHM FRAMEWORK

This section provides a comprehensive elaboration of the model components and design choices, such
as the network architecture, loss functions, as well as the details of training and planning. By unifying
the representation learning and planning of latent action through the incorporation of a latent diffusion
model and the exact energy-guided sampling technique, LatentDiffuser achieves effective
decision-making capabilities for temporally-extended, sparse reward tasks. Specifically, we first
explore the representation learning for latent action in Section 4, followed by a detailed discussion
on planning using energy-guided sampling in Section 4.2, and provide a algorithm summary in
Section 4.3 to close this section.

...
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Figure 2: Representation learning for latent action with the latent score-based diffusion model.
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4.1 REPRESENTATION LEARNING FOR LATENT ACTION

The latent action space allows for a more compact, efficient, and adaptable method by effectively
capturing behavior policy support and detaching the temporal structure, thus providing innate ben-
efits in handling temporally extended offline tasks. As indicated in Section 3, before proceeding
to planning, we must first learn a continuous latent action space. For this purpose, we propose
the LatentDiffuser based on a latent diffusion model (LDM) (Vahdat et al., 2021), as de-
picted in Figure 2. LatentDiffuser is constituted by an encoder qϕ (z0 | s1, τ), a score-based
prior pθ (z0 | s1), and a decoder pψ (τ | s1, z0). In accordance with Vahdat et al. (2021), we train
LatentDiffuser by minimizing the variational upper bound on the negative trajectory log-
likelihood log p(τ | s1), meaning that the information y(τ) in Equation (1) is instantiated as the
initial state s1:

L(s1, τ,ϕ,θ,ψ) = Eqϕ(z0|s1,τ) [− log pψ (τ | s1, z0)] + KL (qϕ (z0 | s1, τ) ∥pθ (z0 | s1))
= Eqϕ(z0|s1,τ) [− log pψ (τ | s1, z0)] + Eqϕ(z0|s1,τ) [log qϕ (z0 | s1, τ)]
+ Eqϕ(z0|s1,τ) [− log pθ (z0 | s1)]

(3)

utilizing a VAE approach (Kingma & Welling, 2014; Rezende et al., 2014), wherein the qϕ (z0 | s0, τ)
approximates the true posterior p (z0 | s0, τ).
This paper employs Equation (3) with a decomposed KL divergence into entropy and cross entropy
terms. The reconstruction and entropy terms are easily estimated for any explicit encoder as long
as the reparameterization trick is applicable (Kingma & Welling, 2014). The challenging aspect of
training LatentDiffuser pertains to training the cross entropy term, which involves the score-
based prior. Unlike Vahdat et al. (2021), which addresses this challenge by simultaneously learning
an encoder/decoder architecture alongside a score-based prior, we adopt a simpler yet efficacious
approach (Rombach et al., 2022) by training a VAE {qϕ, pψ} and a score-based diffusion model
{qθ} consecutively based on the offline dataset Dτ . This does not necessitate a delicate balancing of
reconstruction and generative capabilities.

Encoder qϕ and Decoder pψ We use the almost consistent encoder design with TAP (Jiang et al.,
2023). Specifically, we handle xt := (st, at, rt, Gt) as a single token. The encoder ϕ processes token
xt using a GPT-2 style Transformer2, yielding T feature vectors, where T is the episode horizon.
Subsequently, we apply a 1-dimensional max pooling with a kernel size and stride of L, followed by a
linear layer, and generate T/L latent actions. Moreover, different from the TAP Decoder architecture,
we use a modular design idea. More concretely, each latent action is tiled L times to match the number
of input/output tokens T . We then concatenate the initial state s1 and the latent action, and apply a
linear projection to provide state information to the decoder. After adding positional embedding, the
decoder reconstructs the trajectory τ̂ := (x̂1, x̂2, . . . , x̂T ), with x̂t := (ŝt, ât, r̂t, Ĝt). To enhance
the decoder’s representation ability, we design the decoder modularly for different elements in xt,
as shown in Figure 2. Noting that the action decoder is designed based on the inverse dynamics
model (Agrawal et al., 2015; Pathak et al., 2017) in a manner similar to (Ajay et al., 2023; Li et al.,
2023), with the aim of generating raw action sequences founded on the state sequences. The training
of the encoder and decoders finally entails the use of a reconstruction loss computed as the mean
squared error between input trajectories {τ} and reconstructed trajectories {τ̂}, coupled with a
low-weighted (≈ 10−6) Kullback-Leibler penalty towards a standard normal on the learned latent
actions, akin to VAE approaches (Kingma & Welling, 2014; Rezende et al., 2014). This prevents the
arbitrary scaling of latent action space.

Score-based Prior θ Having trained the VAE {qϕ, pψ}, we now have access to a compact latent
action space. Distinct from VAE’s adoption of a uniform prior or TAP’s utilization of an autoregressive,
parameterized prior over latent actions, LatentDiffuser employs a score-based one. Thus, by
harnessing the “diffusion-sampling-as-planning” framework, we seamlessly transform planning
into conditional diffusion sampling, ultimately circumventing the need for an independent, costly
planning stage. Concretely, the score-based prior is modeled as a conditional, score-based diffusion
probabilistic model, which is parameterized using a temporal U-Net architecture (Janner et al., 2022;
Ajay et al., 2023). This architecture effectively treats a sequence of noised latent action xk(z) as
an image, where the height represents a single latent action’s dimension and the width signifies

2Different from the casual Transformer used in TAP, see Appendix for more discussion.
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the number of the latent actions. Conditioning information y(z) := s1 is then projected using a
multi-layer perceptron (MLP). The training of the score-based prior is formulated as a standard
score-matching problem detailed in Appendix B.2.

4.2 PLANNING WITH ENERGY-GUIDED SAMPLING

Upon acquiring the latent action space, we are able to effectively address temporally-extended offline
tasks using planning. Intriguingly, when examined from a probabilistic standpoint, the optimal latent
action sequence sampling coincides with a guided diffusion sampling problem (Lu et al., 2023),
wherein the guidance is shaped by an (unnormalized) energy function. By adopting a ”diffusion-
sampling-as-planning” framework (Janner et al., 2022), we can perform planning through conditional
sampling using the pretrained LatentDiffuser, without necessitating further costly planning
steps (Janner et al., 2021; Jiang et al., 2023). This renders LatentDiffuser a holistic framework
that seamlessly consolidates representation learning and planning within the latent action space. In
the subsequent sections, the equivalence between optimal latent actions sampling and energy-guided
diffusion sampling is demonstrated, followed by the introduction of a practical sampling algorithm to
facilitate efficient planning.

Planning is Energy-Guided Diffusion Sampling Considering a deterministic mapping from τ to
z, achieved by the learned encoder qϕ, the following theorem (refer to Appendix I.1 for the proof) is
derived for the optimal latent policy defined in Section 3:

Theorem 1 (Optimal latent policy). Given an initial state s1, the optimal latent policy
satisfies: π∗(z | s1) ∝ µ(z | s1)eβ

∑T
t=1 Qζ(st,at), wherein µ(z | s1) represents the behavior

latent policy and Qζ(·, ·) refers to the estimated Q-value function. β ≥ 0 signifies the inverse
temperature controlling the energy strength.

By rewriting p0 := π∗, q0 = µ and z0 = z, we can reformulate the optimal planning into the
following diffusion sampling problem:

p0(z0 | s1) ∝ q0(z0 | s1) exp (−βE(h(z0, s1))) , (4)

where E(h(z0, s1)) := −
∑T

t=1 Qζ(st, at) and h(z0, s1) denotes the pretrained decoder pψ. The
behavior latent policy q0(z0 | s1) is modeled by the pretrained LatentDiffuser. We then adopt
the “diffusion-sampling-as-planning” to generate desired (e.g., reward-maximizing) latent actions
z0. Concretely, we employ q0 := q, p0 = p at diffusion timestep k = 0. Then a forward diffusion
process is constructed to simultaneously diffuse q0 and p0 into an identical noise distribution, where
pk0(zk|z0, s1) := qk0(zk|z0, s1) = N (zk|αkz0, σ

2
t I). Based on (Lu et al., 2023, Theorem 3.1), the

marginal distribution qk and pk of the noised latent actions zk at the diffusion timestep k adhere to:

pk(zk | s1) ∝ qk(zk | s1) exp (Ek(h(zk, s1))) , (5)

where Ek(h(zk, s1)) is βE(h(z0, s1)) when k = 0 and − logEq0k(z0|zk)
[exp(−βE(h(z0, s1)))]

when k > 0. We then need to estimate the score function of pk(zk | s1). Quoting the derivation
of Lu et al. (2023), the score function satisfies: ∇zk log pk (zk | s1) = ∇zk log qk (zk | s1) +
∇zkEk (h(zk, s1)) . Consequently, the optimal planning has been formulated as energy-guided
sampling within the latent action space, with ∇zkE(h(zk, s1)) as the desired guidance.

Practical Sampling Method Estimating the target score function ∇zk log pk(zk | s1) is non-trivial
because of the intractable energy guidance ∇zkE(h(zk, s1)). We borrow the energy-guided sampling
method proposd in (Lu et al., 2023) and propose a sequence-level, exact sampling methods by training
a total of three neural networks: (1) a diffusion model to model the behavior latent policy q0(z0 | s1);
(2) a state-action value function Qζ(s, a) to define the intermediate energy function E(h(z0, s1)); and
(3) an time-dependent energy model fη(zk, s1, k) to estimate Ek(h(zk, s1)) and guide the diffusion
sampling process.

Recall that we already have (1) a diffusion model, i.e., the socre-based prior pθ(z0 | s1) and (2) a
state-action value function Qζ(s, a), i.e., the return decoder. According to Lu et al. (2023, Theorem
3.2), the only remained time-dependent energy model, fη(zk, s1, k), can be trained by minizing the
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following contrastive loss:

min
η

Ep(k,s1)E∏M
i=1 q

(
z
(i)
0 |s1

)
p(ϵ(i))

− M∑
i=1

e−βE0(h(z
(i)
0 ,s1))∑M

j=1 e
−βE0(h(z

(j)
0 ,s1))

log
e
fη

(
z
(i)
k ,s1,k

)
∑M

j=1 e
fη

(
z
(j)
k ,s1,k

)
 ,

(6)
where k ∼ U(0,K), zk = αkz0 + σkϵ, and ϵ ∼ N (0, I). To estimate true latent actions distribution
q(z0 | s1) in Equation 6, we utilize the pretrained encoder qϕ and score-based prior pθ to generate
M support latent actions {ẑ0(i)}M for each initial state s1 by diffusion sampling. The contrastive
loss in Equation (6) is then estimated by:

min
η

Ek,s1,ϵ −
M∑
i=1

e−βE0(h(ẑ
(i)
0 ,s1))∑M

j=1 e
−βE0(h(ẑ

(j)
0 ,s1))

log
e
fη

(
ẑ
(i)
k ,s1,k

)
∑M

j=1 e
fη

(
ẑ
(j)
k ,s1,k

) , (7)

where ẑ0
(i), ẑ0

(j) correspond to the support latent actions for each initial state s1.

4.3 ALGORITHM SUMMARY

In general, the training phase of LatentDiffuse is composed of three parts, corresponding to the
training of encoder and decoders {qϕ, pψ}, score-based prior pθ, and intermediated energy model fη ,
as shown in Algorithm 1. Throughout the training process, it is imperative to employ two distinct
datasets: the first being a standard offline RL dataset, D, which encompasses trajectories sampled
from behavior policies, whereas the second dataset consists of support latent actions for each initial
state s1 ∈ D, generated by the pre-trained VAE, i.e., the encoder, score-based prior and decoders.

Algorithm 1 LatentDiffuser: Efficient Planning with Latent Diffusion

Initialize the latent diffusion model, i.e., the encoder qϕ, the score-based prior pθ and the decoder
pψ; the intermediate energy model fη
for each gradient step do ▷ Training the encoder and decoders

Sample B1 trajectories τ from offline dataset D
Generate reconstructed trajectories τ̂ with the encoder qϕ and decoder pψ
Update {ϕ,ψ} based on the standard VAE loss

end for
for each gradient step do ▷ Training the score-based prior

Sample B2 trajectories τ from offline dataset D
Sample B2 Gaussian noises ϵ from N (0, I) and B2 time k from U(0,K)
Generate latent actions z0 with the pretrained encoder qϕ and decoder pψ
Perturb z0 according to zk := αkz0 + σkϵ
Update {θ} with the standard score-matching loss in Appendix B.2

end for
for each initial state s1 in offline dataset D do ▷ Generating the support latent actions

Sample M support latent actions {ẑ0(i)}M from the pretrained score-based prior pθ
end for
for each gradient step do ▷ Training the intermediate energy model

Sample B3 initial state s1 from offline dataset D
Sample B3 Gaussian noises ϵ from N (0, I) and B3 time k from U(0,K)

Retrieve support latent actions {ẑ0(i)}M for each s1
Perturb ẑ0

(i) according to ẑk
(i) := αkẑ0

(i) + σkϵ
Update {η} based on the contrastive loss in Equation (7)

end for

Moreover, the optimal planning is tantamount to conducting conditional diffusion sampling based on
the score-based prior and the intermediate energy model. Formally, the generation employs reverse
denoising process at each diffusion timestep k by utilizing the score function ∇zk log pk (zk | s1)
based on the score function of the score-based prior ∇zk log qk (zk | s1) and intermediate energy
model ∇zkEk (h(zk, s1)), along with the state and action decoder pψ (τ | s1, z0) to map the sam-
pled latent actions z0 back to the original trajectory space. Explicitly, the generative process is
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p (s1, z0, τ) = p0 (z0 | s1) pψ (τ | s1, z0). To avoid the accumulation of errors during sampling, we
adopt the receding horizon control used in the existing methods (Ajay et al., 2023; Li et al., 2023).

5 EXPERIMENTS

This section aims to assess the efficacy of the LatentDiffuser for extended temporal offline
tasks in comparison to current SOTA offline RL methods, which integrate hierarchical structures,
and conditional generation models. The empirical evaluation encompasses three task categories
derived from D4RL (Fu et al., 2020): namely, Gym locomotion control, Adroit, and AntMaze.
Gym locomotion tasks function as a proof-of-concept in the lower-dimensional realm, in order
to ascertain whether LatentDiffuser is capable of accurately reconstructing trajectories for
decision-making and control purposes. Subsequently, LatentDiffuser is evaluated on Adroit—a
task with significant state and action dimensionality—as well as on LatentDiffuser within the
AntMaze environment, which represents a sparse-reward continuous-control challenge in a series of
extensive long-horizon maps (Li et al., 2023). The subsequent sections will describe and examine
the performance of these tasks and their respective baselines individually. Scores within 5% of the
maximum per task will be emphasized in bold (Kostrikov et al., 2022).

5.1 PROOF-OF-CONCEPT: GYM LOCOMOTION CONTROL

Baselines Initially, an outline of the baselines is provided: CQL (Kumar et al., 2020),
IQL (Kostrikov et al., 2022), D-QL (Wang et al., 2023), and QGPO (Lu et al., 2023) are all model-free
offline RL methods. MoReL (Kidambi et al., 2020) is a model-based offline RL method. DT (Chen
et al., 2021), TT (Janner et al., 2021), Diffuser (Janner et al., 2022), and DD (Ajay et al., 2023)
address offline RL tasks via conditional generative modeling. Finally, TAP (Jiang et al., 2023) and
HDMI (Li et al., 2023) employ a hierarchical framework grounded in generative modeling. Due to
spatial constraints, only algorithms with the highest performance rankings are displayed herein; for a
comprehensive comparison, please refer to the appendix.

Table 1: The performance in Gym locomotion control in terms of normalized average returns. Results
correspond to the mean and standard error over 5 planning seeds.

Dataset Environment CQL TT DD D-QL TAP QGPO HDMI LD
Med-Expert HalfCheetah 91.6 95 90.6±1.3 96.8±0.3 91.8 ± 0.8 93.5±0.3 92.1±1.4 95.2±0.2
Med-Expert Hopper 105.4 110.0 111.8±1.8 111.1±1.3 105.5 ± 1.7 108.0±2.5 113.5±0.9 112.9±0.3
Med-Expert Walker2d 108.8 101.9 108.8±1.7 110.1±0.3 107.4 ± 0.9 110.7 ± 0.6 107.9±1.2 111.3±0.2
Medium HalfCheetah 44.0 46.9 49.1±1.0 51.1±0.5 45.0 ± 0.1 54.1 ± 0.4 48.0±0.9 53.6±0.4
Medium Hopper 58.5 61.1 79.3±3.6 90.5±4.6 63.4 ± 1.4 98.0 ± 2.6 76.4±2.6 98.5±0.7
Medium Walker2d 72.5 79 82.5±1.4 87.0±0.9 64.9 ± 2.1 86.0 ± 0.7 79.9±1.8 86.3±0.9
Med-Replay HalfCheetah 45.5 41.9 39.3±4.1 47.8±0.3 40.8 ± 0.6 47.6 ± 1.4 44.9±2.0 47.3±1.2
Med-Replay Hopper 95 91.5 100±0.7 101.3±0.6 87.3 ± 2.3 96.9 ± 2.6 99.6±1.5 100.4±0.5
Med-Replay Walker2d 77.2 82.6 75±4.3 95.5±1.5 66.8 ± 3.1 84.4 ± 4.1 80.7±2.1 82.6 ± 2.1

Average 77.6 78.9 81.8 88.0 82.5 86.6 82.6 87.5

Table 1 shows that LatentDiffuser surpasses specifically designed offline RL methods in the
majority of tasks. Furthermore, the performance discrepancy between LatentDiffuser and
two-stage algorithms, such as TAP and HDMI, underscores the benefits provided by the the proposed
framework, which unifies learning of latent action space representation and planning.

5.2 HIGH-DIMENSIONAL MDP: ADROIT

Baselines Taking into account the large dimensions characterizing the Adroit task actions, only
baselines that perform well in the previous task are evaluated. Additionally, D-QL necessitates 50
repeated samplings by default for action generation (Wang et al., 2023). This requirement would
result in a substantial training overhead for high-dimensional action tasks. Consequently, to ensure a
fair comparison, D-QL is configured to allow only 1 sampling, akin to QGPO (Lu et al., 2023).

Table 2 demonstrates the advantages of LatentDiffuser become even more pronounced in high-
dimensional tasks. Furthermore, a marked decrease in sequence modeling method performance is
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Table 2: Adroit results. These tasks have high action dimensionality (24 degrees of freedom)

Dataset Environment CQL TT DD D-QL@1 TAP QGPO HDMI LD
Human Pen 37.5 36.4 64.1 ± 9.0 66.0 ± 8.3 76.5 ± 8.5 73.9 ± 8.6 66.2 ± 8.8 79.0 ± 8.1
Human Hammer 4.4 0.8 1.0 ± 0.1 1.3 ± 0.1 1.4 ± 0.1 1.4 ± 0.1 1.2 ± 0.1 4.6 ± 0.1
Human Door 9.9 0.1 6.9 ± 1.2 8.0 ± 1.2 8.8 ± 1.1 8.5 ± 1.2 7.1 ± 1.1 9.8 ± 1.0
Human Relocate 0.2 0.0 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.1
Cloned Pen 39.2 11.4 47.7 ± 9.2 49.3 ± 8.0 57.4 ± 8.7 54.2 ± 9.0 48.3 ± 8.9 60.7 ± 9.1
Cloned Hammer 2.1 0.5 0.9 ± 0.1 1.1 ± 0.1 1.2 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 4.2 ± 0.1
Cloned Door 0.4 -0.1 9.0 ± 1.6 10.6 ± 1.7 11.7 ± 1.5 11.2 ± 1.4 9.3 ± 1.6 12.0 ± 1.6
Cloned Relocate -0.1 -0.1 -0.2 ± 0.0 -0.2 ± 0.0 -0.2 ± 0.0 -0.2 ± 0.0 -0.1 ± 0.0 -0.1 ± 0.0
Expert Pen 107.0 72.0 107.6 ± 7.6 112.6 ± 8.1 127.4 ± 7.7 119.1 ± 8.1 109.5 ± 8.0 131.2 ± 7.3
Expert Hammer 86.7 15.5 106.7 ± 1.8 114.8 ± 1.7 127.6 ± 1.7 123.2 ± 1.8 111.8 ± 1.7 132.5 ± 1.8
Expert Door 101.5 94.1 87.0 ± 0.8 93.7 ± 0.8 104.8 ± 0.8 98.8 ± 0.8 85.9 ± 0.9 111.9 ± 0.8
Expert Relocate 95.0 10.3 87.5 ± 2.8 95.2 ± 2.8 105.8 ± 2.7 102.5 ± 2.8 91.3 ± 2.6 109.5 ± 2.8

Average (w/o expert) 11.7 6.1 16.2 17.1 19.6 18.79 16.6 21.3

Average (w/ expert) 40.3 20.1 43.2 46.1 51.9 49.5 44.3 54.6

observed. Two primary factors are identified: first, larger action dimensions necessitate tokenization-
and autoregression-based techniques (such as TT) to process increasingly lengthy sequences; second,
DD and HDMI employ an inverse dynamic model to generate actions independently, while the
expansion in action dimension renders the model fitting process more challenging.

5.3 LONG-HORIZION CONTINUOUS CONTROL: ANTMAZE

Baselines To validate the benefits of latent actions in longer-horizon tasks, an additional com-
parison is made with hierarchical offline RL methods designed explicitly for long-horizon tasks:
CompILE (Kipf et al., 2019), GoFAR (Ma et al., 2022), and HiGoC (Li et al., 2022). Concurrently,
CQL and TT are removed due to their inability to perform well in high-dimensional Adroit.

Table 3: AntMaze performance correspond to the mean and standard error over 5 planning seeds.

Environment CompILE GoFAR HiGoC DD D-QL@1 TAP QGPO HDMI LD
AntMaze-Play U-Maze-3 41.2± 3.6 38.5± 2.2 31.2± 3.2 73.1± 2.5 52.9± 4.1 82.2± 2.1 59.3± 1.3 86.1± 2.4 85.4± 1.9
AntMaze-Diverse U-Maze-3 23.5± 1.8 25.1± 3.1 25.5± 1.6 49.2± 3.1 32.5± 5.9 69.8±0.5 38.5± 2.6 73.7±1.1 75.6±2.1
AntMaze-Diverse Large-2 - - - 46.8± 4.4 - 69.2±3.2 - 71.5±3.5 75.8±2.0

Single-task Average 32.4 31.8 28.4 56.4 39.0 73.7 45.4 77.1 78.9
MultiAnt-Diverse Large-2 - - - 45.2± 4.9 - 71.6 ± 3.3 - 73.6 ± 3.8 73.3 ± 2.6

Multi-task Average - - - 45.2 - 71.6 - 73.6 73.3

Table 3 highlights that sequence modeling-based hierarchical methods significantly surpass RL-based
approaches. Moreover, LatentDiffuser demonstrates performance comparable to two-stage
techniques such as TAP and HDMI through end-to-end training.

6 CONCLUSIONS

In this work, we present a novel approach, LatentDiffuser, for tackling temporal-extended
offline tasks, addressing the limitations of previous state-of-the-art offline reinforcement learn-
ing methods and conditional generation models in handling high-dimensional, long-horizon tasks.
LatentDiffuser is capable of end-to-end learning for both representation of and planning with
latent action, delivering a unified, comprehensive solution for offline decision-making and control.
Numerical results on Gym locomotion control, Adroit, and AntMaze, demonstrate the effectiveness
of LatentDiffuser in comparison with existing hierarchical- and planning-based offline meth-
ods. The performance gains are particularly noticeable in high-dimensional and long-horizon tasks,
illustrating the advantages of LatentDiffuser in addressing these challenging scenarios.
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A LIMITATIONS AND SOCIETAL IMPACT

Limitations LatentDiffuser, analogous to other diffusion-based methods for offline decision-
making, exhibits a protracted inference time owing to the iterative nature of the sampling process. This
challenge could be alleviated through the adoption of approaches that enable accelerated sampling (Lu
et al., 2022a;b) or by distilling these diffusion models into alternative methods necessitating fewer
sampling iterations (Song et al., 2023). Additionally, similar with TAP (Jiang et al., 2023), empirical
findings from continuous control featuring deterministic dynamics indicate that LatentDiffuser
can manage epistemic uncertainty. However, the efficacy of LatentDiffuser in addressing tasks
characterized by stochastic dynamics without modifications remains unascertained. Furthermore, a
deficiency in our methodology is the requirement for both the latent steps L and planning horizon
H for the latent action to remain constant. We hope that facilitating adaptive variation of these
hyperparameters may enhance performance.
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Societal Impact Similar with other deep generative modeling techniques, the energy-guided
diffusion sampling employed in this paper possesses the potential to generate harmful content and
may perpetuate and exacerbate pre-existing undesirable biases present in the offline dataset.

B PRELIMINARIES

B.1 OFFLINE REINFORCEMENT LEARNING

In general, reinforcement learning (RL) represents the problem of sequential decision-making through
a Markov Decision Process M = (S,A,P, r, γ), encompassing a state space S and an action space
A. Given states s, s′ ∈ S and an action a ∈ A, the transition probability function is expressed as
P (s′ | s, a) : S ×A×S → [0, 1] and the reward function is defined by r(s, a, s′) : S ×A×S → R.
The discount factor is denoted as γ ∈ (0, 1].

The policy is represented as π : S × A → [0, 1], indicating the probability of taking action a in
state s as π(a | s). For the timestep t ∈ [1, T ], the cumulative discounted reward, also referred to
as reward-to-go, is identified by Rt =

∑T
t′=t γ

t′−trt′ . The principal objective of online RL is to
determine a policy π that maximizes J = Eat∼π(·|st),st+1∼P(·|st,at)[

∑T
t=1 γ

t−1rt(st, at, st+1)] via
learning from transitions (s, a, r, s′) during environment interaction (Sutton & Barto, 2018).

Conversely, in offline RL, a static dataset D is employed, which has been collected through a behavior
policy πµ, for acquiring a policy π that optimizes J for subsequent application in the interactive
environment. The behavior policy πµ can either constitute a single policy or an amalgamation
of various policies; however, it remains inaccessible. The acquisition of data is presumed to be
trajectory-wise, as represented by D = {τi}Di=1, where τ = {(si, ai, ri, s′i)}

T
i=1.

B.2 DIFFUSION PROBABILISTIC MODELS

This section will provide an introduction to the diffusion probabilistic model within the context of the
LatentDiffuser. Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020),
constitute a likelihood-based generative framework that facilitates learning data distributions q(z)
from the offline datasets expressed as D := {zi}, wherein the index i denotes a specific sample
within the dataset (Song, 2021), and zi is the latent actions encoded by the pre-trained encoder qϕ.
A core concept within diffusion probabilistic models lies in the representation of the (Stein) score
function (Liu et al., 2016), which does not necessitate a tractable normalizing constant (also referred
to as the partition function).

The discrete-time generation procedure encompasses a designed forward noising (or diffusion)
process q(zk+1|zk) := N (zk+1;

√
α̃kzk, (1 − α̃k)I) at (forward) diffusion timestep k. The for-

ward process coupled with a learnable, reverse denoising (or diffusion) process pθ(zk−1|zk) :=
N (zk−1|µθ(zk, k),Σk) at (backward) diffusion timestep k. N (µ,Σ) signifies a Gaussian distribu-
tion characterized by mean µ and variance Σ, αk ∈ R establishes the variance schedule. In order to
ensure consistency with the main text notation, we denote αk :=

√
α̃k and σk :=

√
1− α̃k. z0 := z

corresponds to a sample in D, z1, z2, . . . ,zK−1 signifies the latent variables or the noised latent
actions, and zK ∼ N (0, I) for judiciously selected α̃k values and a sufficiently extensive K.

Commencing with Gaussian noise, samples undergo iterative generation via a sequence of denoising
steps. An optimizable and tractable variational lower-bound on log pθ serves to train the denoising
operator, with a simplified surrogate loss proposed in (Ho et al., 2020):

Ldenoise(θ) := Ek∼[1,K],z0∼q,ϵ∼N (0,I)

[
∥ϵ− ϵθ(zk, k)∥2

]
. (8)

The predicted noise ϵθ(zk, k), parameterized through a deep neural network, emulates the noise ϵ ∼
N (0, I) integrated with the dataset sample z0 yielding noisy zk in the noising process.

Conditional Diffusion Probabilistic Models Intriguingly, the conditional distribution q(z|y(z))
facilitates sample generation under the condition y(z). Within the context of this paper, y(z) is
instantiated as the initial state s1. The equivalence between diffusion probabilistic models and score-
matching (Song et al., 2021) reveals that ϵθ(zk, k) ∝ ∇zk log p(zk), giving rise to two categorically
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equivalent methodologies for conditional sampling with diffusion probabilistic models: classifier-
guided (Nichol & Dhariwal, 2021), and classifier-free (Ho & Salimans, 2022) techniques employed
in our work. The latter method modifies the preliminary training configuration, learning both
a conditional ϵθ(zk, s1, k) and an unconditional ϵθ(zk, k) model for noise. Unconditional noise
manifests as conditional noise ϵθ(zk,∅, k), with a placeholder ∅ replacing s1. When y(z) = ∅,
the entries of e are zeroed out. The perturbed noise ϵ̃k := ϵθ(zk, k) + ω(ϵθ(zk, s1, k)− ϵθ(zk, k))
is subsequently employed to generate samples. Additionally, we adopt low-temperture sampling
in the denoising process to ensure higher quality latent actions (Ajay et al., 2023). Concretely, we
compute µk−1 and Σk−1 from the previous noised latent actions zk−1 and perturbed noise ϵ̃k−1, and
subsequently sample zk−1 ∼ N (µk−1, αΣk−1) with the variance scaled by α ∈ [0, 1).

C MISSING RELATED WORK

C.1 MODEL-BASED REINFORCEMENT LEARNING

LatentDiffuser is incorporated into a research trajectory focused on model-based reinforcement
learning (RL) (Sutton, 1990; Janner et al., 2019; Schrittwieser et al., 2020; Lu et al., 2021; Eysenbach
et al., 2022; Suh et al., 2023), as it makes decisions by forecasting future outcomes. These approaches
frequently employ predictions in the raw Markov Decision Process (MDP), which entails that models
accept the current raw state and action as input, outputting probability distributions encompassing
subsequent states and rewards. Hafner et al. (2019), Ozair et al. (2021), Hafner et al. (2021), Hafner
et al. (2023), and Chitnis et al. (2023) proposed to acquiring a latent state space in conjunction with
a dynamics function. Contrarily, in their cases, the action space accessible to the planner remains
identical to that of the raw MDP, and the execution of the plan maintains its connection to the original
temporal structure of the environment.

C.2 ACTION REPRESENTATION LEARNING.

The concept of learning a representation for actions and conducting RL within a latent action
space has been investigated in the context of model-free RL (Merel et al., 2019; Allshire et al.,
2021; Zhou et al., 2021; Chen et al., 2022; Peng et al., 2022; Dadashi et al., 2022). In contrast to
LatentDiffuser, where the latent action space is utilized to promote efficacy and robustness
in planning, the motivations for obtaining a latent action space in model-free approaches vary, yet
the underlying objective centers on providing policy constraints. For instance, Merel et al. (2019)
and Peng et al. (2022) implement this concept for humanoid control to ensure the derived policies
resemble low-level human demonstration behavior, thus being classified as natural. Zhou et al. (2021)
and Chen et al. (2022) employ latent actions to prevent out-of-distribution (OOD) actions within
the offline RL framework. Dadashi et al. (2022) proposes adopting a discrete latent action space to
facilitate the application of methods designed explicitly for discrete action spaces to continuous cases.
In teleoperation literature, Karamcheti et al. (2021) and Losey et al. (2022) embed high-dimensional
robotic actions into lower-dimensional, human-controllable latent actions.

Additionally, several works focus on learning action representations for improved planning efficiency.
Wang et al. (2020) and Yang et al. (2021) learn action representations for on-the-fly learning, appli-
cable to black-box optimization and path planning scenarios. Despite high-level similarities, these
papers assume prior knowledge of environment dynamics. TAP (Jiang et al., 2023) extends this
framework into the offline RL domain, where the actual environmental dynamics remain undeter-
mined, necessitating joint learning of the dynamics model and the representation of latent action.
Nevertheless, TAP is constrained to a discrete latent action space and demands costly additional
planning. LatentDiffuser can achieve representation learning and planning for continuous
latent actions by leveraging the latent diffusion model in an end-to-end manner.

C.3 OFFLINE REINFORCEMENT LEARNING.

LatentDiffuser is devised for the offline RL (Ernst et al., 2005; Levine et al., 2020), precluding
the utilization of online experiences for policy improvement. A principal hurdle in offline RL involves
preventing out-of-distribution (OOD) actions selection by the learned policy to circumvent value
function and model inaccuracies exploitation. Conservatism (Kumar et al., 2020; Kidambi et al.,
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2020b; Fujimoto & Gu, 2021; Lu et al., 2022c; Kostrikov et al., 2022) is proposed as a standard
solution for this challenge. LatentDiffuser inherently prevents OOD actions via planning in a
learned latent action space.

Pursuing adherence to a potentially diverse behavior policy, recent works have identified diffusion
models as powerful generative tools, which generally surpass preceding generative approaches such
as Gaussian distribution (Peng et al., 2019; Wang et al., 2020b; Nair et al., 2020) and Variational
Autoencoders (VAEs) (Fujimoto et al., 2019; Wang et al., 2021) concerning behavior modeling.
Different methods adopt distinct strategies for action generation, maximizing the learned Q-functions.
Diffusion-QL (Wang et al., 2023) monitors gradients from behavior diffusion policy-derived actions
to guide generated actions towards higher Q-value regions. SfBC (Chen et al., 2023b) and Diffusion-
QL employ a similar idea, whereby resampling actions from multiple behavioral action candidates
occur, with predicted Q-values serving as sampling weights. Ada et al. (2023) incorporates a state
reconstruction loss-based regularization term within the diffusion-based policy training, consequently
bolstering generalization capabilities for OOD states. Alternative works (Goo & Niekum, 2022;
Pearce et al., 2023; Block et al., 2023; Suh et al., 2023) solely deploy diffusion models for behavior
cloning or planning, rendering Q-value maximization unnecessary.

Contrary to the works above aligned with the RL paradigm, LatentDiffuser addresses offline
RL challenges through sequence modeling (refer to the subsequent section). Compared to RL-based
offline methodologies, sequence modeling offers benefits regarding temporally extended and sparse
or delayed reward tasks.

C.4 REINFORCEMENT LEARNING AS SEQUENCE MODELING

LatentDiffuser stems from an emerging body of research that conceptualizes RL as a sequential
modeling problem (Bhargava et al., 2023). Depending on the model skeleton, this literature may
be classified into two primary categories. The first category comprises models that leverage a GPT-
2 (Radford et al., 2019) style Transformer architecture (Vaswani et al., 2017), also referred to as causal
transformers, for the autoregressive modeling of states, actions, rewards, and returns, ultimately
converting predictive capabilities into policy. Examples include Decision Transformer (DT, Chen
et al. 2021) and Zheng et al. (2022), which apply an Upside Down RL technique (Schmidhuber, 2019)
under both offline and online RL settings, and Trajectory Transformer (TT, Janner et al. 2021), which
employs planning to obtain optimal trajectories maximizing return. Chen et al. (2023a) introduced a
non-autoregressive planning algorithm based on energy minimization, while Jia et al. (2023) enhanced
generalization ability for unseen tasks through refined in-context example design. Lastly, Wu et al.
(2023) addresses trajectory stitching challenges by adjusting the history length employed in DT.

The second category features models based on a score-based diffusion process for non-autoregressive
modeling of state and action trajectories. Different methods select various conditional samplers
to generate actions that maximize the return. Diffuser (Janner et al., 2022) emulates the classifier-
guidance methodology (Nichol & Dhariwal, 2021) and employing guidance methods as delineated
in § F.1. Alternatively, Decision Diffuser (Ajay et al., 2023) and its derivatives (Li et al., 2023; Hu
et al., 2023) explore classifier-free guidance (Ho & Salimans, 2022). Extensions of this concept to
multi-task settings are presented by He et al. (2023) and Ni et al. (2023), while Liang et al. (2023)
utilizes the diffusion model as a sample generator for unseen tasks, thus improving generalization
capabilities. LatentDiffuser offers a more efficient planning solution to enable these sequential
modeling algorithms to navigate complex action spaces effectively.

C.5 CONTROLLABLE SAMPLING WITH GENERATIVE MODELS

LatentDiffuser produces trajectories corresponding to optimal policies by employing control-
lable sampling within diffusion models. Current methods for facilitating controllable generation in
diffusion models primarily emphasize conditional guidance. Such approaches leverage a pretrained
diffusion model for the definition of the prior distribution q(x) and strive to obtain samples from
q(x) exp(−βE(x)). Graikos et al. (2022) introduces a training-free sampling technique, which finds
application in approximating solutions for traveling salesman problems. Poole et al. (2023) capitalizes
on a pretrained 2D diffusion model and optimizes 3D parameters for generating 3D shapes. Kawar
et al. (2022) and Chung et al. (2023) exploit pretrained diffusion models for addressing linear and
specific non-linear inverse challenges, such as image restoration, deblurring, and denoising. Dif-
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fuser (Janner et al., 2022) and Decision Diffuser (Ajay et al., 2023) use pretrained diffusion models
to solve the offline RL problem. Zhao et al. (2022) and Bao et al. (2023) employ human-crafted
intermediate energy guidance for tasks including image-to-image translation and inverse molecular
design. In a more recent development, Lu et al. (2023) presents a comprehensive framework for
incorporating human control within the sampling process of diffusion models.

Remark Recently, Venkatraman (2023) proposed a novel algorithm called LDCQ, which is very
similar to LatentDiffuser. Specifically, LDCQ also introduces a latent diffusion model to learn
a latent action space. Unlike the latent action used by LatentDiffuser, the learned latent action space
in LDCQ belongs to the skill space, similar to what is described in Appendix F.2. Additionally,
LDCQ does not perform planning within the learned skill space but instead uses model-free TD-
learning methods to choose the optimal skill at each timestep and obtains the final action using a
decoder. In summary, it is quite a coincidence that LDCQ and LatentDiffuser belong to two
orthogonal approaches to utilizing latent diffusion models in offline RL. The former still adopts the
RL framework to model the offline RL problems, while LatentDiffuser approaches the problem from
a conditional generative perspective.

D MISSING RESULTS AND ANALYSES

D.1 PROOF-OF-CONCEPT EXAMPLE: MAZE-2D-OPEN

(a) Suboptimal trajectories. (b) Stitched near optimal trajectories.

Figure 3: Proof-of-Concept example. We demonstrate the importance of planning through an
experiment designed by Decison Diffuser (Ajay et al., 2023, DD; Appendix A.1). The diffusion
model achieves trajectory stitching, a process essential for handling a large number of suboptimal
trajectories, through implicit planning.

To demonstrate the importance of planning, we designed an experiment same as Ajay et al. (2023,
Appendix A.1). Specifically, most tasks’ offline datasets contain a large number of suboptimal
trajectories. To learn better policies rather than just simple behavior cloning, trajectory stitching
is one of the essential abilities algorithms must possess. To validate whether LatentDiffuser
can achieve trajectory stitching through implicit planning, we adopted the experimental setup same
as Ajay et al. (2023, Appendix A.1). In the maze-2D-open environment, the objective is to navigate
towards the target area situated on the right side, with the reward being the negative distance to this
target area. The training dataset is composed of 500 trajectories originating from the left side and
terminating at the bottom side, as well as 500 trajectories starting from the bottom side and ending at
the right side. Each trajectory is constrained to a maximum length of 50. At test time, the agent begins
on the left side and aims to reach the right side as efficiently as possible. As demonstrated in Figure 3
and consistent with the findings of Ajay et al. (2023, Appendix A.1), the LatentDiffuser can
effectively stitch trajectories from the training dataset to produce trajectories that traverse from the
left side to the right side in (near) straight lines.
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D.2 MAIN RESULTS

The performance in Gym locomotion control in terms of normalized average returns of all baselines
are shown in Table 4.

Table 4: The performance in Gym locomotion control in terms of normalized average returns of all
baselines. Results correspond to the mean and standard error over 5 planning seeds.

Dataset Environment CQL IQL DT TT MoReL Diffuser
Med-Expert HalfCheetah 91.6 86.7 86.8 95 53.3 79.8
Med-Expert Hopper 105.4 91.5 107.6 110.0 108.7 107.2
Med-Expert Walker2d 108.8 109.6 108.1 101.9 95.6 108.4
Medium HalfCheetah 44.0 47.4 42.6 46.9 42.1 44.2
Medium Hopper 58.5 66.3 67.6 61.1 95.4 58.5
Medium Walker2d 72.5 78.3 74.0 79 77.8 79.7
Med-Replay HalfCheetah 45.5 44.2 36.6 41.9 40.2 42.2
Med-Replay Hopper 95 94.7 82.7 91.5 93.6 96.8
Med-Replay Walker2d 77.2 73.9 66.6 82.6 49.8 61.2

Average 77.6 77 74.7 78.9 72.9 75.3

Dataset Environment DD D-QL TAP QGPO HDMI LatentDiffuser
Med-Expert HalfCheetah 90.6±1.3 96.8±0.3 91.8 ± 0.8 93.5±0.3 92.1±1.4 95.2±0.2
Med-Expert Hopper 111.8±1.8 111.1±1.3 105.5 ± 1.7 108.0±2.5 113.5±0.9 112.9±0.3
Med-Expert Walker2d 108.8±1.7 110.1±0.3 107.4 ± 0.9 110.7 ± 0.6 107.9±1.2 111.3±0.2
Medium HalfCheetah 49.1±1.0 51.1±0.5 45.0 ± 0.1 54.1 ± 0.4 48.0±0.9 53.6±0.4
Medium Hopper 79.3±3.6 90.5±4.6 63.4 ± 1.4 98.0 ± 2.6 76.4±2.6 98.5±0.7
Medium Walker2d 82.5±1.4 87.0±0.9 64.9 ± 2.1 86.0 ± 0.7 79.9±1.8 86.3±0.9
Med-Replay HalfCheetah 39.3±4.1 47.8±0.3 40.8 ± 0.6 47.6 ± 1.4 44.9±2.0 47.3±1.2
Med-Replay Hopper 100±0.7 101.3±0.6 87.3 ± 2.3 96.9 ± 2.6 99.6±1.5 100.4±0.5
Med-Replay Walker2d 75±4.3 95.5±1.5 66.8 ± 3.1 84.4 ± 4.1 80.7±2.1 82.6 ± 2.1

Average 81.8 88.0 82.5 86.6 82.6 87.5

This section will then delve into a more detailed analysis of the performance differences among
different baselines across various tasks. To provide an intuitive comparison of different algorithms,
we classify them from three perspectives — planning, hierarchy, and generative — according to
the classification method shown in Table 5. Firstly, the Gym locomotion task has a long horizon,
dense rewards, and low action dimensions, making it a baseline test task for offline RL. The results
from Table 4 show that generative methods based on diffusion models generally perform better. The
community currently attributes this to diffusion models’ more powerful representation capabilities in
modeling more complex policies or environmental models. However, LatentDiffuser does not
demonstrate its advantages well in the low-dimensional action space. Although LatentDiffuser
approaches the SOTA performance on this task, it is mainly due to a better diffusion sampling method,
which is supported by the solid performance of the QGPO method. Due to dense rewards, planning
and hierarchy-based methods, such as TAP and HDMI, have not achieved the best results.

Secondly, the Adroit task is characterized by a high-dimensional action space. This leads to the best
performance for TAP and LatentDiffuser (see Table 2), two methods based on latent action, which
experimentally verify the effectiveness of latent action. Additionally, generative methods based on
diffusion models generally exhibit better performance. However, due to the shorter horizon of the
Adroit task, the HDMI method, which is based on planning and hierarchy, does not achieve the best
performance.

Lastly, the AntMaze task has a longer horizon and very sparse rewards. This allows latent action
ample room for improvement (see Table 3). Moreover, methods based on planning and hierarchy
also achieve good results, such as HDMI. In this task, non-generative methods based on planning and
hierarchy, such as ComPILE and GoFAR, approach the performance of generative methods without
planning and hierarchy (D-QL).

The Performance Gap Between TAP and LatentDiffuser For TAP and LatentDiffuser, the
performance gap between them on the expert dataset is smaller than on other datasets in Adroit and
Gym locomotion tasks. We analyzed that the primary source of this performance gap comes from
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the proportion of suboptimal trajectories in the dataset. In non-expert datasets, the proportion of
suboptimal trajectories is more significant. To learn the optimal policy from the dataset, the algorithm
needs to have the “trajectory stitch” ability, i.e., to splice segments of suboptimal trajectories to form
an optimal trajectory.

On the one hand, most of the current offline RL methods are based on a dynamic programming
framework to learn a Q function. However, these methods require the Q function to have Bellman
completeness to achieve good performance. Designing a function class with Bellman completeness
is very challenging (Zhou et al., 2023). On the other hand, Ajay et al. (2023, Appendix A.1) has
found that generative methods based on diffusion models possess implicit dynamic programming
capabilities. These methods use the powerful representation ability of diffusion models to bypass
Bellman completeness and achieve the “trajectory stitch” ability. This allows them to perform well in
datasets with more suboptimal trajectories.

LatentDiffuser is a generative method based on a diffusion model, while TAP is not. This leads
to a more significant performance gap between the two on non-expert datasets. In expert datasets,
however, LatentDiffuser’s advantage cannot be demonstrated.

E IMPLEMENTATION AND TRAINING DETAILS

In the following subsection, we delineate hyperparameter configurations and training methodologies
employed in numeric experiments for both baseline models and the proposed LatentDiffuser.
Additionally, we supply references for performance metrics of prior evaluations conducted on
standardized tasks concerning baseline models.

Each task undergoes assessment with a total of 5 distinct training seeds, evaluated over a span
of 20 episodes. Adhering to the established evaluation protocols of TT (Janner et al., 2021) and
IQL (Kostrikov et al., 2022), the dataset versions employed for locomotion control experiments are
defined as v2, whereas v0 versions are utilized for remaining tasks.

E.1 BASELINE DETAILS

Before discussing the specific baseline implementation details, we first made a simple comparison of
all baselines in the 3 tasks from 3 perspectives: whether planning is introduced, whether it contains
hierarchical structure, and whether generative learning is introduced, as shown in Table 5.

Table 5: Comparison of different baselines at three levels.  means inclusive, # means exclusive,
and G# means a cheaper approximation.

ComPILE CQL IQL D-QL D-QL@1 QGPO Diffuser DD
Planning # # # # # # G# G#
Hierarchy  # # # # # # #
Generative # # #      

DT TT MoReL HiGoC GoFAR TAP HDMI LatentDiffuser
Planning #      G# G#
Hierarchy # # #      
Generative   # # #    

E.1.1 GYM LOCOMOTION CONTROL

• The results of CQL in Table 1 and Table 4 is reported in (Kostrikov et al., 2022, Table 1);

• The results of IQL in Table 4 is reported in (Kostrikov et al., 2022, Table 1);

• The results of DT in Table 4 is reported in (Chen et al., 2021, Table 2);

• The results of TT in Table 1 and Table 4 is reported in (Janner et al., 2021, Table 1);

• The results of MoReL in Table 4 is reported in (Kidambi et al., 2020, Table 2);

• The results of Diffuser in Table 4 is reported in the (Janner et al., 2022, Table 2);
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• The results of DD in Table 1 and Table 4 is reported in the (Ajay et al., 2023, Table 1).

• The results of D-QL in Table 1 and Table 4 is reported in the (Wang et al., 2023, Table 1).

• The results of TAP in Table 1 and Table 4 is reported in the (Jiang et al., 2023, Table 1).

• The results of QGPO in Table 1 and Table 4 is reported in the (Lu et al., 2023, Table 2).

• The results of HDMI in Table 1 and Table 4 is reported in the (Li et al., 2023, Table 3).

E.1.2 ADROIT ENVIRONMENT

• The results of CQL in Table 2 is reported in (Kostrikov et al., 2022, Table 1);

• The results of DD in Table 2 is generated by using the offical repository3 from the original
paper (Ajay et al., 2023) with default hyperparameters.

• The results of D-QL@1 in Table 2 is generated by using the official repository4 from the
original paper (Wang et al., 2023) with default hyperparameters.

• The results of QGPO in Table 2 is generated by using the offcial repository5 from the original
paper (Lu et al., 2023) with default hyperparameters.

• The results of HDMI in Table 2 is generated by re-implementing the algorithm from the
original paper (Li et al., 2023) with default hyperparameters.

• The results of TT in Table 2 is reported in (Janner et al., 2021, Table 1);

• The results of TAP in Table 2 is reported in the (Jiang et al., 2023, Table 1).

It is essential to mention that the D-QL employs a resampling procedure for assessment purposes.
To be more precise, during evaluation, the acquired policy initially produces 50 distinct action
candidates, subsequently selecting a single action possessing the highest Q-value for execution. We
empirically find that that this strategy is critical for achieving satisfactory performance in Adroit
tasks. Nonetheless, the technique poses challenges in accurately representing the quality of initially
sampled actions prior to the resampling procedure. Additionally, due to the high dimensionality of
the action, it incurs considerable computational overhead. As a result, the resampling process has
been eliminated from the evaluation, utilizing a single action candidate (referred to as D-QL@1) akin
to QGPO (Lu et al., 2023).

E.1.3 ANTMAZE ENVIRONMENT

• The results of ComPILE, GoFAR, DD and HDMI in Table 3 is reported in (Li et al., 2023,
Table 2);

• The results of HiGoC in Table 3 is generated by re-implementing HiGoC (Li et al., 2022)
based on CQL6 and cVAE7, and tune over the two hyparameters, learning rate ∈ [3e −
4, 1e− 3] and the contribution of KL regularization ∈ [0.05, 0.2].

• The results of D-QL@1 in Table 3 is generated by using the official repository from the
original paper (Wang et al., 2023) with default hyperparameters.

• The results of TAP in Table 3 is generated by using the official repository8 from the original
paper (Wang et al., 2023) with default hyperparameters.

• The results of QGPO in Table 3 is generated by using the official repository from the original
paper (Wang et al., 2023) with default hyperparameters.

3https://github.com/anuragajay/decision-diffuser/tree/main/code.
4https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL.
5https://github.com/thu-ml/CEP-energy-guided-diffusion.
6https://github.com/aviralkumar2907/CQL.
7https://github.com/timbmg/VAE-CVAE-MNIST.
8http://github.com/ZhengyaoJiang/latentplan.
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E.2 IMPLEMENTATION DETAILS

The forthcoming release of the complete source code will be subject to the Creative Commons
Attribution 4.0 License (CC BY), with the exception of the gym locomotion control, Adroit, and
AntMaze datasets, which will retain their respective licensing arrangements. The computational
infrastructure consists of dual servers, each possessing 256 GB of system memory, as well as a pair
of NVIDIA GeForce RTX 3090 graphics processing units equipped with 24 GB of video memory.

E.2.1 REPRESENTATION LEARNING FOR LATENT ACTION

Encoder and Decoder. The score-based prior model is significantly influenced by the architec-
ture of the bottleneck, encompassing both the encoder and decoder, and subsequently impacts its
application for planning. Adhering to the Decision Transformer Chen et al. (2021) and Trajectory
Transformer (Janner et al., 2021), TAP (Jiang et al., 2023) employs a GPT-2-style transformer in-
corporating causal masking within its encoder and decoder. Consequently, information from future
tokens does not propagate backward to their preceding counterparts. However, this conventional
design remains prevalent in sequence modeling without guaranteeing optimality. For instance, one
could invert the masking order in the decoder, thus rendering the planning goal-based.

A detailed examination of the autoregressive (causal) versus simultaneous generation of optimal
action sequences can be found in (Janner et al., 2022, §3.1). The discourse presented in Janner et al.
(2022) remains germane to the context of latent action space. In particular, it is reasonable to assume
that latent action generation adheres to causality, whereby subsequent latent actions are contingent
upon previous and current latent actions. However, decision-making or optimal control may exhibit
anti-causality, as the subsequent latent action may rely on future information, such as future rewards.
In general RL scenarios, the dependence on future information originates from the presumption of
future optimality, intending to develop a dynamic programming recursion. This notion is reflected by
the future optimality variables Ot:T present in the action distribution log p (at | st,Ot:T ) (Levine,
2018). The aforementioned analysis lends support to the ”diffusion-sampling-as-planning” framework.
As a result, causal masking is eliminated from the GPT-2 style encoder and state decoder design
within the LatentDiffuser.

Additionally, the action decoder is represented through the implementation of a 2-layered MLP,
encompassing 512 hidden units and ReLU activation functions, effectively constituting an inverse
dynamics model. Concurrently, a 3-layered MLP, containing 1024 hidden units and ReLU activation
functions, represents the reward and return decoder. The action decoder is trained employing the
Adam optimizer, featuring a learning rate of 2e− 4 and batch size of 32 across 2e6 training steps.
The reward and return decoder are also trained utilizing the Adam optimizer, however, with a learning
rate of 2e− 4 and batch size of 64 spanning 1e6 training steps.

Score-based Prior. Consistent with DD (Ajay et al., 2023), the score-based prior model is charac-
terized by a temporal U-Net9 (Janner et al., 2022) architecture encompassing a series of 6 recurrent
residual blocks. Within each block, two sequential temporal convolutions are implemented, succeeded
by group normalization (Wu & He, 2018), culminating in the application of the Mish activation
function (Misra, 2019). Distinct 2-layer MLPs, each possessing 256 hidden units and the Mish acti-
vation function, yield 128-dimensional timestep and condition embeddings, which are concatenated
and added to the first temporal convolution’s activations within each block. We employ the Adam
optimization algorithm, utilizing a learning rate of 2 × 10−4, a batch size of 32, and performing
2× 106 training iterations. The probability, denoted by p, of excluding conditioning information s1
is set to 0.25, and K = 100 diffusion steps are executed.

E.2.2 PLANNING WITH ENERGY-GUIDED SAMPLING

The energy guidance model is formulated as a 4-layer MLP containing 256 hidden units and leverages
SiLU activation functions (Hendrycks & Gimpel, 2016). It undergoes training for 1× 106 gradient-
based steps, implementing the Adam optimizer with a learning rate of 3× 10−4 and a batch size of
256. For gym locomotion control and Adroit tasks, the dimension of the latent actions set, M , is

9https://github.com/jannerm/diffuser.
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established at 16, whereas for AntMaze tasks, it is fixed at 32. In all tasks, however, β is set to 3. The
planning horizon, H , is set to 40 for gym locomotion control and Adroit tasks, and 100 for AntMaze
tasks. The guidance scale, w, is selected from the range {1.2, 1.4, 1.6, 1.8}, although the specific
value depends on the task. A low temperature sampling parameter, α, is designated as 0.5, and the
context length, C, is assigned a value of 20.

F MODELING SELECTION

In this section, we shall explore the alterations elicited by diverse problem modeling approaches
upon the LatentDiffuser framework. Specifically, by examining various representations of
latent action, we investigate the performance of the LatentDiffuser within both the raw action
space and skill space. Subsequently, by comparing it against existing works, we distill some key
observations of distinct diffusion sampling techniques on the efficacy of planning.

Figure 4: Results of different modeling selections, where the height of the bar is the mean normalised
scores on different tasks.

F.1 PLANNING IN THE RAW ACTION SPACE

The LatentDiffuser framework can be equally implemented within the raw action space; in this
instance, merely substitute the latent diffusion model with any diffusion model for estimating raw
trajectory distributions, such as those employed within the Diffuser (Janner et al., 2022) and Decision
Diffuser (Ajay et al., 2023). To be precise, we can deduce the following theorem, akin to Theorem 1,
within the raw action space:

Theorem 2 (Optimal policy). Given an initial state s1, the optimal policy satisfies: π∗(τ |
s1) ∝ µ(τ | s1)eβ

∑T
t=1 Qζ(st,at), wherein τ := (s1, a1, · · · , sT , aT ), µ(τ | s1) represents

the behavior policy and Qζ(·, ·) refers to the estimated Q-value function. β ≥ 0 signifies the
inverse temperature controlling the energy strength.

By rewriting p0 := π∗, q0 = µ and τ0 = τ , we can reformulate the optimal planning into the
following diffusion sampling problem:

p0(τ0 | s1) ∝ q0(τ0 | s1) exp (−βE(τ0, s1)) , (9)

where E(τ0, s1) := −
∑T

t=1 Qζ(st, at). Similarlly, the time-dependent energy model, fη(τk, s1, k),
can then be trained by minizing the following contrastive loss:

min
η

Ep(k,s1)E∏M
i=1 q

(
τ
(i)
0 |s1

)
p(ϵ(i))

− M∑
i=1

e−βE0(h(τ
(i)
0 ,s1))∑M

j=1 e
−βE0(h(τ

(j)
0 ,s1))

log
e
fη

(
τ
(i)
k ,s1,k

)
∑M

j=1 e
fη

(
τ
(j)
k ,s1,k

)
 ,

(10)
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where k ∼ U(0,K), τk = αkτ0 + σkϵ, and ϵ ∼ N (0, I). To estimate true distribution q(τ0 | s1) in
Equation 10, we can utilize the diffusion model adopted in Diffuser or Decision Diffuser to generate
M support trajectories {τ̂0(i)}M for each initial state s1 by diffusion sampling. The contrastive loss
in Equation (10) is then estimated by:

min
η

Ek,s1,ϵ −
M∑
i=1

e−βE0(h(τ̂
(i)
0 ,s1))∑M

j=1 e
−βE0(h(τ̂

(j)
0 ,s1))

log
e
fη

(
τ̂
(i)
k ,s1,k

)
∑M

j=1 e
fη

(
τ̂
(j)
k ,s1,k

) , (11)

where τ̂0(i), τ̂0(j) correspond to the support trajectories for each initial state s1. The training procedure
is shown in Algorithm 2.

Algorithm 2 Efficient Planning in the Raw Action Space

Initialize the diffusion model pθ and the intermediate energy model fη
for each gradient step do ▷ Training the diffusion model

Sample B1 trajectories τ from offline dataset D
Sample B1 Gaussian noises ϵ from N (0, I) and B1 time k from U(0,K)
Perturb τ0 according to τk := αkτ0 + σkϵ
Update {θ} with the standard score-matching loss in Appendix B.2

end for
for each initial state s1 in offline dataset D do ▷ Generating the support trajectories

Sample M support trajectories {τ̂ (i)}M from the pretrained diffusion model pθ
end for
for each gradient step do ▷ Training the intermediate energy model

Sample B2 initial state s1 from offline dataset D
Sample B2 Gaussian noises ϵ from N (0, I) and B2 time k from U(0,K)

Retrieve support trajectories {τ̂0(i)}M for each s1
Perturb τ̂0

(i) according to τ̂k
(i) := αk τ̂0

(i) + σkϵ
Update {η} based on the contrastive loss in Equation (11)

end for

As shown in Figure 4, it becomes evident that a pronounced performance degradation manifests in
the raw action space when planning compared to the latent action space, This phenomenon is even
more pronounced in longer-horizon tasks, such as AntMaze.

Connection with Diffuser In Diffuser (Janner et al., 2022a), E(τ0, s1) is defined as the return
of τ0. Additionally, Diffuser uses a mean-square-error (MSE) objective to train the energy model
fη(τt, s1, t) and use its gradient for energy guidance (Lu et al., 2023b). The training objective is:

min
η

Eq0t(τ0,τt,s1)

[
∥fη (τt, s1, t)− E (τ0, s1)∥22

]
. (12)

Given the unlimited model capacity, the optimal fη satisfies:

fMSE
η (τt, s1, t) = Eq0t(τ0|τt,s1) [E (τ0, s1)] . (13)

However, according to Lu et al. (2023, §4.1), the true energy function satifies

Et (τ0, s1) = − logEq0t(τ0|τt,s1)

[
e−E(τ0,s1)

]
≥ Eq0t(τ0|τt,s1) [E (τ0, s1)] = fMSE

η (τt, s1, t) ,
(14)

and the equality only holds when t = 0. Therefore, the MSE energy function fMSE
η is inexact for all

t > 0. Moreover, Lu et al. (2023) also shows that the gradient of fMSE
η is also inexact against the

true gradience ∇τtEt (τt, s1).
We replace the definition of E(z0, s1) in LatentDiffuser with the return (or cumulative rewards)
employed in Diffuser, culminating in the numerical results depicted in Figure 4. It is imperative
to note that incorporating return into LatentDiffuser contravenes Theorem 1. As discernible
in the figure, a conspicuous performance degradation ensues from the replacement. While return
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bears resemblance to cumulative state-action value, the latter demonstrates diminished variance. This
advantage becomes increasingly pronounced in the longer-horizon task.

In addition, we can implement an alteration to the sampling method employed by the Diffuser, thereby
rendering it to an exact sampling technique. More concretely, we add an exponential activation in the
original MSE-based loss in Equation (13), which is named E-MSE in (Lu et al., 2023b):

min
η

Et,z0,zt

[
∥exp (fη (zt, t))− exp (βE (z0))∥22

]
.

In the LatentDiffuser, we substitute contrastive loss with E-MSE, as depicted in Figure 4.
Although E-MSE belongs to the realm of exact sampling methods, its inherent exponential terms
precipitate significant numerical instability during training. Evidently, from Figure 4, the employment
of E-MSE has culminated in a conspicuous decline in performance—a finding that resonates with the
conclusions drawn in the Lu et al. (2023b, §H).

F.2 PLANNING IN THE SKILL SPACE

The LatentDiffuser framework can be equally implemented within other variants of the latent
action space. Considering the following simplified trajectory τsim of length T , sampled from an MDP
with a fixed stochastic behavior policy, consisting of a sequence of states, and actions:

τsim := (s1, a1, s2, a2, . . . , sT ) . (15)

Under this setting, the concept of a latent action aligns perfectly with the definition of skill as
delineated in prevailing works, although we persist in utilizing the LatentDiffuser framework
for efficient planning within the skill space.
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Figure 5: Skill modeling with the score-based diffusion probabilistic model.

More concretely, we can merely substitute the latent diffusion model with an variant of the latent
diffusion model, as shown in Figure 5, for estimating simplified trajectory distributions. Similarilly,
we also can deduce a theorem, akin to Theorem 1, within the skill space:

Theorem 3 (Optimal skill-based policy). Given an initial state s1, the optimal skill-based
policy satisfies: π∗(τsim | s1) ∝ µ(τsim | s1)eβ

∑T
t=1 Qζ(st,at), wherein µ(τsim | s1) represents

the behavior policy and Qζ(·, ·) refers to the estimated Q-value function. β ≥ 0 signifies the
inverse temperature controlling the energy strength.

Subsequently, we can employ the algorithm nearly identical to Algorithm 1 for both the model
training and the sampling of optimal trajectories.

To ascertain the efficacy of LatentDiffuser in skill space planning, we exchanged the latent
diffusion model depicted in Figure 2 with the one shown in Figure 5. The experimental results can be
observed in Figure 4. Evident from the illustration, a lack of encoding for future information (i.e., the
reward and return) precipitates a significant decline in skill space planning performance as compared
to that within latent action space. Similarly, this circumstance becomes increasingly pronounced in
longer-horizon tasks accompanied by sparse rewards.
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Figure 6: Results of ablation studies, where the height of the bar is the mean normalised scores on
different tasks.

G ABLATION STUDIES

In this section, ablation studies are performed on crucial hyperparameters within the
LatentDiffuser, specifically focusing on the latent steps (i.e., the timesteps corresponding
to the original trajectory of the latent action), the planning horizon (referring to the latent rather than
the raw action), the inverse temperature (impacting energy guidance intensity), and the diffusion
steps (contributing to the reconstructed trajectory quality). Numerical experiments were conducted
(refer to Figure 6) on the Med-Expert dataset within the Gym locomotion control tasks, yielding the
subsequent significant findings:

Latent Steps The LatentDiffuser’s planning occurs in a latent action space featuring temporal
abstraction. When a single latent action is sampled, L transitional steps extending the raw trajectory
can be decoded. This design enhances planning efficiency as it reduces the number of unrolling steps
to 1

L ; hence, the search space size is exponentially diminished. Nonetheless, the repercussions of this
design on the decision-making remain uncertain. Therefore, we evaluated the LatentDiffuser
employing varying latent steps L. The red bars in Figure 6 demonstrate that the reduction in latent
steps L to 1 leads to a substantial performance degradation. We conjecture that this performance
decline is attributed to VAE overfitting, as a higher prediction error has been observed with the
reduced latent step, similar with TAP (Jiang et al., 2023)

Inverse Temperature The energy guidance effect is regulated by the inverse temperature; de-
creasing values yield sampled trajectories more aligned with the behavior policy, while elevated
values amplify the influence of energy guidance. As displayed by the pink bars in Figure 6, the
LatentDiffuser’s performance noticeably deteriorates when the inverse temperature is compa-
rably low. Alternatively, a trivial decline occurs as the value substantially increases. We propose two
plausible explanations: firstly, overwhelming energy guidance may generate discrepancies between
trajectory distributions, guided by energy and induced by behavior policy, negatively impacting
generated quality; secondly, the energy guidance originates from an estimated intermediate energy
model, which is inherently prone to overfitting throughout training, leading to inaccuracies in the
estimated energy and ultimately degrading the sampling quality.

Planning Horizon and Diffusion Steps As demonstrated by the blue and yellow bars in Figure 6,
the LatentDiffuser exhibits low sensitivity to variations in the planning horizon and diffusion
steps. Moreover, the conclusion regarding the planning horizon may be task-specific since dense-
reward locomotion control may necessitate shorter-horizon reasoning than more intricate decision-
making problems. The ablations of MuZero (Hamrick et al., 2021) and TAP (Jiang et al., 2023)
further reveal that real-time planning is not as beneficial in more reactive tasks, such as Atari and
locomotion control.
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Transformers In the design of LatentDiffuser, we follow the settings of most existing
generative methods (such as DT, TT, DD, TAP, etc.) for the encoder part, using GPT-2 style casual
transformers for parameterization. Of course, in addition to this reason, another part of the reason
is due to the modeling of latent actions. In the default setting, latent action consists of multiple
timesteps of state, actions, rewards, and reward-to-go. We believe casual transformers will make
the learned latent action representations more predictive. For example, predicting actions based
on the state, predicting rewards and reward-to-go based on the state and action. This predictive
ability, similar to model-based methods, will make the learned latent action representations more
conducive to high-quality planning. To verify this point, we conduct comparative experiments using
non-causal transformers. Specifically, we remove the mask part of the causal transformer. This means
that during the encoding and decoding process, we allow the model to use the information of the
entire subtrajectory to reconstruct any element within that subtrajectory, such as the state using state
information. As shown in Figure 6, the experimental results show that LatentDiffuser has a
significant performance degradation. Furthermore, we found that using a non-casual transformer
is close to the performance when the latent step equals 1. These results are consistent with our
previous analysis, and when using a non-casual transformer, the model is also prone to overfitting,
causing the learned latent action representations to contain less information, losing a certain degree
of “predictability.”

Figure 7: The average runtime spent on a single decision of baselines based on the generative model.

Runtime To eliminate the influence of different algorithm implementation logic on runtime and
focus on the model itself, we follow the settings of previous work and record the average time taken
for different baselines to make the final action from the current input state 50 times. In the interest
of fairness, we have only compared the runtime of generative methods. The final results are shown
in Figure 7. As can be seen from the figure, the runtime of LatentDiffuser is at the average
level, and the time required for making one decision is about 0.5 seconds, which is similar to DD.
Although the sampling efficiency of the diffusion model has always been its weakness, we adopted
the warm-up technique proposed by Diffuser, which can significantly shorten the sampling time
without affecting performance. D-QL has the most extended runtime, requiring multiple samplings
(50 times) to select the best result. HDMI significantly increases runtime because it is a two-layer
method requiring two diffusion samplings for making one decision. TT method has a longer runtime
due to its tokenized data processing, which requires longer autoregressive sequence generation before
generating an action. TAP and D-QL have the shortest runtimes, with the former using beam search
for planning, which can be completed quickly with a predetermined budget, but planning effectiveness
is also constrained by the budget; the latter only needs to generate a one-timestep action rather than a
sequence, so its runtime is also shorter. However, its final performance is significantly lower due to
the lack of a planning step.

H LATENT ACTION VISUALIZATION

In order to gain a more intuitive understanding of the latent action space learned by
LatentDiffuser, this section presents a visualization of the latent actions and the corresponding
trajectories obtained by decoding them. Specifically, we use the fully trained LatentDiffuser in
the Hopper task to sample 5 trajectories and apply the t-SNE method to reduce the dimensionality
of the latent actions associated with these 5 trajectories for visualization, as shown in Figure 8. In
the visualization of the trajectories, a random trajectory is selected. To facilitate presentation (due to
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Figure 8: Visualization of latent actions and decoded trajectories.

the similarity in the robot shape at adjacent timesteps), we downsampled this trajectory by taking
one latent action every 5 latent actions and overlaid the trajectory images obtained by decoding the
adjacent 3 latent actions with different opacities to achieve the trajectory displayed in Figure 8. It
can be seen from the figure that the latent action space learned by LatentDiffuser is a more
compact action space, which to some extent has learned a certain type of macro-action or ”skill.”

I MISSING DERIVATIONS

I.1 PROOF OF THEOREM 1

Proof. Previous works (Peters et al., 2010; Peng et al., 2019) formulate offline RL as constrained
policy optimization:

max
π

Es∼Dµ

[
Ea∼π(·|s)Aζ(s, a)−

1

β
DKL(π(· | s)∥µ(· | s))

]
,

where Aζ is the action evaluation model which indicates the quality of decision (s, a) by estimating
the advantange function Aπ(s, a) := Qπ(s, a) − V π(s) of the current policy π. β is an inverse
temperature coefficient. The first term intends to perform policy optimization, while the second term
stands for policy constraint. It is shown that the optimal policy π∗ satisfies (Peng et al., 2019):

π∗(a | s) ∝ µ(a | s)eβAζ(s,a).

Since V π(s) has nothing to do with the action a, the above formula can be further simplified to:

π∗(a | s) ∝ µ(a | s)eβAζ(s,a) ∝ µ(a | s)eβQζ(s,a),

where Qζ is the action evaluation model which indicates the quality of decision (s, a) by estimating
the Q-value function Qπ(s, a) of the current policy π. To simplify notation, here we reuse ζ to
parameterize the estimated Q-value function. Furthermore, we can extend the above conclusion from
raw action space, single step level to latent action space, trajectory level:
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π∗(z | s1) = p(s1)

T−1∏
t=0

π∗(at | st)p(st+1 | st, at)R(rt | st, at, st+1)G(Gt | st, at)

∝ p(s1)

T−1∏
t=0

µ(at | st) exp (βQζ(st, at)) p(st+1|st, at)R(rt | st, at, st+1)G(Gt | st, at)

= p(s1)

(
T−1∏
t=0

µ(at | st)p(st+1|st, at)R(rt | st, at, st+1)G(Gt | st, at)

)(
T−1∏
t=0

exp (βQζ(st, at))

)

= µ(z | s1) exp

(
β

T−1∑
t=0

Qζ(st, at)

)
= µ(z | s1)eβ

∑T−1
t=0 Qζ(st,at).

I.2 PROOF OF THEOREM 2 AND THEOREM 3

The proof procedure of Theorem 2 and Theorem 3 is similar with Theorem 1.
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