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ABSTRACT

Test-time adaptation (TTA) aims to tackle distribution shifts using unlabeled test
data without access to the source data. In the context of multimodal data, there
are more complex noise patterns than unimodal data such as simultaneous corrup-
tions for multiple modalities and missing modalities. Besides, in real-world appli-
cations, corruptions from different distribution shifts are always mixed. Existing
TTA methods always fail in such multimodal scenario because the abrupt distri-
bution shifts will destroy the prior knowledge from the source model, thus leading
to performance degradation. To address this challenging problem, we propose
two novel strategies: sample identification with interquartile range Smoothing
and unimodal assistance and Mutual information sharing (SuMi). SuMi smooths
the adaptation process by interquartile range which avoids the abrupt distribu-
tion shifts. Then, SuMi fully utilizes the unimodal features to select low-entropy
samples with rich multimodal information for optimization. Furthermore, mutual
information sharing is introduced to align the information, reduce the discrepan-
cies and enhance the information utilization across different modalities. Extensive
experiments show the effectiveness and superiority over existing methods under
the complex noise patterns in multimodal data. Code will be available.

1 INTRODUCTION

Deep learning has achieved remarkable success and has been widely adopted across a variety of
applications (Podell et al., 2024; Touvron et al., 2023). However, these models often struggle
when faced with data distributions that differ from their training data. For example, in real-world
scenarios, unexpected environmental changes and noises always occur such as weather changes
and data corruption. When encountering such domain shifts, model performance can degrade
rapidly (Hendrycks & Dietterich, 2019). To address this challenge, many adaptation techniques
such as domain adaptation (Zhu et al., 2023) and domain generalization (Zhou et al., 2023a) have
been proposed to enhance the robustness of models. One of the most challenging settings is Test-
Time Adaptation (TTA) (Wang et al., 2021; Niu et al., 2022), where the model must adapt to a target
domain without access to any source domain data and labels of target data. Recently, numerous
promising test-time adaptation methods (Niu et al., 2023; Yang et al., 2024; Lee et al., 2024; Chen
et al., 2024; Niu et al.) have shown great results.

However, the majority of existing TTA methods have focused on unimodal scenarios. In comparison
to unimodal tasks, multimodal tasks often face more complex noise patterns, such as simultaneous
noise corruption across multiple modalities or missing modalities. In this work, we broadly catego-
rize multimodal noise scenarios into two types (shown in Figure 1(a)): weak Out-Of-Distribution
(OOD) samples, where only one modality is corrupted by noise, and strong OOD samples, where
multiple modalities are corrupted by noise or missing modality issues occur. For example, as shown
in Figure 1(b) and (c), we observe that the performance of existing TTA methods can degrade sig-
nificantly when faced with the more complex noise patterns encountered in multimodal scenarios,
especially in the case of strong OOD samples. The huge distribution gap between the source domain
and the strong OOD data will damage the prior knowledge in the source model, thus leading to per-
formance degradation. Additionally, in real-world dynamic environments where the target domain
includes various types of distribution shifts (known as wild TTA), the performance of existing TTA
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Figure 1: An illustration of multimodal wild TTA task where the target domain includes various
distribution shifts including weak OOD and strong OOD samples. The performances of existing
methods degrade significantly on this challenging task, even worse than the source model. We get
these results on Kinetics50-C.

methods always fail (Niu et al., 2023). To address the challenge in wild TTA, Niu et al. (2023) pro-
pose a sharpness-aware and reliable entropy minimization method to further stabilize TTA. However,
as shown in Figure 1(d), in the context of multimodal wild TTA where the target domain includes
various distribution shifts, the results are still not satisfying. A recent work READ (Yang et al.,
2024) explores the reliability bias in multimodal data during test time. READ proposes that when
one of the modalities is corrupted, the reliability balance across the modalities will be destroyed,
which leads to a heavy performance degradation of the model. However, it only discusses the weak
OOD situations and overlooks the more complex noise patterns in multimodal data. Besides, it is
based on the mild TTA setting where test samples have the same distribution shift type.

Based on the above observations and the limitations of existing methods, in this paper, we reveal a
new challenging task named multimodal wild TTA where the target domain includes various types
of distribution shifts including weak OOD samples and strong OOD samples. From Figure 3, we
observe that smoothing the adaptation and fully utilize the unimodal entropy of multimodal data
can boost the test-time performance. Therefore, we propose two novel strategies: sample identifi-
cation with interquartile range Smoothing and unimodal assistance and Mutual information sharing
(SuMi). To avoid the abrupt distribution shifts which could destroy the prior knowledge from the
source model, we propose to smooth the adaptation process with interquartile range. Besides, we
fully utilize the unimodal information to select low-entropy samples with rich multimodal informa-
tion. Furthermore, we propose the mutual information sharing to align information between different
modalities which can reduce the discrepancies across different modalities and enhance the informa-
tion utilization of different modalities. Our main contributions can be summarized as follows:

* We show that the complex noise patterns in multimodal data will make existing TTA meth-
ods fail. To this end, we propose a new practical and challenging task named multimodal
wild TTA where the target domain includes various types of distribution shifts including
weak OOD samples and strong OOD samples.

* We propose a novel method SuMi, consisting of sample identification with interquartile
range smoothing and unimodal assistance and mutual information sharing.

* SuMi outperforms all the baselines consistently and significantly in weak, strong and mixed
OOD domains. Additionally, we build two benchmarks for multimodal wild TTA.
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Figure 2: The overview of SuMi.

2 RELATED WORK

Test-time adaptation aims to update the source model without source domain data and labels of the
target domain data. Test-time training, such as TTT (Sun et al., 2020) and TTT+ (Liu et al., 2021)
trains a source model with both supervised and self-supervised objectives in the training stage to
enhance test-time adaptation. These methods depend on proxy tasks and assume that the training
process is controllable, which limits the scope of applications. Therefore, fully test-time adaptation
methods (Wang et al., 2021; Niu et al., 2022; Zhou et al., 2023b; Yuan et al., 2023; Gong et al.,
2023a; Park et al., 2024) are proposed to adapt the model only in test-time, without intervening in
the training stage. Tent (Wang et al., 2021) proposes to use entropy minimization to update the
normalization layers of the model. Furthermore, EATA (Niu et al., 2022) and SAR (Niu et al., 2023)
propose the sample selection criteria for entropy minimization. More recently, Lee et al. (2024) show
that using entropy alone as a measure of confidence is insufficient and propose to use a combination
of entropy and the proposed PLPD metric to identify samples. Chen et al. (2024) proposes a dynamic
unreliable and low-informative sample exclusion method for entropy minimization.

However, existing works focus on the unimodal TTA. Compared to unimodal scenarios, multimodal
data face much more complex patterns of noise in real-world applications, such as simultaneous
corruptions and missing modalities (Guo et al., 2024). Shin et al. (2022) proposes a framework
to generate cross-modal pseudo labels as self-training signals. A recent work (Yang et al., 2024)
explores the multimodal TTA and proposes reliable fusion and robust adaptation to address infor-
mation discrepancies in multimodal data. However, it only discusses the situations where there is
only one modality corrupted. When there are multiple modalities corrupted or missing, the huge and
abrupt distribution gap between the source domain and the target domain will make the method fail.
Additionally, it focuses on the single domain adaptation. In contrast, we explore a more practical
and challenging wild TTA where the target domain includes various types of corruption.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Without loss of generality, we take two modalities as an example for clarity of presentation. Let
My = (¢uy , Pu,, F) with parameter 6 be the source model pre-trained on the source domain dataset

Dsource = {(i, yl)}f\il where ¢, , ¢., are the encoders of modality u; and ug, F is the multi-

modal fusion layers with prediction head, ; = (x]*, x;?), and N is the number of samples. TTA

3 ’ 1
aims to fine-tune the source model My on the target domain dataset Dyqrger = {wz}f\il where the
labels and the source dataset are unavailable. Existing TTA methods (Niu et al., 2023; Yang et al.,

2024) update the parameter € by minimizing the entropy of test domain data:

c
Enty(x) = —py(z) log po () = — Zpg(:c)ilogpg(w),; (1)

i=1
where pp = softmax(My(x)) = (po(x)1,po(x)2, - ,po(x)c) is the probabilistic distribution

outputted by the model My and C'is the number of classes.
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In this paper, we reveal a new challenging task named multimodal wild TTA. Specifically, we
broadly categorize multimodal noise scenarios into two types: weak OOD samples, where only
one modality is corrupted by noise, and strong OOD samples, where multiple modalities are cor-
rupted by noise or missing modality issues occur. Multimodal wild TTA considers a more practical
and challenging TTA setting where the target datasets contain various types of distribution shifts
including both weak OOD samples and strong OOD samples. The overall architecture of SuMi is
presented in Figure 2.

3.2 SAMPLE IDENTIFICATION WITH INTERQUARTILE RANGE SMOOTHING AND UNIMODAL
ASSISTANCE

3.2.1 INTERQUARTILE RANGE SMOOTHING

Many existing TTA methods rely on selecting low-entropy samples for entropy minimization (Niu
et al., 2022; Lee et al., 2024; Chen et al., 2024). However, when the target data is a mixture of
various types of distribution shifts, including weak OOD samples and strong OOD samples, the
performance of the model would degrade significantly. For example, in Figure 3 (a), we present
the performance of three different settings of the adaptation process. We can observe that directly
adapting the model to the strong OOD domain will yield much poorer performance than a model
adapted on weak OOD domain. The main reason is that there is a huge distribution gap between
the source domain and the strong OOD domain. Therefore, a direct adaptation would destroy the
prior knowledge of the source model and lead to instability. In comparison, when we first perform
adaptation on the weak OOD domain before the strong OOD domain, the performance of the model
will improve. This phenomenon inspires us that a smoothing adaptation process under the wild TTA
and complex noise patterns of multimodal data is much better than an abrupt adaptation process.

Motivated by the above observations, we propose an interquartile range smoothing method for dy-
namic sample identification during the adaptation process. Interquartile range (IQR) is a measure
of statistical dispersion, which is the spread of the data (Dekking et al., 2006). We give a brief
definition of IQR below:

Definition 1 IQR is the difference between the 75th and 25th percentiles of the data. The data is
divided into four rank-ordered even parts via linear interpolation which are denoted as Q1 (lower
quartile), Qo (median) and Q3 (upper quartile). IQR is calculated as IOR = Q3 — Q1.

IQR is often used to identify unstable samples or outliers in a dataset. Specifically, according to
Tukey’s rule (Tukey et al., 1977), the stable sample set X is selected as:

Xo={z|z>Q - ngR and z < Qs + §IQR} 2)

To smooth the adaptation process, we modify the above equation slightly and select the samples
HE(x) as:

3t 3t
t = > — ——IQR < ——IQR
%9(93) {h [h > 2iter QRand b < Q3 + 2iter Q }
h =[h" h"],h" = ¢y, ("), h"? = ¢y, (")

3)

where ¢ is the current iteration, 6 is the parameter of the model, iter is the total iterations, [,] is the
concatenation operation and h is the representation of the sample. We use the representations instead
of the raw inputs because the representations are informative dense vectors that contain less noise
and unrelated information than the raw inputs. At iteration ¢, we use the selected data ’Hé(w) for
adaptation. Details of IQR calculation are in Appendix B. In Figure 3 (b), we visualize the sample
identification process using the source model. From the figure, we can observe that at first several
iterations, most weak OOD samples are selected. With the increase of ¢, the data for adaptation is
also increasing, including more and more strong OOD samples. This smoothing process enables
gradual adaptation to the strong OOD samples and various types of distribution shifts, avoiding the
abrupt distribution gaps which could destroy the prior knowledge of the source model. Additionally,

h is a vector. Therefore, in practice, we select h for adaptation if 8 + (12‘;5 )t percent of the values
in h satisfy Equation 3 for stability.
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Figure 3: (a) Performance of different adaptation settings on strong OOD samples. (b) t-SNE visu-
alizations (Van der Maaten & Hinton, 2008) of features during adaptation. (c) Performance using
different quantiles multimodal and unimodal entropy. Results are obtained on Kinetics50-C.

3.2.2 UNIMODAL ASSISTANCE

IQR smoothing aims to help the model preserve the prior knowledge in the source model and grad-
ually adapt to the strong OOD samples and various types of distribution shifts. However, this pro-
cess can not distinguish the high-quality samples that benefit the entropy minimization. Therefore,
we introduce a novel sample identification method for multimodal data. As suggested in previous
work (Niu et al., 2022; 2023; Chen et al., 2024), low-entropy samples will benefit the entropy mini-
mization while high-entropy samples, due its uncertainty, will adversely affect the process. However,
in the context of multimodal data, apart from multimodal entropy, there is unimodal entropy we can
utilize to help the adaptation. As shown in Figure 3 (c), we conduct experiments using unimodal en-
tropy and multimodal entropy. We can easily observe that the multimodal low-entropy samples will
yield much better performance than high-entropy samples. However, for audio and video modality,
the samples of (20, 40] interval yield better results than samples of [0,20]. This indicates that for
unimodal entropy, lower entropy does not mean better performance. The reason might be that when
only one modality can yield low entropy, it means that this sample does not depend on multimodal
data for accurate prediction, indicating the sample is low-informative for multimodal optimization.
In contrast, a unimodal sample that yields a little higher entropy demonstrates that the sample needs
to depend on the multimodal data for accurate prediction, suggesting it contains rich multimodal
information.

Inspired by the above observations, we propose a sample identification method with unimodal as-
sistance to select low-entropy samples with rich multimodal information. Specifically, our method
employs the following identification criteria:

Sp(x) = {x | Enty(x) < v, and (Entp(x"*) + pEntp(x"?)) > 4} %)

where ,, and v, are the pre-defined threshold for multimodal and unimodal entropy and y is a trade-
off between modalities. By limiting the multimodal entropy, we can select low-entropy samples with
high certainty and fewer noises. Meanwhile, by limiting the unimodal entropy, we can ensure the
samples selected contain rich multimodal information, excluding low-informative samples.

3.3 MUTUAL INFORMATION SHARING

A recent study (Yang et al., 2024) reveals a challenge in multimodal test-time adaptation, known
as reliability bias, which refers to the information discrepancies across different modalities, de-
rived from the distribution shifts between domains. In strong OOD situations, missing modality
cases could occur or multiple modalities could be corrupted. Therefore, the reliability bias could
be enlarged. How to reduce the discrepancies across different modalities under strong OOD do-
mains (especially missing modality cases) is very important. To address this problem, we pro-
pose a simple yet effective method, mutual information sharing, to align information between
different modalities. Concretely, for modality u;, we can obtain its probabilistic distribution as
Py’ (x") = softmax(F (¢, (x"))). For simplicity, we will use p* to represent p,*(x**) in the
following context. We define the complementary probabilistic distribution of p*¢ as

M
p"' = (D p" —p")/(M 1) 5)
j=1
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Algorithm 1 SuMi

1: Input: Source model My = (¢u,, Pu,,F), target dataset Digrger = {wi}fv:tl, adaptation
iterations 7" and a series of hyperparameters.

2: fort=1to T do

T = (wul ) muz) Sﬂe Dta'rget;

Calculate the representations h = [h"!, h"2], h"t = ¢,,, (x"1), h"2 = ¢, (x"?);

Calculate 1 and Q3: Q1 = quantile(h, 0.25), Q3 = quantile(h, 0.75);

Calculate IQR: IQR = Q3 — Q1;

Select samples H})(x) using Equation 3;

Calculate entropy of multimodal outputs and unimodal outputs;

9:  Select samples Sp(z) from H})(x) using Equation 4;

10:  Calculate the entropy in Sp(x);

11:  ift <ty then

12: Calculate mutual information sharing loss using Equation 6;

13:  endif

14:  Calculate the loss £(x) using Equation 8;

15:  Update the affine parameters of the model My;

16: end for

AN A

where M is the number of modalities. For two modalities, p*’ = p%? and p*? = p“. To
improve the alignment between different modalities, we can minimize the KL divergence (Kullback
& Leibler, 1951) between the probabilistic distribution p* and its complementary distribution p*:’.
However, if one modality is severely corrupted, minimizing the KL divergence might influence the
clean modality. Therefore, we add multimodal distribution p™ = softmax(M,(x)) to improve the
robustness and stability. Therefore, we can represent the mutual information sharing loss as:

u 1 u m u 1 u m
Linis(@) = Drr (@™ | 5" + ™) + Drr (P || 5(p*' + ™))

c 2p1}1 c 2 U2 (6)
U1 1 U2 7
7;:21 7 p;'“/ +p;n rzl (3 p;J,Q/ +pzn

where C' is the number of classes and p; is the i-th value of p. Mutual information sharing can
help the model connect and align the information between different modalities. Through mutual
information sharing, when there are corrupted modalities including missing modalities, information
from other modalities could be utilized to enhance the predictions.

3.4 OVERALL OPTIMIZATION

Following previous TTA methods (Niu et al., 2022; Lee et al., 2024), we add a weighting term
to emphasize the contributions of samples during adaptation. Specifically, the weighting term is
calculated as

1

exp[Enty () — Ent)

ag(x) = (7N
where Entg is a pre-defined normalization factor (Niu et al., 2022). In summary, we can denote the
overall loss function as:

L(x) = ap(T) L {gert (x) zes, ()} (Ento(T) + ALmis(T)) ()

where 1.4 (-) is an indicator function and A is a trade-off between the two losses. One point worth
emphasizing is that for strong OOD adaptation, we only add the mutual information sharing loss
L ;s in the first ¢ iterations during the adaptation process. The reason is that with the increase
of iteration, the IQR smoothing will include more and more strong OOD samples where multiple
modalities are corrupted which could damage the information sharing and the performance of the
model. For weak OOD adaptation, we add mutual information sharing loss for all the iterations.
Overall, Algorithm | presents the outline of our method.
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Table 1: Accuracy comparison with SOTA methods on Kinetics50-C with corrupted video modality
(severity level 5). We report avg g over five random seeds. Bold: best results. Underline: second
best results.

Noise Blur Weather Digital

Gauss.  Shot  Impul. | Defoc. Glass Motion Zoom | Snow  Frost Fog Brit. | Contr. Elastic Pixel JPEG |Avg.
Source model 47.7 48.8 474 674 61.0 71.1 66.1 60.7 62.1 45.5 759 51.9 65.1 67.8 63.7 | 60.2
o Tent 483104 493407 48.4.05(67.8105 622405 719403 67.8405|63.1405 635405 23.0410 759404501502 67.8:03 70.5:01 67.1:93|59.8
o EATA 49201 [679401 63.9+04 71.6103 679403634502 644101 47.0103 761401522403 67.6202 703102 679495 | 61.9
o SAR 48720 | 679202 627404 T1.8405 679405 | 634104 642105 240409 759404 |51.1eos 68.0404 70.6200 672405 | 60.1
o SoTTA 483405 49.8.05 48.5:04 679400 62.5:05 19505 678406 |63.24505 640500 276511 757505 | 513204 678205 T0.4+0n 67.5:04 | 60.3
e DeYO 48603 49.8:06 48.7:06|68.0403 63.0404 719403 68.1:05(63.54004 644104 214110 759404 |50.6202 68.6:04 70.8-02 67.5:03 | 60.0
¢ CEMA 484503 494505 48.6:06(67.8102 627104 717403 67.8405|63.4104 642403 22.8405 75.710.4|50.7203 67905 70.5:02 67.3:93|59.9
e READ (LN) 4946 491406 | 679403 642405 718102 684104643104 655107 53.1b05 764404 |53.9:06 67.5:03 705102 68.1:05(62.7
e READ (SAF) [49.9.05 50.8.05 49.8:07|67.9105 651502 722402 69.2406 | 648405 66.7503 56.8406 76.2:03|54.8:04 68.9:05 70.7:02 68.9:02 | 63.5
e SuMi 50.104 50.7:03 504403682105 656105 722002 697104 657103 67.0402 56.5:05 77uig2| 552004 693200 71200 68.952 | 63.9

Table 2: Accuracy comparison with SOTA methods on Kinetics50-C with corrupted audio modality
and strong OOD scenarios (severity level 5).

Noise ‘Weather Strong OOD

Gauss.  Traff.  Crowd Rain  Thund. Wind |Avg.| Both  Vmiss Amiss Mix  Avg.
Source model 74.9 65.4 67.9 70.0 68.5 70.7 |69.6| 308 279 445 169 300
e Tent 748405 682405 70.3 13| 7110 66.7105 717001 | 70.5 131004 92405 213404 12495 11.2
e EATA 74.9401 68.0102 70.0103 | 712203 70.0503 71.3101(70.9 (323502 28.6403 45.3102 149503 30.3
e SAR 748405 684504 703405 | 712404 689404 719401 |70.9 | 13.6001 103404 23.5.01 38405 12.8
o SOTTA 748405 684504 701405 | 711205 692405 71.8402|70.9 | 141001 98405 241405 19405 12.5
. DEYO 74'8i“r) 68'6i“l mi”.i 71'310.5 70'410.3 mi“.l 7|2 14-9iU 4 lz-liU 3 27-6iﬂ 4 24|il7.5 |42
o CEMA 748404 678404 695404 | 7110y 70.5503 71.6403|70.9 169404 134404 303103 1.8196 15.6
e READ (LN) | 74.6104 67.8:04 70310 |714s05 712403 71.0:01 | 71.6 | 32.6103 280103 44.8:05 143404 29.9
® READ (SAF) | 74.9.05 69.1:04 703105 |714504 728405 71.3403| 716 | 311405 27.5105 443405 137405 29.1
e SuMi 751503 689:03 706103 T1.6:05 72.8:04 721402 | 719 348,05 31803 48.6.00 184404 334

Table 3: Accuracy comparison with SOTA methods on VGGSound-C with corrupted video modality
(severity level 5).

Noise Blur Weather Digital

Gauss.  Shot  Impul. | Defoc. Glass Motion Zoom | Snow  Frost Fog Brit. Contr. Elastic  Pixel JPEG |Avg.
Source model 53.0 529 53.0 572 573 58.6 575 56.3 56.5 554 59.2 53.7 572 56.4 573 |56.1
o Tent 53.0501 53.2:01 529401563101 563101 57.6:101 56.8:01 (554101 56.0101 562101 58.3101(53.5:00 573101 56.7:01 56.8:,|55.8
o EATA 53.5:01 53.7x01 53.5:00 |57 0w01 57.1s00 582401 57.7401 560101 56.6:01 567101 594101 | 543200 58102 573100 57.5:0156.5
o SAR 52901 53.1u01 52.9.01 563101 562002 574401 56.7401 554101 56.0401 56.2401 582401 |53.5:01 STAi0n 567101 56.8.01|55.7
o SoTTA 52.9:01 532:01 52.9.01|56.6101 568102 57.9:05 57.1i0y|55.7101 56.1:01 563101 594401 |53.8200 57.6:01 562101 56.7:01|55.9
e DeYO 53.0591 53 53.040.1 [ 56.5201 56.5:01 57.7:01 56.9+01 | 554101 56.0101 563102 58.510.1(53.6:01 57.6:01 57.0:00 57.0+91 | 559
o CEMA 52.8.01 52. 52.9:01[56.5501 56.4101 57.6:101 56.8:02 (554101 562101 562101 58.4101|56.5:01 57.8:01 56.8:009 56.9:9,|55.8
o READ (LN) |53.7:01 53.9:01 53.6:01 (574102 574100 587402 58.1401|56.4401 570401 57-ligy 594u01|54.5:01 58.4.01 577401 578401 |56.7
o READ (SAF) |52.9.0; 52.8:02 52.8401|57.2402 573402 588402 58.1402(564401 57.54102 574101 59.3401 | 544402 578401 56.6:01 57.2:02(56.4
e SuMi 54.0-01 54.3:01 53.8:01|58.2.02 58.4.01 59.4.02 58701 575101 582101 57.6101 594101 |54.8:01 59.0:01 57.5:0: 58.2:9,|57.3

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We use two widely used multimodal datasets, Kinetics50 (Kay et al., 2017) and VG-
GSound (Chen et al., 2020) for evaluation. Following previous work (Hendrycks & Dietterich,
2019; Yang et al., 2024), we introduce 15 different types of corruptions and 6 types for audio to
simulate the distribution shifts in real-world applications. Each type of corruption has five levels
of severity. For strong OOD samples, we introduce four different types: Both (both modalities are
corrupted), Vmiss (video modality is missing), Amiss (audio modality is missing), and Mix (one
modality is missing and the other is corrupted). Details of datasets and the corruptions are presented
in Appendix A. As a result, we can obtain the corrupted datasets Kinetics50-C and VGGSound-C.

Implementation Details. For the source model, we use the pretrained CAV-MAE (Gong et al.,
2023b) following Yang et al. (2024). We use Adam optimizer with a learning rate of le-4/1e-5 and
batch size of 16/64 for Kinetics50-C and VGGSound-C, respectively. The multimodal threshold ,,
in Equation 4 and the normalization factor Ent, in Equation 7 are set to 0.4 x In C following Niu et al.
(2022) by default where C' is the number of task classes. The unimodal threshold +,, in Equation 4
is set to e~! by default. The smoothing coefficient 3 is set to 0.6/0.9, the weighting term ) is set to
5.0 and the unimodal assistance p is set to 1.0 by default for Kinetics50-C and VGGSound-C. For
strong OOD adaptation, we set the mutual information sharing term ¢ as iter /2. Following previous
work (Niu et al., 2023; Gong et al., 2023a; Chen et al., 2024), we update the affine parameters of
normalization layers.
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Table 4: Accuracy comparison with SOTA methods on VGGsound-C with corrupted audio modality
and strong OOD scenarios (severity level 5). We report avg g over five random seeds. Bold: best
results. Underline: second best results.

Noise Weather Strong OOD
Gauss.  Traff. Crowd | Rain  Thund. Wind |Avg.| Both  Vmiss Amiss Mix Avg.
Source model 37.2 21.2 16.9 21.8 274 256 |[25.0 9.4 28.0 18.9 6.0 156
e Tent 6.0:03 1.6:01 Lligo | 17200 32102 23201 | 2.6 | 0.8401 183102 1.0190 0.1:00 5.1
o EATA 41.2.0; 25.0405 28.8.106(32.304 34.5:02 332402325 |15.2,04 292495 19.6403 5.8, 174
e SAR 109.07 2.1u02  1.0100 | 20100 32102 23401 | 3.6 | Lligo 198401 15400 03100 5.7
e SoTTA 138106 10.1i03 8.4uo2 | 42402 64wz 34i01 | 7.7 | 24401 204401 445010 Llige 7.1
e DeYO 70405 151010 22401 | 35402 6.8:02 42401 | 42 | 0.6400 208102 28401 04i99 62
o CEMA 68105 19101 2.0401 | 29402 44s02 39401 | 3.7 | 094000 19900 1.9:01 O.ligg 5.7
o READ (LN) |40.5505 24.0401 254501 (29.6402 329503 302401304 | 74501 2855102 193404 54401 152
o READ (SAF) |27.1406 221404 19.0402|21.6409 23.6014 21.0405|22.4 | 10.1001 279400 153404 45401 145
o SuMi 419,05 263105 27.9102| 316205 371000 34.1u0, | 332 | 184100 318100 217.05 67401 197
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Figure 4: Comparison with SOTA methods on corrupted data of different severity levels. weak:
average accuracy of 21 different types of weak OOD distribution shifts. strong: average accuracy of
4 different types of strong OOD distribution shifts.

30 20 30 Source Tent
o |- soe ene s Source o o o © ] soue o
EATA san 2 cormh pero eATA san
10 sorTA Devo soTh Devo
cema READ(LN) 10 . -
cewa READ(LN) 10 civa READILN)
READISAF) sumi ReADISAF) sumi READISAF] M

SOTTA Devo
READ(LN) 5
suMi

cemA
READ(SAF)

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 8 9 100 10 20 30 40 50 60 70 8 9 100 10 20 30 40 50 60 70 8 9 100

(a) Kinetics50 (sever. 5) (b) VGGSound (sever. 5)  (¢) Kinetics50 (mixed) (d) VGGSound (mixed)

Figure 5: Comparison with SOTA methods on mixed corrupted data with ten different ratios of
strong OOD samples. (a) and (b): severity level 5. (c) and (d): mixed severity.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

We compare our method with Tent (Wang et al., 2021), EATA (Niu et al., 2022), SAR (Niu et al.,
2023), SoTTA (Gong et al., 2023a), CEMA (Chen et al., 2024), DeYO (Lee et al., 2024) and
READ (Yang et al., 2024).

Single Domain Results. We report the accuracy of 21 different types of weak OOD corruptions
and 4 different types of strong OOD corruptions at severity level 5 on Kinetics50 and VGGSound in
Table 1, 2, 3 and 4. For weak OOD samples, SuMi outperforms existing SOTA methods on most of
the distribution shifts and achieves consistent good performances. For strong OOD samples, most
of the existing SOTA methods perform even worse than the source model. On both datasets, only
EATA performs better than the source model slightly. On the most noisy distribution Mix where
one of the modality is missing and the other is corrupted, EATA also has a performance degrada-
tion, performing worse than the source model. In comparison, SuMi outperforms other methods
consistently and significantly on all the four distribution scenarios, indicating its effectiveness and
superiority in dealing with the complex noise patterns in multimodal data. Furthermore, we com-
pare SuMi with SOTA methods at different severity levels and present the results in Figure 4. From
the figure, we can observe that at different severity levels, most of the methods can work well on
weak OOD samples while fail on strong OOD samples. However, SuMi can still perform well and
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Figure 6: Comparison with SOTA methods on mixed severity level on Kinetics50-C.
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Figure 7: Comparison with SOTA methods on mixed severity level on VGGSound-C.

achieve the best results on corrupted datasets at all the four severity levels, which demonstrates its
generalization ability.

Mixed Domain Results. In Figure 5, we present the results of different methods on datasets with
ten different portions of strong OOD samples. Figure 5 (a) and (b) presents the results at severity
level 5. We can observe that all the methods can perform well when the ratio of strong OOD samples
is low. However, with the ratio increasing, the performance of most of the methods degrade rapidly,
performing worse than the source model. The reason is that the huge distribution gap between the
source domain and strong OOD domain destroy the prior knowledge of the source model, thus lead-
ing to a degradation of the model. In comparison, SuMi smooths the process by interquartile range
smoothing and outperforms the SOTA methods consistently. From Figure 5 (c) and (d) where mixed
severity level cases are added, we can reach the same conclusion. Moreover, in Figure 6 and 7,
we present the results on corrupted data with mixed severity level samples on both datasets. From
the table, we can observe that on mixed severity level, SuMi can still achieve consistent improve-
ments, outperforming other SOTA methods in most of the distribution shifts. Additionally, on strong
OOD distribution shifts, other methods always fail while SuMi can still perform well. These results
indicate the effectiveness of SuMi.

4.3 ABLATION STUDY

Contributions of different components. In Table 5, we present the results of our ablation exper-
iments. We can observe that IQR smoothing brings the most improvements to the model. This is
because IQR smoothing can bridge the gap between the source domain and strong domain, avoid-
ing the abrupt distribution shifts which could destroy the prior knowledge from the source model.
Unimodal assistance aims to select low-entropy samples with rich multimodal information for opti-
mization and can also enhance the performance of the model. With these strategies combined, the
performance of the model is further enhanced.
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Table 5: Ablation study of different components in SuMi on corrupted data with a 50% of strong
OOD samples at different severity levels. IQR, UA and MIS represents IQR smoothing, unimodal
assistance and mutual information sharing, respectively.

Kinetics50-C VGGSound-C

IQR UA MIS \ severity 3 severity 5  mixed severity \ severity 3 severity 5 mixed severity
37.1 31.7 36.4 25.7 23.5 253
v 52.1 45.1 51.9 33.8 30.4 33.1
v 494 39.4 46.2 31.1 27.4 31.2
v 47.4 38.1 45.6 29.8 26.1 28.4
v v 58.0 51.2 57.4 36.9 34.3 36.5
v v 56.0 49.7 56.7 34.2 32.1 34.0
v v 54.3 44.6 51.3 334 29.8 32.1
v v v 59.3 52.0 59.1 38.4 35.1 38.3

Exploration of unimodal assistance. In Equation 4 and Figure 2, we divide the samples into
four areas. We can consider the four areas as Area 1 (low-entropy samples with rich mul-
timodal information), Area 2 (high-entropy samples with rich multimodal information), Area
3 (low-entropy samples with little multimodal information) and Area 4 (high-entropy sam-
ples with little multimodal information). We present the performance of these four areas on
Kinetics50-C in Table 6. From the table, we can observe that selecting low-entropy sam-
ples for optimization will yield better results. Based on low-entropy samples, rich multimodal
information will further help to optimize the multimodal models and achieve better results.
Additionally, we explore the trade-off coefficient ;2 in Equation 4 and
present the results on both datasets in Figure 8. From the figure, we
can observe that with the increase of u, the performance improves
on Kinetics50-C and drops on VGGSound-C. This is because Kinet-
ics50 is a video modality dominant dataset and VGGSound is an au-
dio modality dominant dataset. From the results, we know that adding

more weight to the dominant modality will yield poorer performance 2:22; ;g;g‘; ;32
because unimodal assistance aims to select samples with rich multi- Area3  53% 321
modal information. Therefore, adding weight to the weak modality Aread 3.1% 243
will help to utilize the multimodal features. Besides, the performances
with different 1 are stable, indicating the stability of the strategy.

Table 6: Performance of
samples in different areas
on Kinetics50-C.

Ratios  Acc

Exploration of A\. To explore the mutual information sharing, we se-
lect several A\ in Equation 8 and present the results on both datasets Kineics - vGound
in Figure 9. We can observe that increasing the weight term A will
improve the performance slightly. Besides, the results in the table
demonstrate the stability of mutual information sharing across vary- =
ing values of \. 10

0.8 0.9 1 11 12

More ablation experiments can be found in Appendix C.3.

Figure 8: Performance
with different p in Equa-
5 CONCLUSION tion 4.

60
In this paper, we propose a new practical and challenging task named s
multimodal wild TTA. To address this problem, we propose sample
identification with interquartile range smoothing and unimodal assis- *
tance and mutual information sharing (SuMi). SuMi bridges the gap
between the source domain and strong OOD domain by smoothing
the adaptation using interquartile range. Besides, SuMi leverages uni- S L
modal features to select low-entropy samples with rich multimodal
information for optimization. Finally, mutual information sharing is
proposed to further align the information and reduce the discrepancies
across different modalities. We conduct extensive experiments on two
widely used multimodal datasets where SuMi outperforms existing TTA methods significantly and
consistently, indicating its effectiveness. Ablation experiments are then conducted to validate the
contributions of each component.

Kinetics VGGSound
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Figure 9: Performance
with different A in Equa-
tion 8.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-
visual dataset. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 721-725, 2020.

Yaofo Chen, Shuaicheng Niu, Yaowei Wang, Shoukai Xu, Hengjie Song, and Mingkui Tan. To-
wards robust and efficient cloud-edge elastic model adaptation via selective entropy distilla-
tion. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=vePdNU3u6n.

Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhai, and Ludolf Erwin Meester.
A Modern Introduction to Probability and Statistics: Understanding why and how. Springer
Science & Business Media, 2006.

Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju Lee. SoTTA: Robust
test-time adaptation on noisy data streams. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023a.

Yuan Gong, Andrew Rouditchenko, Alexander H. Liu, David Harwath, Leonid Karlinsky, Hilde
Kuehne, and James R. Glass. Contrastive audio-visual masked autoencoder. In The Eleventh
International Conference on Learning Representations,2023b. URL https://openreview.
net/forum?id=QPtMRyk5rb.

Zirun Guo, Tao Jin, and Zhou Zhao. Multimodal prompt learning with missing modalities for
sentiment analysis and emotion recognition. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1726—1736, Bangkok, Thailand, August 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.94. URL https:
//aclanthology.org/2024.acl-1long. 94.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HJz6tiCgYm.

Will Kay, Jodo Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Apostol Natsev, Mustafa Suleyman, and An-
drew Zisserman. The kinetics human action video dataset. ArXiv, abs/1705.06950, 2017.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79-86, 1951.

Jonghyun Lee, Dahuin Jung, Sachyung Lee, Junsung Park, Juhyeon Shin, Uiwon Hwang, and Sun-
groh Yoon. Entropy is not enough for test-time adaptation: From the perspective of disentangled
factors. In The Twelfth International Conference on Learning Representations, 2024.

Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
dre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 21808-21820. Curran Associates, Inc., 2021.

Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, and Peilin Zhao. Test-time model
adaptation with only forward passes. In Forty-first International Conference on Machine Learn-

ing.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. In International conference on
machine learning, pp. 16888—-16905. PMLR, 2022.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui
Tan. Towards stable test-time adaptation in dynamic wild world. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=g2YraF75T].

11


https://openreview.net/forum?id=vePdNU3u6n
https://openreview.net/forum?id=QPtMRyk5rb
https://openreview.net/forum?id=QPtMRyk5rb
https://aclanthology.org/2024.acl-long.94
https://aclanthology.org/2024.acl-long.94
https://openreview.net/forum?id=HJz6tiCqYm
https://openreview.net/forum?id=g2YraF75Tj
https://openreview.net/forum?id=g2YraF75Tj

Under review as a conference paper at ICLR 2025

Hyejin Park, Jeongyeon Hwang, Sunung Mun, Sangdon Park, and Jungseul Ok. Medbn: Robust
test-time adaptation against malicious test samples. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5997-6007, 2024.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=di52zR8xgf.

Inkyu Shin, Yi-Hsuan Tsai, Bingbing Zhuang, Samuel Schulter, Buyu Liu, Sparsh Garg, In So
Kweon, and Kuk-Jin Yoon. Mm-tta: multi-modal test-time adaptation for 3d semantic segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 16928-16937, 2022.

Yu Sun, Xiaolong Wang, Liu Zhuang, John Miller, Moritz Hardt, and Alexei A. Efros. Test-time
training with self-supervision for generalization under distribution shifts. In ICML, 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

John Wilder Tukey et al. Exploratory data analysis, volume 2. Springer, 1977.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In International Conference on Learning Repre-
sentations, 2021. URL https://openreview.net/forum?id=uX13bZLkr3c.

Mouxing Yang, Yunfan Li, Changqing Zhang, Peng Hu, and Xi Peng. Test-time adaptation against
multi-modal reliability bias. In The Twelfth International Conference on Learning Representa-
tions, 2024.

Wenmeng Yu, Hua Xu, Fanyang Meng, Yilin Zhu, Yixiao Ma, Jiele Wu, Jiyun Zou, and Kaicheng
Yang. CH-SIMS: A Chinese multimodal sentiment analysis dataset with fine-grained annotation
of modality. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3718-3727,
Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.
343. URL https://aclanthology.org/2020.acl-main.343.

Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15922-15932, 2023.

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-Philippe Morency. Multimodal sentiment in-
tensity analysis in videos: Facial gestures and verbal messages. IEEE Intelligent Systems, 31(6):
82-88, 2016. doi: 10.1109/MIS.2016.94.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4396—4415,
2023a. doi: 10.1109/TPAMI.2022.3195549.

Zhi Zhou, Lan-Zhe Guo, Lin-Han Jia, Dingchu Zhang, and Yu-Feng Li. Ods: Test-time adaptation
in the presence of open-world data shift. In International Conference on Machine Learning, pp.
42574-42588. PMLR, 2023b.

Jinjing Zhu, Haotian Bai, and Lin Wang. Patch-mix transformer for unsupervised domain adapta-
tion: A game perspective. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3561-3571, 2023.

12


https://openreview.net/forum?id=di52zR8xgf
https://openreview.net/forum?id=uXl3bZLkr3c
https://aclanthology.org/2020.acl-main.343

Under review as a conference paper at ICLR 2025

Contrast Defocus Blur

Elastic Gaussian

Glass Impulse
e

: =
YW "’"’
D] Tl
| 'l_nrq./;l,'r" 18y
g 4 =/
Pixel Shot Snow Zoom

Figure 10: Fifteen different types of noises in videos.

A DETAILS OF DATASETS

Kinetics50 (Kay et al., 2017). The Kinetics dataset is a large-scale and high-quality dataset for
human action recognition in videos. The dataset consists of around 500,000 video clips covering
600 human action classes with at least 600 video clips for each action class. Each video clip lasts
around 10 seconds and is labeled with a single action class. The videos are collected from YouTube.
Following Yang et al. (2024), we use a subset of Kinetics which consists of 50 classes, 29,204
training pairs and 2,466 test pairs.

VGGSound (Chen et al., 2020). VGGSound is a large-scale audio-visual correspondent dataset
consisting of short clips of audio sounds, extracted from videos uploaded to YouTube. All videos
are captured “in the wild” with audio-visual correspondence in the sense that the sound source is
visually evident. Each video in this dataset has a fixed duration of 10 seconds.

To evaluate the performance under different distribution shifts, we introduce a total of 25 different
types of distribution shifts. These distribution shifts can be divided into two groups: weak OOD
distribution shifts and strong OOD distribution shifts.

For weak distribution shifts, we divide them into video corruptions and audio corruptions. Following
previous work (Hendrycks & Dietterich, 2019), we introduce 15 different types of video corruptions
as shown in Figure 10. They include “Gaussian Noise” (Gauss.), “Shot Noise” (Shot), “Impulse
Noise” (Impul.), “Defocus Blur” (Defoc.), “Glass Blur” (Glass), “Motion Blur” (Motion), “Zoom
Blur” (Zoom), “Snow” (Snow), “Frost” (Frost), “Fog” (Fog), “Brightness” (Brit.), “Contrastive”
(Contr.), “Elastic” (Elastic), “Pixelate” (Pixel) and “JPEG” (JPEG). Following Yang et al. (2024),
we introduce six types of audio corruptions as shown in Figure 11. They include “Gaussian Noise”
(Gauss.), “Paris Traffic Noise” (Traff.), “Crowd Noise” (Crowd), “Rainy Noise” (Rain), “Thunder
Noise” (Thund.) and “Windy Noise” (Wind).

For strong distribution shifts, in this paper, we introduce four types of corruptions. They include
“Both Modality Corruptions” (Both), “Audio Missing” (Amiss), “Video Missing” (Vmiss) and

13
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Figure 11: Six different types of noises in audio.

“Missing and Corruption” (Mix). Both represents the both modalities are corrupted. Mix represents
that one of the modality is missing and the other is corrupted. For missing modality, we substitute
any missing modalities with zero vectors. This allows us to maintain the input dimensions required
by the network while enabling it to process the available data effectively.

B DETAILS OF IQR

IQR can effectively captures the central tendency and variability of the data. For IQR calculation,
we can use different metrics for data ranking such as magnitude (Euclidean Norm) and specific
dimension comparison. However, there are some drawbacks of these metrics. For example, large
components in the vectors will disproportionately affect the magnitude. Specific dimension com-
parison ignores other dimensions which may be important and does not represent the overall vector
well. To combine multiple dimensions, we calculate the min and max of all the i element by element
to obtain Ay, and Ayy,e,. Then, we obtain the (1 and @3 through linear interpolation.

C MORE EXPERIMENTAL RESULTS

C.1 GENERALIZATION ABILITY OF SUMI

To further validate the generalization ability and robustness of SuMi, we conduct experiments on
dataset with more modalities. We select CMU-MOSI (Zadeh et al., 2016) as the dataset. We
choose CMU-MOSI for two primary reasons. First, it includes a text modality, allowing us to work
with datasets that extend beyond just video and audio. Second, MOSI encompasses three modali-
ties—text, image, and audio—enabling us to evaluate the performance of SuMi across a dataset with
more than two modalities.

We introduce four types of corruptions for text modality. Specifically, we introduce random deletion
of word or character (RD), random insertion of word or character (RI), word shuffling (WS) and

14
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Figure 12: Performance comparisons on CMU-MOSIL.

Table 7: Results on real-world distribution shifts.

Method | MOSI= SIMS  SIMS— MOSI
| ACC  FI |ACC  Fl

Source 39.2 39.1 40.1 45.5
EATA 40.5 41.2 40.4 45.7
READ 42.0 42.5 40.9 46.9
SuMi 44.2 44.7 41.6 47.8

sentence permutation (SP). Specifically, random deletion of word or character randomly removes
words or characters from sentences to simulate noise in the data. Random insertion inserts random
words or characters into sentences, which can disrupt the original meaning. Word shuffling randomly
shuffle words within a sentence to change the sentence structure while retaining some semantic
meaning. Sentence permutation changes the order of sentences in a paragraph to simulate context
shifts. For strong OOD, we use Corrn to denote that n modalities are corrupted, missn to denote n
modalities are missing and corr+miss to denote both missing modalities and corruption modalities
are present.

For backbone, we use the stacked transformer blocks trained on MOSI dataset. Then, we fine-tune
the model on corrupted MOSI. The results are presented in Figure 12. We can observe that in dataset
with more modalities, SuMi can also outperform existing methods, demonstrating its effectiveness.

C.2 REAL-WORLD DISTRIBUTION SHIFTS

To evaluate the robustness of SuMi in addressing real-world distribution shift, we conduct experi-
ments on two datasets (CMU-MOSI (Zadeh et al., 2016) and CH-SIMS (Yu et al., 2020)). Specif-
ically, CMU-MOSI and CH-SIMS are multimodal sentiment analysis datasets which include three
modalities. They contain different topics of conversations, different speakers, and different record-
ing environments which can all be seen as real-world distribution shifts. We use stacked Transformer
blocks as the backbone and pre-train the model on CMU-MOSI and CH-SIMS as the source model
for the setting MOSI— SIMS and SIMS— MOSI, respectively. Table 7 presents the results. We can
observe that in real-world distribution shifts, SuMi can still outperform existing methods, showing
its robustness.

C.3 MORE ABLATION EXPERIMENTS

Exploration of § in IQR smoothing. In interquartile range smoothing, we set 3 for more stable
selection. Here, we select different values of § and present the results in Figure 13. From the figure,
we can observe that the performances across varying (3 are stable.

Exploration of ¢y in mutual information sharing. For strong OOD adaptation, we add mutual
information sharing in the first ¢, iterations to avoid the impact of strong OOD samples which could
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Figure 14: Performance with different ¢, on Kinetics50-C.

damage the mutual information sharing. We select several different ¢ to conduct experiments and
present the results on Kinetics50-C in Figure 14. From the figure, we can observe that the per-
formances are all better than the model without mutual information sharing which indicates the
effectiveness of mutual information sharing strategy. Besides, with the increase of ¢, the perfor-
mance improves before dropping when o = S’ffr. This shows that with the adaptation process, the
strong OOD samples also increase which could bring many noises and damage the mutual informa-
tion sharing. Moreover, the performances across varying £, are stable, demonstrating the stability of

our method.

Exploration of smoothing process. In Equation 3, we opt for a simple linear smoothing process
for clarity. Here, we provide a deeper analysis of the smoothing process. In addition to the linear
smoothing, we provide the results of the logarithmic and exponential functions. Specifically, for

logarithmic function, we use f(t) = log(ﬂ + 1) and for exponential function we use f(t) =

iter
exp (tnlt‘;f) — 1. We present the results in Table 8. From the table, we can observe that using

ft) = exp (igf) — 1 function can improve the performance of the model slightly. From the
properties of the exponential function, it can be seen that the function grows slowly when the variable
t is small and quickly when the variable is large. For logarithmic function, it grows quickly when
the variable ¢ is small and slowly when the variable is large. This indicates that slowing down the

smoothing process in the initial phase helps the model’s performance. Additionally, we can observe

Table 8: Performance with different smoothing functions on Kinetics50-C.

f(t) Linear Exponential Logarithmic
Acc  59.1 59.5 58.7
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that the function will not affect the performance drastically, indicating the effectiveness of smoothing
process itself.
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